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We discuss an extension of the instanton-dyon liquid model that includes light quarks at finite chemical
potential in the center symmetric phase. We develop the model in details for the case of SUcð2Þ × SUfð2Þ
by mapping the theory on a three-dimensional quantum effective theory. We analyze the different phases in
the mean-field approximation. We extend this analysis to the general case of SUcðNcÞ × SUfðNfÞ and note
that the chiral and diquark pairings are always comparable.
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I. INTRODUCTION

This work is a continuation of our earlier studies [1,2] of
the gauge topology in the confining phase of a theory with
the simplest gauge group SUð2Þ. We suggested that the
confining phase below the transition temperature is an
“instanton dyon” (and antidyon) plasma which is dense
enough to generate strong screening. The dense plasma is
amenable to standard mean-field methods.
The treatment of the gauge topology near and below Tc

is based on the discovery of Kraan-van-Baal-Lee-Lu
(KvBLL) instantons threaded by finite holonomies [3]
and their splitting into the so called instanton dyons
(antidyons), also known as instanton monopoles or instan-
ton quarks. Diakonov et al. [4,5] suggested that the
backreaction of the dyons on the holonomy potential at
low temperature may be at the origin of the order-disorder
transition of the Polyakov line. Their model was based on
(parts of) the one-loop determinant providing the metric of
the moduli spaces in Bogomolny-Prasad-Sommerfeld
(BPS)-protected sectors, purely self-dual or anti-self-dual.
The dyon-antidyon interaction is not BPS protected and
appears at the leading—classical—level, related with the
so-called streamline configurations [6].
The dissociation of instantons into constituents was

advocated by Zhitnitsky et al. [7]. Using controlled
semi-classical techniques on S1 × R3, Unsal and his col-
laborators [8] have shown that the repulsive interactions
between pairs of dyon-antidyon (bions) drive the holonomy
effective potential to its symmetric (confining) value.
Since the instanton dyons carry topological charge, they

should have zero modes as well. On the other hand, for an
arbitrary number of colors Nc, those topological charges
are fractional 1=Nc, while the number of zero modes must
be integers. Therefore, only some instanton dyons may
have zero modes [9]. For general Nc and a general
periodicity angle of the fermions, the answer is known

but a bit involved. For SUð2Þ colors and physically
antiperiodic fermions, the twisted L dyons have zero
modes, while the usual M dyons do not. Preliminary studies
of the dyon-antidyon vacuum in the presence of light quarks
were developed in Refs. [10,11]. In supersymmetric QCD,
some arguments were presented in Ref. [12].
In this work, we would like to follow up on our recent

studies in Refs. [1,2] by switching a finite chemical
potential in the center symmetric phase of the instanton-
dyon ensemble with light quarks. We will make use of a
mean-field analysis to describe the interplay of the sponta-
neous breaking of chiral symmetry with color supercon-
ductivity through diquark pairing. One of the chief
achievements of this work is to show how the induced
chiral effective Lagrangian encodes about confinement at
finite μ. In particular, we detail the interplay between the
spontaneous breaking of chiral symmetry, the pairing of
diquarks, and center symmetry.
Many model studies of QCD at finite density have shown

a competition between the pairing of quarks [13], chiral
density waves [14], and crystals [15,16] at intermediate
quark chemical potentials μ. We recall that for SUcð2Þ the
diquarks are colorless baryons and massless by the
extended flavor SUfð4Þ symmetry [13]. Most of the models
lack a first principle description of center symmetry at finite
chemical potential. This concept is usually parametrized
through a given effective potential for the Polyakov line as
in the Polyakov–Nambu–Jona-Lasinio models [17]. We
recall that current and first principle lattice simulations at
finite chemical potential are still plagued by the sign
problem [18], with some progress on the bulk thermody-
namics [19].
In Sec. II, we detail the model for two colors. By using a

series of fermionization and bosonization techniques, we
show how the three-dimensional effective action can be
constructed to accommodate for the light quarks at finite μ.
In Sec. III, we show that the equilibrium state at finite T, μ
supports center symmetry but competing quark-antiquark
or quark-quark pairing. In Sec. IV, we generalize the results
to arbitrary colors Nc. Our conclusions are in Sec. V. In
Appendix A, we briefly discuss the transition matrix in the
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string gauge at finite μ. In Appendix B, we estimate the
transition matrix element in the hedgehog gauge. In
Appendix C, we recall the key steps for the bosonization
and fermionization that help streamline the logic and
notations used at finite μ. In Appendix D, we give an
alternative but equivalent mean-field formulation with a
more transparent diagrammatic content. In Appendix E,
we detail the construction of the zero modes for arbitrary
Matsubara frequencies.

II. EFFECTIVE ACTION WITH
FERMIONS AT FINITE μ

A. General setting

In the semiclassical approximation, the Yang-Mills
partition function is assumed to be dominated by an
interacting ensemble of instanton dyons (antidyons). For
interparticle distances large compared to their sizes—or a
very dilute ensemble—both the classical interactions and
the one-loop effects are Coulomb-like. At distances of the
order of the particle sizes, the one-loop effects are encoded
in the geometry of the moduli space of the ensemble. For
multidyons, a plausible moduli space was argued starting
from the KvBLL caloron [3] that has a number of pertinent
symmetries, among which are permutation symmetry,
overall charge neutrality, and clustering to KvBLL.
Specifically and for a fixed holonomy A4ð∞Þ=2ω0 ¼

ντ3=2withω0 ¼ πT and τ3=2 being the only diagonal color
algebra generator, the SUð2Þ KvBLL instanton (anti-
instanton) is composed of a pair of dyons labeled by L
andM (antidyons by L and M) in the notations of Ref. [4].
Generically, there areNc − 1M dyons and only one twisted
L dyon type. The SUð2Þ grand-partition function is

Z1½T�≡
X
½K�

YKL

iL¼1

YKM

iM¼1

YKL

iL¼1

YKM

iM¼1

×
Z

fLd3xLiL
KL!

fMd3xMiM

KM!

fLd3yLiL
KL!

fMd3yMiM

KM!

× detðG½x�Þ detðG½y�Þj det ~Tðx; yÞje−VDDðx−yÞ: ð1Þ

Here, xmi and ynj are the three-dimensional coordinates of
the i dyon ofm kind and j antidyon of n kind. Here, G½x� is
a ðKL þ KMÞ2 matrix, and G½y� is a ðKL þ KMÞ2 matrix of
which the explicit forms are given in Refs. [4,5]. VDD is
the streamline interaction between D ¼ L, M dyons and
D ¼ L, M antidyons as numerically discussed in Ref. [6].
For the SUð2Þ case, it is Coulombic asymptotically with a
core at short distances [1].
The fermionic det ~Tðx; yÞ determinant at finite chemical

potential will be detailed below. The fugacities fi are related
to the overall dyon density. The dyon density nD could be
extracted from lattice measurements of the caloron plus
anticaloron densities at finite temperature in unquenched

lattice simulations [20]. No such extractions are currently
available at finite density. Inmanyways, thepartition function
for the dyon-antidyon ensemble resembles the partition
function for the instanton–anti-instanton ensemble [21].

B. Quark zero modes at finite μ

At finite μ, the exact zero modes for the L dyon (right)
and L antidyon (left) in the hedgehog gauge are defined as
φA
α ¼ ηAβ ϵβα with indices A for color and α for spinors. The

normalizable M-dyon zero mode are periodic at finite μ.
The L-dyon zero modes are antiperiodic at finite μ. At finite
T, μ, they play a dominant role in the instanton-dyon model
with light quarks. Keeping in the time dependence only the
lowest Matsubara frequencies �ω0, their explicit form is

ηR ¼ 1

2

X
ξ¼�

αξðrÞSþð1 − ξσ · r̂Þeiξðω0x4þαRÞ

ηL ¼ 1

2

X
ξ¼�

αξðrÞS−ð1þ ξσ · r̂Þeiξðω0x4þαLÞ ð2Þ

with

α�ðrÞ ¼
Ce�iμrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðvlω0rÞshðvlω0rÞ

p

×

�
∓ 2iμ

vlω0

þ
�
e∓2iμr −

2

evlω0r þ 1

��
: ð3Þ

C is an overall normalization constant, and the SUð2Þ
gauge rotation S� satisfies

S�ðσ · r̂ÞS†
� ¼ �σ3; ð4Þ

translating from the hedgehog to the string gauge. In (2),
αL;R correspond to the rigidUð1Þ gauge rotations that leave
the dyon coset invariant. We have kept them as they do not
drop in the hopping matrix elements below. The oscillating
factors e�2iμr are Friedel-type oscillations. For μ ¼ 0, we
recover the zero modes in Refs. [2,10]. We have checked
that the periodicM-dyon zero modes are in agreement with
those obtained in Ref. [22]. The restriction to the lowest
Matsubara frequencies makes the mean-field analysis
reliable only for μ=3ω0 < 1 and for temperatures in the
range of the critical temperature. The instanton liquid
model becomes increasingly dense as T → 0, whereby
our mean-field analysis becomes less reliable in general, as
detailed in Refs. [1,2].

C. Fermionic determinant at finite μ

The fermionic determinant can be viewed as a sum of
closed fermionic loops connecting all dyons and antidyons.
Each link—or hopping—between L dyons and L antidyons
is described by the elements of the “hopping chiralmatrix” ~T,
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~Tðx; yÞ≡
�

0 iTij

iTji 0

�
; ð5Þ

with dimensionality ðKL þ KLÞ2. Each of the entries in
Tij is a “hopping amplitude” for a fermion between an L
dyon and an L antidyon, defined via the zero mode φD of
the dyon and the zero mode φD (of opposite chirality) of the
antidyon,

TLR ¼
Z

d4xφ†
LðxÞið∂4 − μ − iσ · ∇ÞφRðxÞ

TRL ¼
Z

d4xφ†
RðxÞið∂4 − μþ iσ · ∇ÞφLðxÞ; ð6Þ

and similarly for the other components. These matrix
elements can be made explicit in the hedgehog gauge,

TLR ¼ eiðαL−αRÞTðpÞ − e−iðαL−αRÞT�ðpÞ
TRL ¼ eiðαR−αLÞTðpÞ − e−iðαR−αLÞT�ðpÞ; ð7Þ

with a complex TðpÞ at finite μ,

TðpÞ ¼ −
1

2
ðω0 þ iμÞðjf1j2 − jf02j2Þ − Reðf1f0�2 Þ: ð8Þ

Here, f1;2 ≡ f1;2ðpÞ are the three-dimensional Fourier trans-
forms off1ðrÞ ¼ α−ðrÞ andf2ðrÞ ¼ α−ðrÞ=r. The transition
matrix elements in the string gauge are more involved. Their
explicit form is discussed in Appendix A. Throughout, we
will make use of the hopping matrix elements in the hedge-
hog gauge as the numerical difference between the two is
small [2] on average as we show in Appendix B.

III. EQUILIBRIUM STATE

The detailed fermionization and bosonization of the
instanton liquid model at zero μ was presented in
Refs. [1,2,4]. To help set up the notations and understand
the logical flow of the new elements of the derivation at
finite μ, we summarize the essential steps in Appendix C.
With this in mind, to analyze the ground state and the
fermionic fluctuations, we bosonize the fermions in (C15)
by introducing the identities

Z
D½Σ1�δðψ†

fðxÞψfðxÞ þ 4Σ1ðxÞÞ ¼ 1

Z
D½Σ2�δ

�
1

2
ðϵfgψT

f ðxÞψgðxÞ − c:c:Þ þ 4iΣ2ðxÞ
�

¼ 1

ð9Þ

and reexponentiating them to obtain

Z1½T� ¼
Z

D½ψ �D½σ�D½b�D½~Σ�D½~λ�e−S−SC ð10Þ

with

−SC ¼
Z

d3xiλ1ðxÞðψ†
fðxÞψfðxÞ þ 4Σ1ðxÞÞ

þ
Z

d3xiλ2ðxÞ

×

�
1

2
ðϵfgψT

f ðxÞψgðxÞ − c:c:Þ þ 4iΣ2ðxÞ
�
: ð11Þ

The ground state is parity even so that fL;M ¼ fL;M.
By translational invariance, the SUð2Þ ground state

corresponds to constant σ, b, ~Σ, ~λ. We will seek the
extrema of (10) with finite condensates in the mean-field
approcimation, i.e.

hψ†
fðxÞψgðxÞi ¼ −2δfgΣ1

hψT
f ðxÞψgðxÞi ¼ −2iϵfgΣ2: ð12Þ

The classical solutions to the constraint equations (C14)
are also constant,

fMewM−wL ¼ fL

�Y
f

ψ†
fγþψf

�
ewL−wM; ð13Þ

with

�Y
f

ψ†
fγþψf

�
¼ ðΣ2

1 þ Σ2
2Þ≡ ~Σ2 ð14Þ

and similarly for the antidyons. The expectation values in
(13) and (14) are carried in (10) in the mean-field
approximation through Wick contractions. Here, we note
that both the chiral pairing (Σ1) and diquark pairing (Σ2)
are of equal strength in the instanton-dyon liquid model.
The chief reason is that the pairing mechanism goes solely
through the KK- or L-zero modes which are restricted to
the affine root of the color group. With this in mind, the
solution to (13) is

ewM−wL ¼ j~Σj
�
fL
fM

�1
2 ð15Þ

and similarly for the antidyons.

A. Effective potential

The effective potential V for constant fields follows from
(10) by enforcing the delta-function constraint (C17) before
variation (strong constraint) and parity
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−V=V3 ¼ −4~λ · ~Σ

þ 4πfMvmðewM−wL þ ewM−wLÞ
þ 4πfLvl ~Σ

2ðewL−wM þ ewL−wMÞ ð16Þ

after shifting λ1 → iλ1 for convenience, with V3 the
3-volume. For fixed holonomies vm;l, the constant w0s
are real by (C14) as all right-hand sides vanish, and the
extrema of (16) occur for

ewM−wL ¼ �j~Σj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fLvl=fMvm

p
ewM−wL ¼ �j~Σj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fLvl=fMvm

q
: ð17Þ

Equations (17) are consistent with (13) only if vl ¼ vm ¼
1=2 and vl ¼ vm ¼ −1=2. That is for confining holonomies
or a center symmetric ground state. Thus,

−V=V3 ¼ αj~Σj − 4~λ · ~Σ ð18Þ

with α ¼ 4π
ffiffiffiffiffiffiffiffiffiffiffi
fLfM

p
. We note that for ~Σ ¼ ~0 there are no

solutions to the extrema equations. Since ~Σ ¼ ~0 means a
zero chiral or quark condensate (see below), we conclude
that in this model of the dyon-antidyon liquid with light
quarks center symmetry is restored only if both the chiral
and superconducting condensates vanish.

B. Gap equations

For the vacuum solution, the auxiliary field ~λ is also a
constant. The fermionic fields in (10) can be integrated out.
The result is a new contribution to the potential (18)

− V=V3 → αj~Σj − 4~λ · ~Σ

þ 2

Z
d3p
ð2πÞ3 ln ðð1þ

~λ2jTðpÞj2Þ2 − 4λ21jImTðpÞj2Þ:

ð19Þ
The saddle point of (19) in ~Σ is achieved for parallel

vectors

~λ ¼ α

4

~Σ
j~Σj

≡ λðcos θ; sin θÞ: ð20Þ

Inserting (20) into the effective potential (19) yields

−V=V3 ¼ 2

Z
d3p
ð2πÞ3

× ln ðð1þ λ2jTðpÞj2Þ2 − 4λ2cos2θjImTðpÞj2Þ
ð21Þ

with λ ¼ α=4 now fixed. Equation (21) admits four pairs of
discrete extrema satisfying δV=δθ ¼ 0 with cos θ ¼ 0, 1.
The extrema carry the pressure per 3-volume

−V0;1=V3 ¼ 2

Z
d3p
ð2πÞ3

× ln ðð1þ λ2jTðpÞj2Þ2 − 4λ2ð0; 1ÞjImTðpÞj2Þ:
ð22Þ

We note ImT ¼ 0 in (19) for μ ¼ 0. The effective
potential has manifest extended flavor SUfð4Þ symmetry
which is spontaneously broken by the saddle point (20).
Since zero μ cannot support the breaking of Uð1ÞV , this
phase is characterized by a finite chiral condensate and a
zero diquark condensate. For μ ≠ 0, we have ImT ≠ 0 in
(19). The effective potential loses manifest SUfð4Þ sym-
metry. While the saddle point (20) indicates the possibility
of either a chiral or diquark condensate, Eq. (22) shows that
the diquark phase is favored by a larger pressure since
V0 > V1. The μ > 0 is a superconducting phase of confined
and massless baryons.
The chiral and diquark condensates follow from the

definitions (12) and the saddle point (20), which are
�hqqi

T
;−

hqqi
T

�
¼ −2ðλ1; λ2Þ: ð23Þ

For μ ¼ 0, we have λ2 ¼ 0 and hqqi=T ¼ −α=2, while for
μ ≠ 0, we have λ1 ¼ 0 and hqqi=T ¼ α=2, with α ¼
4π

ffiffiffiffiffiffiffiffiffiffiffi
fLfM

p
which is independent of μ. This result is in

agreement with the general analysis for the QCD-like
theories given in Ref. [23] for zero pion mass (see Table 3).

C. Constituent quark mass and scalar gap

In the paired phase with λ1 ¼ 0, the momentum-
dependent constituent quark mass MðpÞ can be defined
using the determinant (22) to be

MðpÞ ¼ λðω2
0 þ p2Þ12jTðpÞj: ð24Þ

In Fig. 1, we show the behavior of the dimensionless mass
ratio ðMðpÞ=λ=ω0Þ2 as a function of p=ω0. The oscillatory
behavior is a remnant of the Friedel oscillation noted
earlier. Using (11)–(12), we note that (24) satisfies

FIG. 1. The squared momentum dependent quark constituent
mass ðω0MðpÞ=λÞ2 vs ~p ¼ p=ω0 for μ=ω0 ¼ 1.
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Z
d3p
ð2πÞ3

M2ðpÞ
ω2
0 þ p2 þM2ðpÞ ¼

nD
8

ð25Þ

with nD ¼ 8π
ffiffiffiffiffiffiffiffiffiffiffi
fLfM

p
Σ.

The superconducting mass gap Δsð0Þ=2 can be obtained
by fluctuating along the modulus of the paired quark qq.
This is achieved through a small and local scalar deforma-
tion of the type λ2ðxÞ ≈ λð1þ isðxÞÞ, for which the
effective action to quadratic order is

S½s� ¼ 2Nf

2fs

Z
d3p
ð2πÞ3 sðpÞ

1

ΔsðpÞ
sð−pÞ: ð26Þ

The scalar propagator is (p� ¼ q� p
2
)

1

ΔsðpÞ
¼ 2

Z
d3q
ð2πÞ3

MþM−ðpþp− −M−MþÞ
ðp2þ þM2þÞðp2

− þM2
−Þ

: ð27Þ

Here, we have defined M� ≡ λjTðp�Þj, and there-
fore Δð0Þ ¼ Δsð0Þ=Δ0

sð0Þ.

IV. GENERALIZATION TO SUcðNcÞ × SUf ðNf Þ
For general Nc with x ¼ Nf=Nc, the pairing in (12)

involves only those color indices commensurate with the
affine root of SUcðNcÞ through their corresponding
Kaluza-Klein (KK)- or L-zero modes. This leaves
(Nc − 2) color directions unbroken. As a result, the non-
perurbative contribution to the pressure per unit 3-volume
(19) is now changed to

−V=V3 ¼ αj~Σjx − 4~λ · ~Σ

þ Nf

Z
d3p
ð2πÞ3

× ln ðð1þ ~λ2jTðpÞj2Þ2 − 4λ21jImTðpÞj2Þ ð28Þ

with now α ¼ 4πðfLfNc−1
M Þ 1

Nc. Remarkably, the fermion
loop contribution in (28) is of order NfN0

c, as it should be
for a confining theory with Nc fundamental quarks [24].

The extrema in ~Σ still yield parallel vectors

~λ ¼ λðcos θ; sin θÞ
~Σ ¼ Σðcos θ; sin θÞ ð29Þ

for which (28) simplifies

−V=V3 ¼ αΣx − 4λΣ

þ Nf

Z
d3p
ð2πÞ3

× ln ðð1þ λ2jTðpÞj2Þ2 − 4λ2cos2θjImTðpÞj2Þ:
ð30Þ

The saddle point in Σ gives

λ ¼ α

4
xΣx−1; ð31Þ

while the saddle point in θ gives cos θ ¼ 0, 1. The latter
yields the respective pressure per volume,

−V0;1=V3 ¼ α

�
4

αx

� x
x−1ð1 − xÞλ x

x−1

þ Nf lnðð1þ λ2jTðpÞj2Þ2
− 4λ2ð0; 1ÞjImTðpÞj2Þ:

For μ ¼ 0, we have V0 ¼ V1, and both the chiral and
diquark phases are degenerate. Since the μ ¼ 0 phase
cannot break Uð1ÞV , the chiral phase with a pion as a
Golstone mode is favored. For μ > 0, V0 > V1, the diquark
phase is favored by the largest pressure.
In the diquark phase and for Nc ¼ 3, the baryonic

excitations carry zero triality on average since the phase
is still center symmetric. The lightest baryon excitation
with zero triality is composed of a massless diquark with
color (13) and a constituent quark of color (2) and mass
Mð0Þ. Here, Eq. (13) refers to the Cartan generator
supporting the KK-zero mode at finite μ. As a result, the
superconducting phase forms only if

μ > μc ¼
1

3
mB ¼ 1

3
Mð0Þ: ð32Þ

From (8), we have

Mð0Þ ¼ λω0jTð0Þj ¼
18π2λ

ω0

ð1þ μ2=ω2
0Þ

1
2

ð1þ 4μ2=ω2
0Þ

3
2

: ð33Þ

Combining (32) and (33) allows for a determination of the
critical value λc in terms of ~μc ¼ μc=ω0,

~λc ≡ λc
ω2
0

¼ ~μc
6π2

ð1þ 4~μ2cÞ32
ð1þ ~μ2cÞ12

: ð34Þ

Inserting (34) into (24) and (25) yields

nD
T3

¼
Z

d3x
ð~λcω2

0TðxÞÞ2
1þ ð~λcω2

0TðxÞÞ2
ð35Þ

with the hopping transition TðxÞ evaluated at ~μc. We have
defined

nD ¼ 8πðf1::fNc
Þ 1
NcΣ

Nf
Nc ; ð36Þ

where each of the Nc dyons carries a fugacity fi. Note that
(36) reduces to the value defined in (25) for Nc ¼ Nf ¼ 2.
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In Fig. 2, we show the critical line for the chemical
potential (35), that is ðT3=nDÞ14 ≈ T=Λ as a function
of ~μ ¼ μc=ω0. Here, Λ ≈ 200 MeV is identified with the
typical QCD scale [4]. For T ≈ Λ, we have μc=Λ ≈ 0.7π,
while for T=Λ ≈ 0.4, we have μc=Λ ≈ 2π, within the range
of validity noted earlier.
In Fig. 3, we sketch the phase diagram for the instanton-

dyon ensemble at finite temperature and quark chemical
potential for Nc ¼ 3 and Nf ¼ 2. Below the dashed and
lower solid line (blue), the phase is center symmetric and
spontaneously breaks chiral symmetry. The phase between
the two solid lines (red and blue) is center symmetric and
superconducting. The upper (red) line is set by the breaking
condition of the superconducting gap, i.e. T ¼ Δsð0Þ with

1

ΔsðpÞ
¼ x

1 − x
nD
Nc

þ
Z

d3q
ð2πÞ3

ðp−Mþ þ pþM−Þ2
ðp2þ þM2þÞðp2

− þM2
−Þ

ð37Þ

which generalizes (27) to any Nc ≠ Nf. All phase separa-
tions (blue) are second order in our mean-field analysis.
The finite μ analysis in the instanton-dyon liquid model

is analogous to the 2-color-superconductivity phase in the
QCD-like theories [25], as only two out of the three color

directions associated to the KK mode (affine root of the
Cartan group) are broken. This observation extends to all
Nc > 2. The instanton-dyon liquid phase does not support
a color-flavor-locking phase for Nc ¼ 3, since the affine
root in SUcð3Þ is special and only involves two fixed color
directions, say (13). The higher Matsubara modes contrib-
ute at the subleading order as we show in Appendix D.

V. CONCLUSIONS

We have extended the mean-field treatment of the SUð2Þ
instanton-dyon model with light quarks in Ref. [1] to finite
chemical potential μ. In Euclidean space, finite μ enters
through iμ in the Dirac equation. The antiperiodic KK- or
L-dyon zero modes are calculated for the lowest Matsubara
frequencies, with the higher modes contributing a sublead-
ing order. The delocalization of the zero modes occur only
through the KK- or L-dyon zero modes, which implies that
the diquark pairing and the chiral pairing have equal
strength whatever Nc. Therefore, the instanton-dyon liquid
may not support chiral density waves [14]. The diquark
phase is favored for μ > ð1 − 2=NcÞMð0Þ.
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APPENDIX A: FERMIONIC HOPPING IN THE
STRING GAUGE AT FINITE μ

In this Appendix, we detail the form of the hopping
matrix in the string gauge. We will show that the difference
with the hopping matrix element in the hedgehog gauge (8)
used in the main text is (numerically) small.
We transform the L-zero modes in the hedgehog gauge

(2) to the string gauge using the ðθ;ϕÞ polar parametriza-
tion of S�,

ψa¼1
L ¼ e−iω0x4

�
− sin

θ

2
e−iϕ;þ cos

θ

2

�
αþðrÞ

ψa¼2
L ¼ eþiω0x4

�
− cos

θ

2
;− sin

θ

2
eþiϕ

�
α−ðrÞ; ðA1Þ

and similarly for the L dyon,

ψa¼1

L
¼ e−iω0x4

�
− cos

θ

2
;− sin

θ

2
eþiϕ

�
α−ðrÞ

ψa¼2

L
¼ eþiω0x4

�
− sin

θ

2
e−iϕ;þ cos

θ

2

�
αþðrÞ; ðA2Þ

with α�ðrÞ defined in (3). In terms of (A1) and (A2), the
hopping matrix element (5) involves the relative angular
orientation θ (not to be confused with θ used in the text).
It is in general numerically involved.

FIG. 3. Sketch of the phase diagram for the instanton-dyon
liquid for SUcð3Þ × SUfð2Þ. See the text.

FIG. 2. Critical line ðT3=nDÞ14 ≈ T=Λ vs ~μ ¼ μc=ω0 for
SUcð3Þ × SUfð2Þ with nD defined in (36).
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To gain further insights and simplify physically the
numerical analysis, let lxy be the line segment connecting
x to y in (5), and let z lie on it. Since the zero modes decay
exponentially, the dominant z-contribution to the integral in
(5) stems from those z with the smallest jx − zj þ jy − zj
contribution. Using rotational symmetry, we can set x ¼ 0
and y ¼ ðr; θ; 0Þ in spherical coordinates. The dominant
contributions are from θz−x ¼ θ, ϕz−x ¼ 0, and θz−y ¼
π − θ, ϕz−y ¼ −π, which can be viewed as constant in the
integral. With this in mind, Eq. (5) in string gauge reads

−Tþ
LRðx − yÞ ¼ ω0 þ iμ

2

Z
d3zα�þðjx − zjÞαþðjy − zjÞ

−
1

2

�
1þ cos2θ − cos θ

2

�

× Re
Z

d3zα�þðjx − zjÞ

×
α0þðjy − zjÞ þ αþðjy − zjÞ

jy − zj : ðA3Þ

In a large ensemble of dyons and antidyons, we have on
average hcos θi ¼ 0 and hcos2θi ¼ 1

2
. Thus,

Tþ
LRðx − yÞ ¼ ω0

2

Z
d3zα�þðjx − zjÞαþðjy − zjÞ

−
5

8
Re

Z
d3zα�þðjx − zjÞ

×
α0þðjy − zjÞ þ αþðjy − zjÞ

ðjy − zjÞ ðA4Þ

in the string gauge. Its Fourier transform is

TðpÞ ≈ −
1

2

�
ðω0 þ iμÞjαþðpÞj2 −

5

4
Reðα�þðpÞ ~αþðpÞÞ

�

ðA5Þ

with ~αðrÞ ¼ ðrαþðrÞÞ0=r. Equation (A5) is to be compared
to (8) in the hedgehog gauge. The dominant contribution in
(A5) is due to the first contribution jαþj2, which is common
to both gauge fixing. A similar observation was made in
Ref. [2] for the case of μ ¼ 0.

APPENDIX B: ESTIMATE OF THE FERMIONIC
HOPPING IN THE HEDGEHOG GAUGE

AT FINITE μ

In this Appendix, we we will estimate the fermionic
hopping matrix element (8) by using the asymptotic form of
the L-dyon zero mode at finite μ (2)–(3). Throughout, we
will use the dimensionless redefinitions μ → μ=ω0 and
p → p=ω0. The normalization in (2) is fixed with

C ¼ ω
3
2

0ð8πð1þ 4μ2ÞÞ12: ðB1Þ
With this in mind, Eq. (8) reads

TðpÞ ¼ −
π

ω2
0

1

ð1þ 4~μ2Þ ðð1þ iμÞF1ðpÞ þ F2ðpÞÞ ðB2Þ

with

F1ðpÞ ¼ a21ðpÞ − A02
1 ðpÞ þ a22ðpÞ − A02

2 ðpÞ
F2ðpÞ ¼ 2pða1ðpÞA0

1ðpÞ þ a2ðpÞA0
2ðpÞÞ ðB3Þ

a1ðpÞ ¼
1

p

Z
∞

0

ffiffiffi
x

p
sinðpxÞð2μ sinðμxÞ þ cosðμxÞÞ

a2ðpÞ ¼
1

p

Z
∞

0

ffiffiffi
x

p
sinðpxÞð2μ cosðμxÞ − sinðμxÞÞ

A1ðpÞ ¼
1

p

Z
∞

0

1ffiffiffi
x

p sinðpxÞð2μ sinðμxÞ þ cosðμxÞÞ

A2ðpÞ ¼
1

p

Z
∞

0

1ffiffiffi
x

p sinðpxÞð2μ cosðμxÞ − sinðμxÞÞ: ðB4Þ

More explicitly, define

aðpÞ ¼
ffiffiffiffiffiffi
2π

p
sin ð3

2
tan−1ð2pÞÞ

ð4p2 þ 1Þ3=4

bðpÞ ¼
ffiffiffiffiffiffi
2π

p
cos ð3

2
tan−1ð2pÞÞ

ð4p2 þ 1Þ3=4

AðpÞ ¼ 2
ffiffiffi
π

p
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p2 þ 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p2 þ 1
p

þ 1

q

BðpÞ ¼
ffiffiffi
π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ 1

p
þ 1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ 1

p : ðB5Þ

Then, we have

a1ðpÞ ¼
1

p
ðμðbðp − μÞ − bðpþ μÞÞ

−
1

2
ðaðpþ μÞ þ aðp − μÞÞ

a2ðpÞ ¼
1

p
ðμðaðp − μÞ þ aðpþ μÞÞ

−
1

2
ðbðpþ μÞ − bðp − μÞÞ

A1ðpÞ ¼
1

p
ðμðBðp − μÞ − Bðpþ μÞÞ

−
1

2
ðAðpþ μÞ þ Aðp − μÞÞ

A2ðpÞ ¼
1

p
ðμðAðp − μÞ þ Aðpþ μÞÞ

−
1

2
ðBðpþ μÞ − Bðp − μÞÞ; ðB6Þ
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We note the momentum averaged hopping strengths

μ ¼ 0∶
Z

d3p
ð2πÞ3 jTðpÞj

2 ≈
4.86
ω0

μ ¼ ω0∶
Z

d3p
ð2πÞ3 jTðpÞj

2 ≈
0.98
ω0

; ðB7Þ

and the typical hopping strengths at zero momentum are

μ ¼ 0∶ jTð0Þj2 ≈ 307.97
T4

μ ¼ ω0∶ jTð0Þj2 ≈ 0.20
T4

: ðB8Þ

We note the huge reduction in hopping at μ ¼ ω0.

APPENDIX C: BOSONIZATION
AND FERMIONIZATION

1. Bosonic fields

Following Refs. [1,2,4], the moduli determinants in (1)
can be fermionized using four pairs of ghost fields χ†L;M,
χL;M for the dyons and four pairs of ghost fields χ†

L;M
, χL;M

for the antidyons. The ensuing Coulomb factors from the
determinants are then bosonized using four boson fields
vL;M, wL;M for the dyons and similarly for the antidyons.
The result is

S1F½χ; v; w� ¼ −
T
4π

Z
d3xðj∇χLj2 þ j∇χMj2

þ∇vL ·∇wL þ∇vM · ∇wMÞ
þ ðj∇χLj2 þ j∇χMj2 þ∇vL · ∇wL

þ∇vM ·∇wMÞ: ðC1Þ

For the interaction part VDD, we note that the pair
Coulomb interaction in (1) between the dyons and
antidyons can also be bosonized using standard methods
[26,27] in terms of σ and b fields. As a result, each
dyon species acquires additional fugacity factors such
that

M∶ e−b−iσ L∶ ebþiσ M∶ e−bþiσ L∶ eb−iσ:

ðC2Þ

Therefore, there is an additional contribution to the free
part (C1),

S2F½σ; b� ¼
T
8

Z
d3xð∇b ·∇bþ∇σ ·∇σÞ; ðC3Þ

and the interaction part is now

SI½v; w; b; σ; χ� ¼ −
Z

d3xe−bþiσfMð4πvm þ jχM − χLj2 þ vM − vLÞewM−wL

þ eþb−iσfLð4πvl þ jχL − χMj2 þ vL − vMÞewL−wM

þ e−b−iσfMð4πvm þ jχM − χLj2 þ vM − vLÞewM−wL

þ eþbþiσfLð4πvl þ jχL − χMj2 þ vL − vMÞewL−wM ðC4Þ

without the fermions. We now show the minimal
modifications to (C4) when the fermionic determinantal
interaction is present.

2. Fermionic fields

To fermionize the determinant and for simplicity, con-
sider first the case of one flavor and one Matsubara
frequency, and define the additional Grassmanians χ ¼
ðχi1; χj2ÞT with i; j ¼ 1; ::; KL;L and

j det ~Tj ¼
Z

D½χ�eχ† ~Tχ : ðC5Þ
We can rearrange the exponent in (C5) by defining a
Grassmanian source JðxÞ ¼ ðJ1ðxÞ; J2ðxÞÞT with

J1ðxÞ ¼
XKL

i¼1

χi1δ
3ðx − xLiÞ J2ðxÞ ¼

XKL

j¼1

χj2δ
3ðx − yLjÞ

ðC6Þ

and by introducing two additional fermionic fields
ψðxÞ ¼ ðψ1ðxÞ;ψ2ðxÞÞT . Thus,

eχ
† ~Tχ ¼

R
D½ψ � expð− R

ψ† ~Gψ þ R
J†ψ þ R

ψ†JÞR
dD½ψ � expð− R

ψ† ~GψÞ ðC7Þ

with ~G a 2 × 2 chiral block matrix,

~G ¼
�

0 −iGðx; yÞ
−iGðx; yÞ 0

�
; ðC8Þ

with entries TG ¼ 1. The Grassmanian source contribu-
tions in (C7) generate a string of independent exponents for
the L dyons and L antidyons,

YKL

i¼1

eχ
i
1
†ψ1ðxLiÞþψ†

1
ðxLiÞχi1

YKL

j¼1

eχ
j
2
†ψ2ðyLjÞþψ†

2
ðyLjÞχ

j
2 : ðC9Þ
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The Grassmanian integration over the χi in each factor in
(C9) is now readily done to yieldY

i

½−ψ†
1ψ1ðxLiÞ�

Y
j

½−ψ†
2ψ2ðyLjÞ� ðC10Þ

for the L dyons and L antidyons. The net effect of the
additional fermionic determinant in (1) is to shift the
L-dyon and L-antidyon fugacities in (C4) through

fL → −fLψ
†
1ψ1 ≡ −fLψ†γþψ

fL → −fLψ
†
2ψ2 ≡ −fLψ

†γ−ψ ; ðC11Þ
where we have now identified the chiralities through
γ� ¼ ð1� γ5Þ=2. The fugacities fM;M are left unchanged
since they do not develop zero modes.
The result (C11) generalizes to an arbitrary number of

flavors Nf and two Matsubara frequencies labeled by i,
j ¼ � through the substitution

fL →
YNf

f¼1

Y
i;j¼�

ψ†
fðifÞγþψfðjfÞδ

�X
f

ðif þ jfÞ
�

fL →
YNf

f¼1

Y
i;j¼�

ψ†
fðifÞγ−ψfðjfÞδ

�X
f

ðif þ jfÞ
�
: ðC12Þ

3. Resolving the constraints

In terms of (C1)–(C4) and the substitution (C11), the
dyon-antidyon partition function (1) for finite Nf can be
exactly rewritten as an interacting effective field theory in
three dimensions,

Z1½T�≡
Z

D½ψ �D½χ�D½v�D½w�D½σ�D½b�

× e−S1F−S2F−SI−Sψ ; ðC13Þ
with the additional Nf ¼ 1 chiral fermionic contribution

Sψ ¼ ψ† ~Gψ . Since the effective action in (C13) is linear in
the vM;L;M;L, the latter integrate to give the following
constraints,

−
T
4π

∇2wM þ fMewM−wL

− fL
Y
f

ψ†
fγþψfewL−wM ¼ T

4π
∇2ðb − iσÞ

−
T
4π

∇2wL − fMewM−wL

þ fL
Y
f

ψ†
fγþψfewL−wM ¼ 0; ðC14Þ

and similarly for the antidyons with M, L, γþ → M, L, γ−.
To proceed further, the formal classical solutions to the
constraint equations or wM;L½σ; b� should be inserted back
into the three-dimensional effective action. The result is

Z1½T� ¼
Z

D½ψ �D½σ�D½b�e−S ðC15Þ

with the three-dimensional effective action

S ¼ SF½σ; b� þ
Z

d3x
X
f

ψ†
f
~Gψf

− 4πfMvm

Z
d3xðewM−wL þ ewM−wLÞ

þ 4πfLvl

Z
d3x

Y
f

ψ†
fγþψfewL−wM

þ 4πfLvl

Z
d3x

Y
f

ψ†
fγ−ψfe

wL−wM: ðC16Þ

Here, SF is S2F in (C3) plus additional contributions
resulting from the wM;Lðσ; bÞ solutions to the constraint
equations (C14) after their insertion back. This procedure
for the linearized approximation of the constraint was
discussed in Refs. [1,2] for the case without fermions.

APPENDIX D: ALTERNATIVE EFFECTIVE
ACTION AT FINITE μ

In this Appendix, we detail an alternative mean-field
analysis of the instanton-dyon ensemble at finite T, μ. The
construction is more transparent for a diagrammatic inter-
pretation and allows for the use of many-body techniques
beyond the mean-field limit. For that, we set Nf ¼ 2 and
define

hψfðpÞψ†
gð−pÞi ¼ δfgF1ðpÞ ðD1Þ

hψfðpÞψT
g ð−pÞi ¼ iϵfgF2ðpÞ ðD2Þ

with p ¼ ð~p;�ω0Þ subsumed. The averaging is assumed
over the instanton-dyon ensemble, with

Σ1;2 ¼
1

2
TrF1;2: ðD3Þ

The trace is carried over the dummy spin indices and
momentum. The three-dimensional effective action for the
momentum dependent spin matrices F1;2 in the mean-field
approximation takes the generic form

−Γ½F� ¼ α

��
TrF1

2

�
2

þ
�
TrF2

2

�
2
� 1

Nc

þ 2Tr ~GF1 − Tr lnðF2
2 þ F2FT

1F
−1
2 F1Þ: ðD4Þ

The first contribution is the Hartree-Fock-type contribution
to the effective potential after minimizing with respect to
(wM − wL). The second and third contributions are from the
fermionic loop with the fermion propagator evaluated in
the mean-field approximation. We note that in the dyon
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ensemble both the quark-quark pairing and the quark-
antiquark pairing carry equal weight in the Hartree-Fock
term. This is not the case for one-gluon exchange or the
instanton liquid model where the quark-quark pairing is
1=Nc suppressed in comparison to the quark-antiquark
pairing. We have checked that the saddle point equations

δΓ½F�
δFiðpÞ

¼ 0 ðD5Þ

yield the saddle point results in the main text.

APPENDIX E: ZERO MODES FOR ARBITRARY
MATSUBARA FREQUENCIES

To discuss the generalized structure of the zero modes for
higher Matsubara frequencies, we recall that for the SUcð2Þ
case the Polyakov line is L ¼ cos πν. In a dyon with core
size and asymptotic A4 controlled by ν → νn ¼ νþ n, there
is a tower of zero modes with higher Matsubara frequencies
of which (2) and (3) are the lowest ones. To construct them,
we first note that each Matsubara mode ψ ≡ eiωmx4 ~ψ
contributes the following to the Dirac equation for ~ψ :

ðγ ·Dþ γ4ð−μþ iωmÞÞ ~ψ ¼ 0: ðE1Þ

Equation (E1) shows that the zero modes in a BPS dyon
follow from the standard ones using the double substitution
μ → μ − iωm and ν → νn. Square integrability for ωm ¼
ð2mþ 1Þω0 requires jωmj < jνnω0j. For all m satisfying
j2mþ 1j < jνþ nj, the antiperiodic BPS or M dyon zero
modes read explicitly

~ψm;n;Aα ¼ ðα1mnðrÞ þ α2mnðrÞσ · r̂ϵÞAα ðE2Þ

with

α1;2mn ¼
χ1;2mnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πTνnr sinhð2πTνnrÞ
p

χ1;mn ¼ −
ϕm

πνn
sinhðϕmTrÞ þ tanhðπTνnÞ coshðϕmTrÞ

χ2;mn ¼∓
�
ϕm

πνn
coshðϕmTrÞ − cothðπTνnÞ sinhðϕmTrÞ

�
:

ðE3Þ

Here, ϕm ¼ ωm þ iμ=T, with −, þ referring to the anti-
periodic M- and M-dyon zero modes, respectively.
For periodic BPS zero modes, we still have (E2)

and (E3) but with the substitution ωm → 2mω0. Square
integrability now requires j2mj < jνþ nj. To construct the

antiperiodic KK- or L-dyon zero modes at level n, we
first obtain the periodic BPS zero modes with ν → ν and
n → −n as detailed above. We then gauge transform them
using e∓iπTx4σ·r̂ to obtain the antiperiodic KK- or L-dyon
zero modes. Therefore, the condition for the existence of
antiperiodic L-dyon zero modes at level n, with time
dependence e�iω0x4þi2πmTx4 is j2mj < jν − nj.
In summary, the asymptotics of the mode ψm;n is

ψm;n →
e−ðνþn−ð2mþ1ÞÞπTrffiffiffi

r
p e−ið2mþ1ÞπTx4 : ðE4Þ

Also, for the L dyon at level n, the asymptotics reads

ψL
m;n →

e−ðνþn−2mÞπTrffiffiffi
r

p e−ið2mþ1ÞπTx4 : ðE5Þ

So, for n ¼ 2mþ 1 or 2m, we have

ψm;2mþ1 →
e−νπTrffiffiffi

r
p e−ið2mþ1ÞπTx4

ψL
m;2m →

e−νπTrffiffiffi
r

p e−ið2mþ1ÞπTx4 : ðE6Þ

For example, at n ¼ 1, all the M zero modes at ω0

decay as e−πTνr=
ffiffiffi
r

p
, which is the same as the L zero

mode at n ¼ 0. Thus, even though they carry higher
Matsubara frequencies, their asymptotics are the same
compared with those modes with n ¼ 0. However, since
they are assiociated with dyons with larger action or small
fugacity, they are always suppressed. For example, the
induced effective contribution to the action which includes
the modes at n ¼ 1 and m ¼ 0 is

XNc−1

i¼1

fi;n¼0ewi−wiþ1 þ fNc;n¼0

Y
f

ψ†
fψfewNc−w1

þ
XNc−1

i¼1

fi;n¼1

Y
f

ψ†
f;1ψf;1e

w1
i−w

1
iþ1 : ðE7Þ

The last contribution is due to the higher Matsubara modes.
However, this contribution is exponentially suppressed
compared to the first two contributions we have retained
in the text, since

fi;n¼1=fi;n¼0 ¼ e
−16π2

g2 : ðE8Þ
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