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Instanton-dyon liquid model. III. Finite chemical potential
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We discuss an extension of the instanton-dyon liquid model that includes light quarks at finite chemical
potential in the center symmetric phase. We develop the model in details for the case of SU.(2) x SU/(2)
by mapping the theory on a three-dimensional quantum effective theory. We analyze the different phases in
the mean-field approximation. We extend this analysis to the general case of SU.(N,) x SU;(N) and note

that the chiral and diquark pairings are always comparable.
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I. INTRODUCTION

This work is a continuation of our earlier studies [1,2] of
the gauge topology in the confining phase of a theory with
the simplest gauge group SU(2). We suggested that the
confining phase below the transition temperature is an
“instanton dyon” (and antidyon) plasma which is dense
enough to generate strong screening. The dense plasma is
amenable to standard mean-field methods.

The treatment of the gauge topology near and below T
is based on the discovery of Kraan-van-Baal-Lee-Lu
(KvBLL) instantons threaded by finite holonomies [3]
and their splitting into the so called instanton dyons
(antidyons), also known as instanton monopoles or instan-
ton quarks. Diakonov et al. [4,5] suggested that the
backreaction of the dyons on the holonomy potential at
low temperature may be at the origin of the order-disorder
transition of the Polyakov line. Their model was based on
(parts of) the one-loop determinant providing the metric of
the moduli spaces in Bogomolny-Prasad-Sommerfeld
(BPS)-protected sectors, purely self-dual or anti-self-dual.
The dyon-antidyon interaction is not BPS protected and
appears at the leading—-classical—level, related with the
so-called streamline configurations [6].

The dissociation of instantons into constituents was
advocated by Zhitnitsky et al. [7]. Using controlled
semi-classical techniques on S' x R3, Unsal and his col-
laborators [8] have shown that the repulsive interactions
between pairs of dyon-antidyon (bions) drive the holonomy
effective potential to its symmetric (confining) value.

Since the instanton dyons carry topological charge, they
should have zero modes as well. On the other hand, for an
arbitrary number of colors N, those topological charges
are fractional 1/N ., while the number of zero modes must
be integers. Therefore, only some instanton dyons may
have zero modes [9]. For general N. and a general
periodicity angle of the fermions, the answer is known
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but a bit involved. For SU(2) colors and physically
antiperiodic fermions, the twisted L dyons have zero
modes, while the usual M dyons do not. Preliminary studies
of the dyon-antidyon vacuum in the presence of light quarks
were developed in Refs. [10,11]. In supersymmetric QCD,
some arguments were presented in Ref. [12].

In this work, we would like to follow up on our recent
studies in Refs. [1,2] by switching a finite chemical
potential in the center symmetric phase of the instanton-
dyon ensemble with light quarks. We will make use of a
mean-field analysis to describe the interplay of the sponta-
neous breaking of chiral symmetry with color supercon-
ductivity through diquark pairing. One of the chief
achievements of this work is to show how the induced
chiral effective Lagrangian encodes about confinement at
finite p. In particular, we detail the interplay between the
spontaneous breaking of chiral symmetry, the pairing of
diquarks, and center symmetry.

Many model studies of QCD at finite density have shown
a competition between the pairing of quarks [13], chiral
density waves [14], and crystals [15,16] at intermediate
quark chemical potentials . We recall that for SU_.(2) the
diquarks are colorless baryons and massless by the
extended flavor SU ;(4) symmetry [13]. Most of the models
lack a first principle description of center symmetry at finite
chemical potential. This concept is usually parametrized
through a given effective potential for the Polyakov line as
in the Polyakov—Nambu-Jona-Lasinio models [17]. We
recall that current and first principle lattice simulations at
finite chemical potential are still plagued by the sign
problem [18], with some progress on the bulk thermody-
namics [19].

In Sec. II, we detail the model for two colors. By using a
series of fermionization and bosonization techniques, we
show how the three-dimensional effective action can be
constructed to accommodate for the light quarks at finite p.
In Sec. III, we show that the equilibrium state at finite 7', u
supports center symmetry but competing quark-antiquark
or quark-quark pairing. In Sec. IV, we generalize the results
to arbitrary colors N,.. Our conclusions are in Sec. V. In
Appendix A, we briefly discuss the transition matrix in the
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string gauge at finite x. In Appendix B, we estimate the
transition matrix element in the hedgehog gauge. In
Appendix C, we recall the key steps for the bosonization
and fermionization that help streamline the logic and
notations used at finite x. In Appendix D, we give an
alternative but equivalent mean-field formulation with a
more transparent diagrammatic content. In Appendix E,
we detail the construction of the zero modes for arbitrary
Matsubara frequencies.

II. EFFECTIVE ACTION WITH
FERMIONS AT FINITE p

A. General setting

In the semiclassical approximation, the Yang-Mills
partition function is assumed to be dominated by an
interacting ensemble of instanton dyons (antidyons). For
interparticle distances large compared to their sizes—or a
very dilute ensemble—both the classical interactions and
the one-loop effects are Coulomb-like. At distances of the
order of the particle sizes, the one-loop effects are encoded
in the geometry of the moduli space of the ensemble. For
multidyons, a plausible moduli space was argued starting
from the KvBLL caloron [3] that has a number of pertinent
symmetries, among which are permutation symmetry,
overall charge neutrality, and clustering to KvBLL.

Specifically and for a fixed holonomy A,(c0)/2wy =
v73 /2 with @y = #T and 73 /2 being the only diagonal color
algebra generator, the SU(2) KvBLL instanton (anti-
instanton) is composed of a pair of dyons labeled by L
and M (antidyons by L and M) in the notations of Ref. [4].
Generically, there are N. — 1 M dyons and only one twisted
L dyon type. The SU(2) grand-partition function is

K, Ky Kp Ky

=2 11111111

K] ip=1iy=1iz=1 i =1

fLd® th fMd3xMz fd YLi; fud® YMi;
/ Ky K7! Ky;!

X det(G[x])det( [V])| det T(x, y)|e~Vos™=) . (1)
Here, x,,; and y,; are the three-dimensional coordinates of
the i dyon of m kind and j antidyon of n kind. Here, G[x] is
a (K + Kj)? matrix, and G[y] is a (K7 + K5;)* matrix of
which the explicit forms are given in Refs. [4,5]. V5 is
the streamline interaction between D = L, M dyons and
D = L, M antidyons as numerically discussed in Ref. [6].
For the SU(2) case, it is Coulombic asymptotically with a
core at short distances [1].

The fermionic det T(x, y) determinant at finite chemical
potential will be detailed below. The fugacities f; are related
to the overall dyon density. The dyon density nj, could be
extracted from lattice measurements of the caloron plus
anticaloron densities at finite temperature in unquenched
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lattice simulations [20]. No such extractions are currently
available at finite density. In many ways, the partition function
for the dyon-antidyon ensemble resembles the partition
function for the instanton—anti-instanton ensemble [21].

B. Quark zero modes at finite u

At finite u, the exact zero modes for the L dyon (right)
and L antidyon (left) in the hedgehog gauge are defined as
@a = 1;€pq With indices A for color and a for spinors. The

normalizable M-dyon zero mode are periodic at finite p.
The L-dyon zero modes are antiperiodic at finite y. At finite
T, u, they play a dominant role in the instanton-dyon model
with light quarks. Keeping in the time dependence only the
lowest Matsubara frequencies +a, their explicit form is

S

afi-

Za:

—Q—fd r) i&(woxstay) (2)

with

Cej:iﬂr

adr) = V (v@or)sh(vwor)

2iu . 2
F2iur __ . 3
X <:F . + (e oo 1 1)) ( )

C is an overall normalization constant, and the SU(2)
gauge rotation S satisfies

Si(a . ?)S; == :l:03, (4)

translating from the hedgehog to the string gauge. In (2),
a; g correspond to the rigid U(1) gauge rotations that leave
the dyon coset invariant. We have kept them as they do not
drop in the hopping matrix elements below. The oscillating
factors e®2#" are Friedel-type oscillations. For y = 0, we
recover the zero modes in Refs. [2,10]. We have checked
that the periodic M-dyon zero modes are in agreement with
those obtained in Ref. [22]. The restriction to the lowest
Matsubara frequencies makes the mean-field analysis
reliable only for /3w, < 1 and for temperatures in the
range of the critical temperature. The instanton liquid
model becomes increasingly dense as 7 — 0, whereby
our mean-field analysis becomes less reliable in general, as
detailed in Refs. [1,2].

C. Fermionic determinant at finite u

The fermionic determinant can be viewed as a sum of
closed fermionic loops connecting all dyons and antidyons.
Each link—or hopping—between L dyons and L antidyons

isdescribed by the elements of the “hopping chiral matrix” T,
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T(x.y) = (iiﬁ if)” ) (5)

with dimensionality (K; + K7)*. Each of the entries in
T;; is a “hopping amplitude” for a fermion between an L
dyon and an L antidyon, defined via the zero mode ¢, of
the dyon and the zero mode ¢4 (of opposite chirality) of the
antidyon,

Tir = /d“xcvl (X)i(04 — p = ic - V)pp(x)
Tm=i/fWﬁOW@M—M+M”VWAﬂ, (6)

and similarly for the other components. These matrix
elements can be made explicit in the hedgehog gauge,

TLR = ei(aL—aR)T(p) _ e_i<“L_aR)T* (p)
TRL = ei(ak—aL)T(p) _ e_i(ak_aL)T*(p), (7)

with a complex T(p) at finite p,

T(p) = =5 (o + )11 = |74) = Re(f /%) (8)
Here, f1, = f1,(p) are the three-dimensional Fourier trans-
formsof f,(r) = a_(r)and f,(r) = a_(r)/r. The transition
matrix elements in the string gauge are more involved. Their
explicit form is discussed in Appendix A. Throughout, we
will make use of the hopping matrix elements in the hedge-
hog gauge as the numerical difference between the two is
small [2] on average as we show in Appendix B.

III. EQUILIBRIUM STATE

The detailed fermionization and bosonization of the
instanton liquid model at zero u was presented in
Refs. [1,2,4]. To help set up the notations and understand
the logical flow of the new elements of the derivation at
finite 4, we summarize the essential steps in Appendix C.
With this in mind, to analyze the ground state and the
fermionic fluctuations, we bosonize the fermions in (C15)
by introducing the identities

[ DIzt ow(x) + 4z, ) = 1
/D[Zﬂ&(% (erg0f (X)wrg(x) —c.c.) + 4i22(x)) =1
©

and reexponentiating them to obtain

|D[A]e=5=5¢  (10)

N
=
I
—
©
s
S
&
©
S
S
M
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with

=Se = [ it ()} 0w () + 421 (0)
+ / d*xily(x)

X (% (s (X)wy(x) —c.c.) + 4i22(x)>. (11)

The ground state is parity even so that f; y = f73-
By translational invariance, the SU(2) ground state

corresponds to constant o, b, i, 7. We will seek the
extrema of (10) with finite condensates in the mean-field
approcimation, i.e.

(g (x) = ~267,%,
() = ~2ie,%,. (12)

~

(w
(w

=N

The classical solutions to the constraint equations (C14)
are also constant,

fue ™ = fr <HW_;7+WJ'>6W"_WM’ (13)
7
with
<2
<Hw}y+lﬂf> =(EZ+5) ==X (14)
7

and similarly for the antidyons. The expectation values in
(13) and (14) are carried in (10) in the mean-field
approximation through Wick contractions. Here, we note
that both the chiral pairing (X;) and diquark pairing (%,)
are of equal strength in the instanton-dyon liquid model.
The chief reason is that the pairing mechanism goes solely
through the KK- or L-zero modes which are restricted to
the affine root of the color group. With this in mind, the
solution to (13) is

e = |3 (f—Lf (15)

M

and similarly for the antidyons.

A. Effective potential

The effective potential V for constant fields follows from
(10) by enforcing the delta-function constraint (C17) before
variation (strong constraint) and parity
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—V/V; = —4]-%
+4nfyv,, (e 4 e"u V)

+drnf; Uliz(eWL_wM + "1 7"n) (16)

after shifting A, — id; for convenience, with V3 the
3-volume. For fixed holonomies v,,;, the constant w's
are real by (C14) as all right-hand sides vanish, and the
extrema of (16) occur for

ernTL = i|i|\/val/vam

" = £[T| frvi/ fuvm (17)

Equations (17) are consistent with (13) only if v; = v,, =
1/2 and v; = vy = —1/2. Thatis for confining holonomies
or a center symmetric ground state. Thus,

-

—V/V; = a|S| —4i-3 (18)

with a = 47+\/f; f);- We note that for T = 0 there are no

solutions to the extrema equations. Since ¥ = 0 means a
zero chiral or quark condensate (see below), we conclude
that in this model of the dyon-antidyon liquid with light
quarks center symmetry is restored only if both the chiral
and superconducting condensates vanish.

B. Gap equations

For the vacuum solution, the auxiliary field 7 is also a
constant. The fermionic fields in (10) can be integrated out.
The result is a new contribution to the potential (18)

—V)V; > alS| - 44X

2 [ S B (1 )Py =4t (o)),

(19)

The saddle point of (19) in T is achieved for parallel
vectors

p

J= % = A(cos 0, sin ). (20)

™M

Inserting (20) into the effective potential (19) yields
d*p
=V/V; =2
x In ((1 + 2%|T(p)|?)* — 44%cos*0[ImT(p)|?)
(21)

with A = a/4 now fixed. Equation (21) admits four pairs of
discrete extrema satisfying §)/60 = 0 with cos@ = 0, 1.
The extrema carry the pressure per 3-volume
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3
Vo Vs =2 / (‘2’7’33
x In (1 + 2[T(p) [2)2 — 422(0, D{ImT(p)P).

(22)

We note ImT =0 in (19) for u =0. The effective
potential has manifest extended flavor SU(4) symmetry
which is spontaneously broken by the saddle point (20).
Since zero p cannot support the breaking of U(1),, this
phase is characterized by a finite chiral condensate and a
zero diquark condensate. For p # 0, we have ImT # 0 in
(19). The effective potential loses manifest SU;(4) sym-
metry. While the saddle point (20) indicates the possibility
of either a chiral or diquark condensate, Eq. (22) shows that
the diquark phase is favored by a larger pressure since
Vo > V;. The u > 0is a superconducting phase of confined
and massless baryons.

The chiral and diquark condensates follow from the
definitions (12) and the saddle point (20), which are

<@ —@) = =2(A, 4). (23)
For u = 0, we have 4, = 0 and (gq)/T = —a/2, while for
u#0, we have 4, =0 and (qq)/T = a/2, with a =
4r+/frfy which is independent of u. This result is in
agreement with the general analysis for the QCD-like
theories given in Ref. [23] for zero pion mass (see Table 3).

C. Constituent quark mass and scalar gap

In the paired phase with 4; =0, the momentum-
dependent constituent quark mass M(p) can be defined
using the determinant (22) to be

M(p) = 2@+ p*)2IT(p)|. (24)

In Fig. 1, we show the behavior of the dimensionless mass
ratio (M(p)/4/w,)? as a function of p/w,. The oscillatory
behavior is a remnant of the Friedel oscillation noted
earlier. Using (11)—(12), we note that (24) satisfies

(M(p)/ A wp)?
30
20
10
1 2 3 4P
FIG. 1. The squared momentum dependent quark constituent

mass (woM(p)/A)? vs p = p/w, for u/wy = 1.
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(27)3 w} + p* + M*(p) 8

with np = Sﬂ\/foMZ.

The superconducting mass gap A,(0)/2 can be obtained
by fluctuating along the modulus of the paired quark ggq.
This is achieved through a small and local scalar deforma-
tion of the type A,(x) ~ A(1 +is(x)), for which the
effective action to quadratic order is

LNy [ L
Sl =57 [ s s g -p) 29

The scalar propagator is (py = g £5)

L, /(d3q MM (pp —MM,)

A,(p) 2n)° (pF + M) (P2 +M2)
Here, we have defined M. = A|T(p.)|, and there-
fore A(0) = A,(0)/A%(0).

IV. GENERALIZATION TO SU,(N,) x SU;(N;)

For general N, with x = N;/N,, the pairing in (12)
involves only those color indices commensurate with the
affine root of SU.(N.) through their corresponding
Kaluza-Klein (KK)- or L-zero modes. This leaves
(N. —2) color directions unbroken. As a result, the non-
perurbative contribution to the pressure per unit 3-volume
(19) is now changed to

—V/V; = a|S[f -4 -

d*p
N -
+ f/(zﬂ.)S
xIn ((1+2[T(p)P)* - 423[ImT(p))  (28)
with now a = 4z(f; fANj_l)NLc. Remarkably, the fermion

loop contribution in (28) is of order N fN(C), as it should be
for a confining theory with N, fundamental quarks [24].

The extrema in X still yield parallel vectors
= A(cos 0, sin 6)
= %(cos 6, sin0) (29)
for which (28) simplifies
=V/V; = aZ* — 41X
d*p
+ N | ——=
f / (27[)3
x In (14 22| T(p)[*)? — 42%cos?0|ImT(p)|?).
(30)
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The saddle point in X gives

A :%xﬁx", (31)

while the saddle point in @ gives cos@ = 0, 1. The latter
yields the respective pressure per volume,

4\ .
_VO.]/\/S = a() (1 —x)/erl
ax

+ Ny In((1+ 2[T(p)|?)?
— 422(0,1)[ImT(p)|?).

For 4 =0, we have V, =V, and both the chiral and
diquark phases are degenerate. Since the y = 0 phase
cannot break U(1),, the chiral phase with a pion as a
Golstone mode is favored. For u > 0,1V, > V), the diquark
phase is favored by the largest pressure.

In the diquark phase and for N, = 3, the baryonic
excitations carry zero triality on average since the phase
is still center symmetric. The lightest baryon excitation
with zero triality is composed of a massless diquark with
color (13) and a constituent quark of color (2) and mass
M(0). Here, Eq. (13) refers to the Cartan generator
supporting the KK-zero mode at finite u. As a result, the
superconducting phase forms only if

1
ﬂ>ﬂc:§mB:§M(0>' (32)
From (8), we have

187222 (1 + i /a}):
wo (1 +42/a}):

M(0) = Aax|T(0)| = (33)

Combining (32) and (33) allows for a determination of the
critical value A, in terms of ji. = u./wy,

Gz e - e (T de) (34)

Inserting (34) into (24) and (25) yields

n—g—/d3x
T

with the hopping transition T(x) evaluated at ji.. We have
defined

(2T (x))?

It GeofT())? 2

1 N
np = 8xa(fy..fn, ) Xe, (36)

where each of the N, dyons carries a fugacity f;. Note that
(36) reduces to the value defined in (25) for N, = N, = 2.
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(T3np) "
1.2

1.0
0.8

0.6

0.4

7]

08 10 12 14 16 18 20

FIG. 2. Critical line (73/np)i~T/A vs ji=pu./w, for
SU.(3) x SU(2) with ny, defined in (36).

In Fig. 2, we show the critical line for the chemical
potential (35), that is (73/np)i ~ T/A as a function
of i = pu./wy. Here, A ~ 200 MeV is identified with the
typical QCD scale [4]. For T ~ A, we have u./A ~ 0.7x,
while for T/A ~ 0.4, we have u./A ~ 2z, within the range
of validity noted earlier.

In Fig. 3, we sketch the phase diagram for the instanton-
dyon ensemble at finite temperature and quark chemical
potential for N. =3 and Ny = 2. Below the dashed and
lower solid line (blue), the phase is center symmetric and
spontaneously breaks chiral symmetry. The phase between
the two solid lines (red and blue) is center symmetric and
superconducting. The upper (red) line is set by the breaking
condition of the superconducting gap, i.e. T = A (0) with

(p-M, + p M_)*
(27)* (p3 + MZ)(p2 + M2)
(37)

I x np d*q
As(p)_l_ch

which generalizes (27) to any N. # N . All phase separa-
tions (blue) are second order in our mean-field analysis.
The finite ¢ analysis in the instanton-dyon liquid model
is analogous to the 2-color-superconductivity phase in the
QCD-like theories [25], as only two out of the three color

T/Mc
&
(L) #0
(@g)=0
(aq) =0
1 o e
(L)=0 (Ly=0
(qq) #0 (qq) #0
-0 -
1 n/M(0)/3
FIG. 3. Sketch of the phase diagram for the instanton-dyon

liquid for SU,.(3) x SU;(2). See the text.
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directions associated to the KK mode (affine root of the
Cartan group) are broken. This observation extends to all
N, > 2. The instanton-dyon liquid phase does not support
a color-flavor-locking phase for N, = 3, since the affine
root in SU.(3) is special and only involves two fixed color
directions, say (13). The higher Matsubara modes contrib-
ute at the subleading order as we show in Appendix D.

V. CONCLUSIONS

We have extended the mean-field treatment of the SU(2)
instanton-dyon model with light quarks in Ref. [1] to finite
chemical potential x. In Euclidean space, finite p enters
through iu in the Dirac equation. The antiperiodic KK- or
L-dyon zero modes are calculated for the lowest Matsubara
frequencies, with the higher modes contributing a sublead-
ing order. The delocalization of the zero modes occur only
through the KK- or L-dyon zero modes, which implies that
the diquark pairing and the chiral pairing have equal
strength whatever N ... Therefore, the instanton-dyon liquid
may not support chiral density waves [14]. The diquark
phase is favored for y > (1 —2/N_.)M(0).
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APPENDIX A: FERMIONIC HOPPING IN THE
STRING GAUGE AT FINITE p

In this Appendix, we detail the form of the hopping
matrix in the string gauge. We will show that the difference
with the hopping matrix element in the hedgehog gauge (8)
used in the main text is (numerically) small.

We transform the L-zero modes in the hedgehog gauge
(2) to the string gauge using the (0, ¢) polar parametriza-
tion of S,

. 0 _. 0
Wﬁzl — pimoxy (_ Sini e—l!ﬁ’ + cos E) (x+(r)

) 0 0 .
pi=2 = etioon <— cos 3, - sin 5 e+’4’> a_(r), (A1)

and similarly for the L dyon,
) 0 0 .
wf_fl = e 0% (— cos 5, = sin > e*"”) a_(r)
a=2 — ptimoxy —singe""” +cosg a,(r) (A2)
oo 2¢ TNy )

with o (r) defined in (3). In terms of (A1) and (A2), the
hopping matrix element (5) involves the relative angular
orientation @ (not to be confused with € used in the text).
It is in general numerically involved.
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To gain further insights and simplify physically the
numerical analysis, let /,, be the line segment connecting
x toyin (5), and let z lie on it. Since the zero modes decay
exponentially, the dominant z-contribution to the integral in
(5) stems from those z with the smallest |x — z| + |y — z|
contribution. Using rotational symmetry, we can set x = 0
and y = (r,0,0) in spherical coordinates. The dominant
contributions are from 0,_, =6, ¢,_, =0, and 0,_, =
n—0, ¢,_, = —r, which can be viewed as constant in the
integral. With this in mind, Eq. (5) in string gauge reads

Wy + ip

Tple =) =27 [ @zt (- cla (- )

1 14 cos?6 — cos 8
2 2

X Re/d3za*+(|x —-z|)

Ay =z ta(ly—2)
ly -z

(A3)

In a large ensemble of dyons and antidyons, we have on
average (cos@) = 0 and (cos’¢) = 3. Thus,

w,
Tia(r=3) =9 [ @t (b2l (y =2

5
- gRe/d3zai(|x —-z|)

@y (ly =z) +a(ly —2l)
(Iy —zl)

in the string gauge. Its Fourier transform is

(A4)

1(p) % =3 (00 + il ()P - Re(e () (0) )
(45)

with a(r) = (ra,.(r))’'/r. Equation (A5) is to be compared
to (8) in the hedgehog gauge. The dominant contribution in
(A5) is due to the first contribution |a, |?, which is common
to both gauge fixing. A similar observation was made in
Ref. [2] for the case of u = 0.

APPENDIX B: ESTIMATE OF THE FERMIONIC
HOPPING IN THE HEDGEHOG GAUGE
AT FINITE p

In this Appendix, we we will estimate the fermionic
hopping matrix element (8) by using the asymptotic form of
the L-dyon zero mode at finite y (2)—(3). Throughout, we
will use the dimensionless redefinitions u — pu/w, and
p — p/wy. The normalization in (2) is fixed with
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3
C = w)(8n(1 + 42))e.
With this in mind, Eq. (8) reads

(B1)

T

1
o (L1 42) (B2)

T(p) = - (1 +iu)Fi(p) +Fa(p))

- A (p) +a3(p) = AZ(p)

F2(p) = 2p(ai(p)A|(p) + ax(p)A5(p)) (B3)

a(p) = ; / ™/ sin(px) (2u sin(ux) + cos(ux))
ar(p) = % A " V/xsin(px) (2u cos(ux) — sin(ux))
Ap) =~ / - %Sin(pﬂ@ﬂ sin(yx) + cos(ux))

Aa(p) = [ zsintp) (2ucos(er) = sinur)).

More explicitly, define

(B4)

2z sin (3tan™! (2p))
(4p* + 1)

V2zr cos (3tan™!(2p))
(4p? + 1)3/4
2y/mp

VAPt + 1/ Vapr +1+1

VN A ApE + 141
Vaprr+1

a(p) =

b(p) =

A(p) =

B(p) = (B5)

Then, we have

—b(p—p))

- B(p +u))

Ay(p) = —(u(A(p —p) + A(p + 1))

LB w

5 - B(p—n)). (B6)
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We note the momentum averaged hopping strengths

[ dp 4.86
u=0: [ SEmpp~=

&p 0.98

= wy: T(p)|* ~ B7
p=o: [ SEIOESZE @)
and the typical hopping strengths at zero momentum are

307.97

u=0: |T(O)|2 ~ T4

0.20

p=wp: [TO)P ~ == (B8)

We note the huge reduction in hopping at 4 = wy.

APPENDIX C: BOSONIZATION
AND FERMIONIZATION

1. Bosonic fields

Following Refs. [1,2,4], the moduli determinants in (1)
can be fermionized using four pairs of ghost fields ;{‘L e
1.y for the dyons and four pairs of ghost fields ;(__, XL
for the antidyons. The ensuing Coulomb factors from the
determinants are then bosonized using four boson fields
vp.m» Wry for the dyons and similarly for the antidyons.
The result is

Silv,w,b,0,x] =

+ ettTiofy (drv + |y

PHYSICAL REVIEW D 94, 105011 (2016)

T
Surly. vw) = = [ (T + [l
+ VUL . VWL + VUM . VWM)
+ (IVxzl? + [Vagl® + Vog - Vg

For the interaction part V,;, we note that the pair
Coulomb interaction in (1) between the dyons and
antidyons can also be bosonized using standard methods
[26,27] in terms of ¢ and b fields. As a result, each

dyon species acquires additional fugacity factors such
that

M. e—h+io’ Z eb—io’

(C2)

M: e—h—i(f L: eb+iﬂ

Therefore, there is an additional contribution to the free
part (C1),

- / Pxe™ fr (Ao, + e — 2L+ vy — vp)en

+ e7t7io fo(dmvg + lygg — x7 | + v — vp)e VT

+ ettt fr(droy + lyp — gl 4 vp —

without the fermions. We now show the minimal
modifications to (C4) when the fermionic determinantal
interaction is present.

2. Fermionic fields

To fermionize the determinant and for simplicity, con-
sider first the case of one flavor and one Matsubara
frequency, and define the additional Grassmanians y =

(ry.3)" with i, j = 1, ..,
|det’i‘| :/Dmex"@r

We can rearrange the exponent in (C5) by defining a
Grassmanian source J(x) = (J;(x),J, (x))T with

Ky
=2 A8 (=) Zfz i)
i=1

(Co)

K,z and

(C5)

T
Saelo.b] = / &x(Vb-Vb+Vo-Vo), (C3)
and the interaction part is now
— xul* v = vy)er
v3;)€ TV (C4)
|
and by introducing two additional fermionic fields
w(x) = (y1(x).y2(x))". Thus,
iy _ S PWlexp(= [w'Gy + [Ty + [w')) ©)
[ dDly]exp(~ [y Gy)
with G a 2 x 2 chiral block matrix,
~ 0 —iG(x,
G ( | ( y)>’ ()
—iG(x,y) 0

with entries TG = 1. The Grassmanian source contribu-
tions in (C7) generate a string of independent exponents for
the L dyons and L antidyons,

Ky
H eXitun (xLi>+V/]|\ (xLix!

i=1

K-
l_L[ e)(ﬁ'll/z()’zj)'*'l/’;(,Vz,))fé_ (C9)
J=1

105011-8



INSTANTON-DYON .... III. FINITE CHEMICAL ...

The Grassmanian integration over the y; in each factor in
(C9) is now readily done to yield

H[_V/J{V/l (xLi)]H[—‘//;llz (ij)]

i J

(C10)

for the L dyons and L antidyons. The net effect of the
additional fermionic determinant in (1) is to shift the
L-dyon and L-antidyon fugacities in (C4) through

fr—=—fuwiyi=—fur'rw

= —fovavs = —frv'try, (C11)

where we have now identified the chiralities through
v+ = (1 £ys5)/2. The fugacities f), 3; are left unchanged
since they do not develop zero modes.

The result (C11) generalizes to an arbitrary number of
flavors N, and two Matsubara frequencies labeled by i,
Jj = = through the substitution

fo— H H wiip)r vy Jf)5<2(if +ff')>
7

=1i,j=

fr— H [T vt Jf>5(2<if-+jf>). 1)

=1i,j=

3. Resolving the constraints

In terms of (C1)—(C4) and the substitution (C11), the
dyon-antidyon partition function (1) for finite N, can be
exactly rewritten as an interacting effective field theory in
three dimensions,

Z1) = / Dy DD [)DW|Dlo]D[b]
X e=Sir=Sur=S1=Sy (C13)

with the additional Ny =1 chiral fermionic contribution
Sy = l//TGl//. Since the effective action in (C13) is linear in
the vy, 377, the latter integrate to give the following
constraints,

T
_ 4_ VZWM + fMewM_WL
T

T .
— fu] [wjriw e = Evz(b —io)

7
_ 1 VZWL _ fMeWM_WL
4z
+f] i =, (C14)
f

and similarly for the antidyons with M, L,y, — M, L, y_.
To proceed further, the formal classical solutions to the
constraint equations or wy, ; [o, b] should be inserted back
into the three-dimensional effective action. The result is

PHYSICAL REVIEW D 94, 105011 (2016)
z(1)= [ DiDioBle  (C13)

with the three-dimensional effective action
S=Stlob) + [ 3w,
7
- 47TfMUm / d3x(eWM_WL + eWM‘Wz)
+ 47TfLUl / d3xHW;y+erwL—wM
f

+477:fz1)l/d3XHl//;]/_l//f€WZ_WM. (C16)
f

Here, Sr is S,r in (C3) plus additional contributions

resulting from the wy,; (6, D) solutions to the constraint

equations (C14) after their insertion back. This procedure

for the linearized approximation of the constraint was

discussed in Refs. [1,2] for the case without fermions.

APPENDIX D: ALTERNATIVE EFFECTIVE
ACTION AT FINITE p

In this Appendix, we detail an alternative mean-field
analysis of the instanton-dyon ensemble at finite 7', . The
construction is more transparent for a diagrammatic inter-
pretation and allows for the use of many-body techniques
beyond the mean-field limit. For that, we set Ny = 2 and
define

p)) = 67,Fi(p)
= iengz(P)

with p = (p, £w,) subsumed. The averaging is assumed
over the instanton-dyon ensemble, with

(wr(p)wi(- (D1)

(v (p)ys(=p)) (D2)

1
21’2 = 5TI'FL2. (D3)

The trace is carried over the dummy spin indices and
momentum. The three-dimensional effective action for the
momentum dependent spin matrices F; , in the mean-field
approximation takes the generic form

o= () - (2))

+ 2TrGF, — Tr In(F2 + F,FTF;'F)).

(D4)

The first contribution is the Hartree-Fock-type contribution
to the effective potential after minimizing with respect to
(wyr — wy). The second and third contributions are from the
fermionic loop with the fermion propagator evaluated in
the mean-field approximation. We note that in the dyon
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ensemble both the quark-quark pairing and the quark-
antiquark pairing carry equal weight in the Hartree-Fock
term. This is not the case for one-gluon exchange or the
instanton liquid model where the quark-quark pairing is
1/N,. suppressed in comparison to the quark-antiquark
pairing. We have checked that the saddle point equations

orF]
5F;(p) B

yield the saddle point results in the main text.

(D5)

APPENDIX E: ZERO MODES FOR ARBITRARY
MATSUBARA FREQUENCIES

To discuss the generalized structure of the zero modes for
higher Matsubara frequencies, we recall that for the SU.(2)
case the Polyakov line is L = cos zv. In a dyon with core
size and asymptotic A4 controlled by v — v,, = v + n, there
is a tower of zero modes with higher Matsubara frequencies
of which (2) and (3) are the lowest ones. To construct them,
we first note that each Matsubara mode y = ey
contributes the following to the Dirac equation for y:

(7D +ra(—p + iw,))r = 0. (E1)
Equation (E1) shows that the zero modes in a BPS dyon
follow from the standard ones using the double substitution
u — u—iw, and v — v,. Square integrability for w,, =
(2m + 1)wy requires |w,,| < |v,@q|. For all m satisfying
|2m + 1| < |v + n|, the antiperiodic BPS or M dyon zero
modes read explicitly

li’m.n,A(z = (almn(r) + aZmn(r)G : ?G)Aa (EZ)

with
. X1.2mn

A 2mn = B

\/2xTv,rsinh(2zTv,,r)
Ximn = — P sinh(¢,, Tr) 4 tanh(zTwv,) cosh(¢,,Tr)

T n
Xomn =F <¢m cosh(¢,,Tr) — coth(zTv,,) sinh(qﬁ,,,Tr)).
' Wp

(E3)

Here, ¢,, = w,, + in/T, with —, + referring to the anti-
periodic M- and M-dyon zero modes, respectively.

For periodic BPS zero modes, we still have (E2)
and (E3) but with the substitution w,, — 2mm,. Square
integrability now requires |2m| < |v + n|. To construct the

PHYSICAL REVIEW D 94, 105011 (2016)

antiperiodic KK- or L-dyon zero modes at level n, we
first obtain the periodic BPS zero modes with v — v and
n — —n as detailed above. We then gauge transform them
using eT#T%07 o obtain the antiperiodic KK- or L-dyon
zero modes. Therefore, the condition for the existence of
antiperiodic L-dyon zero modes at level n, with time
dependence eti®oxstiZimIx jg 2m| < |U — n|.
In summary, the asymptotics of the mode vy, ,, is

e—(v+n—(2m+l))ﬂTr

Ymn = \/;

Also, for the L dyon at level n, the asymptotics reads

e—i(2m+1)ﬂTx4' (E4)

e—(ﬁ-‘rn—Zm)frTr )
l//ann — \/; e—t(2m+l)7rTx4_ (ES)
So, for n = 2m + 1 or 2m, we have
e—err A
Wiomil = \/; e~ 12m+1)aTx,
e—z_/n'Tr )
W;,Zm N \/; e—z(2m+l)7rTx4_ (E6)

For example, at n =1, all the M zero modes at @,
decay as e~"'"/./r, which is the same as the L zero
mode at n =0. Thus, even though they carry higher
Matsubara frequencies, their asymptotics are the same
compared with those modes with n = 0. However, since
they are assiociated with dyons with larger action or small
fugacity, they are always suppressed. For example, the
induced effective contribution to the action which includes
the modes at n =1 and m = 0 is

N1

Z fin=o€" ™" + fNE,n:OHW}erWN"_W]
i=1 f

N-1
11
+ Z fi,n:lHl//;,ﬂ//f,leW" Yt (E7)
i=1 7

The last contribution is due to the higher Matsubara modes.
However, this contribution is exponentially suppressed
compared to the first two contributions we have retained
in the text, since

1672

fi,n:l/an:O =e 7. (ES)
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