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We give an exhaustive characterization of the complex saddle point configurations of the Gross-Witten-
Wadia matrix model in the large-N limit. In particular, we characterize the cases in which the saddles
accumulate in one, two, or three arcs, in terms of the values of the coupling constant and of the fraction of
the total unit density that is supported in one of the arcs, and derive an explicit condition for gap closing
associated with nonvacuum saddles. By applying the idea of large-N instanton we also give direct analytic
derivations of the weak-coupling and strong-coupling instanton actions.
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I. INTRODUCTION

The 1=N expansion was introduced by ’t Hooft for the
study of SUðNÞ color theories of the strong interaction [1].
’t Hooft showed that the leading contribution to each order
in the now-called ’t Hooft parameter λ ¼ g2N comes from
planar diagrams, where g2 is the gauge coupling and λ is
kept fixed as N → ∞. Since then, the 1=N expansion has
been used in many different settings, and it has been
realized the role played by the two parameters N and λ is
not just at the perturbative level but describes fluctuations
around saddle points and more general nonperturbative
phenomena. The analysis of these nonperturbative phe-
nomena requires methods beyond classical asymptotics and
leads to new results in matrix models, gauge theories,
supersymmetric gauge theories, and string theories [2–4].
Nonperturbative effects in matrix models were first

studied by David [5,6] in the critical case and by using
the double-scaling limit method, but it was soon realized
that these effects are also worth studying in matrix models
off criticality. Among the key realizations were (i) that the
set of saddle points of a matrix model allows us to describe
the nonperturbative corrections to the free energy in terms
of large-N instantons, i.e., migration of eigenvalues among
different pieces of the eigenvalue density support, and
(ii) the role played by complex saddles even in cases
where the original partition functions were sums over real
configurations [2,3,7–11].
In a recent paper Buividovich, Dunne, and Valgushev

[12] applied these ideas to a detailed numerical study of the
complex saddle points in the Gross-Witten-Wadia (GWW)
unitary matrix model, which is equivalent to a simple

two-dimensional (2D) lattice gauge theory [13–15]. Their
numerical calculations go beyond the well-known results
on the vacuum configuration (in both the weak- and the
strong-coupling phases) to discover new configurations of
complex saddle points which can be interpreted as non-
perturbative effects.
The purpose of the present paper is to provide an

exhaustive classification of these configurations in the
large-N limit, as well as to give independent analytic
derivations of the corresponding weak-coupling and
strong-coupling instanton actions that do not rely on a
trans-series ansatz in the string equation [3].
In 2005 Mizoguchi [16] used a change of variables to

transform the partition function of the unitary GWWmatrix
model into the partition function of an Hermitian matrix
model defined on the real line.
Our strategy is to use directly the matrix eigenvalues as

integration variables, thus keeping the simpler form of the
potential and in effect allowing us to write and solve a
system of equations similar to those used in Refs. [17,18] to
study the arcs that support the asymptotic density of zeros
in families of non-Hermitian orthogonal polynomials.
The layout of the paper is as follows. In Sec. II we

present this change of variables, quickly review the saddle
point method, and set up the system of equations that will
eventually determine the arcs of the eigenvalue support and
the corresponding eigenvalue densities. In Sec. III, before
embarking on the general solution of the system, we
present the simple particular solutions that correspond to
the vacuum configuration both in the weak- and in the
strong-coupling regimes. Section IV contains the main
results of the paper, including the general solution and the
classification of the possible configurations. This classi-
fication is presented graphically in two forms: the first
results from the direct application of the method; the
second, which has to be derived from the first, is simpler,
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is physically more meaningful, and permits direct com-
parison with the numerical results of Ref. [12]. In this
section we also give an explicit condition for the gap
closing in the nonvacuum configuration in terms of the
charge fraction supported on the unit circle, as well as
straightforward derivations of the weak-coupling and
strong-coupling instanton actions mentioned earlier, and
some results on the limiting phase in which all the
eigenvalues have moved away from the unit circle. The
paper ends with a brief summary.

II. EIGENVALUE DENSITIES
IN THE LARGE N LIMIT

The partition function ZN of the GWW unitary matrix
model can be expressed in terms of the matrix eigenvalues
e−iθi as

ZN ¼
YN
i¼1

Z
π

−π
dθi

Y
i<j

sin2
�
θi − θj

2

�
exp

�
2N
λ

cos θi

�
; ð1Þ

where N is the dimension of the matrices and λ > 0 is the ’t
Hooft parameter. In Ref. [16] Mizoguchi used the change of
variables

zi ¼ tanðθi=2Þ ð2Þ

to write Eq. (1) as the partition function of an Hermitian
matrix model defined on the real line with potential

WMðzÞ ¼ λ lnð1þ z2Þ − 2ð1 − z2Þ
1þ z2

: ð3Þ

(Mizoguchi denotes the ’t Hooft parameter by μ instead of
λ.) However, considering the complex saddle points found
in Ref. [12], we use directly the matrix eigenvalues as
integration variables, i.e.,

zi ¼ exp ð−iθiÞ; ð4Þ

and rewrite the GWW partition function as

ZN ¼ ð−1ÞNi−N2

2−NðN−1ÞZN; ð5Þ

where ZN is given by

ZN ¼
YN
i¼1

Z
Γ
dzi

Y
i<j

ðzi − zjÞ2 exp
�
−
N
λ
WðziÞ

�
; ð6Þ

with Γ being the negatively oriented unit circle in the
complex plane, and

WðzÞ ¼ λ log z − z −
1

z
: ð7Þ

The logarithmic function in Eq. (7) is defined by log z ¼
ln jzj þ i arg z with 0 ≤ arg z < 2π. The partition function
in Eq. (6) determines a non-Hermitian holomorphic matrix
model [19,20] which can be analyzed in the same way as
the models recently considered in Refs. [17,18,21].
It should be noticed that Eq. (6) is a particular case of the

partition function proposed in Refs. [22,23] to describe the
Seiberg-Witten theory with Nf ¼ 2 flavors

WSWðzÞ ¼ μ3 log z −
Λ2

2

�
zþ 1

z

�
; ð8Þ

which in turn is a certain limiting case [22,23] of the Penner
matrix model with three logarithmic terms,

WPðzÞ ¼ m0 log zþm1 logðz − 1Þ þm2 logðz − qÞ: ð9Þ

A. The saddle point method

The partition function of a generic holomorphic model of
the form given by Eq. (6) with an integration path Γ can be
written as

ZN ¼
YN
i¼1

Z
Γ
dzie−N

2SN ; ð10Þ

where the discrete action SN is

SN ¼ 1

λN

X
i

WðziÞ −
1

2N2

X
i

X
j≠i

logðzi − zjÞ2: ð11Þ

(In case the integration path Γ is unbounded it must lead to
a convergent integral.)
The saddle point method assumes that in the large N

limit the partition function ZN is dominated by the con-

tribution from a sequence zðNÞ
i of saddle points of SN ,

i.e., of solutions of ∂SN=∂zi ¼ 0, or more explicitly, the
solutions of

N
λ
W0ðziÞ þ

X
j≠i

2

zj − zi
¼ 0; i ¼ 1;…; N: ð12Þ

This is precisely the system of equations studied numeri-
cally in Ref. [12] for the GWW model. Note also that the

sequence zðNÞ
i should be reachable by a suitable deforma-

tion of Γ in the analyticity domain of e−N
2SN . For later

reference and as an important consequence of Eq. (12), we
also recall that the discrete resolvent ωNðzÞ defined by

ωNðzÞ ¼
1

N

X
i

1

z − zðNÞ
i

ð13Þ
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satisfies the Riccati equation

1

N
ω0
NðzÞ þ ωNðzÞ2 −

1

λ
W0ðzÞωNðzÞ

¼ −
1

λN

X
i

W0ðzÞ −W0ðzðNÞ
i Þ

z − zðNÞ
i

: ð14Þ

B. The large N limit: Vacuum and nonvacuum
configurations

As N → ∞ we expect that the sequence of saddle points
accumulates over some curve γ (made in general of a finite
number s of pieces, γ ¼ γ1∪ � � �∪γs) and leads to a unit-
normalized positive eigenvalue density ρðzÞ supported
on γ:

1

N

XN
i¼1

δðz − zðNÞ
i Þ → ρðzÞjdzj: ð15Þ

However, to study both vacuum and nonvacuum configu-
rations, we must allow for specified filling fractions qi of
the total unit-normalized density to be supported on each
piece of γ, i.e.,Z

γi

ρðzÞjdzj ¼ qi;
Xs

i¼1

qi ¼ 1: ð16Þ

Therefore, the continuum limit SðzÞ of the discrete action
SN , defined by

S½ρ� ¼ 1

λ

Z
γ
WðzÞρðzÞjdzj

−
1

2

Z
γ
jdzj

Z
γ
jdz0j logðz − z0Þ2ρðzÞρðz0Þ; ð17Þ

is assumed to satisfy the variational equation

δ

δρðzÞ
�
S½ρ� þ

Xs
i¼1

Li

�
qi −

Z
γi

ρðzÞjdzj
��

¼ 0; ð18Þ

where the Li are Lagrange multipliers whose physical
meaning in an electrostatic interpretation will be dis-
cussed later. Furthermore, the definition of the function
logðz − z0Þ2 in Eq. (17) should be understood as a sum of
one-sided values

logðz − z0Þ2 ¼ logðzþ − z0Þ þ logðz− − z0Þ; z; z0 ∈ γ;

ð19Þ
for an appropriate branch of the logarithm logðz − z0Þ.
The variational Eq. (18) says that the holomorphic

potential WhðzÞ defined by

WhðzÞ ¼
δS½ρ�
δρðzÞ ¼

1

λ
WðzÞ−

Z
γ
logðz− z0Þ2ρðz0Þjdz0j ð20Þ

must be constant on each piece of the support,

WhðzÞ ¼ Li; z ∈ γi; ð21Þ

although the values Li on the different pieces γi may be
different. The derivative W0

hðzÞ of the holomorphic poten-
tial is usually denoted by yðzÞ, and reads

yðzÞ ¼ 1

λ
W0ðzÞ − 2ωðzÞ; ð22Þ

where ωðzÞ is the continuum limit of the discrete resolvent
ωNðzÞ,

ωðzÞ ¼
Z
γ

ρðz0Þjdz0j
z − z0

: ð23Þ

[The integral in Eq. (23) must be understood as a principal
value.] Note that ωðzÞ is the Cauchy transform of the
eigenvalue density, and therefore ωðzÞ is an analytic
function of z in the complex plane minus the support γ
of the eigenvalue density, with limiting values given by the
Shokotski-Plemelj formulas

ωðzþÞ þ ωðz−Þ ¼ 2ωðzÞ;

ωðzþÞ − ωðz−Þ ¼ −2πi
ρðzÞ

dz=jdzj ; z ∈ γ: ð24Þ

In particular, it follows that

yðzÞ ¼ 1

2
ðyðzþÞ þ yðz−ÞÞ; z ∈ γ: ð25Þ

C. The electrostatic interpretation

In the Coulomb gas interpretation, the saddle point
condensates that determine the large-N asymptotic eigen-
value densities as given in Eq. (15) are considered as
continuum systems of electric charges in the plane with unit
charge density ρðzÞ under the external potential ReWðzÞ=λ.
The total electrostatic energy of such configurations is

given by E½ρ� ¼ ReS½ρ� or, explicitly,

E½ρ� ¼ 1

λ

Z
γ
ReWðzÞρðzÞjdzj

−
Z
γ
jdzj

Z
γ
jdz0j ln jz − z0jρðzÞρðz0Þ; ð26Þ

and the total electrostatic potential is UðzÞ ¼
δE½ρ�=δρðzÞ ¼ ReWhðzÞ or, explicitly,

UðzÞ ¼ 1

λ
ReWðzÞ −

Z
γ
log jz − z0j2ρðz0Þjdz0j: ð27Þ

Moreover, Eqs. (27) and (22) permit us to write the electric
field as
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EðzÞ ¼ −
∂U
∂x − i

∂U
∂y ¼ −yðzÞ: ð28Þ

Hence, the points of electrostatic equilibrium are those in
which yðzÞ vanishes. In particular, taking into account
Eq. (24), we see that the variational Eq. (21) implies

yðzþÞ þ yðz−Þ ¼ 0; z ∈ γi: ð29Þ
Hence from Eq. (25) we have that yðzÞ vanishes in γ, and
therefore the points of γ are points of electrostatic equi-
librium. In fact, the real part of Eq. (21) shows that the total
electrostatic potential is constant on each piece of γ,

UðzÞ ¼ ReLi; z ∈ γi: ð30Þ
In general the constants ReLi are different and the charge
density represents a critical electrostatic charge distribution
in the sense of Martínez-Finkelshtein and Rakhmanov [24].
In terms of the electric field, Eq. (29) implies

EðzþÞ þ Eðz−Þ ¼ 0; z ∈ γ: ð31Þ
That is to say, the electric fields at either side of γ are
opposite or, equivalently, the forces acting on each element
of charge at z from either side of γ are equal. This
equilibrium property is the so-called S-property of Stahl
[25–28] and of Gonchar and Rakhmanov [29,30].

D. Equations to determine the eigenvalue density
in the GWW model

Equations (22), (24), and (29) show the relation between
the eigenvalue density ρðzÞ and the limit values of yðzÞ,

ρðzÞjdzj ¼ � yðz�Þ
2πi

dz; z ∈ γ: ð32Þ

Thus, to calculate the eigenvalue density we attempt to
characterize yðzÞ. Recall that the ωðzÞ in Eq. (22) for yðzÞ is
the continuum limit of the discrete resolvent function
ωNðzÞ, and therefore satisfies the continuum limit of the
Riccati Eq. (14), the so-called Schwinger-Dyson equation,

ωðzÞ2 − 1

λ
W0ðzÞωðzÞ ¼ −

1

λ

Z
γ

W0ðzÞ −W0ðz0Þ
z − z0

ρðz0Þjdz0j;

ð33Þ
which in terms of yðzÞ takes the form

yðzÞ2 ¼
�
1

λ
W0ðzÞ

�
2

−
4

λ

Z
γ

W0ðzÞ −W0ðz0Þ
z − z0

ρðz0Þjdz0j:

ð34Þ
By substituting the derivatives of the potential given in

Eq. (7) for the GWW in this last equation, we find that

yðzÞ2 ¼
�
1

λ
W0ðzÞ

�
2

þ c
z2

þ d
z
; ð35Þ

where

c ¼ 4

λ

Z
γ

ρðzÞjdzj
z

; ð36Þ

and

d ¼ λcþ 4

λ

Z
γ

ρðzÞjdzj
z2

: ð37Þ

Moreover, since Eq. (22) implies that

yðzÞ ¼ −
1

λ
−
1

z
þO

�
1

z2

�
; z → ∞; ð38Þ

Eqs. (35) and (38) show that

d ¼ 4

λ
; ð39Þ

and that

yðzÞ2 ¼ 1

λ2z4
ðz4 þ 2λz3 þ ððcþ 1Þλ2 − 2Þz2 þ 2λzþ 1Þ:

ð40Þ

Consequently, the generic structure of yðzÞ2 is

yðzÞ2 ¼ ðz − a1Þðz − a2Þðz − b1Þðz − b2Þ
λ2z4

: ð41Þ

Identifying coefficients in Eqs. (40) and (41) for yðzÞ2 we
obtain the following four equations:

a1 þ a2 þ b1 þ b2 ¼ −2λ; ð42Þ

a1a2 þ a1b1 þ a1b2 þ a2b1 þ a2b2 þ b1b2

¼ ðcþ 1Þλ2 − 2; ð43Þ

a1a2b1 þ a1a2b2 þ a1b1b2 þ a2b1b2 ¼ −2λ; ð44Þ

a1a2b1b2 ¼ 1: ð45Þ

In analogous systems for Hermitian matrix models on
the real line, the ai and bi are usually referred to as “end
points,” and the eigenvalue support is usually composed of
one or two cuts of the multivalued function yðzÞ among end
points. Wewill see that already in the vacuum configuration
of the GWW model this may or may not be so.
Equations (42)–(45) constitute a system of four equa-

tions that can be solved for a1, a2, b1, and b2 as functions of
λ (a piece of data) and of the parameter c (which needs also
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to be determined). In fact, the system can be solved
explicitly, and we anticipate that from this point of view
there are two kinds of solutions: those in which the support
has only one arc, for which the system itself determines the
value of c, and those in which the support has two or three
arcs, for which the value of c will be determined by fixing
the fraction q of the total unit charge in one of the arcs (it
turns out that in the case of three arcs two of them have the
same fraction of the charge).

III. THE GWW MODEL IN THE
VACUUM CONFIGURATION

Before studying the general structure of the GWW
model, in this brief section we discuss the well-known
results for the vacuum configuration as illustrative particu-
lar solutions of our general approach. These examples serve
to set the pattern of how to calculate the function yðzÞ and
how to calculate the support γ of the eigenvalue density in
two different cases. In this section we assume that the
integration path Γ is the negatively oriented unit circle.

A. The weak-coupling regime 0 < λ < 2

This case corresponds to solutions of the system
(42)–(45) with b1 ¼ b2 ¼ −1. The system can be solved
by elementary means and, except for the naming of the
roots (a1 ¼ a and a2 ¼ ā or vice versa), there is a unique
solution for yðzÞ2 given by

yðzÞ2 ¼ ðzþ 1Þ2ðz − aÞðz − āÞ
λ2z4

; ð46Þ

where

a ¼ 1 − λ − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð2 − λÞ

p
¼ e−i2 arcsinð

ffiffiffiffiffi
λ=2

p
Þ; ð47Þ

and

c ¼ −1þ 4

λ
: ð48Þ

Note that the restriction to 0 < λ < 2 guarantees that a is on
the unit circle, i.e., that aā ¼ 1. Note also that the system
itself fixes the value of c without additional information.
In this case

yðzÞ ¼ ðzþ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz − aÞðz − āÞp
λz2

; ð49Þ

and the eigenvalue support γ is the anti-Stokes line [17]

Re

�Z
z

a
yðzÞdz

�
¼ 0 ð50Þ

joining ā with a in the negative sense, which turns out to be
the corresponding arc of the unit circle.

Equation (32) gives the explicit formula for the density,

ρðwÞðzÞ ¼ 2

πλ
cos

θ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

2
− sin2

θ

2

r
; z ¼ e−iθ; ð51Þ

and the total electrostatic energy can be calculated using
Eq. (26),

EðwÞ ¼ 3

4
−
2

λ
−
1

2
ln
λ

2
: ð52Þ

B. The strong-coupling regime 2 < λ

This case corresponds to solutions of the system
(42)–(45) with a1 ¼ b1 ¼ aþ and a2 ¼ b2 ¼ a−. Again,
the system can be solved by elementary means and, except
for the naming of the roots, there is a unique solution for
yðzÞ2 given by

yðzÞ2 ¼ ðz − aþÞ2ðz − a−Þ2
λ2z4

; ð53Þ

where

a� ¼ −
λ

2
�

ffiffiffiffiffiffiffiffiffiffiffiffi
λ2

4
− 1

r
; ð54Þ

and

c ¼ 4

λ2
: ð55Þ

Note that in this regime both aþ and a− are real, are
negative, and are placed symmetrically with respect to the
unit circle, i.e., aþa− ¼ 1. Note also that Eq. (53) is a
“perfect square,” but the condition given in Eq. (38) fixes
the choice of sign and leads to the sectionally analytic
function

yðzÞ ¼
�yþðzÞ ¼− 1

λz2 ðz2þ λzþ 1Þ; for jzj> 1;

y−ðzÞ ¼ 1
λz2 ðz2þ λzþ 1Þ; for jzj< 1:

ð56Þ

Thus we get an eigenvalue density supported on the
whole unit circle,

ρðsÞðzÞ ¼ 1

2π

�
1þ 2

λ
cos θ

�
; z ¼ e−iθ; ð57Þ

and from Eqs. (26) and (57) it follows that the total
electrostatic energy is

EðsÞ ¼ −
1

λ2
: ð58Þ

Incidentally, Eqs. (52) and (58) lead to the well-known
third-order phase transition of the GWW model at the
critical value λ ¼ 2.
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IV. THE GENERAL STRUCTURE
OF THE GWW MODEL

The expressions of yðzÞ for both the weak- and the
strong-coupling situations have zeros outside the support of
the eigenvalue density (z ¼ −1 in the weak-coupling case
and z ¼ a� in the strong-coupling case). Thus the electric
field vanishes at these points, and we may expect the
existence of configurations in the large-N limit of the
GWW model with cuts developed around these points. We
will show that these configurations correspond to the
nonvacuum saddles found numerically for finite N in
Ref. [12]. From a mathematical point of view these
configurations require a choice of the integration path Γ
of the GWW model to include not only the unit circle but
also the negative real axis.

A. General solution of the system of equations

The system (42)–(45) admits solutions that are sym-
metric with respect to the unit circle, i.e., solutions for
which

b1 ¼
1

a1
; b2 ¼

1

a2
: ð59Þ

Incidentally, for comparison of our results with the numeri-
cal results of Ref. [12], note that the authors use in effect an
extension of their variable θ with range −π < θ < π to a
complex plane z0 that is related to our variable z by

z0 ¼ −i log z: ð60Þ
For example, symmetry of points in the negative real axis
with respect to the unit circle jzj ¼ 1 translates into
symmetry with respect to the origin of the vertical axis
in Fig. 1 of Ref. [12].
Returning to the calculation of solutions with the

symmetry given by Eq. (59), if we define

A1 ¼ a1 þ
1

a1
; A2 ¼ a2 þ

1

a2
; ð61Þ

then the system (42)–(45) reduces to

A1 þ A2 ¼ −2λ; ð62Þ
A1A2 ¼ ðcþ 1Þλ2 − 4: ð63Þ

As a consequence, both A1 and A2 are the solutions of the
quadratic equation,

A2 þ 2λAþ ðcþ 1Þλ2 − 4 ¼ 0; ð64Þ
which implies that a1, 1=a1, a2, and 1=a2 are the solutions
of the quartic equation

a4 þ 2λða3 þ aÞ þ ððcþ 1Þλ2 − 2Þa2 þ 1 ¼ 0: ð65Þ
These solutions are given by

a1;
1

a1
¼ 1

2

�
−λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4− cλ2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− cÞλ2− 2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4− cλ2

pq 	
;

ð66Þ

a2;
1

a2
¼ 1

2

�
−λ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4− cλ2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− cÞλ2þ 2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4− cλ2

pq 	
:

ð67Þ
In fact, it can be checked that, except for the naming of the
roots, these are all the 24 solutions of the system (42)–(45).
To discuss these roots we eliminate a between Eq. (65)

and its derivative with respect to a, and find that the critical
values of c at which roots coalesce are given by

c ¼ −1� 4

λ
;

4

λ2
: ð68Þ

For example, the nondegenerate configurations in the
physical region λ > 0 can be classified as follows:
(i) There are four real solutions if (a) 0 < λ < 2 and
c < −1 − 4=λ, or (b) λ > 2 and c < −1 − 4=λ or
−1þ 4=λ < c < 4=λ2. (ii) There are four complex solu-
tions if (a) λ > 0 and c > 4=λ2 or (b) 0 < λ < 2 and
−1þ 4=λ < c < 4=λ2. (iii) The remaining cases corre-
spond to two real solutions and two complex solutions.

B. Eigenvalue support configurations

To find the possible acceptable eigenvalue densities we
have to study the differential

yðzÞdz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz − a1Þðz − a2Þðz − 1=a1Þðz − 1=a2Þ

p
λz2

dz

ð69Þ
in each of the regions (i)–(iii) and on their borders (where
double roots may cancel the square root as we saw, for
instance, in the strong-coupling regime of the vacuum
configuration) to see if Eq. (32) leads to a unit-normalized
eigenvalue density and to calculate its support. A detailed
discussion of the techniques we have used to carry out this
calculations can be found in Refs. [17,18,21], and we have
summarized the results of this study schematically in Fig. 1.
The right half of the ðλ; cÞ plane is divided into four

regions by the curves c ¼ −4=λ − 1 (the lowest, black
curve in Fig. 1), c ¼ 4=λ − 1 (the middle, blue curve in
Fig. 1), and the piecewise-defined curve c ¼ 4=λ − 1 for
0 < λ ≤ 2 and c ¼ 4=λ2 for λ > 2 (the upper, red curve
in Fig. 1).
In the regions below the first curve and above the third

curve there are not any acceptable configurations. The
region between the first and second curves is a two-cut
region, where the eigenvalue support consists of an arc of
the unit circle and a segment of the negative real axis. And
in the region between the second and third curves the
support consists of three arcs: the whole unit circle and two
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intervals on the negative real axis symmetrically placed
with respect to the unit circle. The configurations corre-
sponding to the critical lines are marked with arrows
pointing to the corresponding parts of the line. For
example, along the first, lowest curve, the eigenvalue
support consists of a single cut on the negative real axis
(there is also a double zero at z ¼ 1). And the vacuum
configurations discussed in the previous section correspond
to the third curve (marked in red in Fig. 1): for 0 < λ < 2
(the weak-coupling region) the support is an arc of the unit
circle, and for λ > 2 (the strong-coupling region) the
support is the whole unit circle. Note also that the
critical value λ ¼ 2 corresponds to the four roots
a1 ¼ a2 ¼ b1 ¼ b2 ¼ −1. Finally, the critical blue line
in Fig. 1 corresponds to configurations with a support
consisting of the whole unit circle plus an intersecting
interval of the negative real axis (in these configurations −1
is a double root).
The region on nonvacuum saddles at weak coupling of

Ref. [12] is the region above the black curve, below the red
curve, and to the left of λ ¼ 2. In this case, for points z ¼ x
on the real cut ½a1; 1=a1�, Eq. (69) reduces to

yðxÞdx ¼ dx
λx

jx − a2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − a1Þðx − 1=a1Þ

p
: ð70Þ

Note that the argument inside the square root is negative,
and therefore Eq. (32) leads to a positive definite eigenvalue

density. For points z ¼ e−iθ on the unit circle, Eq. (69)
takes the form

yðzÞdz ¼ 2dθ
iλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
cos θ −

A1

2

��
cos θ −

A2

2

�s
; ð71Þ

and the condition of positivity of ρðzÞ determines the arc of
the unit circle that supports the density.
Likewise, the region of nonvacuum saddles at strong

coupling of Ref. [12] is the region above the blue curve
and below the red curve (and therefore to the right of
λ ¼ 2). In this case we can use similar arguments with the
slight variations that there are two real intervals and the
complete unit circle.
The unit normalization of all these acceptable eigenvalue

densities is a consequence of Eq. (42), and the relation
between c and the eigenvalue density given in Eq. (36) is a
consequence of Eq. (43). Incidentally, for those instances in
which the whole unit circle is part of the eigenvalue
support, opposite signs of the square root in Eq. (69) have
to be taken inside and outside the unit circle. [A similar
prescription has been used in Eq. (56).]

C. Eigenvalue support configurations as a function
of the charge fraction

Although the description of the support configurations
schematized in Fig. 1 is complete, it is given in terms of the
parameter c, which does not permit a direct comparison
with the results of Ref. [12], that are given in terms of the
transferring of eigenvalues among the different arcs of the
support.
To remedy this shortcoming, in Fig. 2 we schematize the

eigenvalue support configuration as a function of λ and of
the fraction q of the total unit charge that is supported on
the (part or the whole) unit circle. This prescription might
seem ambiguous in the three-arc case, where the support
consists of the two real cuts ½a1; a2� and ½1=a2; 1=a1� and
the whole unit circle, but the charge fractions on the two
real cuts are equal. Indeed, using the change of variable
x → 1=x and recalling the definitions of A1 and A2 given in
Eq. (61) we getZ

a2

a1

ρðxÞdx¼ 1

2πλ

Z
a2

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðx2−A1xþ1Þðx2−A2xþ1Þj

q dx
x2

ð72Þ

¼ 1

2πλ

Z
1=a1

1=a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðx2−A1xþ 1Þðx2−A2xþ 1Þj

q dx
x2

ð73Þ

¼
Z

1=a1

1=a2

ρðxÞdx; ð74Þ

and the fraction of the charge supported on the whole unit
circle is given by

FIG. 1. Schematic representation of the acceptable configura-
tions for the eigenvalue support of the GWW model in the right
half of the ðλ; cÞ plane.
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q ¼ 2

πλ

Z
π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θ þ λ cos θ þ ðcþ 1Þðλ=2Þ2 − 1

q
dθ:

ð75Þ

Note also that

∂q
∂c ¼ 1

4π2

Z
π

0

dθ
ρðθÞ > 0: ð76Þ

If we move from the curve c ¼ 4=λ2 to the critical point
c ¼ −1þ 4=λ at constant λ, the end points 1=a1 and a1 of
the two real cuts coalesce and the gap between these two
cuts closes. Moreover, from Eq. (75) we obtain that the
critical charge on the circle when the gap closes is

q�ðλÞ ¼ 2

πλ

Z
π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θ þ λ cos θ þ λ − 1

p
dθ ð77Þ

¼ 2

πλ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ − 4

p
þ λ arctan

� ffiffiffiffiffiffiffiffiffiffi
2

λ − 2

r ��
: ð78Þ

As an illustration of this result we apply Eq. (78) to the
numerical example of Ref. [12]: with N ¼ 40 and λ ¼ 4,
we might expect about ð1 − q�ð4ÞÞ40 ≈ 7.3 eigenvalues on
the vertical axis, in good agreement with the valuem ¼ 7 of
Fig. 1(i) in Ref. [12].
The colors of the curves in Fig. 2 match those of the

curves in Fig. 1. Thus, the vacuum configuration corre-
sponds to q ¼ 1 in Fig. 2, and the lowest curve c ¼
−1 − 4=λ in Fig. 1 maps to the horizontal line q ¼ 0
in Fig. 2.

D. Instanton actions in the weak-
and strong-coupling regions

In this section we will address the interpretation of the
migration of eigenvalues from the unit circle to one or two
cuts on the negative real axis as eigenvalue tunneling. The
weak-coupling case has been calculated directly, but the
strong-coupling action required a trans-series ansatz in
the string equation [3]. We will see that by implementing
the physical interpretations put forward in Ref. [12] in our
formalism, we recover both results on an equal footing.
The two-cut eigenvalue configurations can be interpreted

in terms of a tunneling process in which eigenvalues from
the one-cut weak-coupling phase case lying on the unit
circle with end points a and ā given in Eq. (47) migrate to
the cut containing the electrostatic equilibrium point
z ¼ −1. Thus, for the tunneling of a small filling fraction
δq we have

Zn½ρðwÞ þ δρðwÞ�
Zn½ρðwÞ�

¼ exp

�
−N2

Z
γ
dz

δS
δρðzÞ ½ρ

ðwÞ�δρðwÞ þ oðN2Þ
�
;

as N → ∞; ð79Þ

where

δρðwÞ ¼ ðδðzþ 1Þ − δðz − aÞÞδq: ð80Þ

Hence, recalling Eq. (20) and the definition of the total
potential UðzÞ ¼ ReðWhðzÞÞ, we obtain that

ReðS½ρðwÞ þ δρðwÞ� − S½ρðwÞ�Þ ≈ ðUð−1Þ −UðaÞÞδq
¼ SðwÞI δq; ð81Þ

where SðwÞI is the weak-coupling instanton action.
Therefore,

SðwÞI ¼ Uð−1Þ − UðaÞ ð82Þ

¼ Re
Z

−1

a
yðzÞdz ð83Þ

¼ 1

λ

Z
−1

a
ðzþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − aÞðz − a�Þ

p dz
z2

; ð84Þ

and a straightforward calculation yields [see Eq. (4.27) in
Ref. [3]]

SðwÞI ¼ 4

λ

ffiffiffiffiffiffiffiffiffiffiffi
1 −

λ

2

r
− arccosh

�
4

λ
− 1

�
: ð85Þ

Likewise, the three-cut eigenvalue distribution can be
interpreted in terms of a tunneling process in which pairs of

FIG. 2. Schematic representation of the acceptable configura-
tions for the eigenvalue support of the GWW model in the ðλ; qÞ
plane, where q is the fraction of the total unit charge that is
supported on the (part or the whole) unit circle.
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eigenvalues from the one-cut strong case lying on the unit
circle tunnel to the cuts around the equilibrium points a�
given in Eq. (54). Thus, in this case we have an expression
similar to Eq. (79) with ρðwÞ replaced by ρðsÞ and with

δρðsÞðzÞ ¼ ðδðz − aþÞ þ δðz − a−Þ − 2δðzþ 1ÞÞδq: ð86Þ

Hence we obtain

ReðS½ρðsÞ þ δρðsÞ� − S½ρðsÞ�Þ
¼ ðUðaþÞ þ Uða−Þ − 2Uð−1ÞÞδq; ð87Þ

¼ Re

�Z
aþ

−1
yðzþÞdzþ

Z
a−

−1
yðz−Þdz

�
δq: ð88Þ

Using again Eqs. (56) and (54), taking into account that
aþa− ¼ 1, we easily obtain

Re
Z

a�

−1
yðz�Þdz ¼

1

λ

�
aþ −

1

aþ

�
þ log jaþj

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

λ2

r
þ arccosh

�
λ

2

�
: ð89Þ

Then we have that

jReðS½ρðsÞ þ δρðsÞ� − S½ρðsÞ�Þj ≈ SðsÞI δq; ð90Þ

where SðsÞI is the strong-coupling instanton action

SðsÞI ¼ 2arccosh

�
λ

2

�
− 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

λ2

r
; ð91Þ

in agreement with the analytic expression given in
Eq. (4.36) of Ref. [3], and with the numerical result showed
by the blue line in Fig. 4 of Ref. [12].

E. The q= 0 configuration

We finally mention that the q ¼ 0 configuration in
Fig. 2, where the whole eigenvalue support is an interval
on the negative real axis, can be treated in complete analogy
to the vacuum configurations discussed in Sec. III. Note
that to reach this limiting configuration it is essential to use
the choice of Γ mentioned in the first paragraph of Sec. IV.
This case corresponds to solutions of the system

(42)–(45) with a1 ¼ a2 ¼ 1. The system can be solved
by elementary means and, except for the naming of the
roots, there is a unique solution for yðzÞ2 given by

yðzÞ2 ¼ ðz − 1Þ2ðz − bþÞðz − b−Þ
λ2z4

; ð92Þ

where

b� ¼ −1 − λ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð2þ λÞ

p
; ð93Þ

and, as Fig. 1 illustrates,

c ¼ −1 −
4

λ
: ð94Þ

The eigenvalue support γ is the ½b−; bþ� interval of the
negative real axis, Eq. (32) gives the explicit formula for the
density,

ρð0ÞðzÞ ¼ ð1 − xÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðbþ − xÞðx − b−Þ
p

2πλx2
; x ∈ ½b−; bþ�;

ð95Þ

and the total electrostatic energy can be calculated using
Eq. (26),

Eð0Þ ¼ 3

4
þ 2

λ
−
1

2
ln
λ

2
: ð96Þ

V. SUMMARY

The rich variety of configurations of saddle points in the
Gross-Witten-Wadia matrix model revealed by the detailed
numerical calculations of Buividovich, Dunne, and
Valgushev in Ref. [12] can be completely justified in the
large-N limit by using techniques similar to those devel-
oped for the determination of the asymptotic support of the
zeros of certain non-Hermitian families of orthogonal
polynomials [17,18,21].
These methods are a generalization of those used for

Hermitian families of orthogonal polynomials, wherein one
attempts to write a system of equations for the candidate
end points of the support, solves the system, and calculates
the density that is supported in one or more intervals that
are cuts of a multivalued function yðzÞ. The success of the
generalization of this strategy to the GWW relies on using
directly the matrix eigenvalues as integration variables,
which in turn renders the resulting system explicitly
solvable. We also remark that by implementing in our
formalism the physical interpretation of nonvacuum sad-
dles in terms of eigenvalue tunneling put forward in
Ref. [12] we have been able to calculate by the same
method both the weak-coupling and strong-coupling
instanton actions that were formerly obtained analytically
in Ref. [3] using trans-series solutions to the recursion
relations characterizing the free energy.
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