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We calculate the spectrum and the total rate of created particles for a real massless scalar field in 1þ 1

dimensions, in the presence of a partially transparent moving mirror simulated by a Dirac δ − δ0 point
interaction. We show that, for this model, a partially reflecting mirror can produce a larger number of
particles in comparison with a perfect one. In the limit of a perfect mirror, our formulas recover those found
in the literature for the particle creation by a moving mirror with a Robin boundary condition.
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I. INTRODUCTION

Real particles can be generated from the vacuum when a
quantized field is submitted to time-dependent boundary
conditions. This phenomenon is usually called the dynami-
cal Casimir effect (DCE). It was first investigated in the
1970s in theoretical papers by Moore [1], DeWitt [2],
Fulling and Davies [3,4], and Candelas and Deutsch [5].
Nowadays, the available literature on the DCE is quite wide
(see Refs. [6,7] for a detailed review). In 2011, Wilson et al.
[8] observed experimentally the DCE by the first time, in
the context of circuit quantum electrodynamics. Namely, a
time-dependent magnetic flux is applied in a coplanar
waveguide (transmission line) with a superconducting
quantum interference device (SQUID) at one of the
extremities, changing the inductance of the SQUID, and
thus yielding a time-dependent boundary condition [8,9].
Another observation of the DCE was announced by
Lähteenmäki et al. [10]. Some other experimental propos-
als aiming at the observation of the DCE can be found
in Ref. [11].
During the first two decades after the paper byMoore [1],

calculations on the DCE were usually done with perfectly
reflecting mirrors. In this context, expressions for the force
acting on the mirror and the radiated energy have been
derived in Refs. [2–5,12]. On the other hand, as Moore has
pointed out in Ref. [1], real mirrors do not behave as
perfectly reflecting at all and, moreover, the formula for the
radiated energy by a perfect mirror, obtained in Ref. [3],
exhibits an inconsistency: the renormalized energy can be
negative when the mirror starts moving, and thus it cannot
be associated with the energy of the created particles [3,13].
Haro and Elizalde [13] showed that when a partially
reflecting mirror is considered, this inconsistency can be
avoided, and the radiated energy is always positive.
The DCE with partially reflecting mirrors has been

investigated by several authors (see, for instance,

[13–21]). Dirac δ potentials for modeling partially reflect-
ing moving mirrors were considered by Barton and
Calogeracos [19]. These authors investigated the radiation
reaction force for a δ moving mirror in the nonrelativistic
regime. When the mirror is at rest, the model is given
explicitly by (hereafter c ¼ ℏ ¼ 1) [19]

L ¼ ð1=2Þ½ð∂tϕÞ2 − ð∂xϕÞ2� − μδðxÞϕ2ðt; xÞ; ð1Þ

where μ is related to the plasma frequency, since this model
is a good approximation for the interaction between the
electromagnetic field and a plasma thin sheet [19]. The
transmission and reflection coefficients associated to (1)
are respectively

s�ðωÞ ¼
ω

ωþ iμ
and r�ðωÞ ¼

−iμ
ωþ iμ

: ð2Þ

The labels “þ” and “−” represent the scattering to the right
and to the left of the mirror respectively [in this case
sþðωÞ ¼ s−ðωÞ and rþðωÞ ¼ r−ðωÞ]. The transparency of
the mirror can be controlled by tuning μ. Particularly, the
limit μ → ∞ leads straightforwardly to the well-known
Dirichlet boundary condition in both sides of the mirror,
namely (see the Appendix for details)

ϕþðt; 0þÞ ¼ 0 and ϕ−ðt; 0−Þ ¼ 0; ðμ → ∞Þ; ð3Þ

where ϕþðt; xÞ and ϕ−ðt; xÞ represent the field in the right
and left sides of the mirror respectively. The generalization
to a relativistic moving mirror was done in Ref. [20]. The
model (1) was also considered in the investigation of the
static Casimir effect [22] and DCE (in connection with
decoherence [23] and Hawking radiation [21]). Beyond the
scalar field, the consideration of partially reflecting mirrors
by means of terms in the Lagrangian involving δ functions,
as in Eq. (1), have been done by Barone and Barone who
proposed an enlarged gauge-invariant Maxwell Lagrangian
describing the field in the presence of a δ mirror, inves-
tigating the interaction between a static charge and a δ
mirror [24], and also the static Casimir effect between two δ
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mirrors [25]. Parashar et al. [26], in a different approach,
considered the electric and magnetic properties of an
infinitesimally thin mirror by means of the electric per-
mittivity and magnetic permeability described in terms of δ
functions, deriving the boundary conditions for the electro-
magnetic field on the mirror and investigating the Casimir-
Polder interaction between an atom and the mirror.
The use of δ − δ0 potentials (δ0 is the derivative of the

Dirac δ) for simulating partially reflecting mirrors, in the
context of the static Casimir effect, was considered by
Muñoz-Castañeda and Guilarte [27], resulting in a gener-
alization of (1), done by adding a δ0 term in the potential,
namely

L ¼ ð1=2Þ½ð∂tϕÞ2 − ð∂xϕÞ2� − ½μδðxÞ þ λδ0ðxÞ�ϕ2ðt; xÞ;
ð4Þ

where λ is dimensionless. Following Refs. [27–29], we can
find that the transmission and reflection coefficients are
given by (see the Appendix for details)

s�ðωÞ ¼
ωð1 − λ2Þ

ωðλ2 þ 1Þ þ iμ
; r�ðωÞ ¼

�2ωλ − iμ
ωðλ2 þ 1Þ þ iμ

:

ð5Þ

Note that, different from (1), in this case rþðωÞ ≠ r−ðωÞ.
Moreover, λ → −λ is equivalent to change the mirror
properties from left to right: r�ðωÞ → r∓ðωÞ. For λ ¼ 1

the mirror is perfectly reflecting [s�ðωÞ → 0] and the
following boundary conditions are imposed to the field:

ϕþðt; 0þÞ − ð2=μÞ∂xϕþðt; 0þÞ ¼ 0; ð6Þ

ϕ−ðt; 0−Þ ¼ 0: ð7Þ

These are, respectively, the Robin and the Dirichlet
boundary conditions.
In the present paper, we investigate the DCE for a real

massless scalar field in 1þ 1 dimensions in the presence of
a δ − δ0 moving mirror, computing the spectrum and the
total rate of created particles. The influence of the coupling
constants μ and λ to the particle production is described
and, in the limit of a perfect mirror, the results are compared
with those for the particle creation with Robin conditions
found in the literature [30].
This paper is organized as follows. In Sec. II, we use the

scattering approach [15,16] to outline general aspects of
the spectrum of created particles for a partially reflecting
mirror, with arbitrary scattering coefficients, considering a
typical function for the movement of the mirror. In Sec. III,
we consider specifically the δ − δ0 mirror and compute the
spectrum and the total rate of created particles. The final
remarks are presented in Sec. IV.

II. GENERAL FRAMEWORK OF THE
SCATTERING APPROACH

Let us start by considering a generic mirror at rest, for
simplicity, at x ¼ 0. The field is then written as

ϕðt; xÞ ¼ ΘðxÞϕþðt; xÞ þ Θð−xÞϕ−ðt; xÞ; ð8Þ

where ΘðxÞ is the Heaviside step function. Also, ϕþ
and ϕ− obey the massless Klein-Gordon equation,
ð∂2

x − ∂2
t Þϕ�ðt; xÞ ¼ 0. Thus they are the sum of two freely

counterpropagating fields,

ϕþðt;xÞ¼
Z

dωffiffiffiffiffiffi
2π

p ½φoutðωÞeiωxþψ inðωÞe−iωx�e−iωt; ð9Þ

ϕ−ðt;xÞ¼
Z

dωffiffiffiffiffiffi
2π

p ½φinðωÞeiωxþψoutðωÞe−iωx�e−iωt; ð10Þ

where the labels “in” and “out” indicate the amplitudes of
the incoming and outgoing fields respectively.
The presence of the mirror does not affect the incoming

fields; thus, it is straightforward to show that

φinðωÞ¼ð2jωjÞ−1=2½ΘðωÞaLðωÞþΘð−ωÞa†Lð−ωÞ�; ð11Þ

ψ inðωÞ¼ð2jωjÞ−1=2½ΘðωÞaRðωÞþΘð−ωÞa†Rð−ωÞ�; ð12Þ

where ajðωÞ and a†jðωÞ (j ¼ L, R) are annihilation and

creation operators, obeying the relation ½aiðωÞ; a†jðω0Þ� ¼
δðω − ω0Þδij. The outgoing fields correspond to the incom-
ing ones scattered by the mirror. They can be linearly
obtained by [15,31]

ΦoutðωÞ ¼ SðωÞΦinðωÞ; ð13Þ

where

ΦoutðωÞ ¼
�
φoutðωÞ
ψoutðωÞ

�
; ΦinðωÞ ¼

�
φinðωÞ
ψ inðωÞ

�
; ð14Þ

and SðωÞ is a 2 × 2 matrix denominated scattering matrix
(S-matrix).
In the particular case of a perfectly reflecting mirror, the

outgoing fields correspond just to the reflected incoming
ones, multiplied by a phase term (which depends on the
boundary condition imposed by the mirror), namely

φoutðωÞ ¼ eiθþðωÞψ inðωÞ; ψoutðωÞ ¼ eiθ−ðωÞφinðωÞ:
ð15Þ

Thus, for a perfect mirror,
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SðωÞ ¼
�

0 eiθþðωÞ

eiθ−ðωÞ 0

�
; ð16Þ

with θþ and θ− being the phases.
In the general case of a partially reflecting mirror, the

S-matrix is generalized to

SðωÞ ¼
�
sþðωÞ rþðωÞ
r−ðωÞ s−ðωÞ

�
; ð17Þ

where r�ðωÞ and s�ðωÞ are the reflection and transmission
coefficients, which are assumed to obey the following
conditions [31]. Since the field is real, the elements of
SðωÞ are also real in the temporal domain, therefore
Sð−ωÞ ¼ S�ðωÞ. As a consequence of the commutation
rule ½ϕðt; xÞ;ϕðt; yÞ� ¼ 0, the S-matrix is unitary, namely
SðωÞS†ðωÞ ¼ I, which means that there are not dissipative
effects in the mirror (for lossy mirrors the S-matrix is not
unitary and the quantization is changed [32]). As a
consequence of the commutation rule ½ϕðt; xÞ; _ϕðt; yÞ� ¼
iδðx − yÞ the S-matrix is causal, which means that s�ðωÞ
and r�ðωÞ vanishes in the temporal domain for t < 0
[31,33]. This causality condition is fulfilled when SðωÞ is
analytic for ImðωÞ > 0. The coefficients for δ − δ0 mirrors
[Eq. (5)] satisfy all these properties.
Now, we shall consider the scattering for a moving

mirror. The position of the mirror is represented by
x ¼ qðtÞ, and the movement is set nonrelativistic,
j _qðtÞj ≪ 1, and limited by a small value ϵ, qðtÞ ¼ ϵgðtÞ
with jgðtÞj ≤ 1. We consider inertial frames where the
mirror is instantaneously at rest (tangential frames) and the
scattering is assumed to be [15]

Φ0
outðωÞ ¼ SðωÞΦ0

inðωÞ; ð18Þ

where the prime superscript means that this relation is taken
in the tangential frame. In order to find Φ0

out and Φ0
in in the

laboratory frame, we start from the relation ~Φ0ðt0; 0Þ ¼
~Φðt; ϵgðtÞÞ, or

~Φ0ðt0; 0Þ ¼ ½1 − ϵgðtÞη∂t� ~Φðt; 0Þ þOðϵ2Þ; ð19Þ

where

~Φðt; xÞ ¼
�

~φðt − xÞ
~ψðtþ xÞ

�
; ð20Þ

~φ and ~ψ are the components of the field in the temporal
domain, and η ¼ diagð1;−1Þ. Moreover, dt0 ¼ dtþOðϵ2Þ.
Therefore, neglecting the terms Oðϵ2Þ, t0 can be replaced
by t, namely ~Φ0ðt; 0Þ ¼ ½1 − ϵgðtÞη∂t� ~Φðt; 0Þ which, in the
Fourier domain, reads

Φ0ðωÞ ¼ ΦðωÞ þ iϵη
Z

dΩ
2π

ΩGðω − ΩÞΦðΩÞ; ð21Þ

where GðωÞ is the Fourier transform of gðtÞ, and ΦðωÞ and
Φ0ðωÞ are short notations for Φðω; 0Þ and Φ0ðω; 0Þ. The
application of Eq. (21), duly labeled with “out” and “in,” in
Eq. (18) leads to

ΦoutðωÞ ¼ SðωÞΦinðωÞ þ
Z

dΩ
2π

Sðω;ΩÞΦinðΩÞ; ð22Þ

Sðω;ΩÞ ¼ iϵΩGðω −ΩÞ½SðωÞη − ηSðΩÞ�: ð23Þ

Therefore, the movement of the mirror led to a first-order
correction to the S-matrix. The relation (22) enables us to
compute the spectrum of created particles in the following.
The total number of created particles for the problem

under investigation is

N ¼
Z

∞

0

dωNðωÞ; ð24Þ

where NðωÞ is the spectral distribution of created particles,
given by [15,16]

NðωÞ ¼ 2ωTr½h0injΦoutð−ωÞΦT
outðωÞj0ini�; ð25Þ

and the incoming fields are assumed to be in the vacuum
state. Inserting Eq. (22) into Eq. (25) and considering the
formula

h0injΦinðωÞΦT
inðω0Þj0ini ¼ ðπ=ωÞδðωþ ω0ÞΘðωÞ; ð26Þ

obtained from Eqs. (11) and (12), it is straightforward to
show that

NðωÞ ¼ 1

2π

Z
∞

0

dΩ
2π

ω

Ω
Tr½Sðω;−ΩÞS†ðω;−ΩÞ�: ð27Þ

Substituting Eq. (23) in (27), we get

NðωÞ ¼ 4ϵ2

π

Z
∞

0

dΩ
2π

ωΩjGðωþ ΩÞj2Λðω;ΩÞ; ð28Þ

Λðω;ΩÞ ¼ 1

4
ℜ½1þ rþðωÞrþðΩÞ − sþðωÞsþðΩÞ

þ 1þ r−ðωÞr−ðΩÞ − s−ðωÞs−ðΩÞ�; ð29Þ

where 0 ≤ Λðω;ΩÞ ≤ 1. Equation (28) gives us the spec-
trum of created particles if the scattering coefficients and
the motion function of the mirror are provided.
Henceforth, we shall consider the following typical

motion for the mirror:

gðtÞ ¼ cosðω0tÞ expð−jtj=τÞ; ð30Þ
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where τ is the time for which the oscillations occur
effectively, and ω0 is the characteristic frequency of
oscillation. In addition, we shall consider ω0τ ≫ 1 (mono-
chromatic limit [34]), which leads to an effective spatially
symmetric movement. The Fourier transform of gðtÞ is

GðωÞ ¼ 2τ½1þ τ2ðω2 þ ω2
0Þ�

½1þ ðω − ω0Þ2τ2�½1þ ðωþ ω0Þ2τ2�
: ð31Þ

It presents sharp peaks around ω ¼ �ω0, so that in the
monochromatic limit [34]

lim
τ→∞

jGðωÞj2=τ ¼ ðπ=2Þ½δðω − ω0Þ þ δðωþ ω0Þ�: ð32Þ

Using Eq. (32), we analyze the behavior of NðωÞ=τ in the
monochromatic limit.
Substituting Eq. (32) in (28) we obtain

NðωÞ=τ ¼ ðϵ2=πÞωðω0 − ωÞΛðω;ω0 − ωÞΘðω0 − ωÞ:
ð33Þ

Notice that, independently of the scattering coefficients,
there are not created particles with frequency ω > ω0.
Moreover, the spectrum is symmetrical with respect to
ω ¼ ω0=2, since it is invariant under the change
ω → ω0 − ω. This is interpreted as a signature of the
fact that particles are created in pairs: for each particle
created with a frequency ω there is another with frequency
ω0 − ω [30,34–36].
The scattering for a perfect mirror is described by

Eq. (16) and, for this case, Eq. (29) becomes

Λðω;ΩÞ ¼ 1

4
ℜ½2þ eiθþðωÞeiθþðΩÞ þ eiθ−ðωÞeiθ−ðΩÞ�: ð34Þ

Particularly, for the Neumann and Dirichlet boundary
conditions, corresponding respectively to θ�ðωÞ ¼ 0 and
θ�ðωÞ ¼ π, we get Λðω;ΩÞ ¼ 1. Therefore, the spectra for
these cases are not only identical, but they also correspond
to the cases where the greatest number of particles is
produced. On the other hand, for θ�ðωÞ ¼ π=2, it follows
that Λðω;ΩÞ ¼ 0 and, consequently, no particles would be
created. Thus, one can say that the phase π=2 results, in the
context of the particle creation, in a complete decoupling
between the field and the mirror. When the mirror imposes
the Robin boundary condition (6) to the field, it is
straightforward to show that θþðωÞ ¼ 2 arctanð2ω=μÞ
and, for the particular value 2ω0=μ ≈ 2.2, it occurs a very
strong inhibition of the particle production in 1þ 1 [30,34]
and in 3þ 1 [35] dimensions.

III. PARTICLE CREATION PHENOMENON
FOR A δ − δ0 MIRROR

Before calculating the DCE for the δ − δ0 model, we
briefly discuss some general aspects of this model. The
Dirichlet condition (3) is related to perfect mirrors
[s�ðωÞ ¼ 0] with frequency-independent reflection coef-
ficients r�ðωÞ ¼ −1. On the other hand, real mirrors are
naturally transparent at high frequencies [1,37]. A way to
model partially reflecting mirrors is via Dirac δ potentials
(1); this gives the transmission and reflection coefficients
shown in Eq. (2) which obey the condition of transparency
at high frequencies: limω→∞s�ðωÞ ¼ 1. The model (1), in
the limit of a perfect mirror (μ → ∞), gives the Dirichlet
boundary condition in both sides of the mirror (3). The
δ − δ0 model (4) simulates partially reflecting mirrors with
transmission and reflection coefficients given by Eq. (5).
This model has the interesting property that in the limit of a
perfect mirror (λ ¼ 1) it gives the Dirichlet (7) and Robin
(6) boundary conditions, being the Neumann condition a
particular case obtained considering μ ¼ 0 in (6). Although
the model (4) with λ ≠ 1 represents a partially reflecting
mirror and, in this way, is more realistic (in comparison
with the case λ ¼ 1), it is not transparent at high frequen-
cies, so that

lim
ω→∞

s�ðωÞ ¼
1 − λ2

1þ λ2
< 1; ðλ ≠ 0Þ: ð35Þ

Moreover, for μ ¼ 0 the scattering coefficients for the
δ − δ0 mirror (5) are independent of the frequency,

s�ðωÞ ¼
1 − λ2

1þ λ2
; r�ðωÞ ¼

�2λ

1þ λ2
ð36Þ

(a similar model with frequency-independent scattering
coefficients is found in Ref. [17]). However, this behavior
at high frequencies (ω ≫ ω0) does not affect the applica-
tion of the formula (33) for the δ − δ0 model (4), since the
DCE, in the approximation assumed in the present paper,
just depends on the scattering coefficients for ω < ω0

[notice the Heaviside function in Eq. (33)].
We can write Λ [Eq. (29)] as Λ ¼ Λþ þ Λ−, where

Λ�ðω;ΩÞ ¼
1

4
ℜ½1þ r�ðωÞr�ðΩÞ − s�ðωÞs�ðΩÞ�: ð37Þ

We can also write NðωÞ ¼ NþðωÞ þ N−ðωÞ, with

N�ðωÞ ¼ NDðωÞ × Λ�ðω;ω0 − ωÞ; ð38Þ

where NDðωÞ=τ ¼ ðϵ2=πÞωðω0 − ωÞΘðω0 − ωÞ is the
spectrum for the Dirichlet (or Neumann) case, and Nþ
(N−) is the spectrum in the right (left) side of the mirror.
In the same way, N ¼ N þ þN −, where N þ (N −) is the
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total number of created particles in the right (left) side of
the mirror.
Substituting the scattering coefficients of the δ − δ0

mirror given by Eq. (5) in Eq. (37), we obtain

Λ� ¼ ℜ

�
2ξα2ð1 − ξÞλ2 − 1=2þ iαðλ ∓ 1Þ2=4
ξα2ð1 − ξÞðλ2 þ 1Þ2 − 1þ iαðλ2 þ 1Þ

�
; ð39Þ

where we have defined the dimensionless variables

ξ ¼ ω=ω0 and α ¼ ω0=μ: ð40Þ

From Eqs. (38) and (39) we see that the spectra for each
side of the mirror are different; this is a consequence of the
fact that the scattering on each side are not the same. The
change λ → −λ is equivalent to Λþ → Λ− (or Nþ → N−).
The case λ ¼ 1 corresponds to the spectrum of a

perfectly reflecting δ − δ0 mirror, where

Λþ ¼ 1

2

½1 − 4α2ð1 − ξÞξ�2
ð1þ 4α2ξ2Þ½1þ 4α2ð1 − ξÞ2� ;

Λ− ¼ 1

2
; ð41Þ

with Λ− corresponding to the parabolic spectrum (just
one side) for a Dirichlet mirror (long-dashed line in
Fig. 1), in agreement with Ref. [16], whereas Λþ corre-
sponds to the spectrum for a mirror imposing the Robin
boundary condition (long-dashed line in Fig. 2), in agree-
ment with Ref. [30]. For Λþ, when μ ¼ ω0 it follows that

θþðω0=2Þ ¼ π=2 and, from Eqs. (33) and (34),
Nþðω0=2Þ ¼ 0, which results in a strong inhibition of
the particle production (as discussed in Ref. [30]). When
μ ¼ 0 it follows that θþðωÞ ¼ 0, corresponding to the
spectrum for a Dirichlet mirror, whereas for μ → ∞ the
phase becomes θþðωÞ ¼ π, resulting in the spectrum
produced by a Neumann mirror.
For the case λ ¼ 0,

Λþ ¼ Λ− ¼ 1þ α2½1 − 2ξð1 − ξÞ�=2
ð1þ α2ξ2Þ½1þ α2ð1 − ξÞ2� : ð42Þ

This corresponds to a pure δ mirror, which produces
identical spectra for both sides, increasing monotonically
with μ and going asymptotically to the Dirichlet spectrum
when μ → ∞.
In Figs. 1 and 2 we compare the behaviors of N − and

N þ (the areas under the curves), for μ ¼ 1. From λ ¼ 0 up
to λ ¼ 1, we see in Fig. 1 an increase of N −, whereas in
Fig. 2 we see a decrease of N þ. When λ ¼ 1, we see that
N − is much greater thanNþ. From λ ¼ 1 to λ ¼ 2, we see
in Fig. 1 a decrease of N − and, in Fig. 2, the opposite
behavior for N þ. From λ ¼ 2 to λ ¼ 10, both N − and N þ
diminish, in according to Eq. (39), from which we can
conclude that limλ→∞N � ¼ 0.
Next, we turn to investigate the total number of created

particles N . Substituting Eq. (39) in (38) and then in (24),
we obtain

N =τ ¼ ϵ2ω3
0

6π
×
Aðα; λÞ þ Bðα; λÞ ln ½α2ð1þ λ2Þ2 þ 1� þ Cðα; λÞ arctan ½αð1þ λ2Þ�

α3ð1þ λ2Þ5½α2ð1þ λ2Þ2 þ 4� ; ð43Þ

FIG. 1. ðϵ2τ=πÞ−1 × N−ðωÞ as a function of ω, with μ ¼ ω0 ¼
1 and several values for λ.

FIG. 2. ðϵ2τ=πÞ−1 × NþðωÞ as a function of ω, with μ ¼ ω0 ¼
1 and several values for λ.
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Aðα; λÞ ¼ 4α5λ2ð1þ λ2Þ5 − 24αðλ2 − 1Þ2ð1þ λ2Þ − 6α3ð1þ λ2Þ5 þ 40α3λ2ðλ2 þ 1Þ3; ð44Þ

Bðα; λÞ ¼ 3α3½ðλ2 − 1Þ2 − 4λ2�ðλ2 þ 1Þ3 þ 12α½ðλ2 − 1Þ2 − 2λ2�ðλ2 þ 1Þ; ð45Þ

Cðα; λÞ ¼ 6α2ðλ2 þ 1Þ4 þ 24ðλ2 − 1Þ2: ð46Þ

When μ → ∞, the total rate of created particles for a
Dirichlet mirror is recovered, namely N D=τ ¼ ϵ2ω3

0=ð6πÞ
(in agreement with Ref. [16]). From Eq. (43), we see that
N =N D ≤ 1 or, in other words, the Dirichlet case is a
situation of a maximum number of created particles.
Results using (43) are shown in Fig. 3. For λ ¼ 0

(horizontal μ axis), which corresponds to a pure δ mirror,
the enhancement of the transparency (by reducing μ)
leads to a monotonic reduction of N =N D, being
limμ→0N =N D ¼ 0. For λ ¼ 1 (dashed line in Fig. 3),
the mirror is perfectly reflecting, and the field satisfies
the Robin (6) and Dirichlet (7) boundary conditions, each
one on a given side of the mirror, the total rate being not
monotonic with μ=ω0. The point μ ¼ 0 and λ ¼ 1 in Fig. 3
corresponds to the case of the Neumann boundary con-
dition (N =N D ¼ 1), being Dirichlet and Neumann the
cases of maximum particle creation rate. Finally,
limμ→∞N =N D ¼ 1 (not depending on the value of λ).
For a pure δ mirror (λ ¼ 0), the reflectivity jr�ðωÞj and

the phase arg½r�ðωÞ� are constrained so that the rate of
particles always increases with the enhancement of the

reflectivity and, therefore, the greatest number of particles
is obtained for a perfect mirror (μ → ∞). In the δ − δ0 case,
the constraint between jr�ðωÞj and arg½r�ðωÞ� enables
transparent mirrors (λ ≠ 1 and μ < ∞) creating more
particles than a perfect one (λ ¼ 1). For example, let us
consider the points A (μ=ω0 ¼ 1, λ ¼ 1) and B (μ=ω0 ¼ 1,
λ ¼ 1=2) in Fig. 3. The point A represents a perfect mirror
[jr�ðωÞj ¼ 1], whereas the point B represents a partially
reflecting one [jr�ðωÞj < 1]. As shown in Fig. 3, the
change A → B enhances the transparency, but increases
the number of produced particles. This can be also
visualized with the help of the Figs. 1 and 2. In Fig. 1,
the change A → B [shown by the transition from the long-
dashed line (λ ¼ 1) to the space-dashed one (λ ¼ 1=2)]
corresponds to a variation ΔN − < 0 in the particle pro-
duction (difference between the areas under the long-dashed
and space-dashed curves), whereas in Fig. 2, A → B
corresponds to a variation ΔN þ > 0. The total variation
isΔN þ þ ΔN − > 0, whatmeans an increase in the particle
creation due to an enhancement of the transparency.
In some situations, the δ − δ0 and pure δ mirrors can

exhibit the same total number of created particles [see,
for instance, the points C (δ case) and D (δ − δ0 case)
belonging to the same level curve in Fig. 3]. In other
situations the δ − δ0 case exhibits a greater total number of
created particles if compared with the δ case [see, for
instance, the points C (δ case) and E (δ − δ0 case) in Fig. 3].
In contrast, if we consider the δ case represented by the
point F and the δ − δ0 case represented byD in Fig. 3, the δ
case exhibits a greater number of created particles if
compared to the δ − δ0 case.
It is noteworthy that the δ − δ0 mirror (λ ≠ 0), performing

a spatially symmetric oscillatory motion, produces particles
in asymmetric manner in both sides of the mirror [see
Eqs. (38) and (39), and also Figs. 1 and 2]. In Fig. 4, we
exhibit the ratio N þ=N − as a function of μ=ω0. For λ > 0

(and μ ≠ 0) the production of particles in the right side of
the mirror is always smaller than the production in the left
side. For λ < 0 the opposite occurs, since, as mentioned in
Sec. I, λ → −λ is equivalent to change the mirror properties
from the left to the right and vice versa. For μ=ω0 ≈ 1 and
λ ¼ 1 (see the valley point of the solid line in Fig. 4), we get
a perfectly reflecting δ − δ0 mirror imposing Robin (6) and
Dirichlet (7) conditions to the field, the particle creation in
the right side, related to the Robin condition, being strongly
inhibited, and almost the only particles remaining were
created in the left side where the Dirichlet boundary

FIG. 3. N =N D as a function of μ=ω0 and λ. The dashed line
(λ ¼ 1) represents the region where the mirror is perfectly
reflecting. The points A,D, and E illustrate perfect δ − δ0 mirrors.
The points C and F indicate partially transparent δ mirrors. The
point B shows a partially transparent δ − δ0 mirror. The solid lines
are the level curves.
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condition (7) is considered. Note that μ=ω0 ≈ 1 corre-
sponds to the value γω0 ≈ 2.2 (γ ¼ 2=μ being the Robin
parameter) found in Refs. [30,35], which is associated with
a strong inhibition of the particle production for the Robin
boundary condition. Moreover, our results show that for
partially reflecting δ − δ0 mirrors there will always be a
value of μ for which the asymmetry in the particle
production is more strong, corresponding to the valleys
of the curves in Fig. 4, this asymmetry being more
pronounced in a perfectly reflecting δ − δ0 mirror (solid
line) for μ ≈ 1. On the other hand, the symmetry
(N þ=N − ¼ 1) occurs for λ ¼ 0 [a pure δ mirror, as shown
in Eqs. (38) and (42)] and for μ → ∞ (a perfectly reflecting
δ − δ0 case imposing the Dirichlet condition in both sides of
the mirror).

IV. FINAL REMARKS

We investigated the dynamical Casimir effect for a real
massless scalar field in 1þ 1 dimensions in the presence of
a partially reflecting moving mirror simulated by a δ − δ0
point interaction. Specifically, considering a typical oscil-
latory movement [Eq. (30) in the monochromatic limit], we
computed the spectral distribution (38) and the total rate of
created particles (43), this latter can be visualized in the μλ
plane shown in Fig. 3. In this figure, along the dashed line
(λ ¼ 1), the behavior is shown of the total rate (43) for a
perfect δ − δ0 mirror, resultant from the sum of the particles
produced in the left side of the mirror, which imposes the
Dirichlet (7) condition to the field, and those produced in
the right side, which imposes the Robin (6) condition.
These results are in agreement with those found in the
literature [16] (for Dirichlet) and [30] (for Robin), whereas
all remaining information in the μλ plane was obtained in
the present paper. The behavior of the total rate (43) for a
pure δmirror (1) is shown along the line λ ¼ 0. In this case,

the enhancement of the transparency (by reducing μ) leads
to a monotonic reduction of the particle creation rate. For
λ ≠ 0, the μλ plane exhibits the behavior of the particle
creation rate for δ − δ0 mirrors. A remarkable difference
between pure δ and δ − δ0 models is that, in the latter, the
more complex relation between phase and transparency
enables an oscillating partially reflecting mirror to produce,
via dynamical Casimir effect, a larger number of particles
in comparison with a perfect one (as illustrated by the
points A and B in Fig. 3). In other words, the maximum
coupling (in the sense that jr�ðωÞj ¼ 1) between a δ − δ0
mirror and the field does not necessarily lead to a maximum
particle production, since this latter is also affected by the
phases. Furthermore, differently from the case of a typical
pure δ mirror, the δ − δ0 mirror, performing a spatially
symmetric oscillatory motion, produces particles in asym-
metric manner in both sides of the mirror. A noticeable
situation where almost all particles are produced in just one
side of the mirror occurs for μ=ω0 ≈ 1 and λ ¼ �1 (the
valley of the solid curve in Fig. 4).
From our results for the massless scalar field in 1þ 1

dimensions, we can infer some expected results for the
dynamical Casimir effect if a δ − δ0 mirror is considered for
the massless scalar field in 3þ 1 dimensions. It is known
from the literature that in 3þ 1 dimensions the particle
production with a Neumann condition is eleven times
greater than that obtained by the Dirichlet case (see
Fig. 3 in Ref. [35]). Since a δ − δ0 mirror in 3þ 1
dimensions with, for instance, μ ¼ 0 and λ ¼ 1, must
recover a perfectly reflecting mirror imposing Neumann
(right side) and Dirichlet (left side) conditions to the field,
we expect that, differently from the case in 1þ 1 dimen-
sions, for a partially reflecting δ − δ0 mirror with λ > 0 the
production of particles in the right side of the mirror can be
greater than the production in the left side.
Finally, we can infer some expected results if a δ − δ0

mirror, instead of a δ, is considered to enlarge the Maxwell
Lagrangian, as discussed in Ref. [24]. In this context, the
perfect pure δmirror is equivalent to a perfectly conducting
plate [24] and, therefore, the transverse electric (TE) and
transverse magnetic (TM) modes of the field obey the
Dirichlet and Neumann boundary conditions respectively
[38]. Moreover, in the dynamical Casimir effect for the
electromagnetic field with a perfectly conducting plate, the
TMmode produces eleven times more particles than the TE
mode [see Eq. (55) in Ref. [38]]. In this way, we expect that
a partially reflecting δ mirror [24] also leads to asymmetric
boundary conditions for the TE and TM modes on each
side of the mirror, but with the TE mode in the right side of
a moving mirror associated with the same particle pro-
duction of the TE mode in the left side (the same symmetry
occurring for the TM mode). For the case of a partially
reflecting δ − δ0 mirror, we expect that it also leads to
asymmetric boundary conditions for the TE and TMmodes
on each side of the mirror, but now with the TE mode in the

FIG. 4. N þ=N − as a function of μ=ω0, for several values of λ.
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right side associated with a different particle production if
compared with the TE mode in the left side of the moving
mirror (this asymmetry also occurring for the TM mode).
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APPENDIX: BOUNDARY CONDITIONS
FOR A δ − δ0 MIRROR

For the sake of completeness, here we obtain the trans-
mission and reflection coefficients (5) associated to the
Lagrangian density (4) and show how they are connected to
the Robin (6) and Dirichlet (7) boundary conditions.
We start reviewing some properties of the Dirac delta

function and its derivative. Let us consider

I1 ¼
Z þ∞

−∞
δðxÞfðxÞgðxÞdx; ðA1Þ

where f is discontinuous and g is continuous at x ¼ 0. Thus

I1 ¼
�Z

0

−∞
þ
Z þ∞

0

�
δðxÞfðxÞgðxÞdx

¼ fð0−Þgð0Þ
Z

0

−∞
δðxÞdxþ fð0þÞgð0Þ

Z þ∞

0

δðxÞdx

¼
Z þ∞

−∞

fð0−Þ þ fð0þÞ
2

δðxÞgðxÞdx: ðA2Þ

Since g is arbitrary, one concludes from (A2) that

δðxÞfðxÞ ¼ δðxÞ fð0
þÞ þ fð0−Þ

2
: ðA3Þ

There is a similar relation for the derivative of the delta
function (see, for instance, Refs. [28,29,39]). We define

I2 ¼
Z þ∞

−∞
δ0ðxÞfðxÞgðxÞdx; ðA4Þ

with f and g, respectively, discontinuous and continuous at
x ¼ 0. Then, one has

I2 ¼ −
Z þ∞

−∞
δðxÞ½fðxÞgðxÞ�0dx

¼ −f0ð0−Þgð0Þ
Z

0

−∞
δðxÞdx − f0ð0þÞgð0Þ

Z þ∞

0

δðxÞdx

− fð0−Þg0ð0Þ
Z

0

−∞
δðxÞdx − fð0þÞg0ð0Þ

Z þ∞

0

δðxÞdx

¼
Z þ∞

−∞

�
−
f0ð0−Þ þ f0ð0þÞ

2
δðxÞ

þ fð0−Þ þ fð0þÞ
2

δ0ðxÞ
�
gðxÞdx: ðA5Þ

Therefore, since g is arbitrary, one concludes

δ0ðxÞfðxÞ ¼ fð0þÞ þ fð0−Þ
2

δ0ðxÞ − f0ð0þÞ þ f0ð0−Þ
2

δðxÞ:
ðA6Þ

If f is continuous, Eqs. (A4) and (A6) take, respectively,
the simpler forms

δðxÞfðxÞ ¼ δðxÞfð0Þ; ðA7Þ

δ0ðxÞfðxÞ ¼ fð0Þδ0ðxÞ − f0ð0ÞδðxÞ: ðA8Þ

Next, we will apply Eqs. (A4) and (A6) to obtain the
matching conditions.
The field equation for the Lagrangian density (4), in the

Fourier domain, is given by

½−∂2
x þ 2μδðxÞ þ 2λδ0ðxÞ� ~ϕðω; xÞ ¼ ω2 ~ϕðω; xÞ: ðA9Þ

Noticing that the field and its spatial derivative are not
considered, a priori, to be continuous at x ¼ 0, we shall use
Eqs. (A3) and (A6) rewritten as

δðxÞ ~ϕðω; xÞ ¼
~ϕðω; 0þÞ þ ~ϕðω; 0−Þ

2
δðxÞ; ðA10Þ

δ0ðxÞ ~ϕðω; xÞ ¼
~ϕðω; 0þÞ þ ~ϕðω; 0−Þ

2
δ0ðxÞ

−
∂x

~ϕðω; 0þÞ þ ∂x
~ϕðω; 0−Þ

2
δðxÞ: ðA11Þ

Substituting Eqs. (A10) and (A11) in (A9) and integrating
across x ¼ 0 once, we obtain

− ∂x
~ϕðω; 0þÞ þ ∂x

~ϕðω; 0−Þ þ μ½ ~ϕðω; 0þÞ þ ~ϕðω; 0−Þ�
− λ½∂x

~ϕðω; 0þÞ þ ∂x
~ϕðω; 0−Þ� ¼ 0: ðA12Þ

Now, integrating Eq. (A9) twice [also considering
Eqs. (A10) and (A11)], the first one from −L < 0 to x
(see, for instance, Ref. [40]) resulting in
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− ∂x
~ϕðω; xÞ þ ∂x

~ϕðω;−LÞ
þ μ½ ~ϕðω; 0þÞ þ ~ϕðω; 0−Þ�ΘðxÞ
− λ½∂x

~ϕðω; 0þÞ þ ∂x
~ϕðω; 0−Þ�ΘðxÞ

þ λ½ ~ϕðω; 0þÞ þ ~ϕðω; 0−Þ�δðxÞ

¼ ω2

Z
x

−L
~ϕðω; xÞdx; ðA13Þ

and integrating across x ¼ 0 we obtain

− ~ϕðω; 0þÞ þ ~ϕðω; 0−Þ þ λ½ ~ϕðω; 0þÞ þ ~ϕðω; 0−Þ� ¼ 0:

ðA14Þ

Manipulating Eq. (A14) and substituting into Eq. (A12),
one concludes that the field and its spatial derivative are
both discontinuous at x ¼ 0 for λ ≠ 0, and the following
matching conditions are established:

~ϕðω; 0þÞ ¼ 1þ λ

1 − λ
~ϕðω; 0−Þ; ðA15Þ

∂x
~ϕðω; 0þÞ ¼ 1 − λ

1þ λ
∂x

~ϕðω; 0−Þ þ 2μ

1 − λ2
~ϕðω; 0−Þ:

ðA16Þ

Taking into account Eqs. (8)–(14) and (17), the field can
be written as

ϕðt; xÞ ¼
X
j¼L;R

Z
∞

0

dω½ajðωÞΨjðω; xÞe−iωt þ H:c:�;

ðA17Þ

where

ΨRðω; xÞ ¼
1ffiffiffiffiffiffiffiffiffi
4πω

p fΘðxÞ½rþðωÞeiωx þ e−iωx�

þ Θð−xÞs−ðωÞe−iωxg; ðA18Þ

ΨLðω; xÞ ¼
1ffiffiffiffiffiffiffiffiffi
4πω

p fΘð−xÞ½r−ðωÞe−iωx þ eiωx�

þ ΘðxÞsþðωÞeiωxg ðA19Þ

are the left- and right-incident solutions (see, for instance,
Ref. [19]). Equations (A15), (A16), (A18), and (A19) lead
straightforwardly to the transmission and reflection coef-
ficients shown in Eq. (5).
The matching conditions (A15) and (A16) can be

conveniently rewritten in the form

Φþ ¼ UðλÞΦ−; ðA20Þ

where

Φ� ¼
�
μ ~ϕðω; 0þÞ � i∂x

~ϕðω; 0þÞ
μ ~ϕðω; 0−Þ ∓ i∂x

~ϕðω; 0−Þ

�
; ðA21Þ

and

UðλÞ ¼ 1

1þ λ2 − i

�
2λþ i 1 − λ2

1 − λ2 −2λþ i

�
: ðA22Þ

In the case λ ¼ 1 we get

~ϕðω; 0þÞ − ð2=μÞ∂x
~ϕðω; 0þÞ ¼ 0; ðA23Þ

and

~ϕðω; 0−Þ ¼ 0: ðA24Þ

Therefore, by taking the inverse Fourier transform of
Eqs. (A23) and (A24), one obtains the Robin (6) and
Dirichlet (7) boundary conditions respectively. Particularly,
for μ → 0 in Eq. (6) the Neumann boundary condition is
obtained. In addition, by taking λ ¼ 0 and μ → ∞ in
Eqs. (A15) and (A16) and performing the Fourier inverse
transform, one obtains the Dirichlet boundary condition on
both sides for a pure δ mirror as shown in Eq. (3).
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