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We consider radiative processes of a quantum system composed by two identical two-level atoms in a
black-hole background. We assume that these identical two-level atoms are placed at fixed radial distances
outside a Schwarzschild black hole and interacting with a quantum electromagnetic field prepared in one of
the usual vacuum states, namely, the Boulware, Unruh, or Hartle-Hawking vacuum states. We study the
structure of the rate of variation of the atomic energy. The intention is to identify in a quantitative way the
contributions of vacuum fluctuations and the radiation reaction to the entanglement generation between
the atoms as well as the degradation of entangled states in the presence of an event horizon. We find that for
a finite observation time the atoms can become entangled for the case of the field in the Boulware vacuum
state, even if they are initially prepared in a separable state. In addition, the rate of variation of atomic
energy is not well behaved at the event horizon due to the behavior of the proper accelerations of the atoms.
We show that the thermal nature of the Hartle-Hawking and Unruh vacuum state allows the atoms to get
entangled even if they were initially prepared in the separable ground state.
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I. INTRODUCTION

Quantum entanglement is the essential feature under-
lying quantum information, cryptography, and quantum
computation [1,2]. Systems of two-level atoms interacting
with a bosonic field have been one of the leading proto-
types in the investigations concerning entangled states
[3–7]. In turn, radiative processes of entangled states have
been substantially considered in the literature [8,9]. Here
we quote Ref. [10], in which the authors investigate the
properties of emission from two entangled atoms coupled
with an electromagnetic field in unbounded space. In
addition, in Ref. [11], the authors demonstrate for sponta-
neous emission processes how nonlocal disentanglement
times can be shorter than local decoherence times for
arbitrary entangled states. See also Ref. [12].
The field of relativistic quantum information has

emerged in recent years as an active research program
connecting concepts from gravitational physics and quan-
tum computing. In this respect, several important works
were developed [13–18]. We also quote Refs. [19–25],
which establish important results concerning entanglement
generation between two localized causally disconnected
atoms. On the other hand, many investigations were also
implemented on a curved background. For instance, it was
shown in Ref. [26] that an expanding space-time acts as a
decohering agent which forces the entanglement of the
vacuum to greatly decrease due to the effects of theGibbons-
Hawking temperature [27]. Another example, of immense
current interest, is related to investigations of quantum

entanglement in a Schwarzschild space-time which was
undertaken inRef. [28]. Thiswas also the subject of study by
the authors in Ref. [29]. In such a reference, entanglement
was considered in the framework of open quantum systems.
In the presence of a weak gravitational field, the authors in
Ref. [30] have given manifest evidence that the amount
of entanglement that Unruh-DeWitt detectors can extract
from the vacuum can be increased. Similar results were
found in Refs. [31–33]. For a review of recent results
regarding entanglement in curved space-times, we refer
the reader the work in Ref. [34] and references cited therein.
The point that should be emphasized is that many such
studies seem to imply the importance of considering the
observer-dependency property of quantum entanglement
[35]. Hence, a detailed understanding of such phenomena is
mandatory in investigations concerning quantum informa-
tion processes in the presence of a gravitational field or,more
specifically, near an event horizon.
The aim of the present paper is to contribute to the

investigations of relativistic quantum information theory in
the light of an alternative perspective. Most of the inves-
tigations aforementioned were implemented in a framework
of open quantum systems or by employing a time-dependent
perturbation theory or similar techniques. The heuristic
picture raised in such methods is that the generation (or
degradation) of entanglement between two-level atoms is
triggered by the vacuum fluctuations of the quantum field.
In this respect, in a recent work, radiative processes of
entangled atoms interacting with a massless scalar field
prepared in the vacuum state in the presence of boundaries
were considered [36]. Nevertheless, when discussing stimu-
lated emission and absorption, which have equal Einstein B*gabrielmenezes@ufrrj.br
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coefficients, it is not clear whether vacuum fluctuations
always act as the only source of (or degradation of)
entanglement. This is a consequence of the fact that it is
possible to interpret spontaneous decay as a radiation-
reaction effect [37]. As carefully demonstrated by Milonni,
both effects, vacuum fluctuations and the radiation reaction,
depend on the ordering chosen for commuting atomic and
field operators [38]. Following such debates recently,
quantum entanglement between inertial atoms [39] and
uniformly accelerated atoms [40] coupled with an electro-
magnetic field was discussed in the framework developed
by Dalibard, Dupont-Roc, and Cohen-Tannoudji (DDC)
[41,42]. The results for uniformly accelerated atoms com-
pare with the situation in which two atoms at rest are
coupled individually to two spatially separated cavities at
different temperatures, recovering, in some sense, the
outcomes described in Ref. [11]. In addition, for equal
accelerations it was obtained that one of the maximally
entangled antisymmetric Bell state is a decoherence-
free state.
We remark that the DDC formalism was also success-

fully implemented in many interesting physical situations
[43–47], including quantum fields in a curved space-time
[48–50]. For uniformly accelerated atoms, such a method
quantitatively motivates the scenario presented in Ref. [51].
On the other hand, in the investigations concerning
quantum entanglement, the DDC formalism has proved
to be a pivotal treatment in order to better understand the
structure responsible for supporting entanglement in radi-
ative processes involving atoms, as demonstrated in
Refs. [39,40]. Specifically, in such references it was shown
how the rate of variation of atomic energy evaluated within
the DDC approach can be a useful quantity in order to
signalize the emergence of quantum entanglement. This is
the idea we intend to continue to explore further in this
work by considering the resonant interaction between
atoms in a Schwarzschild space-time.
Even though close to the event horizon the

Schwarzschild metric takes the form of the Rindler line
element, there are important distinctions between an event
horizon in Schwarzschild space-time and an acceleration
horizon in Rindler space-time. In the present paper, we
propose to generalize the results of Refs. [39,40] for the
case of identical two-level atoms in a Schwarzschild space-
time. Being more specific, we intend to investigate these
atoms coupled with quantum electromagnetic fluctuations
in the Boulware, Unruh, and Hartle-Hawking vacuum
states. We use the approach above discussed, which allows
an easy comparison of quantum mechanical and classical
concepts. The organization of the paper is as follows. In
Sec. II, we discuss the identification of vacuum fluctuations
and the radiation-reaction effect in the situation of interest.
In Sec. III, we calculate the rates of variation of atomic
energy with finite observation time intervals for atoms
placed at fixed radial distances outside a Schwarzschild

black hole. Conclusions and final remarks are given in
Sec. IV. In the Appendixes, we briefly digress on the
correlation functions of an electromagnetic field in a
Schwarzschild space-time. We also discuss the asymptotic
evaluation of mode sums which will be important in what
follows. In this paper, we use units such that ℏ ¼ c ¼ G ¼
kB ¼ 1.

II. THE COUPLING OF ATOMS WITH
ELECTROMAGNETIC FIELDS IN

BLACK-HOLE SPACE-TIME

Let us suppose the case of two identical two-level atoms
interacting with a common electromagnetic field. In this
paper, we work in the multipolar coupling scheme, which
means that all interactions are realized through the quantum
electromagnetic fields. This formalism is suitable for
describing retarded dipole-dipole interactions between
the atoms. In general, the atoms will be moving along
different world lines, so there will be two different proper
times parameterizing each of these curves. We are working
in a four-dimensional Schwarzschild space-time, which is
described by the line element:

ds2 ¼
�
1 −

2M
r

�
dt2 −

�
1 −

2M
r

�
−1
dr2

− r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

which is the vacuum solution to the Einstein field equations
that describes the gravitational field outside a spherically
symmetric body of massM (we employ the convention that
the Minkowski metric is given by ηαβ ¼ −1, α ¼ β ¼ 1, 2,
3, ηαβ ¼ 1, α ¼ β ¼ 0, and ηαβ ¼ 0, α ≠ β). The collapse
of an electrically neutral star endowed with spherical
symmetry produces a spherical black hole of mass M
with an external gravitational field described by the
Schwarzschild line element (1). The surface of the black
hole, i.e., the event horizon, is located at r ¼ 2M, the
position where the Schwarzschild coordinates become
singular. Only the region on and outside the black hole’s
surface, r ≥ 2M, is relevant to external observers. Events
inside the horizon can never influence the exterior, at least
in the classical regime. An interesting discussion on
Schwarzschild’s original solution can be found in Ref. [52].
Here we are interested in the situation of black-hole

background geometry. Being more specific, we are
prompted to dispense entirely with the spherically symmet-
ric body and examine the quantum field theory for the
electromagnetic field on the maximally extended manifold
which is everywhere a solution of the vacuum Einstein
equation. This is obtained from Eq. (1) by replacing the
coordinates ðt; rÞ by the so-called Kruskal-Szekeres coor-
dinates ðv; uÞ. For an extensive discussion, seeRefs. [53,54].
The Schwarzschild geometry consists of four different
regions; see Fig. (31.3) of Ref. [53]. Regions I and III
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portray two distinct asymptotically flat universes with
r > 2M; in fact, in region III the coordinate time t runs
backwardswith respect to region I. Regions II and IVare also
time-reversed regions inwhich physical singularities (r ¼ 0)
evolve. In the Kruskal-Szekeres coordinates, one can show
that themetric is perfectlywell defined andnonsingular at the
event horizon. In addition, such transformations and the
metric (1) make clear that near the event horizon the line
element approaches the form of the Rindler line element.
Therefore, for r ≈ 2M the Schwarzschild coordinates t and r
behave as Rindler space-time coordinates.
In this paper, we propose to identify quantitatively the

contributions of quantum field vacuum fluctuations and the
radiation reaction to the entanglement dynamics of atoms in
black-hole space-time. With this respect, one must consider
the Heisenberg picture. We consider both atoms moving
along different stationary trajectories xμðτiÞ¼ ðtðτiÞ;xðτiÞÞ,
where τi denotes the proper time of the atom i. Because of
this fact, in what follows, we describe the time evolution
with respect to the Schwarzschild coordinate time t, which,
because of (1), has a functional relation with each of the
proper times of the atoms.
We suppose that the two-level atoms are placed at fixed

radial distances outside the black hole. The stationary
trajectory condition guarantees the existence of stationary
states. Within the multipolar-coupling scheme, the purely
atomic part of the total Hamiltonian describes the free atomic
Hamiltonian. A brief and important comment is in order. It is
known that the presence of gravitational fields affects the
Coulomb interaction between charges within the atoms as
well as dipole energies [55,56]. In addition, van der Waals
forces aremodified by gravity [57]. As a first approximation,
we shall consider that the coupling between the atoms and the
gravitational field is sufficiently weak. Hence, we take the
free atomic Hamiltonian as having the same functional form
as in the absence of gravitation. In this context, the
Hamiltonian of this atomic system can then be written as

HAðtÞ ¼
ω0

2

�
ðσz1ðτ1ðtÞÞ ⊗ 1̂Þ dτ1

dt

þ ð1̂ ⊗ σz2ðτ2ðtÞÞÞ
dτ2
dt

�
; ð2Þ

where dτ=dt¼ ffiffiffiffiffiffi
g00

p ¼ð1−2M=rÞ1=2 and σza¼jeaiheaj−jgai
hgaj,a ¼ 1, 2.Here jg1i, jg2i and je1i, je2idenote theground
and excited states of isolated atoms, respectively. One has
that the space of the two-atom system is spanned by four
product states with respective eigenenergies

Egg ¼ −ω0; jggi ¼ jg1ijg2i;
Ege ¼ 0; jgei ¼ jg1ije2i;
Eeg ¼ 0; jegi ¼ je1ijg2i;
Eee ¼ ω0; jeei ¼ je1ije2i: ð3Þ

Here we consider that the two-atom system is coupled with
an electromagnetic field. The HamiltonianHFðtÞ of the free
electromagnetic field can be obtained in the usual way from
Eq. (A1); see Appendix A. In this way, one has that

HFðtÞ ¼
X
k

ωka
†
kðtÞakðtÞ; ð4Þ

where a†k;λ and ak;λ are the usual creation and annihilation
operators, respectively, of the electromagnetic field and
we have neglected the zero-point energy. In addition, k
labels the wave vector and polarization of the field modes.
Furthermore, we also assume that the presence of a gravi-
tational field does not affect substantially the physical
consequences in considering the interaction between the
atoms and the fields. Hence, in the multipolar coupling
scheme and using the electric-dipole approximation, one has
that theHamiltonianwhich describes the interaction between
the atoms and the field is given by

HIðtÞ ¼ −μ1ðτ1ðtÞÞ · Eðx1ðτ1ðtÞÞÞ
dτ1
dt

− μ2ðτ2ðtÞÞ · Eðx2ðτ2ðtÞÞÞ
dτ2
dt

; ð5Þ

where μi (i ¼ 1, 2) is the electric dipole moment operator for
the ith atom. The electric field above is the measured electric
field defined through the measured force it exerts on the
atoms. The dipole moment operator is given by

μiðτiÞ ¼ μ½σþi ðτiÞ þ σ−i ðτiÞ�; ð6Þ

where we have assumed that the dipole matrix elements
hgijμijeii are real and we denote them by μ, since they are
independent of the index i (identical and similarly oriented
atoms). In the above, we have defined the raising and
lowering operators as σþi ¼ jeiihgij and σ−i ¼ jgiiheij,
respectively. Incidentally, suppose that our atoms are spinless
one-electron systems. Hence, μa ¼ er̂a, where e is the
electron charge and r̂a is the position operator of the atom a.
The Heisenberg equations of motion for the dynamical

variables of the atom and the field with respect to t can be
derived from the total Hamiltonian HðtÞ ¼ HAðtÞ þ
HFðtÞ þHIðtÞ. After establishing the equations of motion,
in order to solve them, one usually separates the solutions
in two parts, namely, the free part, which is independent of
the presence of a coupling between atoms and fields, and
the source part, which is caused by the interaction between
atoms and fields. That is, for atomic and field operators,
respectively, σzaðτaðtÞÞ ¼ σz;fa ðτaðtÞÞ þ σz;sa ðτaðtÞÞ and also
akðtÞ ¼ afkðtÞ þ askðtÞ. Since one can construct from the
annihilation and creation field operators the free and source
part of the quantum electric field, one can also writeEðtÞ ¼
EfðtÞ þ EsðtÞ. As extensively discussed in Refs. [41–43],
this calculation produces an ambiguity of operator
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ordering. In summary, this implies that one must choose an
operator ordering when discussing the effects of Ef and Es

separately. This is the root of the feature already discussed
in the introduction by which the effects of vacuum
fluctuations (which are caused by Ef) and the radiation
reaction (which is originated from Es) depend on the
ordering chosen for commuting atomic and field operators.
Nonetheless, here we adopt a particular prescription which
enables to interpret the effects of such phenomena as
independent physical processes [41–43]. This is essentially
the DDC formalism mentioned above.
We do not intend to give a thorough treatment of the

DDC formalism here, since this approach has been ana-
lyzed in detail in many works. The reader may benefit from
reading the several expositions we have already quoted
above, especially Ref. [43], which, to the best of this
author’s knowledge, was one of the first works to discuss
the Unruh effect [54,58,59] within such a framework.
Therefore, we expound only the main results. The idea
is to evaluate dHA=dt, where HA is given by Eq. (2), and
consider only the part which is due to the interaction with
the field; afterwards, one extracts from the remaining
quantity the contributions of vacuum fluctuations and
the radiation reaction, and then one takes the expectation
value of the resulting quantities. The latter consists of two
different operations: First, we consider an averaging
over the field degrees of freedom (obtained by taking
vacuum expectation values); subsequently, one takes the

expectation value of the associated expressions in an atomic
state jνi, with energy ν. Such a state is usually one of the
product states given by Eq. (3), but it can be any given state.
For the purposes of studying entanglement, one can
conveniently take jνi as a generic entangled state. For
instance, consider the entangled states

jΩ�i ¼ c1jg1ije2i � c2je1ijg2i; ð7Þ
where c1 and c2 are complex numbers. Note that jΩ�i
are eigenstates of the atomic HamiltonianHA. Here we will
be particularly interested in the situation where c1 ¼ c2 ¼
1=

ffiffiffi
2

p
. Such states constitute familiar examples of max-

imally entangled Bell states. The other Bell states are
given by

jΦ�i ¼ 1ffiffiffi
2

p ðjg1ijg2i � je1ije2iÞ: ð8Þ

The Bell states form an alternative basis of the two-qubit
Hilbert space. They play a fundamental role in Bell
measurements, and they are also known as the four
maximally entangled two-qubit Bell states.
Coming back to our problem, let us present the con-

tributions of vacuum fluctuations and the radiation reaction
in the evolution of the atoms’ energies. Proceeding with a
usual perturbative expansion and taking into account only
terms up to order μ2, the vacuum-fluctuation contribu-
tion reads

�
dHA

dt

�
VF

¼ i
2

Z
t

t0

dt0
X2
a;b¼1

dτa
dt

dτ0b
dt0

DijðxaðτaðtÞÞ; xbðτ0bðt0ÞÞÞ
∂
∂τa Δ

ij
abðτaðtÞ; τ0bðt0ÞÞ; ð9Þ

where the notation hð…Þi ¼ h0; νjð…Þj0; νi has been employed (j0i is the vacuum state of the field, to be discussed below).
In the above,

Δij
abðτaðtÞ; τ0bðt0ÞÞ ¼ hνj½μi;fa ðτaðtÞÞ; μj;fb ðτ0bðt0ÞÞ�jνi; a; b ¼ 1; 2; ð10Þ

is the linear susceptibility of the two-atom system in the state jνi and

DijðxaðτaðtÞÞ; xbðτ0bðt0ÞÞÞ ¼ h0jfEf
i ðxaðτaðtÞÞÞ; Ef

j ðxbðτ0bðt0ÞÞÞgj0i; ð11Þ

a, b ¼ 1, 2, is Hadamard’s elementary function. On the other hand, for the radiation-reaction contribution, one has�
dHA

dt

�
RR

¼ i
2

Z
t

t0

dt0
X2
a;b¼1

dτa
dt

dτ0b
dt0

ΔijðxaðτaðtÞÞ; xbðτ0bðt0ÞÞÞ
∂
∂τa D

ij
abðτaðtÞ; τ0bðt0ÞÞ; ð12Þ

where

Dij
abðτaðtÞ; τ0bðt0ÞÞ ¼ hνjfμi;fa ðτaðtÞÞ; μj;fb ðτ0bðt0ÞÞgjνi; a; b ¼ 1; 2; ð13Þ

is the symmetric correlation function of the two-atom system in the state jνi and

ΔijðxaðτaðtÞÞ; xbðτ0bðt0ÞÞÞ ¼ h0j½Ef
i ðxaðτaðtÞÞÞ; Ef

j ðxbðτ0bðt0ÞÞÞ�j0i; ð14Þ
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a, b ¼ 1, 2, is the Pauli-Jordan function. We see from
Eqs. (9) and (12) that one can identify two distinct
contributions. One is due to the existence itself of
the atoms, and it is independent of any interaction what-
soever. The other is related with the emergence of cross-
correlations between the atoms mediated by the field.
Likewise, observe that such a formalism enables one to
discuss the interplay between vacuum fluctuations and the
radiation reaction in the generation or degradation of
entanglement between atoms.
As emphasized in many texts, Δij

ab and Dij
ab characterize

only the two-atom system itself. The explicit forms of such
quantities are given by

Δij
abðt; t0Þ ¼

X
ν0
½U ij

abðν; ν0ÞeiΔνðτaðtÞ−τbðt
0ÞÞ

− Uji
baðν; ν0Þe−iΔνðτaðtÞ−τbðt

0ÞÞ� ð15Þ
and

Dij
abðt; t0Þ ¼

X
ν0
½U ij

abðν; ν0ÞeiΔνðτaðtÞ−τbðt
0ÞÞ

þ Uji
baðν; ν0Þe−iΔνðτaðtÞ−τbðt

0ÞÞ�; ð16Þ

where Δν ¼ ν − ν0 and we have conveniently introduced a
suitable generalized atomic transition dipole moment
U ij
abðν; ν0Þ defined as

U ij
abðν; ν0Þ ¼ hνjμi;fa ð0Þjν0ihν0jμj;fb ð0Þjνi: ð17Þ

Finally, observe that from (1) one can easily perform a
change of variables in Eqs. (9) and (12) in order to describe
the time evolution in terms of one of the proper times of the
atoms. In fact, the use of the proper time is the customary
procedure, since it is the quantity directly measurable by
the clocks of the observers. However, as remarked above,
here we adopt an alternative method in which we use the
Schwarzschild coordinate time as the parameter that
describes the time evolution of the system.
Now we are ready to characterize the entanglement

generation (or degradation) between atoms as transitions
between particular stationary states of the atomic
Hamiltonian. The rate of variation of the atomic energy
clearly identifies the permissible transitions between states,
and, depending on the nature of the initial and final states,
one may plainly perceive the constitution (or destruction)
of an entangled state. In particular, as discussed above,
within the DDC formalism, we can study how the interplay
between vacuum fluctuations and the radiation reaction
significantly influences the occurrence of these phenom-
ena. Hence, we propose to investigate the creation of
entanglement as well as how entangled states reduce to
separable states. For instance, assume that the atoms were
initially prepared in an entangled state, that is, jνi ¼ jΩ�i.
Hence, the only allowed transitions are jΩ�i → jggi, with

Δν¼ν−ν0¼ω0>0, and jΩ�i→ jeei, with Δν¼ ν−ν0 ¼
−ω0< 0. In other words, the rate of variation of atomic
energy should indicate the probability for the transitions
jΩ�i → jggi or jΩ�i → jeei by displaying a nonzero
value. On the other hand, suppose that the atoms were
initially prepared in the atomic ground state (jνi ¼ jggi).
The transition rates to one of the entangled states jΩ�i are
nonvanishing, with the energy gap Δν ¼ −ω0 < 0. In all
such transitions, the nonzero matrix elements are given by,
with c1 ¼ c2 ¼ 1=

ffiffiffi
2

p
,

U ij
11ðν; ν0Þ ¼

μiμj

2
;

U ij
22ðν; ν0Þ ¼

μiμj

2
;

U ij
12ðν; ν0Þ ¼ U21ðν; ν0Þ ¼ � μiμj

2
; ð18Þ

where ν stands for the ground state jggi (or the excited
state jeei) and ν0 stands for the entangled states jΩ�i, or
vice versa.
In the next section, we will consider in detail the rate of

variation of atomic energy for atoms at rest in various
important physical situations.

III. RATE OF VARIATION OF THE ATOMIC
ENERGY IN VACUUM

As discussed, we consider our two-atom system in a
situation where the atoms are placed at fixed radial
distances with the world lines given, respectively, by
xμðτiÞ¼ðτi= ffiffiffiffiffiffiffiffiffiffiffig00ðriÞ

p ;ri;θi;ϕiÞ, i¼1, 2, and g00ðrÞ ¼
1−2M=r. Let us investigate the rate of change of the
atomic energy of the two-atom system for each one of the
possible vacua discussed in Appendix A. We consider
the transitions discussed at the end of the previous section.
For simplicity, we assume that the atoms are polarized
along the radial direction defined by their positions relative
to the black-hole space-time rotational Killing vector fields.
This means that we do not need to calculate the contribu-
tions associated with the polarizations in the θ and ϕ
directions, and the only field correlation functions that we
should evaluate are the ones associated with the radial
component of the electric field. This is extensively dis-
cussed in Appendix A. In the course of the calculations, one
will typically deal with asymptotic estimation of mode
sums. In the cases of interest, this is substantially discussed
in Appendix B.

A. The Boulware vacuum

The Boulware vacuum has a close similarity to the
innermost concept of an empty state at large radii, but it has
pathological behavior at the horizon: The renormalized
expectation value of the stress tensor, in a freely falling
frame, diverges as r → 2M [51]. The Boulware vacuum is
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the appropriate choice of vacuum state for quantum fields
in the vicinity of an isolated, cold neutron star.
We now proceed to calculate the rate of variation of

atomic energy in the Boulware vacuum state. From the

results derived in Appendix A, one may compute all the
relevant correlation functions of the electric field which
appears in Eqs. (9) and (12). The associated Hadamard’s
elementary functions are given by

DB
rrðxiðtÞ; xjðt0ÞÞ ¼

1

16π2
X∞
l¼1

ð2lþ 1ÞPlðr̂i · r̂jÞ
Z

∞

0

dωωfe−iωðt−t0Þ½~Rð1Þ
ωl ðriÞ~Rð1�Þ

ωl ðrjÞ þ R⃖ð1Þ
ωl ðriÞR⃖ð1�Þ

ωl ðrjÞ�

þ eiωðt−t0Þ½~Rð1Þ
ωl ðrjÞ~Rð1�Þ

ωl ðriÞ þ R⃖ð1Þ
ωl ðrjÞR⃖ð1�Þ

ωl ðriÞ�g; ð19Þ

i, j ¼ 1, 2, where we have employed the addition theorem for the spherical harmonics [60]

4π

2lþ 1

Xl

m¼−l
Ylmðθ;ϕÞY�

lmðθ0;ϕ0Þ ¼ Plðr̂ · r̂0Þ;

where r̂ and r̂0 are two unit vectors with spherical coordinates ðθ;ϕÞ and ðθ0;ϕ0Þ, respectively, and Pl is the Legendre
polynomial of degree l [61]. On the other hand, the Pauli-Jordan functions are given by

ΔB
rrðxiðtÞ; xjðt0ÞÞ ¼

1

16π2
X∞
l¼1

ð2lþ 1ÞPlðr̂i · r̂jÞ
Z

∞

0

dωωfe−iωðt−t0Þ½~Rð1Þ
ωl ðriÞ~Rð1�Þ

ωl ðrjÞ þ R⃖ð1Þ
ωl ðriÞR⃖ð1�Þ

ωl ðrjÞ�

− eiωðt−t0Þ½~Rð1Þ
ωl ðrjÞ~Rð1�Þ

ωl ðriÞ þ R⃖ð1Þ
ωl ðrjÞR⃖ð1�Þ

ωl ðriÞ�g: ð20Þ

The contributions (9) and (12) to the rate of variation of atomic energy can be evaluated by inserting in such expressions the
statistical functions of the two-atom system, given by Eqs. (15) and (16), and the electromagnetic-field statistical functions
given by (19) and (20). Initially, let us present the contributions coming from the vacuum fluctuations. Performing a simple
change of variable u ¼ t − t0, these can be expressed as, with Δt ¼ t − t0,�

dHA

dt

�
VF

¼ −
1

32π2
X
ν0

X2
k;j¼1

Urr
kjðν; ν0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrkÞg00ðrjÞ

q
exp ½iðfΔνk − fΔνjÞt�Δν

×
Z

∞

0

dωω

	
CBðω; rk; rjÞ

Z
Δt

0

du½eiðeΔνj−ωÞu þ e−iðeΔνk−ωÞu�
þ CBðω; rj; rkÞ

Z
Δt

0

du½eiðeΔνjþωÞu þ e−iðeΔνkþωÞu�


; ð21Þ

where fΔνi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðriÞ

p
Δν (this comes from the usual gravitational redshift effect) and the generalized atomic transition

dipole moment U ij
abðν; ν0Þ is given by Eq. (18). Also, we have defined

CBðω; r; r0Þ ¼ ~CBðω; r; r0Þ þ C⃖Bðω; r; r0Þ; ð22Þ

with

~CBðω; r; r0Þ ¼
X∞
l¼1

ð2lþ 1ÞPlðr̂ · r̂0Þ~Rð1Þ
ωl ðrÞ~Rð1�Þ

ωl ðr0Þ;

C⃖Bðω; r; r0Þ ¼
X∞
l¼1

ð2lþ 1ÞPlðr̂ · r̂0ÞR⃖ð1Þ
ωl ðrÞR⃖ð1�Þ

ωl ðr0Þ: ð23Þ

The above integrals can be easily solved, and the result is
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�
dHA

dt

�
VF

¼ −
1

16π2
X
ν0

X2
k;j¼1

Urr
kjðν; ν0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrkÞg00ðrjÞ

q
exp ½iðfΔνk − fΔνjÞt�Δν

×
Z

∞

0

dωω

	
CBðω; rk; rjÞ

�
eiΔt=2ðeΔνj−ωÞ sin ðΔt=2ðfΔνj − ωÞÞfΔνj − ω

þ e−iΔt=2ðeΔνk−ωÞ sin ðΔt=2ðfΔνk − ωÞÞfΔνk − ω

�

þ CBðω; rj; rkÞ
�
eiΔt=2ðeΔνjþωÞðsin ðΔt=2ðfΔνj þ ωÞÞÞfΔνj þ ω

þ e−iΔt=2ðeΔνkþωÞ sin ðΔt=2ðfΔνk þ ωÞÞfΔνk þ ω

�

: ð24Þ

For sufficiently large Δt, sinðΔtxÞ=x → πδðxÞ and the integral over ω can be explicitly solved. In this limit, it becomes
clear to note that vacuum fluctuations tend to excite [fΔνi < 0 ⇒ hdHA=dtiVF > 0] as well as deexcite
[fΔνi > 0 ⇒ hdHA=dtiVF < 0] the atomic system. In the present context, this means that the atoms disentangle and
can also entangle in a finite observation time due to vacuum fluctuations of the electromagnetic field. The creation of
entanglement due to vacuum fluctuations persists even at late times, as this result plainly shows.
Now let us present the radiation-reaction contributions. Performing similar calculations as above, one gets�
dHA

dt

�
RR

¼ −
1

16π2
X
ν0

X2
k;j¼1

Urr
kjðν; ν0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrkÞg00ðrjÞ

q
exp ½iðfΔνk − fΔνjÞt�Δν

×
Z

∞

0

dωω

	
CBðω; rk; rjÞ

�
eiΔt=2ðeΔνj−ωÞ sin ðΔt=2ðfΔνj − ωÞÞfΔνj − ω

þ e−iΔt=2ðeΔνk−ωÞ sin ðΔt=2ðfΔνk − ωÞÞfΔνk − ω

�

− CBðω; rj; rkÞ
�
eiΔt=2ðeΔνjþωÞðsin ðΔt=2ðfΔνj þ ωÞÞÞfΔνj þ ω

þ e−iΔt=2ðeΔνkþωÞ sin ðΔt=2ðfΔνk þ ωÞÞfΔνk þ ω

�

: ð25Þ

Observe that the effect of the radiation reaction always leads
to a loss of atomic energy hdHA=dtiVF < 0 independent of
how the atomic system were initially prepared. In other
words, with respect to absorption processes, the radiation
reactiondoes not contribute to thegenerationof entanglement
between the atoms; in this case, it always tends to disentangle
an entangled state via spontaneous emission processes. This

is reminiscent of the fact that classical noise coupled to an
entangled quantum two-level system will generally lead to
decoherence and disentanglement processes.
For completeness, let us present the total rate of change

of the atomic energy. This is obtained by adding the
contributions of vacuum fluctuations and the radiation
reaction. One gets

�
dHA

dt

�
tot

¼ −
1

8π2
X
ν0

X2
k;j¼1

Urr
kjðν; ν0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrkÞg00ðrjÞ

q
exp ½iðfΔνk − fΔνjÞt�Δν

×
Z

∞

0

dωωCBðω; rk; rjÞ
�
eiΔt=2ðeΔνj−ωÞ sin ðΔt=2ðfΔνj − ωÞÞfΔνj − ω

þ e−iΔt=2ðeΔνk−ωÞ sin ðΔt=2ðfΔνk − ωÞÞfΔνk − ω

�
: ð26Þ

The result clearly shows that it is possible to generate
entanglement between the atoms via the absorption process
for a finite observation time in the case of a quantum
electromagnetic field in the Boulware vacuum state.
However, once entanglement is created, it lasts only a
finite duration and always disappears at late observation
times Δt (see the remark above concerning the ω integral
for large Δt). This is a similar result as the one found
in Ref. [25] yet in an entirely different scenario. Typically,
this entangled state lasts a duration of the order of
∼1=ðfΔνi − ωÞ, which corresponds roughly to the greatest
width of the peaks of the functions sin x=x in the above
integrand. In other words, one gets a finite result only for
Δν > 0 for asymptotic Δt: The balance between vacuum

fluctuations and the radiation reaction prevents the atoms
fromgetting entangled via an absorptionprocess. In addition,
for a finite observation time, notice that the situation inwhich
Δt < jΔxj, jΔxj being the distance between the atoms, is
allowed. This does not bring any controversial issues
regarding causality, since it is widely known that entangled
quantum states produce nonlocal correlations [62].
Furthermore, note from Eq. (26) with large Δt that, as the
atoms approach each other, one gets hdHA=dti → 0 for
atoms initially prepared in the entangled state jΩ−i with
c1¼c2¼1=

ffiffiffi
2

p
, which means that such a state is stable with

respect to radiative processes. Thus, we recover the well-
known result which states that, for atoms confined into a
region much smaller than the optical wavelength, the
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antisymmetric entangled state jΩ−i with c1 ¼ c2 ¼ 1=
ffiffiffi
2

p
can be regarded as a decoherence-free state [9].
Let us briefly discuss the rate of change of the atomic

energy for the asymptotic regions of interest. All the relevant
calculations are presented in detail in Appendix B. For
simplicity, assume a large enough Δt so that one could
approximate sin x=x as delta functions. First, let us consider
the asymptotic region r1; r2 → ∞. From the results derived
in Appendix B, one gets

CBðω; ri; rjÞ ≈Hþðω; ri; rjÞ þ Fðω;xi;xjÞ; ð27Þ

where the functionFðω;x;x0Þ is given by Eq. (B11) and we
have defined

H�ðω; r; r0Þ ¼
X∞
l¼1

lðlþ 1Þð2lþ 1ÞPlðr̂ · r̂0ÞjBlðωÞj2

×
e�iωðr�−r0�Þ

ω2r2r02
; ð28Þ

where BlðωÞ is the usual transmission coefficient defined
through Eqs. (B1) and r�¼rþ2M lnðr=2M−1Þ is the
Regge-Wheeler tortoise coordinate. For estimation of the
sum on Eq. (28), one can study the gravitational capture
cross section of test particleswhose trajectories terminates in
the black hole [63]. One finds that, if the impact parameter b
of an ultrarelativistic particle coming in from infinity is less
than the critical value

ffiffiffiffiffi
27

p
M, such a particle gets

captured by the black hole. Employing the relation
l ¼ ωb, one rewrites the capture condition as
l <

ffiffiffiffiffi
27

p
Mω. Hence, assuming that all modes obeying such

a relation are absorbed by the black hole, one can
suitably approximate the transmission coefficient by
jBlðωÞj2 ∼ θð ffiffiffiffiffi

27
p

Mω − lÞ, where θðzÞ is the usual
Heaviside step function. This is sometimes called the
DeWitt approximation [64], but it is essentially a geomet-
rical optics approximation for all wavelengths. Hence,
one gets

H�ðω; r; r0Þ ≈
X∞
l¼1

lðlþ 1Þð2lþ 1ÞPlðr̂ · r̂0Þθð
ffiffiffiffiffi
27

p
Mω − lÞe�iωðr�−r0�Þ

ω2r2r02
≈
2e�iωðr�−r0�Þ

ω2r2r02

Z ffiffiffiffi
27

p
Mω

0

dll3J0ðlγÞ; ð29Þ

where cos γ ¼ r̂ · r̂0 and we have employed the asymptotic
result: Pν½cosðx=νÞ� ≈ J0ðxÞ þOðν−1Þ, with JμðxÞ being
the Bessel function of the first kind [61]. We distinguish
two separate cases. For r ¼ r0 one gets

H�ðω; r; rÞ ≈
729M4ω2

2r4
; ð30Þ

and for r ≠ r0 one gets

H�ðω; r; r0Þ ≈
54M2e�iωðr�−r0�Þ

γ2r2r02

× ½2J2ðzðωÞÞ − zðωÞJ3ðzðωÞÞ�; ð31Þ
where we have defined the function zðωÞ ¼ ffiffiffiffiffi

27
p

Mγω and
the following integral was used [65]:Z

x

0

dyy3J0ðyÞ ¼ x2½2J2ðxÞ − xJ3ðxÞ�:

It is easy to see that, at infinity, H� gives vanishingly small
contributions, so that the rate of change reduces essentially
to that of inertial atoms in the Minkowski vacuum in flat
space-times with no boundaries. In this way, the results of
Ref. [39] are reproduced. Note also that Fðω;x;x0Þ ∼ 0 for
a large distance between the atoms, but it is finite
for r1 ¼ r2 → ∞; see Eq. (B13). This means that for a
large asymptotic separation between the atoms the cross-
correlations arising in hdHA=dti vanish, and one is left with
terms corresponding to isolated atoms.

The other important region is when r1; r2 → 2M. One
has that

CBðω; ri; rjÞ ≈H−ðω; ri; rjÞ þ
16a2ðriÞ sinhðπξðωÞÞ

g00ðriÞπξðωÞ
× ½AiξðωÞðγ; g00ðrjÞ; g00ðriÞÞ
þ A−iξðωÞðγ; g00ðrjÞ; g00ðriÞÞ�; ð32Þ

where aðrÞ ¼ M=ðr2 ffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrÞ

p Þ is the proper acceleration of
the static atom at r, ξðωÞ ¼ 4Mω, and Aiξðγ; r; r0Þ ¼
Aiξðγ; g00ðrÞ; g00ðr0ÞÞ is properly defined in Appendix B.
For finite Δt, as in the previous case, one gets a finite result
regardless of the sign of Δν. In addition, note that g00ðrÞ
vanishes as the event horizon is approached; hence, the rate
of change of the atomic energy diverges.
As a last analysis concerning the Boulware vacuum we

take, say, r2 → 2M, whereas r1 is kept arbitrary. One gets

CBðω;r1;r2Þ≈
X∞
l¼1

lðlþ1Þð2lþ1ÞPlðr̂1 · r̂2Þ
ðr2Þ2ðr1Þ2ω2

×

�
R⃖ð1Þ

ωl ðr1ÞB�
l ðωÞeiωr2�

þ2e−iω=2κ

Γðiω=κÞ
~Rð1Þ
ωl ðr1Þeiωlnl=κKiω=κð2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðr2Þ

p
Þ
�
;

ð33Þ
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where κ ¼ 1=4M, and a similar result for CBðω; r2; r1Þ; see
Eq. (B27). From the results found inAppendixB, as r1 → ∞
the cross terms vanish, and again we are left only with terms
corresponding to isolated atoms. On the other hand, as r1
approaches 2M, hdHA=dti diverges, and we recover the
previous results discussed. Observe the general result: As
the atoms approach r ¼ 2M, the rate of variation of atomic
energy grows rapidly and violently. For largeΔt, this implies
a vastly fast degradation of entanglement between the atoms
initially prepared in one of the entangled states jΩ�i.

B. The Hartle-Hawking vacuum

The Hartle-Hawking vacuum state is not empty at
infinity, corresponding to a thermal distribution of quanta

at the black-hole temperature. In other words, the Hartle-
Hawking vacuum describes the physical situation in which
the black hole is in equilibrium with an infinite sea of
blackbody radiation, such as would be observed by
constraining the black hole to the interior of a perfectly
reflecting cavity. The renormalized expectation value of the
stress tensor is well behaved in a freely falling frame on the
horizon [51].
We now proceed to calculate the rate of variation of

atomic energy in the Hartle-Hawking vacuum state. From
the results derived in Appendix A, one may compute all the
relevant correlation functions of the electric field which
appears in Eqs. (9) and (12). The associated Hadamard’s
elementary functions are given by

DH
rrðxiðtÞ; xjðt0ÞÞ ¼

1

16π2
X∞
l¼1

ð2lþ 1ÞPlðr̂i · r̂jÞ
Z

∞

−∞
dωω

	
e−iωðt−t0Þ

�~Rð1Þ
ωl ðriÞ~Rð1�Þ

ωl ðrjÞ
1 − e−2πω=κ

þ R⃖ð1Þ
ωl ðriÞR⃖ð1�Þ

ωl ðrjÞ
e2πω=κ − 1

�

þ eiωðt−t0Þ
�~Rð1Þ

ωl ðrjÞ~Rð1�Þ
ωl ðriÞ

1 − e−2πω=κ
þ R⃖ð1Þ

ωl ðrjÞR⃖ð1�Þ
ωl ðriÞ

e2πω=κ − 1

�

; ð34Þ

i, j ¼ 1, 2, where we have employed the addition theorem for the spherical harmonics quoted above. On the other hand, the
Pauli-Jordan functions are given by

ΔH
rrðx1iðtÞ; xjðt0ÞÞ ¼

1

16π2
X∞
l¼1

ð2lþ 1ÞPlðr̂i · r̂jÞ
Z

∞

−∞
dωω

	
e−iωðt−t0Þ

�~Rð1Þ
ωl ðriÞ~Rð1�Þ

ωl ðrjÞ
1 − e−2πω=κ

−
R⃖ð1Þ
ωl ðriÞR⃖ð1�Þ

ωl ðrjÞ
e2πω=κ − 1

�

− eiωðt−t0Þ
�~Rð1Þ

ωl ðrjÞ~Rð1�Þ
ωl ðriÞ

1 − e−2πω=κ
−
R⃖ð1Þ
ωl ðrjÞR⃖ð1�Þ

ωl ðriÞ
e2πω=κ − 1

�

: ð35Þ

Now such expressions as well as the statistical functions of the two-atom system, given by Eqs. (15) and (16), should be
inserted in Eqs. (9) and (12). As above, we begin with the contributions coming from the vacuum fluctuations. Performing a
simple change of variable u ¼ t − t0, these can be expressed as, with Δt ¼ t − t0,�

dHA

dt

�
VF

¼ −
1

32π2
X
ν0

X2
k;j¼1

Urr
kjðν; ν0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrkÞg00ðrjÞ

q
exp ½iðfΔνk − fΔνjÞt�Δν

×
Z

∞

−∞
dωω

	
Cþ
Hðω; rk; rjÞ

Z
Δt

0

du½eiðeΔνj−ωÞu þ e−iðeΔνk−ωÞu�
þ Cþ

Hðω; rj; rkÞ
Z

Δt

0

du½eiðeΔνjþωÞu þ e−iðeΔνkþωÞu�


; ð36Þ

where we have defined

C�
Hðω; r; r0Þ ¼ ~CHðω; r; r0Þ � C⃖Hðω; r; r0Þ; ð37Þ

with

~CHðω; r; r0Þ ¼
X∞
l¼1

ð2lþ 1ÞPlðr̂ · r̂0Þ~Rð1Þ
ωl ðrÞ~Rð1�Þ

ωl ðr0Þ
�
1þ 1

e2πω=κ − 1

�
;

C⃖Hðω; r; r0Þ ¼
X∞
l¼1

ð2lþ 1ÞPlðr̂ · r̂0Þ
R⃖ð1Þ
ωl ðrÞR⃖ð1�Þ

ωl ðr0Þ
e2πω=κ − 1

: ð38Þ
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Solving the above integrals leads us to the following result:�
dHA

dt

�
VF

¼ −
1

16π2
X
ν0

X2
k;j¼1

Urr
kjðν; ν0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrkÞg00ðrjÞ

q
exp ½iðfΔνk − fΔνjÞt�Δν

×
Z

∞

−∞
dωω

	
Cþ
Hðω; rk; rjÞ

�
eiΔt=2ðeΔνj−ωÞ sin ðΔt=2ðfΔνj − ωÞÞfΔνj − ω

þ e−iΔt=2ðeΔνk−ωÞ sin ðΔt=2ðfΔνk − ωÞÞfΔνk − ω

�

þ Cþ
Hðω; rj; rkÞ

�
eiΔt=2ðeΔνjþωÞðsin ðΔt=2ðfΔνj þ ωÞÞÞfΔνj þ ω

þ e−iΔt=2ðeΔνkþωÞ sin ðΔt=2ðfΔνk þ ωÞÞfΔνk þ ω

�

: ð39Þ

Observe the appearance of the thermal terms coming from
the function Cþ

H. This is most readily seen by letting Δt
approach asymptotic values, which leads to delta functions
in the above expressions, and again the integral overω can be
explicitly solved.As for theBoulwarevacuum state, vacuum
fluctuations tend to generate entanglement between atoms
initially prepared in the ground state which is sustained over

late periods of observational time. Similarly, vacuum fluc-
tuations may destroy initially entangled atoms. Both proc-
esses are ensured with equal magnitude and are heightened
by the thermal terms compared to the Boulware case.
Now let us present the radiation-reaction contributions.

The calculations follow similar steps as above, and the
result is

�
dHA

dt

�
RR

¼ −
1

16π2
X
ν0

X2
k;j¼1

Urr
kjðν; ν0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrkÞg00ðrjÞ

q
exp ½iðfΔνk − fΔνjÞt�Δν

×
Z

∞

−∞
dωω

	
C−
Hðω; rk; rjÞ

�
eiΔt=2ðeΔνj−ωÞ sin ðΔt=2ðfΔνj − ωÞÞfΔνj − ω

þ e−iΔt=2ðeΔνk−ωÞ sin ðΔt=2ðfΔνk − ωÞÞfΔνk − ω

�

− C−
Hðω; rj; rkÞ

�
eiΔt=2ðeΔνjþωÞðsin ðΔt=2ðfΔνj þ ωÞÞÞfΔνj þ ω

þ e−iΔt=2ðeΔνkþωÞ sin ðΔt=2ðfΔνk þ ωÞÞfΔνk þ ω

�

: ð40Þ

Note that the contribution from the radiation reaction
is also altered by the appearance of the thermal
terms encoded in C−

H. This is in sharp contrast to the
situation of uniformly accelerated atoms coupled with a
quantum field prepared in the Minkowski vacuum [40]
(for a related result, see Ref. [50]). Nevertheless, as in
the Boulware case, the radiation reaction does not

contribute to the generation of entanglement between
the atoms through an absorption process, leading
always to disentanglement via spontaneous emission
processes.
The total rate of change of the atomic energy is obtained

by adding the contributions of vacuum fluctuations and the
radiation reaction. One gets, for sufficiently large Δt,

�
dHA

dt

�
tot

¼ −
1

8π

X
ν0

X2
k;j¼1

Urr
kjðν; ν0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrkÞg00ðrjÞ

q
exp ½iðfΔνk − fΔνjÞt�Δν

× ½fΔνj ~CHðfΔνj; rk; rjÞ þ fΔνk ~CHðfΔνk; rk; rjÞ − fΔνjC⃖Hð−fΔνj; rj; rkÞ − fΔνkC⃖Hð−fΔνk; rj; rkÞ�: ð41Þ

Observe from Eq. (41) that, as the atoms approach each
other, the entangled state jΩ−i with c1 ¼ c2 ¼ 1=

ffiffiffi
2

p
is

again stable with respect to radiative processes.
The balance between vacuum fluctuations and the

radiation reaction which existed in the Boulware

vacuum is disturbed, and entanglement can be created

via an absorption process in the exterior region of
the black hole even for large asymptotic Δt. In other
words, both possibilities Δν > 0 and Δν < 0 are allowed.
The Planckian factors which appear in Eq. (41) through the

functions ~CH and C⃖H uncover the thermal nature of the
Hartle-Hawking vacuum. For large enough Δt, one easily
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sees that the temperature of the thermal radiation is given
by the Hawking temperature:

TH
i ¼ κ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðriÞ

p ¼ 1

8πM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=ri

p ; ð42Þ

which is just the Tolman relation which gives the temper-
ature felt by a local observer at the fixed position ri [66].
The emergence of two different temperatures is a feature
of the atoms being at different fixed positions. Even
though we find different temperatures, the thermal equi-
librium is warranted by invoking the Tolman rela-
tion ðg00ðxÞÞ1=2TðxÞ ¼ const.
Further inquiries must be answered by inspecting the

result in the asymptotic regions. Consider a large enough
Δt as above. For the atoms fixed at spatial infinity, i.e.,
r1; r2 → ∞, the results discussed in Appendix B reveal that

C�
Hðω; ri; rjÞ ≈Hþðω; ri; rjÞ

�
1þ 1

e2πω=κ − 1

�
� Fðω;xi;xjÞ

e2πω=κ − 1
; ð43Þ

where the function Fðω;x;x0Þ is given by Eq. (B11) and
H�ðω; r; r0Þ is given by expression (28) [or Eqs. (30)
and (31) within the geometrical optics approximation
discussed above]. At infinity and for a large distance
between the atoms, H�ðω; r; r0Þ and Fðω;x;x0Þ give
vanishingly small contributions, and we are left with a
summation of terms related with isolated atoms, each one
following its own world line. Recalling the thermalization

theorem [51,67,68], one is led to the conclusion that in the
situation with a sufficiently high relative asymptotic dis-
tance we have two atoms coupled individually to two
spatially separated cavities at different Hawking temper-
atures in a flat space-time. Hence, our results indicate a
close resemblance to the outcomes of Ref. [11].
At the vicinity of the event horizon, i.e., r1; r2 → 2M,

one has that

C�
Hðω; ri; rjÞ ≈

16a2ðriÞ sinhðπξðωÞÞ
g00ðriÞπξðωÞ

× ½AiξðωÞðγ; g00ðrjÞ; g00ðriÞÞ
þ A−iξðωÞðγ; g00ðrjÞ; g00ðriÞÞ�

×
�
1þ 1

e2πω=κ − 1

�
�H−ðω; ri; rjÞ

e2πω=κ − 1
; ð44Þ

which clearly shows a divergent result for aðrÞ → ∞. We
also observe two kinds of contributions, namely, one
related to the outgoing thermal radiation from the event
horizon and the other one associated with the thermal term
multiplied by H−, which can be interpreted as a conse-
quence of the existence of incoming thermal radiation from
infinity. It is precisely this thermal nature that enables the
atoms to get entangled even if they were initially prepared
in the separable ground state.
Finally, consider that r2 → 2M, whereas r1 is kept

arbitrary. One gets

C�
Hðω; r1; r2Þ ≈

X∞
l¼1

lðlþ 1Þð2lþ 1ÞPlðr̂1 · r̂2Þ
ðr2Þ2ðr1Þ2ω2

�
2e−iω=2κ

Γðiω=κÞ
~Rð1Þ
ωl ðr1Þeiω ln l=κKiω=κð2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðr2Þ

p
Þ
�
1þ 1

e2πω=κ − 1

�

� R⃖ð1Þ
ωl ðr1ÞB�

l ðωÞeiωr�2
e2πω=κ − 1

�
ð45Þ

and a similar result for C�Hðω; r2; r1Þ; see Eq. (B27). From the results found in Appendix B, as r1 → ∞ the cross terms
vanish, and again we are left only with terms corresponding to isolated atoms. On the other hand, as r1 approaches 2M,
hdHA=dti diverges, and we recover the previous results discussed. Again, we have obtained the general result
aforementioned: As the atoms approach the event horizon, the rate of variation of atomic energy grows rapidly and
violently. For large Δt, this implies a greatly enhanced generation of entanglement between the atoms initially prepared in
the ground state.

C. The Unruh vacuum

The Unruh vacuum state is the adequate choice of vacuum state which is most relevant to the gravitational collapse of a
massive body. At spatial infinity, this vacuum is tantamount to an outgoing flux of blackbody radiation at the black-hole
temperature. The renormalized expectation value of the stress tensor, in a freely falling frame, is well behaved on the future
horizon but not on the past horizon [51].
We now proceed to calculate the rate of variation of atomic energy in the Unruh vacuum state. From the results derived in

Appendix A, one may compute all the relevant correlation functions of the electric field which appears in Eqs. (9) and (12).
The associated Hadamard’s elementary functions reads
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DU
rrðxiðtÞ; xjðt0ÞÞ ¼

1

16π2
X∞
l¼1

ð2lþ 1ÞPlðr̂i · r̂jÞ
Z

∞

−∞
dωω

	
e−iωðt−t0Þ

�~Rð1Þ
ωl ðriÞ~Rð1�Þ

ωl ðrjÞ
1 − e−2πω=κ

þ θðωÞR⃖ð1Þ
ωl ðriÞR⃖ð1�Þ

ωl ðrjÞ
�

þ eiωðt−t0Þ
�~Rð1Þ

ωl ðrjÞ~Rð1�Þ
ωl ðriÞ

1 − e−2πω=κ
þ θðωÞR⃖ð1Þ

ωl ðrjÞR⃖ð1�Þ
ωl ðriÞ

�

; ð46Þ

i, j ¼ 1, 2, where use was made of the foregoing addition theorem for the spherical harmonics. In turn, the Pauli-Jordan
functions are given by

ΔU
rrðxiðtÞ; xjðt0ÞÞ ¼

1

16π2
X∞
l¼1

ð2lþ 1ÞPlðr̂i · r̂jÞ
Z

∞

−∞
dωω

	
e−iωðt−t0Þ

�~Rð1Þ
ωl ðriÞ~Rð1�Þ

ωl ðrjÞ
1 − e−2πω=κ

þ θðωÞR⃖ð1Þ
ωl ðriÞR⃖ð1�Þ

ωl ðrjÞ
�

− eiωðt−t0Þ
�~Rð1Þ

ωl ðrjÞ~Rð1�Þ
ωl ðriÞ

1 − e−2πω=κ
þ θðωÞR⃖ð1Þ

ωl ðrjÞR⃖ð1�Þ
ωl ðriÞ

�

: ð47Þ

The contributions (9) and (12) to the rate of variation of atomic energy can be evaluated by inserting in such expressions the
statistical functions of the two-atom system, given by Eqs. (15) and (16), and the electromagnetic-field statistical functions
given by (46) and (47). Initially, let us focus on the contributions coming from the vacuum fluctuations. Performing a simple
change of variable u ¼ t − t0, these can be expressed as, with Δt ¼ t − t0,�

dHA

dt

�
VF

¼ −
1

32π2
X
ν0

X2
k;j¼1

Urr
kjðν; ν0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrkÞg00ðrjÞ

q
exp ½iðfΔνk − fΔνjÞt�Δν

×
Z

∞

−∞
dωω

	
CUðω; rk; rjÞ

Z
Δt

0

du½eiðeΔνj−ωÞu þ e−iðeΔνk−ωÞu�
þ CUðω; rj; rkÞ

Z
Δt

0

du½eiðeΔνjþωÞu þ e−iðeΔνkþωÞu�


; ð48Þ

where we have defined

CUðω; r; r0Þ ¼ ~CUðω; r; r0Þ þ C⃖Uðω; r; r0Þ; ð49Þ
with

~CUðω; r; r0Þ ¼
X∞
l¼1

ð2lþ 1ÞPlðr̂ · r̂0Þ~Rð1Þ
ωl ðrÞ~Rð1�Þ

ωl ðr0Þ
�
1þ 1

e2πω=κ − 1

�
;

C⃖Uðω; r; r0Þ ¼ θðωÞ
X∞
l¼1

ð2lþ 1ÞPlðr̂ · r̂0ÞR⃖ð1Þ
ωl ðrÞR⃖ð1�Þ

ωl ðr0Þ: ð50Þ

The above integrals can be easily solved, and we find that�
dHA

dt

�
VF

¼ −
1

16π2
X
ν0

X2
k;j¼1

Urr
kjðν; ν0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrkÞg00ðrjÞ

q
exp ½iðfΔνk − fΔνjÞt�Δν

×
Z

∞

−∞
dωω

	
CUðω; rk; rjÞ

�
eiΔt=2ðeΔνj−ωÞ sin ðΔt=2ðfΔνj − ωÞÞfΔνj − ω

þ e−iΔt=2ðeΔνk−ωÞ sin ðΔt=2ðfΔνk − ωÞÞfΔνk − ω

�

þ CUðω; rj; rkÞ
�
eiΔt=2ð

ffiffiffiffiffiffiffiffiffiffi
g00ðrjÞ

p
ΔEþωÞðsin ðΔt=2ðfΔνj þ ωÞÞÞfΔνj þ ω

þ e−iΔt=2ðeΔνkþωÞ sin ðΔt=2ðfΔνk þ ωÞÞfΔνk þ ω

�

: ð51Þ

As in the cases above studied, the atoms disentangle and can also entangle in a finite observation time due to vacuum
fluctuations of the electromagnetic field. The creation of entanglement due to vacuum fluctuations also persists at late times.
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Now let us present the radiation-reaction contributions. Performing similar calculations as above, one gets�
dHA

dt

�
RR

¼ −
1

16π2
X
ν0

X2
k;j¼1

Urr
kjðν; ν0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrkÞg00ðrjÞ

q
exp ½iðfΔνk − fΔνjÞt�Δν

×
Z

∞

−∞
dωω

	
CUðω; rk; rjÞ

�
eiΔt=2ðeΔνj−ωÞ sin ðΔt=2ðfΔνj − ωÞÞfΔνj − ω

þ e−iΔt=2ðeΔνk−ωÞ sin ðΔt=2ðfΔνk − ωÞÞfΔνk − ω

�

− CUðω; rj; rkÞ
�
eiΔt=2ð

ffiffiffiffiffiffiffiffiffiffi
g00ðrjÞ

p
ΔEþωÞðsin ðΔt=2ðfΔνj þ ωÞÞÞfΔνj þ ω

þ e−iΔt=2ðeΔνkþωÞ sin ðΔt=2ðfΔνk þ ωÞÞfΔνk þ ω

�

: ð52Þ

Observe that the effect of the radiation reaction, with
respect to absorption processes, does not contribute to
the generation of entanglement between the atoms as in the
cases investigated above; it always tends to disentangle an
entangled state via spontaneous emission processes. As in
the Hartle-Hawking case, such a contribution is also altered
by the appearance of a thermal contribution.
For completeness, let us present the total rate of change

of the atomic energy. This is obtained by adding the
contributions of vacuum fluctuations and the radiation
reaction. One gets, for sufficiently large Δt,�
dHA

dt

�
tot

¼ −
1

8π

X
ν0

X2
k;j¼1

Urr
kjðν; ν0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrkÞg00ðrjÞ

q
× exp ½iðfΔνk − fΔνjÞt�Δν
× ½fΔνjCUðfΔνj; rk; rjÞ þ fΔνkCUðfΔνk; rk; rjÞ�:

ð53Þ

As in the Hartle-Hawking case, the balance between
vacuum fluctuations and the radiation reaction which
existed in the Boulware vacuum is disturbed, and entan-
glement can be created via an absorption process in the
exterior region of the black hole even for large asymptotic
Δt. The structure of the rate of variation of atomic energy
implies the existence of thermal radiation from the black
hole which is backscattered by space-time curvature. This
thermal radiation is responsible for the possibility of the
creation of entanglement between atoms initially prepared
in the ground state. The temperature of the thermal
radiation as felt by each of the atoms is again given by
Eq. (42). Moreover, Eq. (53) shows us that the entangled
state jΩ−i with the choice c1 ¼ c2 ¼ 1=

ffiffiffi
2

p
is stable with

respect to radiative processes for atoms located at the same
position.
Let us briefly digress on the rate of change of the atomic

energy for the asymptotic regions of interest. Again, we are
assuming a large enough Δt so that one could approximate
sin x=x as delta functions. Consider the asymptotic region
r1; r2 → ∞. From the results derived in Appendix B,
one gets

CUðω; ri; rjÞ ≈Hþðω; ri; rjÞ
�
1þ 1

e2πω=κ − 1

�
þ θðωÞFðω;xi;xjÞ: ð54Þ

Note that thermal terms are multiplied by the gray-body
factor H� which vanishes at spatial infinity. Hence, as the
atoms approach spatial infinity, the flux felt by them
becomes more pale, which means that the creation of
entanglement by absorption processes becomes rarer.
The other important region is when r1; r2 → 2M. One

has that

CUðω; ri; rjÞ ≈
16a2ðriÞ sinhðπξðωÞÞ

g00ðriÞπξðωÞ
× ½AiξðωÞðγ; g00ðrjÞ; g00ðriÞÞ
þ A−iξðωÞðγ; g00ðrjÞ; g00ðriÞÞ�

×

�
1þ 1

e2πω=κ − 1

�
þ θðωÞH−ðω; ri; rjÞ: ð55Þ

Again note that g00ðrÞ vanishes as the event horizon is
approached; hence, the rate of change of the atomic energy
diverges.
As a last analysis concerning the Unruh vacuum we take,

say, r2 → 2M, whereas r1 is kept arbitrary. One gets

CUðω;r1;r2Þ≈
X∞
l¼1

lðlþ1Þð2lþ1ÞPlðr̂1 · r̂2Þ
ðr2Þ2ðr1Þ2ω2

×

�
θðωÞR⃖ð1Þ

ωl ðr1ÞB�
l ðωÞeiωr�2

þ2e−iω=2κ

Γðiω=κÞ
~Rð1Þ
ωl ðr1Þeiωlnl=κKiω=κð2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðr2Þ

p
Þ

×

�
1þ 1

e2πω=κ−1

��
: ð56Þ

From the results found in Appendix B, as r1 → ∞ the
cross terms vanish, and again we are left only with terms
corresponding to isolated atoms. On the other hand, as r1
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approaches 2M, hdHA=dti diverges. This last case confirms
again the general result stated above: As the atoms
approach the event horizon, the rate of variation of atomic
energy grows quickly. For large Δt, this implies a greatly
enhanced generation of entanglement between the atoms
initially prepared in the ground state.

IV. CONCLUSIONS AND PERSPECTIVES

Many works in the recent literature of quantum infor-
mation theory have been devoted to investigations of
entanglement in quantum field theory and quantum field
theory in curved space-time. Throughout the text, some of
these were already cited. Among several investigations in
the field, we would also like to mention the analysis
regarding quantum teleportation between noninertial
observers [69–71] and relativistic approaches to the
Einstein-Podolsky-Rosen framework and also to Bell’s
inequality [72–75]. References [76–83] provide more
intriguing discussions on the subject of relativistic quantum
entanglement for the interested reader. The point is that
most of these studies were implemented in a framework of
open quantum systems. Employing the formalism devel-
oped by Dalibard, Dupont-Roc, and Cohen-Tannoudji, we
have uncovered the distinct effects of vacuum fluctuations
and the radiation reaction on the quantum entanglement
between two identical atoms in Schwarzschild space-time.
Within such a formalism, the interplay between vacuum
fluctuations and the radiation reaction can be considered to
maintain the stability of the entangled state in some
particular situations. We assume that both atoms are
coupled to a quantum electromagnetic field. The overall
picture is the following. The rate of change of the two-atom
system energy is very small when the atoms are far away of
the horizon. As they get closer, this rate increases in a
oscillatory regime in such a way that, when the atoms
approach the horizon, most contributions to the rate
oscillates violently. This suggests that the generation of
entanglement is highly magnified when the atoms are near
the horizon and also largely suppressed when they get to
spatial infinity. In turn, we have also obtained evidences
that the degradation of entanglement follows the same
response; i.e., it is highly enhanced when the atoms
approach the horizon and also largely suppressed when
they get to spatial infinity. The present analysis taken in
connection with the results of Refs. [29,30] allows us to
state the following assertion: Even though the thermal
terms contribute decisively to the creation of entanglement
between the atoms, the degree of entanglement thus
generated is suppressed for atoms approaching the event
horizon. In this way, we note that here the Hawking effect is
a key ingredient in the discussion of creation of entangle-
ment. We stress that one must not refrain from observing
that the entanglement features of the system under con-
sideration depend crucially on the distance of the atoms to
the event horizon and also on the balance between vacuum

fluctuations and the radiation reaction. This is manifest in
the framework studied here.
In this work, since we are interested in mean lives, we

choose an alternative perspective to understand quantum
entanglement. We have carefully demonstrated that, when
considering the resonant interaction between two-level
atoms, the machinery underlying entanglement can be
understood as an interplay between classical concepts
(represented by the radiation-reaction effect) and quan-
tum-mechanical phenomena (vacuum fluctuations). In this
scenario, the usage of the DDC formalism has been proved
to be essential in order to unfold this interpretation in a clear
way. Nevertheless, we mention that the standard formalism
for the evaluations of time evolution and correlation
properties of entangled atomic systems is the traditional
master equation approach. An important concept that is
commonly addressed with the master equation approach is
entanglement swapping. Within this approach, one derives
an equation of motion for the reduced density operator of a
certain subsystem A which interacts with another subsys-
tem B. Commonly, one describes the general solution of the
master equation in terms of the so-called Kraus represen-
tation. In possession of a density matrix of the pair of
atoms, it is possible to quantify the degree of entanglement
by employing the usual techniques, such as Wootters’
concurrence or negativity. Concerning such entanglement
measures, one could also consider the calculation of the
entanglement entropy, which characterizes the correlations
between subsystems belonging to a quantum-mechanical
system. A systematic study of entanglement entropy in
quantum field theory and of black holes is given in many
important works; see, for instance, Refs. [84,85], and
references cited therein. We reserve future studies to all
the important subjects raised above.
We believe that the results presented in this paper may

have an impact in the studies of radiative processes of
atoms in the presence of an event horizon. A framework in
which vacuum fluctuations and the radiation-reaction effect
have been clearly uncovered may contribute to a deeper
understanding of such results. For instance, recently the
method was employed to investigate the Casimir-Polder
forces between two uniformly accelerated atoms [86]. In
such a work, the authors exhibit a transition from the short-
distance thermal behavior dictated by the Unruh effect to a
long-distance nonthermal behavior. In addition, studies of
quantum entanglement in Schwarzschild space-time are
attracting much attention due to their obvious applications
to the problem of black-hole information loss [87–92]. One
expects that the present investigation will impact the
discussion on black-hole complementarity [93] or even
on the possible firewall scenarios [94–97]. Indeed, the
relationship between particle detectors in different vacua in
Rindler and Schwarzschild space-time was undertaken in
recent studies [98]. All these investigations suggest that the
attempts to ascertain possible connections between the
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equivalence principle and quantum entanglement could
unveil a different and important aspect on the black-hole
information paradox. Such subjects are under investigation
and results will be reported elsewhere.
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APPENDIX A: CORRELATION FUNCTIONS OF
THE ELECTROMAGNETIC FIELD IN

SCHWARZSCHILD SPACE-TIME

In this Appendix, we present the correlation functions for
each one of the vacuum states discussed above. A detailed
analysis of the quantization of the electromagnetic field in
Schwarzschild space-time can be found in Ref. [99]. For a
different but related method, see Ref. [100]. The associated
correlation functions are also evaluated in Ref. [50].
Fundamentally, the concept is to employ the modified
Feynman gauge and then use the Gupta-Bleuler quantiza-
tion in this gauge employing Schwarzschild coordinates.
The action for the free electromagnetic fields in the

modified Feynman gauge is given by

SF ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

4
FαβFαβ þ 1

2
G2

�
; ðA1Þ

where Fαβ ¼ ∇αAβ −∇βAα and G ¼ ∇μAμ þ KμAμ, with∇μ being the usual covariant derivative in curved space-
time. Choosing

Kμ ¼
�
0;
2M
r2

; 0; 0

�
;

the equation for A0 decouples from the other ones. A
complete set of solutions of the field equations is denoted

by Aðλn;ωlmÞ
μ . The label n distinguishes between modes

incoming from the past null infinity J − (n ¼←) and those
going out from the past horizonH− (n ¼→). There are four
classes of modes which form this basis. The modes with
λ ¼ 0 do not obey the gauge condition G ¼ 0 which is
satisfied by all other modes with λ ≠ 0. In turn, modes with
λ ¼ 3 are so-called pure gauge modes. Finally, the modes
with λ ¼ 1, 2 correspond to the physical modes. We choose
them to have A0 ¼ 0. These are given by

Að1n;ωlmÞ
μ ¼

�
0; Rð1nÞ

ωl ðrÞYlme−iωt;

×
ð1 − 2M=rÞ
lðlþ 1Þ

d
dr

ðr2Rð1nÞ
ωl ðrÞÞ∂iYlme−iωt

�
ðA2Þ

for λ ¼ 1, with i ¼ θ;ϕ and l ≥ 1. The functions Ylm ¼
Ylmðθ;ϕÞ are the usual spherical harmonics and
l ¼ 0; 1; 2;…, with l ≥ m, m being an integer number.
As for λ ¼ 2, they can be expressed as

Að2n;ωlmÞ
μ ¼ ð0; 0; Rð2nÞ

ωl ðrÞYlm
i e−iωtÞ; ðA3Þ

where the functions Ylm
i ¼ Ylm

i ðθ;ϕÞ are divergence-free
vector spherical harmonics defined on the unit 2-spherewith
angular coordinates ðθ;ϕÞ. The associated normalization of

the modes Aðλn;ωlmÞ
μ can be fixed from the usual inner

product. Expanding the field operator in terms of the
complete set of basic modes as

ÂμðxÞ ¼
X
λnlm

Z
∞

0

dωffiffiffiffiffiffiffiffiffi
4πω

p ½Aðλn;ωlmÞ
μ ðxÞâðλnÞωlm

þ ðAðλn;ωlmÞ
μ Þ�ðxÞâ†ðλnÞωlm �; ðA4Þ

the commutation relations between the annihilation and
creation operators are given by

½âð3nÞωlm; â
†ð3n0Þ
ω0l0m0 � ¼ −½âð0nÞωlm; â

†ð3n0Þ
ω0l0m0 �

¼ δnn
0
δll0δmm0δðω − ω0Þ ðA5Þ

and

½âð1nÞωlm; â
†ð1n0Þ
ω0l0m0 � ¼ ½âð2nÞωlm; â

†ð2n0Þ
ω0l0m0 �

¼ δnn
0
δll0δmm0δðω − ω0Þ: ðA6Þ

All other commutators vanish. From the Gupta-Bleuler
condition, one gets Ĝþjϕi ¼ 0, for any physical state jϕi,
where Ĝþ is the positive-frequency part of the operator
Ĝ ¼ ∇μÂμ þ KμÂμ. This condition means that any state
with λ ¼ 3 is unphysical and the states with λ ¼ 0 have zero
norm and are orthogonal to any physical states. The
Boulware vacuum j0Bi [101] is defined by requiring that

it be annihilated by all annihilation operators â†ðλnÞωlm . One can
take as the representative elements the states obtained by

applying the creation operators â†ð3nÞωlm , λ ¼ 1, 2 on the
vacuum j0Bi. As discussed in Ref. [99], unphysical particles
created by â†ð3nÞωlm will be in thermal equilibrium in the so-
called Hartle-Hawking vacuum [102] for a static black hole
if one demands that the gauge-fixed two-point function be
nonsingular on the horizons similar to the procedure taken in
the scalar-field case [103]. There will also be a flux of
unphysical particles in the so-called Unruh vacuum [104].
Observe that the positive-frequency states defined as

above are related to the timelike Killing vector field ∂=∂t
with respect to which the exterior region of the black hole is
static [51]. However, as argued in Refs. [51,104], there are
other possible prescriptions when considering the metric in
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Kruskal-Szekeres coordinates instead of the usual
Schwarzschild coordinates. In this respect, one easily notes
that the null coordinates on the past horizonH− (U ¼ v − u)
and thenull coordinate on the futurehorizonHþ (V ¼ vþ u)
also act as Killing vector fields ∂=∂U and ∂=∂V on the
respective horizons. Therefore, one can define basis modes in
terms of such Kruskal null coordinates U, V. This set is
regular on the entiremanifold. The associated vacuum j0Hi is
known as the Hartle-Hawking vacuum. On the other hand, it
is also known that one may take the incoming modes to be
positive frequency with respect to ∂=∂t and the outgoing
modes to be positive frequency with respect to ∂=∂U—one

can show that such a prescription leads to a definition of a set
of modes which oscillate infinitely rapidly on the past event
horizon [54]. The associated vacuum j0Ui is known as the
Unruh vacuum [104]. This last prescription is the one
required in order to mock up the geometrical effects asso-
ciated with the gravitational collapse of a spherically sym-
metric electrically neutral star.
Let us present the expansion of the field operator in terms

of the complete set of modes associated with the Hartle-
Hawking vacuum and the Unruh vacuum. Our discussion
has grounds in Ref. [104]. As discussed in such a reference,
the field operators can also be expanded as

ÂμðxÞ ¼
X
λlm

	Z
∞

−∞
dω

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πω sinhð4πMωÞp ½Āðλ←;ωlmÞ

μ ðxÞĥðλ←Þ
ωlm þ ðĀðλ←;ωlmÞ

μ Þ�ðxÞĥ†ðλ←Þ
ωlm �

þ
Z

∞

−∞
dω

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πω sinhð4πMωÞp ½Āðλ→;ωlmÞ

μ ðxÞĥðλ→Þ
ωlm þ ðĀðλ→;ωlmÞ

μ Þ�ðxÞĥ†ðλ→Þ
ωlm �



; ðA7Þ

where

Āðλ→;ωlmÞ
μ ðxÞ ¼ e2πMωAðλ→;ωlmÞ

μI ðxÞ þ e−2πMωðAðλ→;ωlmÞ
μIII Þ�ðxÞ;

Āðλ←;ωlmÞ
μ ðxÞ ¼ e−2πMωðAðλ←;ωlmÞ

μI Þ�ðxÞ þ e2πMωAðλ←;ωlmÞ
μIII ðxÞ; ðA8Þ

with Āðλn;ωlmÞ
μI ðxÞ ¼ Aðλn;ωlmÞ

μ ðxÞ for x ∈ I and zero for x ∈ III, I and III different regions of the Kruskal-Szekeres diagram as

commented above (see Fig. 31.3 of Ref. [53]) and similarly for Āðλn;ωlmÞ
μIII ðxÞ which is zero for x ∈ I. One has

½ĥð3nÞωlm; ĥ
†ð3n0Þ
ω0l0m0 � ¼ −½ĥð0nÞωlm; ĥ

†ð3n0Þ
ω0l0m0 � ¼ δnn

0
δll0δmm0δðω − ω0Þ;

½ĥð1nÞωlm; ĥ
†ð1n0Þ
ω0l0m0 � ¼ ½ĥð2nÞωlm; ĥ

†ð2n0Þ
ω0l0m0 � ¼ δnn

0
δll0δmm0δðω − ω0Þ; ðA9Þ

with all other commutators vanishing, and also ĥðλnÞωlmj0Hi ¼ 0. In turn, one may also expand the field operators as

ÂμðxÞ ¼
X
λlm

	Z
∞

0

dωffiffiffiffiffiffiffiffiffi
4πω

p ½Aðλ←;ωlmÞ
μ ðxÞûðλ←Þ

ωlm þ ðAðλ←;ωlmÞ
μ Þ�ðxÞû†ðλ←Þ

ωlm �

þ
Z

∞

−∞
dω

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πω sinhð4πMωÞp ½Āðλ→;ωlmÞ

μ ðxÞûðλ→Þ
ωlm þ ðĀðλ→;ωlmÞ

μ Þ�ðxÞû†ðλ→Þ
ωlm �



; ðA10Þ

with

½ûð3nÞωlm; û
†ð3n0Þ
ω0l0m0 � ¼ −½ûð0nÞωlm; û

†ð3n0Þ
ω0l0m0 � ¼ δnn

0
δll0δmm0δðω − ω0Þ;

½ûð1nÞωlm; û
†ð1n0Þ
ω0l0m0 � ¼ ½ûð2nÞωlm; û

†ð2n0Þ
ω0l0m0 � ¼ δnn

0
δll0δmm0δðω − ω0Þ; ðA11Þ

with all other commutators vanishing, and ûðλnÞωlmj0Ui ¼ 0. For simplicity, we assume that the atoms are polarized along the
radial direction defined by their positions relative to the black-hole space-time rotational Killing vector fields. This
assumption significantly simplifies the calculations in that the contributions associated with the polarizations in angular
directions do not need to be considered. Therefore, with the usual relationships Ei ¼ F0i, one can calculate the various
correlation functions which will be important in our calculations. The important object to be considered is

Er ¼ F0r ¼ ∇0Ar −∇rA0 ¼ ∂0Ar − ∂rA0

(the connection terms cancel). Hence,

h0jÊrðxÞÊrðx0Þj0i ¼ h0jð∂0Âr − ∂rÂ0Þð∂ 0
0Âr − ∂ 0

rÂ0Þj0i: ðA12Þ
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Let us present the correlation functions for each one of the
vacuum states for x; x0 ∈ I.
(1) The Boulware vacuum.—One has

h0BjÊrðxÞÊrðx0Þj0Bi

¼ 1

4π

X
lm

Z
∞

0

dωωe−iωðt−t0ÞYlmðθ;ϕÞY�
lmðθ0;ϕ0Þ

× ½~Rð1Þ
ωl ðrÞ~Rð1�Þ

ωl ðr0Þ þ R⃖ð1Þ
ωl ðrÞR⃖ð1�Þ

ωl ðr0Þ�; ðA13Þ

where we have used that

h0Bjâð1nÞωlmâ
†ð1n0Þ
ω0l0m0 j0Bi ¼ δnn

0
δll0δmm0δðω − ω0Þ;

ðA14Þ

and all other possible combinations coming from the
product ÊrðxÞÊrðx0Þ vanish.

(2) The Hartle-Hawking vacuum.—One has

h0HjÊrðxÞÊrðx0Þj0Hi ¼
1

4π

X
lm

Z
∞

−∞
dωω

�
e−iωðt−t0ÞYlmðθ;ϕÞY�

lmðθ0;ϕ0Þ
~Rð1Þ
ωl ðrÞ~Rð1�Þ

ωl ðr0Þ
1 − e−2πω=κ

þ eiωðt−t0ÞY�
lmðθ;ϕÞYlmðθ0;ϕ0Þ R⃖

ð1�Þ
ωl ðrÞR⃖ð1Þ

ωl ðr0Þ
e2πω=κ − 1

�
; ðA15Þ

where κ ¼ 1=4M is the surface gravity of the black hole.

A relation similar to (A15) holds for the operators ĥð1nÞωlm

and ĥ†ð1nÞωlm .
(3) The Unruh vacuum.—One has

h0UjÊrðxÞÊrðx0Þj0Ui

¼ 1

4π

X
lm

Z
∞

−∞
dωωe−iωðt−t0ÞYlmðθ;ϕÞY�

lmðθ0;ϕ0Þ

×

�~Rð1Þ
ωl ðrÞ~Rð1�Þ

ωl ðr0Þ
1 − e−2πω=κ

þ θðωÞR⃖ð1Þ
ωl ðrÞR⃖ð1�Þ

ωl ðr0Þ
�
;

ðA16Þ

where θðzÞ is the usual Heaviside theta function. A
relation similar to (A15) also holds for the operators

ûð1nÞωlm and û†ð1nÞωlm .
We stress that each of the vacua discussed above

represent different physical scenarios. The Boulware
state, empty at infinity, is the ground state of quantum
fields around a cold neutron star. The Unruh state, empty
at past null infinity and regular on the future horizon, is
customarily taken as the ground state for an evaporating
black hole; i.e., such a vacuum state reproduces the
effects of a gravitational collapsing body. In turn, the
Hartle-Hawking vacuum corresponds to a black hole in
equilibrium with an infinite sea of blackbody radiation.

APPENDIX B: EVALUATION OF MODE SUMS

In order to evaluate the correlation functions, one
needs to present explicit expressions for the radial
functions. Even though it is a remarkable task, fortu-
nately, one is usually interested in two asymptotic
regions, namely, r → 2M (near the event horizon) and
r → ∞ (away from the event horizon). In this case, the

behavior of the radial functions is well known. We shall
briefly discuss such limits in the present Appendix. We
extend the results of Refs. [50,105] for correlation
functions calculated at different points of the space-time.
From standard considerations, one has that

~Rð1Þ
ωl ðrÞ ∼ eiωr� þ ~AlðωÞe−iωr� ; r → 2M;

~Rð1Þ
ωl ðrÞ ∼ ~BlðωÞeiωr� ; r → ∞;

R⃖ð1Þ
ωl ðrÞ ∼ B⃖lðωÞe−iωr� ; r → 2M;

R⃖ð1Þ
ωl ðrÞ ∼ e−iωr� þ A⃖lðωÞeiωr� ; r → ∞; ðB1Þ

where r� ¼ rþ 2M lnðr=2M − 1Þ is the Regge-Wheeler

tortoise coordinate and Rð1nÞ
ωl ðrÞ is defined through the

equation

Rð1nÞ
ωl ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
ω

Rð1nÞ
ωl ðrÞ
r2

:

In the above, A and B are the usual reflection and
transmission coefficients, respectively, with the following
properties:

~BlðωÞ ¼ B⃖lðωÞ ¼ BlðωÞ;
j ~AlðωÞj ¼ jA⃖lðωÞj;

1 − j ~AlðωÞj2 ¼ 1 − jA⃖lðωÞj2 ¼ jBlðωÞj2;
~A
�
l ðωÞBlðωÞ ¼ −B�

l ðωÞA⃖lðωÞ: ðB2Þ

Key results involving the mode summations in the
asymptotic regions r → 2M and r → ∞ will be now
considered. At fixed radial distances r and r0, the radial
correlation function of the field in the Boulware vacuum
is given by

RADIATIVE PROCESSES OF TWO ENTANGLED ATOMS … PHYSICAL REVIEW D 94, 105008 (2016)

105008-17



h0BjÊrðxÞÊrðx0Þj0Bi

¼ 1

16π2
X∞
l¼1

Z
∞

0

dωωe−iωðt−t0Þð2lþ 1ÞPlðr̂ · r̂0Þ

× ½~Rð1Þ
ωl ðrÞ~Rð1�Þ

ωl ðr0Þ þ R⃖ð1Þ
ωl ðrÞR⃖ð1�Þ

ωl ðr0Þ�; ðB3Þ

where we have used the addition theorem for the
spherical harmonics [60]

4π

2lþ 1

Xl

m¼−l
Ylmðθ;ϕÞY�

lmðθ0;ϕ0Þ ¼ Plðr̂ · r̂0Þ;

where r̂ and r̂0 are two unit vectors with spherical
coordinates ðθ;ϕÞ and ðθ0;ϕ0Þ, respectively, and Pl is
the Legendre polynomial of degree l [61]. From
Eq. (B1), one has that

X∞
l¼1

ð2lþ 1ÞPlðr̂ · r̂0Þ~Rð1Þ
ωl ðrÞ~Rð1�Þ

ωl ðr0Þ

≈
X∞
l¼1

lðlþ 1Þð2lþ 1ÞPlðr̂ · r̂0ÞjBlðωÞj2eiωðr�−r0�Þ
ω2r2r02

;

r; r0 → ∞: ðB4Þ

For x ¼ x0 one gets [Plð1Þ ¼ 1]

X∞
l¼1

ð2lþ 1Þj~Rωlj2 ≈
X∞
l¼1

lðlþ 1Þð2lþ 1ÞjBlðωÞj2
r4ω2

;

r → ∞: ðB5Þ

In turn, in order to estimate the remaining sum, one
should note that the above correlation function at large
radii should agree with the correlation function of the
electric field in the Minkowski vacuum (a similar con-
sideration was undertaken in Ref. [50]). The latter is
given by [106]

h0jÊiðxÞÊjðx0Þj0i ¼
� ∂
∂t

∂
∂t0 δ

ij −
∂
∂xi

∂
∂x0j

�
Dðt − t0;x − x0Þ

¼ −
� ∂2

∂η2 δ
ij −

∂
∂ρi

∂
∂ρj

�
Dðη; ρÞ; ðB6Þ

where η ¼ t − t0, ρi ¼ ðx − x0Þi and

Dðt − t0;x − x0Þ ¼ 1

ð2πÞ3
Z

d3k
2ωk

ei½k·ðx−x0Þ−ωkðt−t0Þ�

¼ 1

ð2πÞ2
Z

∞

0

dωe−iωðt−t0Þ
sin ðωjx − x0jÞ

jx − x0j ;

ðB7Þ

with ωk ¼ ω ¼ jkj. Performing the derivatives, one gets,
with Δt ¼ t − t0 and Δx ¼ x − x0,

h0jÊiðxÞÊjðx0Þj0i ¼ 1

16π2

Z
∞

0

dωωe−iωΔtDijðω;x;x0Þ;
ðB8Þ

where

Dijðω;x;x0Þ ¼ −
4

ωjΔxj3
�
δijS1ðω; jΔxjÞ

−
ðΔxÞiðΔxÞj

jΔxj2 S3ðω; jΔxjÞ
�
; ðB9Þ

with

Snðω; jΔxjÞ ¼ ðn − ω2jΔxj2Þ sin ðωjΔxjÞ
− nωjΔxj cos ðωjΔxjÞ;

and we have used that

∂
∂ρi fðρÞ ¼

ρi

ρ

d
dρ

fðρÞ;

∂
∂ρi

∂
∂ρj fðρÞ ¼

δij

ρ

d
dρ

fðρÞ þ ρiρj

ρ

d
dρ

�
1

ρ

d
dρ

fðρÞ
�
:

In order to compare Eqs. (B3) and (B8), the latter should
be expressed in spherical coordinates. This can be
achieved using the usual transformation formula between
the Cartesian unit vectors and the spherical unit vectors,
which leads us to

h0jÊiðyÞÊjðy0Þj0i ¼
∂xa
∂yi

∂x0b
∂y0j h0jÊaðxÞÊbðx0Þj0i;

where the yj are the usual spherical coordinates r, θ, ϕ.
Hence,

h0jÊrðyÞÊrðy0Þj0i ¼
1

16π2

Z
∞

0

dωωe−iωΔtFðω;x;x0Þ;
ðB10Þ

where

Fðω;x;x0Þ ¼ sinθsinθ0½cosϕcosϕ0D11ðω;x;x0Þ
þ sinϕsinϕ0D22ðω;x;x0Þ�
þ cosθcosθ0D33ðω;x;x0Þ
þðcosθ sinθ0 cosϕ0

þ cosθ0 sinθcosϕÞD13ðω;x;x0Þ
þðcosθ sinθ0 sinϕ0

þ cosθ0 sinθ sinϕÞD23ðω;x;x0Þ
þ sinθ sinθ0 sinðϕþϕ0ÞD12ðω;x;x0Þ; ðB11Þ
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with x, x0 expressed in spherical coordinates. Therefore,
comparing Eqs. (B3) and (B10), one gets, for r; r0 → ∞,

X∞
l¼1

ð2lþ 1ÞPlðr̂ · r̂0ÞR⃖ð1Þ
ωl ðrÞR⃖ð1�Þ

ωl ðr0Þ ≈ Fðω;x;x0Þ;

r; r0 → ∞: ðB12Þ

For x ¼ x0,

X∞
l¼1

ð2lþ 1ÞjR⃖ωlj2 ≈
8ω2

3
; r → ∞: ðB13Þ

In order to evaluate the mode sums in the region r ∼ 2M,
a certain amount of caution is mandatory. We begin by
defining

ζ2 ¼ r
2M

− 1

and

ξ ¼ 4Mω:

With these definitions, and using that lðlþ 1Þζ2 ≈ ðlζÞ2
(since ζ ∼ 0), one can easily prove that ~Rð1Þ

ωl , taken as a
function of ζ, obeys the following differential equation:�

ζ2
d2

dζ2
þ ζ

d
dζ

þ ðξ2 − ð2lζÞ2Þ
�
~Rð1Þ
ωl ðζÞ ¼ 0; ðB14Þ

whose solutions are the modified Bessel functions
Kiξð2lζÞ and Iiξð2lζÞ. Hence, the general solution can
be conveniently expressed as

~Rð1Þ
ωl jr→2M ≈ clKiξð2lζÞ þ dlI−iξð2lζÞ: ðB15Þ

As l → ∞ for fixed ζ, the function ~Rð1Þ
ωl → 0, since r lies

then in the region for which the effective potential for
the radial function is large. One deduces from this that
dl is an exponentially small function of l for large l,
since [61]

IνðzÞ ∼
ezffiffiffiffiffiffiffiffi
2πz

p ;

which is valid for large z and fixed ν. The second term in
Eq. (B15) will therefore make a contribution to the sum
in Eq. (B3) which remains bounded as ζ → 0 and which
may be neglected in comparison with that of the first
term in (B15), which will be of the order of ðζζ0Þ−2.
The coefficient cl may be determined by comparing the
result [61]

KνðzÞ ∼
1

2
ΓðνÞ

�
z
2

�
−ν

[ΓðzÞ is the usual gamma function], which is valid for
Re½ν� > 0 fixed and z → 0 with the asymptotic solution

~Rð1Þ
ωl ðrÞ ∼ eiωr� þ ~AlðωÞe−iωr� ; r → 2M:

One finds that

cl ∼
2eiξ=2l−iξ

Γð−iξÞ : ðB16Þ

Hence, to leading order

X∞
l¼1

ð2lþ 1ÞPlðr̂ · r̂0Þ~Rð1Þ
ωl ðrÞ~Rð1�Þ

ωl ðr0Þ ≈ 4

ΓðiξÞΓð−iξÞ
X∞
l¼1

lðlþ 1Þð2lþ 1ÞPlðcos γÞ
ω2r2r02

Kiξð2lζÞKiξð2lζ0Þ

≈
2 sinhð4πMωÞ

πM3ω

Z
∞

0

dll3J0ðlγÞKiξð2l
ffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrÞ

p
ÞKiξð2l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðr0Þ

p
Þ; r; r0 → 2M;

ðB17Þ

where g00¼ð1−2M=rÞ, cosγ¼ r̂ · r̂0 ¼ cosθcosθ0þ
sinθ sinθ0 cosðϕ−ϕ0Þ, and we have used that [61]

ΓðiξÞΓð−iξÞ ¼ π

ξ sinhðπξÞ ;

together with the asymptotic result

Pν

�
cos

x
ν

�
≈ J0ðxÞ þOðν−1Þ;

in which JμðxÞ is a Bessel function of the first kind.
Employing the result [65]Z

∞

0

dxxα−1JλðaxÞKμð2
ffiffiffi
b

p
xÞKνð2

ffiffiffi
c

p
xÞ

¼ 2α−3aλ

ð2 ffiffiffi
c

p ÞαþλΓðλþ 1Þ ½A
ν
μða; b; cÞ þ Aν

−μða; b; cÞ�;

ðB18Þ

where (Aμ
μ ¼ Aμ)
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Aν
μða; b; cÞ ¼

�
b
c

�
μ=2

Γ
�
−μ;

αþ λþ μ − ν

2
;
αþ λþ μþ ν

2

�
× F4

�
αþ λþ μ − ν

2
;
αþ λþ μþ ν

2
;

× λþ 1; μþ 1;−
a2

4c
;
b
c

�
; ðB19Þ

F4ða; b; c; c0; x; yÞ being the Appell hypergeometric func-
tion F4

F4ða; b; c; c0; x; yÞ ¼
X∞
m;n¼0

ðaÞmþnðbÞmþn

ðcÞmðc0Þnm!n!
xmyn

[ðqÞm is the Pochhammer symbol representing the rising
factorial] and also

Γ½a1;…; am� ¼
Ym
k¼1

ΓðakÞ;

one gets

X∞
l¼1

ð2lþ 1ÞPlðr̂ · r̂0Þ~Rð1Þ
ωl ðrÞ~Rð1�Þ

ωl ðr0Þ ≈ sinhð4πMωÞ
4πg200ðrÞM3ω

× ½A4Mωiðγ; g00ðr0Þ; g00ðrÞÞ þ A−4Mωiðγ; g00ðr0Þ; g00ðrÞÞ�;

r; r0 → 2M: ðB20Þ

One may derive a much simpler result by considering that r ≈ r0 but r̂ ≠ r̂0. With [65]Z
∞

0

dxx3J0ðaxÞ½Kiqð2bxÞ�2 ¼
4πcschðπqÞ

a4ða2 þ 16b2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16b2

a2 þ 1

q
×
	
2a2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16b2

a2
þ 1

s
ða2 þ 4b2Þ cos

�
2qcsch−1

�
4b
a

��
þ ða4ðq2 − 1Þ þ 8a2b2ð2q2 − 1Þ − 64b4Þ sin

�
2qcsch−1

�
4b
a

��

; ðB21Þ

where we assume a small positive imaginary part for a so that the integral converges, one gets

X∞
l¼1

ð2lþ 1ÞPlðr̂ · r̂0Þ~Rð1Þ
ωl ðrÞ~Rð1�Þ

ωl ðr0Þ

≈
4πcschðπξÞ

γ3ð16g00ðrÞ þ γ2Þ5=2 ×
	
2γξ½16g00ðrÞ þ γ2�1=2½4g00ðrÞ þ γ2� cos

�
2ξcsch−1

�
4

ffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrÞ

p
γ

��
þ ½γ4ðξ2 − 1Þ þ 8γ2g00ðrÞð2ξ2 − 1Þ − 64ðg00ðrÞÞ2� sin

�
2ξcsch−1

�
4

ffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrÞ

p
γ

��

; r; r0 → 2M: ðB22Þ

For x ¼ x0,

X∞
l¼1

ð2lþ 1Þj~Rð1Þ
ωl j2 ≈

8ω2

3g200
þ 1

6M2g200
; r → 2M; ðB23Þ

where we have used that [65]

8

ΓðiξÞΓð−iξÞ
Z

∞

0

dtt3½Kiξð2txÞ�2 ¼
ξ2ðξ2 þ 1Þ

6x4
:

The other mode sum in the region r ∼ 2M appearing in Eq. (B3) can be easily estimated using Eq. (B1). One finds

X∞
l¼1

ð2lþ 1ÞPlðr̂ · r̂0ÞR⃖ð1Þ
ωl ðrÞR⃖ð1�Þ

ωl ðr0Þ ≈
X∞
l¼1

lðlþ 1Þð2lþ 1ÞPlðr̂ · r̂0ÞjBlðωÞj2e−iωðr�−r0�Þ
ð2MÞ4ω2

; r; r0 → 2M: ðB24Þ

For x ¼ x0,
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X∞
l¼1

ð2lþ 1ÞjR⃖ωlj2 ≈
X∞
l¼1

lðlþ 1Þð2lþ 1ÞjBlðωÞj2
ð2MÞ4ω2

; r → 2M: ðB25Þ

Other important estimate that one may evaluate is the one in which, say, r → ∞ but r0 → 2M. One finds that

X∞
l¼1

ð2lþ 1ÞPlðr̂ · r̂0ÞR⃖ð1Þ
ωl ðrÞR⃖ð1�Þ

ωl ðr0Þ

≈
X∞
l¼1

lðlþ 1Þð2lþ 1ÞPlðr̂ · r̂0ÞB�
l ðωÞ

ð2MÞ2r2ω2
ðe−iωðr�−r0�Þ þ A⃖lðωÞeiωðr�þr0�ÞÞ; r → ∞; r0 → 2M: ðB26Þ

The estimate for the other mode sum yields

X∞
l¼1

ð2lþ 1ÞPlðr̂ · r̂0Þ~Rð1Þ
ωl ðrÞ~Rð1�Þ

ωl ðr0Þ

≈
2e−iξ=2

ΓðiξÞ
X∞
l¼1

lðlþ 1Þð2lþ 1ÞPlðr̂ · r̂0ÞBlðωÞeiωr�eiξ ln l
ð2MÞ2r2ω2

K4Mωið2l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðr0Þ

p
Þ; r → ∞; r0 → 2M: ðB27Þ

Observe that such expressions yield a vanishingly small contribution to Eq. (B3) as r → ∞ and hence can be neglected. For
a fixed r and r0 → 2M, one gets

X∞
l¼1

ð2lþ 1ÞPlðr̂ · r̂0Þ~Rð1Þ
ωl ðrÞ~Rð1�Þ

ωl ðr0Þ

≈
2e−iξ=2

ΓðiξÞ
X∞
l¼1

lðlþ 1Þð2lþ 1ÞPlðr̂ · r̂0Þ ~Rð1Þ
ωl ðrÞeiξ ln l

ð2MÞ2r2ω2
K4Mωið2l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðr0Þ

p
Þ ðB28Þ

and

X∞
l¼1

ð2lþ 1ÞPlðr̂ · r̂0ÞR⃖ð1Þ
ωl ðrÞR⃖ð1�Þ

ωl ðr0Þ ≈
X∞
l¼1

lðlþ 1Þð2lþ 1ÞPlðr̂ · r̂0ÞR⃖ð1Þ
ωl ðrÞB�

l ðωÞeiωr
0�

ð2MÞ2r2ω2
: ðB29Þ

For other details concerning the evaluation of asymptotic correlation functions at equal space-time points, see
Refs. [50,105].
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