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For a massive quantum fermionic field, we investigate the vacuum expectation values (VEVs) of the
charge and current densities induced by an external magnetic flux in a two-dimensional circular ring. Both
the irreducible representations of the Clifford algebra are considered. On the ring edges the bag (infinite
mass) boundary conditions are imposed for the field operator. This leads to the Casimir type effect on the
vacuum characteristics. The radial current vanishes. The charge and the azimuthal current are decomposed
into the boundary-free and boundary-induced contributions. Both these contributions are odd periodic
functions of the magnetic flux with the period equal to the flux quantum. An important feature that
distinguishes the VEVs of the charge and current densities from the VEV of the energy density is their
finiteness on the ring edges. The current density is equal to the charge density for the outer edge and has the
opposite sign on the inner edge. The VEVs are peaked near the inner edge and, as functions of the field
mass, exhibit quite different features for two inequivalent representations of the Clifford algebra. We show
that, unlike the VEVs in the boundary-free geometry, the vacuum charge and the current in the ring are
continuous functions of the magnetic flux and vanish for half-odd integer values of the flux in units of the
flux quantum. Combining the results for two irreducible representations, we also investigate the induced
charge and current in parity and time-reversal symmetric models. The corresponding results are applied to
graphene rings with the electronic subsystem described in terms of the effective Dirac theory with the
energy gap. If the energy gaps for two valleys of the graphene hexagonal lattice are the same, the charge
densities corresponding to the separate valleys cancel each other, whereas the azimuthal current is doubled.
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I. INTRODUCTION

Field theories for the number of spatial dimensions D
other than three have attracted a great deal of attention. For
D > 3 this was mainly motivated by the importance of the
Kaluza-Klein and braneworld type models, as frameworks
for the unification of the fundamental physical interactions.
Extra dimensions are an inherent feature in string theories
and in supergravity. There has been a growing interest in
recent years in models formulated on backgrounds with the
number of spatial dimensions D < 3. Aside from their role
as simplified models in particle physics, field theories in
lower dimensions serve as effective theories describing the
long-wavelength properties of a number of condensed
matter systems [1,2]. Examples for the latter are high-
temperature superconductors, d-density-wave states, Weyl
semimetals, graphene (and graphene related materials) and
topological insulators. For these systems, the long-
wavelength dynamics of excitations is formulated in terms
of the Dirac-like theory living in (2þ 1)-dimensional
spacetime where the role of the velocity of light is played
by the Fermi velocity. In topological insulators, 2D

massless fermionic excitations appear as edge states on
the surface of a 3D topological insulator. (2þ 1)-
dimensional models also appear as high temperature limits
of four-dimensional field theories.
Among interesting features in (2þ 1)-dimensional

models are flavor symmetry breaking, parity violation,
fractionalization of quantum numbers, the possibility of
the excitations with fractional statistics. Important new
possibilities appear in gauge theories. In particular, the
topologically gauge invariant terms in the action provide
masses for the gauge fields. This leads to a natural infrared
cutoff in the theory and to the solution for the infrared
problem without changing the physics in the ultraviolet
range [3]. A possible mechanism for the generation of
gauge invariant topological mass terms is provided by
quantum corrections [4]. The corresponding theories
provide a natural framework for the investigation of the
quantum Hall effect. In models with fermions coupled to
the Chern-Simons gauge field, there are states with nonzero
magnetic field and with the energy lower than the lowest
energy state in the absence of the magnetic field [5]. As a
consequence of this, the Lorentz invariance is spontane-
ously broken [6]. Among the most interesting topics in the
studies of (2þ 1)-dimensional theories is the parity and
chiral symmetry-breaking. In particular, it has been shown
that a background magnetic field can serve as a catalyst for
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the dynamical symmetry breaking [7,8]. In addition, the
background gauge fields give rise to the polarization of the
ground state for quantum fields with the generation of
various types of quantum numbers [4,9]. In particular,
charge and current densities are induced [10–13].
In a number of field theoretical models, including the

ones describing the condensed matter systems at large
length scales, additional boundary conditions are imposed
on the field operator. These conditions can have different
physical origins. For example, in graphene nanotubes and
nanoloops, because of the compactification of one or two
spatial dimensions, the Dirac equation is supplemented by
quasiperiodicity conditions along compact dimensions with
phases depending on the wrapping direction (chirality of
the nanotube). Another type of graphene made structures in
which additional boundary conditions are imposed on the
field wave functions are graphene nanoribbons, geometri-
cally terminated single layers of graphite (see, for instance,
[14]). The edge effects play a crucial role in electronic
properties of nanoribbons. In particular, depending on the
boundary conditions, a nonzero band gap may be gener-
ated. An important new thing is the possibility for the
appearance of dispersive edge states.
Among the most interesting physical consequences

originating from the spatial confinement of a quantum
field is the Casimir effect [15]. The boundary conditions
modify the spectrum of zero-point fluctuations and, as a
consequence of that, the vacuum expectation values
(VEVs) of physical observables are shifted. The physical
quantities, most popular in the investigations of the Casimir
effect, are the vacuum energy and stresses. By using these
quantities, the forces acting on the constraining boundaries
can be evaluated. These forces are presently under active
experimental investigations [15,16]. For charged fields,
among the most important characteristics of the ground
state are the expectation values of the charge and current
densities. Similarly to the vacuum energy and stresses, the
VEVs of these quantities are influenced by the change of
spatial topology or by the presence of boundaries. The
vacuum currents in spaces with nontrivial topology and
with quasiperiodic boundary conditions on the field oper-
ator along compact dimensions have been investigated in
[17] for the flat background geometry and in [18] and [19]
for locally de Sitter and anti-de Sitter backgrounds. For the
special case D ¼ 2, the general results were applied to
cylindrical and toroidal graphene nanotubes, within the
framework of the effective Dirac theory. The influence of
additional boundaries on the vacuum currents along com-
pact dimensions has been discussed in [20] and [21] for
locally Minkowski and anti-de Sitter backgrounds. The
combined effects of the topology, induced by a cosmic
string, and coaxial boundaries on the vacuum currents have
been studied in [22,23].
In the present paper we investigate the VEVs of the

fermionic charge and current densities induced by a

magnetic flux in a spatial region of (2þ 1)-dimensional
spacetime bounded by two concentric circles. On the
circles, bag boundary conditions are imposed. We assume
that the flux is located inside the inner boundary and,
consequently, its effect on the vacuum properties is of the
Aharonov-Bohm type (for the influence of the flux and
boundaries on the vacuum energy see Refs. [24]). We have
organized the paper as follows. In the next section we
specify the bulk and boundary geometries and the boundary
conditions imposed on the fermionic field in the problem
under consideration. In Sec. III, the complete set of
positive- and negative-energy mode functions is deter-
mined in the geometry of a finite width ring. These mode
functions are used in Sec. IV for the evaluation of the VEV
of the charge density. Two equivalent representations are
provided with the explicitly separated boundary contribu-
tions. The VEV of the azimuthal current density is inves-
tigated in Sec. V. In Sec. VI, based on the results from
previous sections, the induced charge and current densities
are discussed in parity and time-reversal symmetric models
and applications are given for graphene rings. The main
results of the paper are summarized in Sec. VII.
Throughout the paper the units with ℏ ¼ c ¼ 1 are used,
except for the part of Sec. VI where we discuss the
applications to graphene rings.

II. PROBLEM SETUP

In a curved background geometry described by the
metric tensor gμν and in the presence of an external
electromagnetic field with the vector potential Aμ the
Dirac equation for a quantum fermion field ψðxÞ is
presented as

ðiγμDμ − smÞψðxÞ ¼ 0; ð2:1Þ

where Dμ ¼ ∂μ þ Γμ þ ieAμ is the gauge extended covar-
iant derivative, Γμ is the spin connection and e is the charge
of the field quanta. The Dirac matrices γμ obey the Clifford
algebra fγμ; γνg ¼ 2gμν. As the background geometry, we
consider (2þ 1)-dimensional flat spacetime described in
polar coordinates xμ ¼ ðt; r;ϕÞ with the metric tensor
gμν ¼ diagð1;−1;−r2Þ. It is well-known that in odd num-
ber of spacetime dimensions the Clifford algebra has two
inequivalent irreducible representations [with 2 × 2 Dirac
matrices in (2þ 1) dimensions]. Firstly we shall discuss the
case of a fermionic field realizing the irreducible repre-
sentation of the Clifford algebra. The parameter s in
Eq. (2.1), with the values s ¼ þ1 and s ¼ −1, corresponds
to two different representations (for more details see
below). With these representations, the mass term violates
both the parity (P-) and time-reversal (T-) invariances. The
vacuum currents in the parity and time-reversal symmetric
models will be discussed in Sec. VI. In the long wavelength
description of the graphene, s labels two Dirac cones
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corresponding to Kþ and K− valleys of the hexagonal
lattice.
We assume that the field is confined in the spatial region

bounded by two concentric circles having radii a and b,
a < b (two-dimensional ring, see Fig. 1). On the edges of
this region the field operator obeys the MIT bag boundary
conditions

ð1þ inμγμÞψðxÞ ¼ 0; r ¼ a; b; ð2:2Þ

with nμ being the outward pointing unit vector normal to
the boundaries. In the region a ≤ r ≤ b one has nμ ¼ nuδ1μ
for the boundary at r ¼ u with

na ¼ −1; nb ¼ 1: ð2:3Þ

As a consequence of the boundary conditions (2.2), one
gets nμψ̄γμψ ¼ 0 and the normal component of the
fermionic current vanishes on the edges. Here and in what
follows, ψ̄ ¼ ψ†γ0 is the Dirac adjoint and the dagger
denotes Hermitian conjugation. This shows that the boun-
daries are impenetrable for the fermionic field. The
boundary condition of the type (2.2) was used in the
bag model of hadrons for the confinement of quarks [25].
The analog boundary condition in graphene physics is
referred as the infinite mass boundary condition. It has been
employed in (2þ 1)-dimensional Dirac theory for the
breaking of time-reversal symmetry without magnetic
fields [26]. Mainly motivated by the graphene physics,
more general conditions for the Dirac equation, ensuring
the absence of current normal to the boundary, have been
discussed in [14,27]. In (2þ 1)-dimensions, the most
general energy-independent boundary condition contains
four parameters.
For the further consideration we need to specify the

representation for the Dirac matrices. In Cartesian coor-
dinates, we take γð0Þ ¼ σ3, γðlÞ ¼ iσl, l ¼ 1, 2, where σ1,
σ2, σ3 are Pauli matrices. The Dirac matrices in cylindrical
coordinates are obtained in the standard way by using the
corresponding tetrad fields. They have the form γ0 ¼ σ3
and

γl ¼ i2−l

rl−1

�
0 e−iϕ

ð−1Þl−1eiϕ 0

�
; ð2:4Þ

for l ¼ 1, 2. The corresponding spin connection vanishes,
Γμ ¼ 0. For the vector potential we will consider a
configuration corresponding to the presence of a magnetic
flux located in the region r < a. In the region under
consideration, a ≤ r ≤ b, for the covariant components
in the coordinates ðt; r;ϕÞ one has

Aμ ¼ ð0; 0; A2Þ: ð2:5Þ
Note that the physical azimuthal component for the vector
potential is given by Aϕ ¼ −A2=r and for the magnetic flux
threading the ring we have Φ ¼ −2πA2. Though the mag-
netic field strength for (2.5) vanishes, the magnetic flux
enclosed by the ring gives rise to Aharonov-Bohm-like
effects on physical observables, in particular for the
VEVs. Note that the distribution of the magnetic flux in
the region r < a can be arbitrary. As the boundary r ¼ a is
impenetrable for the fermionic field, the effect of the gauge
field is purely topological anddepends on the total flux alone.
In this sense, the inner boundary can be viewed as a
simplified model for a finite radius magnetic flux with the
reflecting wall.
The zero-point fluctuations of the fermionic field ψðxÞ in

the region a ≤ r ≤ b are influenced by the magnetic flux
threading the ring. As a consequence, the VEVs of physical
quantities depend on the flux. This gives rise to a number of
interesting physical phenomena, such as parity anomalies,
formation of fermionic condensate and generation of quan-
tum numbers. Here we are interested in the VEV of the
fermionic current jμ ¼ eψ̄γμψ . It appears as the source in the
semiclassical Maxwell equations and, hence, it plays an
important role in self-consistent dynamics involving the

electromagnetic field. Let Sð1Þik ðx; x0Þ ¼ h0j½ψ iðxÞ; ψ̄kðx0Þ�j0i
be the fermion two-point function, where i and k are spinor
indices and j0i denotes the vacuum state. The VEV of the
current density is expressed in terms of this function as

hjμðxÞi≡ h0jjμðxÞj0i ¼ −
e
2
TrðγμSð1Þðx; xÞÞ; ð2:6Þ

with the trace over spinor indices understood. The expression
in the right-hand side can be presented in the form of the sum
over a complete set of positive- and negative-energy fer-

mionic modes fψ ðþÞ
σ ðxÞ;ψ ð−Þ

σ ðxÞg, specified by a set of

quantum numbers σ. The mode functions ψ ðκÞ
σ ðxÞ, κ ¼ �,

obey the Dirac equation (2.1) and the boundary conditions

(2.2). Expanding the field operator in terms of ψ ðκÞ
σ ðxÞ and

using the commutation relations for the annihilation and
creation operators, for the VEV of the current density the
following mode sum is obtained:

hjμi ¼ −
e
2

X
σ

X
κ¼−;þ

κψ̄ ðκÞ
σ ðxÞγμψ ðκÞ

σ ðxÞ: ð2:7Þ

Our prescription is to find the complete set of modes and to
use this mode sum for the evaluation of the vacuum charge
and current densities.FIG. 1. Two-dimensional ring threaded by a magnetic flux.
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From the point of view of the renormalization of the
VEVs, the important point here is that, owing to the flatness
of the background spacetime and the zero field tensor for
the external electromagnetic field in the region under
consideration, for points outside the boundaries the
structure of divergences is the same as for the
(2þ 1)-dimensional boundary-free Minkowski spacetime
in the absence of the magnetic flux. Consequently, the
renormalization is reduced to the subtraction from the
VEVs of the corresponding Minkowskian quantity. In
problems of the quantum field theory with boundaries,
one of the most efficient ways to extract from the VEVs the
boundary-free part in a regularization independent way is
based on the application of the Abel-Plana-type summation
formulas to the corresponding mode sums (for the appli-
cations of the Abel-Plana formula and its generalizations in
the theory of the Casimir effect see [15,28]).

III. FERMIONIC MODES

For the evaluation of the VEV in accordance with

Eq. (2.7) we need to have the mode functions ψ ð�Þ
σ ðxÞ

obeying the boundary conditions (2.2). Decomposing the

spinor ψ ðκÞ
σ ðxÞ, κ ¼ �, into upper and lower components,

φþ and φ−, respectively, from Eq. (2.1) we get the
equations

ð∂0 � ismÞφ� � ie∓iϕ½∂1 ∓ ið∂2 þ iαÞ=r�φ∓ ¼ 0; ð3:1Þ

with the notation

α ¼ eA2 ¼ −Φ=Φ0; ð3:2Þ

where Φ0 ¼ 2π=e is the elementary flux or the flux
quantum. From Eq. (3.1) one finds the second-order
differential equations for the separate components

�
∂2
0 − ∂2

1 −
1

r
∂1 −

1

r
ð∂2 þ iαÞ2 þm2

�
φ� ¼ 0: ð3:3Þ

Note that this equation is the same for both the components.
Let us present the solutions of these equations in the

form

φ� ¼ χ�ðrÞe−κiEtþiðj�−1=2Þϕ; ð3:4Þ

where E > 0 and j� ¼ …;−3=2;−1=2; 1=2; 3=2;…. For
the functions χ�ðrÞ we get the equations

ð−κE� smÞχ�eiðj��1−j∓Þϕ�
�
∂1�

j� þα− 1=2
r

�
χ∓ ¼ 0;

ð3:5Þ

and

�
∂2
1 þ

1

r
∂1 þ γ2 −

1

r2
ðj� þ α − 1=2Þ2

�
χ�ðrÞ ¼ 0; ð3:6Þ

where γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
. From Eq. (3.5) it follows

that j− ¼ jþ þ 1.
With this choice and denoting jþ ¼ j, we take the

solution for the function with the upper sign as

χþðrÞ ¼ ZβjðγrÞ ¼ c1JβjðγrÞ þ c2YβjðγrÞ; ð3:7Þ

where JνðxÞ and YνðxÞ are the Bessel and Neumann
functions and

βj ¼ jjþ αj − ϵj=2: ð3:8Þ

Here, ϵj ¼ 1 for j > −α, ϵj ¼ −1 for j ≤ −α. Note that
ϵjβj ¼ jþ α − 1=2. By taking into account the recurrence
relations for the cylinder functions, from Eq. (3.5) it follows
that

χ−ðrÞ ¼
ϵjγ

κEþ sm
ZβjþϵjðγrÞ: ð3:9Þ

The ratio of the coefficients in the linear combination
(3.7) is determined from the boundary condition (2.2) at
r ¼ a

c2
c1

¼ −
JðaÞβj

ðγaÞ
YðaÞ
βj
ðγaÞ

; ð3:10Þ

where and in what follows, for the Bessel and Neumann
functions, we use the notation defined as

fðuÞβj
ðxÞ ¼ xf0βjðxÞ þ ½nuðκ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

u

q
þ smuÞ − ϵjβj�fβjðxÞ

¼ nuðκ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

u

q
þ smuÞfβjðxÞ − ϵjxfβjþϵjðxÞ;

ð3:11Þ

with u ¼ a, b, f ¼ J, Y, and mu ¼ mu. As a consequence,
the mode functions are written in the form

ψ ðκÞ
σ ðxÞ ¼ Cκe−κiEtþijϕ

0
B@ gβj;βjðγa; γrÞe−iϕ=2

ϵjγeiϕ=2

κEþsm gβj;βjþϵjðγa; γrÞ

1
CA; ð3:12Þ

where

gβj;μðx; yÞ ¼ YðaÞ
βj
ðxÞJμðyÞ − JðaÞβj

ðxÞYμðyÞ: ð3:13Þ

We can check that the modes (3.12) are eigenfunctions of
the total angular momentum operator Ĵ ¼ −ið∂2 þ ieAÞþ
σ3=2, for the eigenvalues jþ α
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Ĵψ ðκÞ
σ ðxÞ ¼ ðjþ αÞψ ðκÞ

σ ðxÞ: ð3:14Þ

Here, the part σ3=2 corresponds to the pseudospin.
In a similar way, from the boundary condition (2.2) at

r ¼ b we get c2=c1 ¼ −JðbÞβj
ðγbÞ=YðbÞ

βj
ðγbÞ. Combining this

with Eq. (3.10), one concludes that the eigenvalues for γ in
the region a ≤ r ≤ b are the roots of the equation

Cβjðη; γaÞ≡ JðaÞβj
ðγaÞYðbÞ

βj
ðγbÞ − JðbÞβj

ðγbÞYðaÞ
βj
ðγaÞ ¼ 0;

ð3:15Þ

with η ¼ b=a. The positive solutions of this equation with
respect to γa will be denoted by zl, l ¼ 1; 2;…, zl < zlþ1.
For the eigenvalues of γ one has γ ¼ γl ¼ zl=a. In this way,
the mode functions are specified by the quantum numbers
σ ¼ ðl; jÞ. Note that, the roots zl depend on the value of j as
well. In order to simplify the expressions below we do not
write this dependence explicitly. For a given j, the
Eqs. (3.15) for the eigenvalues γl of the positive- and
negative-energy modes differ by the change of the energy
sign, E → −E [through κ in Eq. (3.11)]. For the energy one

has E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2l þm2

q
. As we see, in the case of a massless

field, the finite size effects induce a gap in the energy
spectrum. The gap can be controlled by the geometrical
characteristics of the model. Note that the gap generated by
the finite size effects plays an important role in graphene
made nanoribbons. In the problem at hand the size of the
energy gap is determined by the minimal value of γl. For
example, in the case α ¼ 1=3, j ¼ 1=2 for the first root one
has z1 ≈ 1.59 for b=a ¼ 2 and z1 ≈ 0.81 for b=a ¼ 3. The
root increases with decreasing b=a and with increasing j.
The functionCβjðη; xÞ in Eq. (3.15) can also be written in

terms of the Hankel functions Hð1;2Þ
βj

ðxÞ as

Cνðη; xÞ ¼ ði=2Þ½Hð2aÞ
βj

ðxÞHð1bÞ
βj

ðηxÞ −Hð1aÞ
βj

ðxÞHð2bÞ
βj

ðηxÞ�;
ð3:16Þ

with the notations defined as Eq. (3.11). With this repre-
sentation, we can see that for a massless field the equation
Cβjðη; γaÞ ¼ 0 is reduced to the one given in [29] for
graphene rings described by the Dirac model with the
infinite mass boundary condition on the edges. Note that to
obtain an analytical approximation of the spectrum, in [29]
the asymptotic form of the Hankel functions for large
arguments was used. This approximation is valid for rings
with the radius much larger than the width. As it will be
shown below, the use of the generalized Abel-Plana
formula allows us to obtain closed analytic expressions
for the VEVs in the general case of geometrical character-
istics of the ring.

For the complete specification of the mode functions
(3.12) it remains to determine the coefficient Cκ. The latter
is found from the orthonormalization condition

Z
b

a
dr

Z
2π

0

dϕrψ ðκÞ†
σ ðxÞψ ðκÞ

σ0 ðxÞ ¼ δjj0δll0 : ð3:17Þ

Substituting the modes, using the result for the integral
involving the square of cylinder functions (see [30]), after
long but straightforward calculations one finds

jCκj2 ¼
πzl
16a2

Eþ κsm
E

Tab
βj
ðη; zlÞ: ð3:18Þ

Here, we have introduced the notation

Tab
βj
ðη; zÞ ¼ z½DbJ

ðaÞ2
βj

ðzÞ=JðbÞ2βj
ðηzÞ −Da�−1; ð3:19Þ

with

Du ¼ u2
Eþ κsm

E

�
E

�
Eþ κnu

ϵjβj
u

�
þ κnu

E − κsm
2u

�
:

ð3:20Þ

As it has been already mentioned, the eigenvalue
equations (3.15) for the positive- and negative-energy
modes are obtained from each other by the change of
the energy sign. Redefining the azimuthal quantum number
in accordance with j → −j, the negative-energy modes can
also be written in the form

ψ ð−Þ
σ ¼ C0

−eiEt−ijϕ

0
B@

ϵ−j γe
−iϕ=2

Eþsm gβ−j ;β−j þϵλ−n
ðγa; γrÞ

gβ−j ;β−j ðγa; γrÞeiϕ=2

1
CA; ð3:21Þ

where β−j ¼ jj − αj − ϵ−j =2, ϵ
−
j ¼ 1 for j > α and ϵ−j ¼ −1

for j ≤ α. In the definition (3.13) of the function gβ−j ;μðx; yÞ
the notations fðuÞβ−j

ðxÞ are defined as Eq. (3.11) with κ ¼ 1

(as in the case of the positive-frequency functions). With
the modes (3.21), the eigenvalues for γ are solutions of the
equation

JðaÞβ−j
ðγaÞYðbÞ

β−j
ðγbÞ − YðaÞ

β−j
ðγaÞJðbÞβ−j

ðγbÞ ¼ 0: ð3:22Þ

Because now the functions fðuÞν ðxÞ are the same for the
positive- and negative-energy modes, Eq. (3.22) differs
from the corresponding Eq. (3.15) for the positive-energy
modes just by the sign of α, α → −α. It can be seen that the
normalization constant C0

− is given by the expression in the
right-hand side of Eq. (3.18) with κ ¼ 1 and with zl ¼ γa
being the roots of Eq. (3.22). Of course, in the evaluation of
the VEVs we can use both types of the modes.
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IV. CHARGE DENSITY

We start our consideration of the VEVs with the charge
density.

A. General expression

Substituting the mode functions (3.12) into the mode-
sum formula (2.7) we get

hj0i ¼ −
πe
32a2

X
j

X∞
l¼1

X
κ¼�

κTab
βj
ðη; zlÞh0ðzlÞ; ð4:1Þ

where
P

j stands for the summation over j ¼ �1=2;
�3=2;…, and

h0ðzÞ ¼
z
E
½ðEþ κsmÞg2βj;βjðz; zr=aÞ

þ ðE − κsmÞg2βj;βjþϵj
ðz; zr=aÞ�; ð4:2Þ

with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2=a2 þm2

p
. In Eq. (4.1), the eigenvalues zl are

given implicitly, as roots of Eq. (3.15), and this represen-
tation is not convenient for the further evaluation of the
VEV. Another disadvantage of the representation (4.1) is
that the separate terms in the series are highly oscillating for
large values of the quantum numbers.
These difficulties are overcome by using for the sum-

mation over l the Abel-Plana-type formula

X∞
l¼1

hðzlÞTab
βj
ðη; zlÞ ¼

4

π2

Z
∞

0

dz
hðzÞ

JðaÞ2βj
ðzÞ þ YðaÞ2

βj
ðzÞ

−
2

π
Res
z¼0

� hðzÞHð1bÞ
βj

ðηzÞ
Cβjðη; zÞHð1aÞ

βj
ðzÞ

�

−
1

π

Z
∞

0

dz
X

p¼þ;−
ΩðpÞ

aβj
ðz; ηzÞhðzepiπ2Þ;

ð4:3Þ

where

ΩðpÞ
aβj

ðz; ηzÞ ¼
KðbpÞ

βj
ðηzÞ=KðapÞ

βj
ðzÞ

KðapÞ
βj

ðzÞIðbpÞβj
ðηzÞ − IðapÞβj

ðzÞKðbpÞ
βj

ðηzÞ
:

ð4:4Þ

Here we have introduced the notation

fðupÞβj
ðxÞ ¼ xf0βjðxÞ þ

�
nu

�
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxepπi=2Þ2 þm2

u

q
þ smu

�

− ϵjβj

�
fβjðxÞ; ð4:5Þ

with f ¼ I, K for the modified Bessel functions IβjðxÞ and
KβjðxÞ. The formula (4.3) is valid for a function hðzÞ

analytic in the complex half-plane Rez > 0, z ¼ xþ iy,
and obeying the condition jhðzÞj < εðxÞecjyj, where c <
2ðη − 1Þ and εðxÞ=x → 0 for x → þ∞. On the imaginary
axis the function hðzÞ may have branch points. The
summation formula (4.3) is obtained from the generalized
Abel-Plana formula [28] (see also [31]). Note that for the
square root in Eq. (4.5) one has

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzepπi=2Þ2 þm2

u

q
¼

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

u − z2
p

; z < mu

pi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 −m2

u

p
; z > mu

: ð4:6Þ

In particular, we see that fðuþÞ
βj

ðzÞ ¼ fðu−Þβj
ðzÞ for z < mu.

From here it follows that Ωð−Þ
aβj

ðz; ηzÞ ¼ ΩðþÞ
aβj

ðz; ηzÞ
for z < ma.
For the charge density the function hðzÞ in the summa-

tion formula (4.3) is specified by Eq. (4.2). This function
has branch points z ¼ �ima on the imaginary axis. For
z < ma one has the relation h0ðze−πi=2Þ ¼ −h0ðzeπi=2Þ
and, hence, in the last integral of Eq. (4.3) the part over
the region ½0; ma� becomes zero. For z > ma we find

h0ðzepiπ2Þ ¼
4z
π2

��
κsmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2=a2 −m2
p þ pi

�
GðapÞ2

βj;βj
ðz; zr=aÞ

þ
�

κsmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2=a2 −m2

p − pi

�
GðapÞ2

βj;βjþϵj
ðz; zr=aÞ

�
;

ð4:7Þ

with the function

GðapÞ
βj;μ

ðx; yÞ ¼ KðapÞ
βj

ðxÞIμðyÞ − ð−1Þμ−βj IðapÞβj
ðxÞKμðyÞ:

ð4:8Þ

Substituting Eq. (4.7) into Eq. (4.3) and then into Eq. (4.1),
we can see that κ and p enter into the expression of the part
corresponding to the last term in the right-hand side of
Eq. (4.3) in the form of the product κp. From here it follows
that the positive- and negative-energy modes give the same
contributions to this part of the charge density.
After all these transformations, the VEV of the charge

density is presented in the form

hj0i¼hj0iaþ
e
2π2

X
j

Z
∞

m
dxx

�
smffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−m2

p

×Re½Ωaβjðax;bxÞðGðaÞ2
βj;βj

ðax;rxÞþGðaÞ2
βj;βjþϵj

ðax;rxÞÞ�

−Im½Ωaβjðax;bxÞðGðaÞ2
βj;βj

ðax;rxÞ−GðaÞ2
βj;βjþϵj

ðax;rxÞÞ�
�
;

ð4:9Þ

where
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hj0ia ¼ −
e

8πa2
X
j

X
κ¼�1

Z
∞

0

dz
κh0ðzÞ

JðaÞ2βj
ðzÞ þ YðaÞ2

βj
ðzÞ

:

ð4:10Þ

The new notations are defined as

Ωaβjðax; bxÞ ¼
KðbÞ

βj
ðbxÞ=KðaÞ

βj
ðaxÞ

KðaÞ
βj
ðaxÞIðbÞβj

ðbxÞ − IðaÞβj
ðaxÞKðbÞ

βj
ðbxÞ

;

ð4:11Þ

and

GðuÞ
βj;μ

ðx; yÞ ¼ KðuÞ
βj
ðxÞIμðyÞ − ð−1Þμ−βj IðuÞβj

ðxÞKμðyÞ;
ð4:12Þ

with u ¼ a, b [the function GðbÞ
βj;μ

ðx; yÞ is used below]. For

the modified Bessel functions now we use the notations

fðuÞβj
ðzÞ ¼ zf0βjðzÞ þ ½nuði

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 −m2

u

q
þ smuÞ − ϵjβj�fβjðzÞ

¼ δfzfβjþϵjðzÞ þ nuði
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 −m2

u

q
þ smuÞfβjðzÞ;

ð4:13Þ

where f ¼ I, K, δI ¼ 1 and δK ¼ −1.
Let us present the parameter α from Eq. (3.2), related to

the magnetic flux threading the ring, in the form

α ¼ N þ α0; jα0j ≤ 1=2; ð4:14Þ

where N is an integer. Redefining the summation variable j
in accordance with jþ N → j we see that the charge
density does not depend on the integer part N. Then,
separating the summations over negative and positive
values of j, making the replacement j → −j in the part
with negative j and introducing a new summation variable
n ¼ j − 1=2, the charge density is presented as

hj0i ¼ hj0ia þ
e
2π2

X∞
n¼0

X
p¼�

p
Z

∞

m
dxx

�
smffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 −m2
p

× Re½Ωanpðax; bxÞðGðaÞ2
np;npðax; rxÞ

þ GðaÞ2
np;npþ1ðax; rxÞÞ�

þ Im½Ωanpðax; bxÞðGðaÞ2
np;npþ1ðax; rxÞ

−GðaÞ2
np;npðax; rxÞÞ�

�
; ð4:15Þ

with

np ¼ nþ pα0; ð4:16Þ

and now the notation (4.13) in the definitions (4.11) and

(4.12) for Ωanpðax; bxÞ and GðaÞ
np;μðax; rxÞ is specified to

fðuÞnp ðzÞ ¼ δfzfnpþ1ðzÞ þ nuðsmu þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 −m2

u

q
ÞfnpðzÞ;

ð4:17Þ

for f ¼ I, K. The representation (4.15) explicitly shows
that the last term is an odd function of the fractional part α0.
The property that the VEVs do not depend on the integer
part of the flux, in units of the flux quantum, is a general
feature in the Aharonov-Bohm effect and is a consequence
of that the flux enters through the phase of the wave
function.
The last term in Eq. (4.15) vanishes in the limit b → ∞

[for large values b the function Ωanpðax; bxÞ falls off as

e−2bx]. From here it follows that the part (4.10) is the charge
density in the region r ≥ a for the geometry of a single
boundary at r ¼ a. In order to extract from that part the
boundary-induced effects we further transform the expres-
sion (4.10), with h0ðzÞ form (4.2), by using the relation

g2βj;λðz; yÞ
JðaÞ2βj

ðzÞ þ YðaÞ2
βj

ðzÞ
¼ J2λðyÞ −

1

2

X
l¼1;2

JðaÞβj
ðzÞ

HðlaÞ
βj

ðzÞ
HðlÞ2

λ ðyÞ;

ð4:18Þ

with λ ¼ βj; βj þ ϵj. Substituting into Eq. (4.10), in the
part with the Hankel functions, we rotate the contour of the
integration over z by the angles π=2 and −π=2 for the terms
with l ¼ 1 and l ¼ 2, respectively. The integrals over the
segments ½0; ima� and ½0;−ima� cancel each other and,
introducing the modified Bessel functions, again, we can
see that the contributions coming from the positive- and
negative-energy modes coincide. As a result, for the
contribution (4.10), we come to the decomposition

hj0ia ¼ hj0i0 þ hj0iðbÞa ; ð4:19Þ

where

hj0i0 ¼ −
e
8π

X
j

X
κ¼�

κ

Z
∞

0

dxx

��
1þ sκmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þm2
p

�
J2βjðxrÞ

þ
�
1 −

sκmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

p
�
J2βjþϵj

ðxrÞ
�
; ð4:20Þ

and
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hj0iðbÞa ¼ e
2π2

X
j

Z
∞

m
dxx

�
sm

K2
βj
ðrxÞ þ K2

βjþϵj
ðrxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 −m2
p

× Re

� IðaÞβj
ðaxÞ

KðaÞ
βj
ðaxÞ

�
þ ½K2

βjþϵj
ðrxÞ − K2

βj
ðrxÞ�

× Im

� IðaÞβj
ðaxÞ

KðaÞ
βj
ðaxÞ

��
; ð4:21Þ

with the notations (4.13). For the representation s ¼ 1, this
expression for a single boundary-induced part coincides
with the one given in Ref. [22] [the sign difference is related
to that in [22], for the evaluation of the VEVs, the analog of
the negative-energy mode functions (3.21) for the geometry
with a single boundary was used with α replaced by −α;
hence, in comparing the formulas here with the results of
[22], the replacements α → −α and α0 → −α0 should
be made].
In order to give a physical interpretation of the separate

terms in Eq. (4.19) let us consider the limit a → 0. Note that
the radius of the magnetic flux should also be taken to zero.
For jþ α ≠ 0 one has

IðaÞβj
ðaxÞ

KðaÞ
βj
ðaxÞ

≈
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−m2

p
þ ϵjsm

x
2ðax=2Þ2jjþαj

Γ2ðjjþαj þ 1=2Þ ; ð4:22Þ

and, hence, the part (4.21) vanishes as a2jjþαj. For half-odd
integer values of α, the exceptional case corresponds to the
mode with j ¼ −α. For this mode βj ¼ 1=2, ϵj ¼ −1, and
we get

IðaÞβj
ðaxÞ

KðaÞ
βj
ðaxÞ

≈
2

π

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

p
− sm

x
: ð4:23Þ

Note that for this special value of βj, in Eq. (4.21) the
coefficient of the term with the imaginary part of Eq. (4.23)
vanishes.
Hence, if α is not a half-odd integer one has

lim
a→0

hj0ia ¼ hj0i0: ð4:24Þ

In this case, the part (4.21) in the VEVof the charge density
is induced by the presence of the boundary at r ¼ a,
whereas hj0i0 gives the charge density in the boundary-free
geometry with a point like magnetic flux at r ¼ 0. For α
being a half-odd integer, by using (4.23), from Eq. (4.21)
one gets

lim
a→0

hj0ia ¼ hj0i0 þ
em
π2r

Z
∞

0

dy
e−2mr

ffiffiffiffiffiffiffiffi
y2þ1

p

y2 þ 1
: ð4:25Þ

For a massless field the last term in this expression
vanishes, and we come to the same interpretation of the
separate terms in Eq. (4.19).
The boundary-induced contribution (4.21) does not

depend on the integer part N in Eq. (4.14). Redefining
the summation variable in Eq. (4.21), this contribution is
rewritten in the form

hj0iðbÞa ¼ e
2π2

X∞
n¼0

X
p¼−;þ

p
Z

∞

m
dxx

×
�
sm

K2
npðrxÞþK2

npþ1ðrxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−m2

p Re
�
IðaÞnp ðaxÞ
KðaÞ

np ðaxÞ

�

þ½K2
npþ1ðrxÞ−K2

npðrxÞ�Im
�
IðaÞnp ðaxÞ
KðaÞ

np ðaxÞ

��
; ð4:26Þ

with np given by Eq. (4.16). This explicitly shows that the
single boundary-induced charge density is an odd function
of α0. The real and imaginary parts in Eq. (4.26) are
explicitly given by the relation

IðuÞnp ðzÞ
KðuÞ

np ðzÞ
¼ WðuÞ

np ðzÞ− inu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−m2

u=z2
p

z½K2
npþ1ðzÞþK2

npðzÞ�−2snumuKnpðzÞKnpþ1ðzÞ
;

ð4:27Þ

with u ¼ a, b and with the function

WðuÞ
ν ðzÞ ¼ z½IνðzÞKνðzÞ− Iνþ1ðzÞKνþ1ðzÞ�

þnusmu½Iνþ1ðzÞKνðzÞ− IνðzÞKνþ1ðzÞ�: ð4:28Þ

Note that for z ≥ mu the denominator in Eq. (4.27) is
positive. For a massless field and at large distances from the
boundary, r ≫ a, the dominant contribution to the boun-
dary-induced part (4.26) comes from the term n ¼ 0

and this part decays as ða=rÞ3−2jα0j with the sign

sgnðα0Þhj0iðbÞa =e < 0. For a massive field and for r ≫ a,
m−1, the dominant contribution in Eq. (4.26) comes from
the region near the lower limit of the integration and the
boundary-induced charge density is suppressed by the
factor e−2mr=r3=2.
From the consideration above it follows that, if

jα0j ≠ 1=2, the part hj0i0 can be interpreted as the charge
density in boundary-free two-dimensional space with a
special type of boundary condition on the magnetic flux
line at r ¼ 0. Namely, we impose the bag boundary
condition at finite radius which is then taken to zero.
Consequently, the part (4.26) is interpreted as the contri-
bution induced in the region a ≤ r < ∞ by the boundary
r ¼ a. The last term in Eq. (4.15) is the contribution in the
charge density induced when we add the boundary at r ¼ b
to the geometry with a single boundary at r ¼ a. In this
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sense, this part can be termed as the second boundary-
induced contribution.
The expression (4.20) for the boundary-free part can be

further simplified. The first terms in the brackets of the
coefficients of the functions J2βjðxrÞ and J2βjþϵj

ðxrÞ are

canceled for the contributions coming from the positive-
and negative-energy modes. For the remaining part we get

hj0i0 ¼
esm
4π

X
j

Z
∞

0

dxx
J2βjþϵj

ðxrÞ − J2βjðxrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

p ; ð4:29Þ

that is further simplified to

hj0i0 ¼
esm
4π

Z
∞

0

dxx
J2−α0ðxrÞ − J2α0ðxrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þm2
p : ð4:30Þ

This expression with s ¼ 1 was obtained in [10,12]. After
the rotation of the integration contour, it can also be
presented in the form [10,12]

hj0i0 ¼
esm2

π3
sin ðπα0Þ

Z
∞

1

dx
xK2

α0ðmrxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p : ð4:31Þ

An equivalent expression for the boundary-free part is
provided in Ref. [22]

hj0i0 ¼
esm
2π2r

sin ðπα0Þ
Z

∞

0

dx
coshð2α0xÞ

cosh x
e−2mr cosh x:

ð4:32Þ
Similarly to the boundary-induced contributions, this part is
an odd function of the parameter α0. For a massless field the
boundary-free contribution in the charge density vanishes
for r ≠ 0. In the case of a massive field, at large distances,
the charge density hj0i0 falls off as e−2mr=r3=2, whereas at
the origin it diverges as 1=r. At large distances, the
decaying factor for a massive field is the same as that
for the boundary-induced contribution (4.26).
The charge density (4.31) for the boundary-free geom-

etry with a point like magnetic flux corresponds to a special
boundary condition on the fermion field at the location of
the flux. In general, the self-adjoint extension procedure for
the Dirac Hamiltonian leads to a one-parameter family of
boundary conditions [32]. The value of the parameter in the
boundary condition is determined by the physical details of
the magnetic field distribution inside a more realistic finite
radius flux tube (see, e.g., [33] for models with finite radius
magnetic flux).
Combining all the results given above, we conclude that

the total charge density hj0i in the region a ≤ r ≤ b is a
periodic odd function of the magnetic flux threading the
ring, with the period equal to the flux quantum. As a
function of the parameter α (magnetic flux in units of the
flux quantum), the charge density (4.32) in the boundary-
free geometry is discontinuous at the half-odd integer
values α ¼ N þ 1=2

lim
α0→�1=2

hj0i0 ¼ � esm
2π2r

K0ð2mrÞ: ð4:33Þ

In the geometry with a single boundary at r ¼ a, it can be
seen that for the boundary-induced contribution in the region

r ≥ a one has limα0→�1=2hj0iðbÞa ¼ −limα0→�1=2hj0i0. This
means that, in this geometry, the total charge density
vanishes for α ¼ N þ 1=2, limα0→�1=2hj0ia ¼ 0, and it is
a continuous function of the magnetic flux everywhere.
It can be checked that, in the expression (4.15) for the
total charge in the ring geometry the last term vanishes
in the limits α0 → �1=2 [the real and imaginary parts
in Eq. (4.15) vanish separately] and, hence, similarly
to the single boundary part, the total charge density
hj0i is a continuous function at the half-odd integer values
of α.

B. Numerical examples

Having discussed general features of the charge density,
for the further clarification of the dependence on the
parameters of the model, let us consider numerical
examples. In the left panel of Fig. 2, for the geometry
of two boundaries at r ¼ a, b, we have plotted the charge
density as a function of the radial coordinate for a massless
fermionic field and for α0 ¼ 1=4. The numbers near the
curves are the values of the ratio b=a. The dashed curve
presents the charge density in the geometry of a single

boundary at r ¼ a, namely, the quantity 103a2hj0iðbÞa =e. In
the right panel of Fig. 2, by the full curves, the charge
density is plotted as a function of α0 for fixed values
ma ¼ 0.1, b=a ¼ 8, r=a ¼ 2. The numbers near the
curves are the values of the parameter s. The dashed
curve is the corresponding charge density for a massless
field with the same values of the other parameters. As is
seen from the left panel, the charge density is peaked
around the inner edge of the ring. The ratio hj0i=e is
negative near the inner edge and positive near the outer
edge. In the geometry of a single boundary at r ¼ a this
ratio is negative for α0 > 0. We have already mentioned
that the charge density vanishes for jα0j ¼ 1=2, a feature
seen from Fig. 2.
In Fig. 3 the charge density is displayed versus the ratio

b=a for fixed values α0 ¼ 1=4, r=a ¼ 1.5. The numbers
near the curves are the values of the parameter ma. The
dashed lines correspond to the charge density outside a
single boundary of radius a. For the left and right panels
s ¼ 1 and s ¼ −1, respectively. Note that the scaling
factors for these panels are different. The charge density
for the representation s ¼ −1 is essentially larger. The
general feature seen from Fig. 3 is that the presence of the
outer edge leads to the decrease of the absolute value of
the charge density. For large values of b=a, the approach
of the charge density in the ring geometry to the

INDUCED FERMIONIC CHARGE AND CURRENT … PHYSICAL REVIEW D 94, 105007 (2016)

105007-9



corresponding quantity in the geometry with a single edge
is quicker with increasing mass.
From Figs. 2 and 3 we see that the behavior of the charge

density when the parameter ma increases from ma ¼ 0 is
essentially different for the representations s ¼ 1 and
s ¼ −1. With the initial increase of ma, the modulus of
the charge density decreases for the former case and
increases for the latter one. Of course, we expect that
for ma ≫ 1 the charge density will be suppressed for both
the cases. This is seen from Fig. 4. It presents the
dependence of the charge density on the mass of the field
for irreducible representations s ¼ 1 (left panel) and s ¼
−1 (right panel). The graphs are plotted for α0 ¼ 1=4,
b=a ¼ 8, r=a ¼ 2. The dashed curves correspond to the
charge density in the geometry of a single boundary at
r ¼ a. The dotted line in the right panel is the charge
density for s ¼ −1 in the boundary-free problem. The
corresponding charge density for s ¼ 1 differs by the sign.

The suppression of the VEV with increasingma is stronger
in the case s ¼ 1.

C. Alternative representation

The representation (4.15) for the charge density in the
ring is not symmetric with respect to the inner and outer
edges. An alternative representation, with the extracted
outer boundary part is obtained from Eq. (4.9) by making
use of the relation

IðaÞnp ðaxÞ
KðaÞ

np ðaxÞ
K2

μðrxÞ ¼
KðbÞ

np ðbxÞ
IðbÞnp ðbxÞ

I2μðrxÞ

þ
X
u¼a;b

nuΩunpðax; bxÞGðuÞ2
np;μðux; rxÞ;

ð4:34Þ

FIG. 3. The dependence of the charge density on the ratio b=a for irreducible representations s ¼ 1 (left panel) and s ¼ −1 (right
panel). The graphs are plotted for α0 ¼ 1=4, r=a ¼ 1.5 and the numbers near the curves are the values for ma. The horizontal dashed
curves correspond to the charge density in the geometry of a single boundary at r ¼ a.

FIG. 2. Charge density in the ring as a function of the radial coordinate for a massless field (left panel) and as a function of the
parameter α0 (right panel). The left panel is plotted for the magnetic flux parameter α0 ¼ 1=4, and the numbers near the curves are the
values of b=a. The dashed curve in that panel corresponds to the charge density outside a single boundary at r ¼ a. The full curves in
the right panel are plotted forma ¼ 0.1, b=a ¼ 8, r=a ¼ 2, and the numbers near the curves are the values of s. The dashed curve in the
right panel corresponds to a massless field.
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with the notation

Ωbnpðax; bxÞ ¼
IðaÞnp ðaxÞ=IðbÞnp ðbxÞ

KðaÞ
np ðaxÞIðbÞnp ðbxÞ − IðaÞnp ðaxÞKðbÞ

np ðbxÞ
:

ð4:35Þ
The expression for the charge density takes the form

hj0i ¼ hj0ib þ
e
2π2

X∞
n¼0

X
p¼�

p
Z

∞

m
dxx

�
smffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 −m2
p

× Re½Ωbnpðax; bxÞðGðbÞ2
np;npðbx; rxÞ

þ GðbÞ2
np;npþ1ðbx; rxÞÞ�

þ Im½Ωbnpðax; bxÞðGðbÞ2
np;npþ1ðbx; rxÞ

−GðbÞ2
np;npðbx; rxÞÞ�

�
: ð4:36Þ

Here, the first term in the right-hand side is decomposed as

hj0ib ¼ hj0i0 þ hj0iðbÞb ; ð4:37Þ
with

hj0iðbÞb ¼ e
2π2

X∞
n¼0

X
p¼�

p
Z

∞

m
dxx

�
sm

I2npðrxÞ þ I2npþ1ðrxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

p

× Re

�
KðbÞ

np ðbxÞ
IðbÞnp ðbxÞ

�
þ ½I2npþ1ðrxÞ − I2npðrxÞ�

× Im

�
KðbÞ

np ðbxÞ
IðbÞnp ðbxÞ

��
; ð4:38Þ

and with the notations defined in accordance with
Eq. (4.17). For the ratio under the signs of the real and
imaginary parts in Eq. (4.38) we have the following explicit
expression:

KðuÞ
np ðzÞ

IðuÞnp ðzÞ
¼ WðuÞ

np ðzÞ þ inu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

u=z2
p

z½I2npþ1ðzÞ þ I2npðzÞ� þ 2nusmuInpðzÞInpþ1ðzÞ
:

ð4:39Þ

The denominator in this expression is positive for z ≥ mu.
Relatively simple expressions for single boundary parts
(4.26) and (4.38) are obtained for a massless field.
If jα0j ≠ 1=2, in the limit a → 0 one has

Ωbnpðaz; bzÞ ≈
IðaÞnp ðazÞ

KðaÞ
np ðazÞIðbÞ2np ðbzÞ

; ð4:40Þ

with the ratio of the modified Bessel functions given by
Eq. (4.22). From here it follows that in this limit the last
term in Eq. (4.36) vanishes. This means that the part (4.37)
is the charge density in the region 0 ≤ r ≤ b for the
geometry of a single boundary at r ¼ b. The contribution
(4.38) is induced by the latter. Note that, for jα0j ≠ 1=2, this
contribution is also obtained from Eq. (4.15) in the limit
a → 0. Hence, we conclude that the last term in Eq. (4.36)
is the contribution in the charge density induced by adding
the boundary at r ¼ a in the geometry with a single
boundary at r ¼ b (the second boundary-induced part).
In the limit r → 0 the dominant contribution in Eq. (4.38)
for the single boundary contribution comes from the term
with n ¼ 0, p ¼ −sgnðα0Þ, and the boundary-induced
charge density behaves as 1=r2jα0j. For a massive field
the boundary-free contribution diverges like 1=r, and it
dominates in the total VEV for jα0j < 1=2. All the separate
terms in the representation (4.36) are discontinuous at half-
odd integer values of α. However, as it has been already
emphasized before, the total charge density is a continuous
function of the magnetic flux everywhere.
Figure 5 presents the charge density in the region r ≤ b

for the geometry with a single edge at r ¼ b. For the

FIG. 4. Charge density as a function of the field mass (in units of 1=a) for fields with s ¼ 1 (left panel) and s ¼ −1 (right panel). For
the values of the parameters we have taken α0 ¼ 1=4, b=a ¼ 8, r=a ¼ 2. The dashed curves present the charge density outside a single
boundary at r ¼ a. The dotted line corresponds to the charge density in the boundary-free geometry.
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corresponding magnetic flux we have taken α0 ¼ 1=4. In
the left panel the charge density is plotted versus the radial
coordinate for a massless field. The right panel displays the
boundary-induced part in the charge density as a function
of the field mass in the cases s ¼ 1 and s ¼ −1 (numbers
near the curves) and for r=a ¼ 0.5. The dashed curve is for
the charge density in the boundary-free geometry for s ¼ 1.
As we have mentioned, the last terms in the representa-

tions (4.15) and (4.36) are induced when we add the second
edge to the geometry with a single boundary. These second
boundary-induced contributions are further simplified on
the edges r ¼ a and r ¼ b respectively. The corresponding
expressions can be written in a combined form

hj0i ¼ hj0iu þ
e
π2

X∞
n¼0

X
p¼�

p
Z

∞

m
dx

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

p

× Re½ðsmþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

p
ÞΩunpðax; bxÞ�; ð4:41Þ

on the edge r ¼ u with u ¼ a, b. The second term in the
right-hand side presents the charge induced on the edge
r ¼ u by the other edge.
An important point to be mentioned here is that the VEV

of the charge density is finite on the edges [note that for the
evaluation of the corresponding limiting value of the single

boundary-induced parts hj0iðbÞu , u ¼ a, b, we cannot
directly put r ¼ u in the representations (4.26) and
(4.38) as the separate integrals in the summation over p
logarithmically diverge in the upper limit]. From the theory
of the Casimir effect it is known that in quantum field
theory with boundary conditions imposed on the field
operator the VEVs of local physical observables, in
general, diverge on the boundaries. For example, the latter
is the case for the VEVof the energy-momentum tensor or
for the fermion condensate in problems with fermionic
fields. The appearance of surface divergences in this type of

quantities is a consequence of the idealization replacing the
physical interaction by the imposition of boundary con-
ditions and indicates that a more realistic physical model
should be employed. For example, the microstructure of the
boundary on small scales can introduce a physical cutoff
needed to produce finite values for surface quantities.

V. AZIMUTHAL CURRENT

A. General expression

Now we turn to the spatial components of the fermionic
current density. First of all, by using the mode functions
(3.12) it is seen that the mode-sum (2.7) for the radial
component of the current density vanishes, hj1i ¼ 0, and
the only nonzero component corresponds to the azimuthal
current. The corresponding mode-sum for the physical
component hjϕi ¼ rhj2i is presented in the form

hjϕi ¼ −
πe
16a3

X
j

X
κ¼�

ϵj
X∞
l¼1

Tab
βj
ðη; zlÞh2ðzlÞ; ð5:1Þ

with the function

h2ðzÞ ¼ z2
gβj;βjðz; zr=aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2=a2 þm2

p gβj;βjþϵjðz; zr=aÞ: ð5:2Þ

As before, the terms κ ¼ − and κ ¼ þ are the contributions
from the negative- and positive-energy modes.
For the separation of the effects induced by the boundaries

we apply to the series over l the summation formula (4.3)
with hðzÞ ¼ h2ðzÞ. For the function (5.2) one gets

h2ðzepiπ2Þ ¼ −
4

π2
piϵjz2G

ðapÞ
βj

ðz; zr=aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzepπi=2Þ2=a2 þm2

p GðapÞ
βjþϵj

ðz; zr=aÞ:

ð5:3Þ

FIG. 5. The boundary-induced part in the charge density inside a single boundary with radius b as a function of the radial coordinate
(left panel) and of the field mass (right panel) for α0 ¼ 1=4. The left panel is plotted for a massless field. For the right panel r=b ¼ 0.5
and the numbers near the curves are the values for s. The dashed curve presents the charge density in the boundary-free geometry
for s ¼ 1.
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By taking into account Eq. (4.6), we conclude that in the last
integral of Eq. (4.3) for the integration range ½0; ma� the
terms with p ¼ þ and p ¼ − cancel each other. For the
integration range ½ma;∞Þ of the remaining integral κ and p
appear in the form of the product κp and, hence, the
negative- and positive-energy modes give the same con-
tribution to the last term. As a consequence, the current
density is presented as

hjϕi ¼ hjϕia −
e
π2

X
j

Z
∞

m
dx

x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

p

× Re½Ωaβjðax; bxÞGðaÞ
βj
ðax; rxÞGðaÞ

βjþϵj
ðax; rxÞ�;

ð5:4Þ

where

hjϕia ¼ −
e

4πa3
X
j

X
κ¼�

Z
∞

0

dx
ϵjh2ðxÞ

JðaÞ2βj
ðxÞ þ YðaÞ2

βj
ðxÞ

:

ð5:5Þ

Thepart (5.5) comes from the first term in the right-hand side
of the summation formula (4.3). By taking into account that
in the limit b → ∞ the last term in Eq. (5.4) vanishes, we
conclude that hjϕia is the current density in the region r ≥ a
for the geometry with a single boundary at r ¼ a.
For the separation of the boundary-induced effects in

Eq. (5.5) we use the relation

gβj;βjðz; yÞgβj;βjþϵjðz; yÞ
JðaÞ2βj

ðxÞ þ YðaÞ2
βj

ðxÞ

¼ JβjðyÞJβjþϵjðyÞ −
1

2

X
l¼1;2

JðaÞβj
ðzÞ

HðalÞ
βj

ðzÞ
HðlÞ

βj
ðyÞHðlÞ

βjþϵj
ðyÞ:

ð5:6Þ

The further transformations are similar to that for the charge
density. Substituting Eq. (5.6) into Eq. (5.5), in the part
with the last term we rotate the integration contour by the
angle π=2 for the term with l ¼ 1 and by the angle−π=2 for
the l ¼ 2 term. The integrals over the intervals ½0; ima� and
½0;−ima� are canceled. As a result, the contribution (5.5) is
presented in the decomposed form

hjϕia ¼ hjϕi0 þ hjϕiðbÞa ; ð5:7Þ

where the separate terms are given by the expressions

hjϕi0 ¼ −
e
2π

X
j

ϵj

Z
∞

0

dxx2
JβjðrxÞJβjþϵjðrxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þm2
p ; ð5:8Þ

and

hjϕiðbÞa ¼ e
π2

X
j

Z
∞

m
dx

x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

p

× Re

� IðaÞβj
ðaxÞ

KðaÞ
βj
ðaxÞ

�
KβjðrxÞKβjþϵjðrxÞ: ð5:9Þ

For α different from a half-odd integer, the part hjϕiðbÞa

vanishes in the limit a → 0 and, hence, in this case Eq. (5.8)
is interpreted as the current density in two dimensional
space without boundaries. Respectively, the part (5.9)
presents the contribution induced in the region r ≤ a by
a single boundary at r ¼ a. In the special case s ¼ 1, the
single boundary-induced contribution coincides with the
result previously obtained in [22] for a more general
geometry of a conical space (with the sign difference
explained above).
The boundary-free part in the current density, given by

Eq. (5.8), does not depend on the parameter s and, hence,
on the irreducible representation of the Clifford algebra in
(2þ 1)-dimensional spacetime. A more convenient expres-
sion for this part is provided in Ref. [22]

hjϕi0 ¼
e sin ðπα0Þ
4π2r2

×
Z

∞

0

dz
coshð2α0zÞ
cosh3 z

ð1þ 2mr cosh zÞe−2mr cosh z:

ð5:10Þ
An alternative expression is given in [12]

hjϕi0 ¼ −
er
π3

sinðπα0Þ

×
Z

∞

m
dxx3

K2
α0ðrxÞ − K1−α0ðrxÞK1þα0ðrxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 −m2
p :

ð5:11Þ
Unlike the case of the charge density, the current density
does not vanish for a massless field. For a massive field, at
distances mr ≫ 1, it behaves as e−2mr=r3=2. At the origin
the current density diverges like 1=r2. Similarly to the case
of the charge density in the boundary-free geometry, hjϕi0
is discontinuous at half-odd integer values of α with the
discontinuity 2hjϕi0jα0¼1=2. In particular, for a massless
field for the discontinuity one has e=ð2π2r2Þ.
Decomposing the parameter α in accordance with

Eq. (4.14) and redefining the summation variable j, the
current density is presented in the form

hjϕi ¼ hjϕi0 þ hjϕiðbÞa −
e
π2

X∞
n¼0

X
p¼�

p
Z

∞

m
dx

x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

p

× Re½Ωanpðax; bxÞGðaÞ
np ðax; rxÞGðaÞ

npþ1ðax; rxÞ�;
ð5:12Þ
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with the single boundary-induced part

hjϕiðbÞa ¼ e
π2

X∞
n¼0

X
p¼�

p
Z

∞

m
dx

x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

p

× Re

�
IðaÞnp ðaxÞ
KðaÞ

np ðaxÞ

�
KnpðrxÞKnpþ1ðrxÞ: ð5:13Þ

This representation explicitly shows that the current density
does not depend on the integer partN and is an odd function
of the fractional part α0. For a massless field and at large
distances from the boundary, r ≫ a, the single boundary-
induced contribution (5.13) behaves as ða=rÞ4−4jα0j,
jα0j < 1=2, with the sign sgnðα0ÞhjϕiðbÞa =e < 0. In this
limit, the total VEV in the geometry of a single boundary
is dominated by the boundary-free part. In the case of a
massive field, at distances r ≫ a;m−1, for the part (5.13)
one has the suppression by the factor e−2mr=r3=2, and the
boundary-induced contribution is of the same order as the
boundary-free one.
Both the terms in the right-hand side of Eq. (5.7) are

discontinuous at half-odd integer values of the parameter α.
For the corresponding limiting values one has

lim
α0→�1=2

hjϕi0 ¼ − lim
α0→�1=2

hjϕiðbÞa ¼ � em
2π2r

K1ð2mrÞ:

ð5:14Þ

Though the separate terms are discontinuous, the total
current density in the region r > a for the geometry of a
single boundary vanishes in the limits α0 → �1=2, and it is
continuous. This is the case for the current density (5.12) in
the geometry of the ring as well. It can be checked that the
last term in the right-hand side of this formula vanishes for
α0 → �1=2. Hence, we conclude that the current density in

the ring is a continuous function of the magnetic flux
including the points corresponding to the half-odd integer
values of the magnetic flux in units of the flux quantum.

B. Numerical examples

In order to clarify the dependence of the current density
on the parameters of the problem, let us consider numerical
examples. The behavior of the current density in the region
a ≤ r ≤ b as a function of the radial coordinate and of the
parameter α0 is presented in Fig. 6. The left panel is plotted
for a massless field and for the magnetic flux parameter
α0 ¼ 1=4. In this panel, the numbers near the full curves are
the values of the ratio b=a and the dashed curve presents the
current density in the geometry of a single boundary at
r ¼ a. The full curves in the right panel are plotted for
b=a ¼ 8, r=a ¼ 2, ma ¼ 0.1, and the numbers near them
are the values of the parameter s. The dashed curve in the
right panel corresponds to the current density for a massless
field for the same values of b=a and r=a. Similarly to the
VEV of the charge density, the current density is finite on
the edges. As it has been already emphasized, the current
density vanishes for half-odd integer values of the ratio of
the magnetic flux to the flux quantum, corresponding to
jα0j ¼ 1=2. The graphs show that the current density is
peaked near the inner edge, and it decreases with decreas-
ing the width of the ring.
In Fig. 7, the current density is displayed as a function of

the relative location of the outer boundary for fixed values
of the parameters α0 ¼ 1=4, r=a ¼ 1.5. The numbers near
the curves are the values for ma. The left and right panels
correspond to the representations with s ¼ 1 and s ¼ −1,
respectively. The dashed lines on both the panels present
the current density in the geometry of a single boundary at
r ¼ a. Again, the graphs show that, for a fixed inner radius,
the current density increases with increasing the width of
the ring.

FIG. 6. Current density in the region between two boundaries as a function of the radial coordinate for a massless field (left panel) and
as a function of the parameter α0 (right panel). The left panel is plotted for the magnetic flux parameter α0 ¼ 1=4, and the numbers near
the curves are the values of b=a. The full curves in the right panel are plotted forma ¼ 0.1, b=a ¼ 8, r=a ¼ 2, and the numbers near the
curves are the values of s. The dashed curve in the right panel corresponds to a massless field.
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Similarly to the case of the charge density, we see an
essentially different behavior of the current density for the
representations s ¼ 1 and s ¼ −1, as a function of the field
mass. The dependence of the current density on the mass is
plotted in Fig. 8 for the irreducible representations s ¼ 1
(left panel) and s ¼ −1 (right panel) and for the values of
the parameters α0 ¼ 1=4, b=a ¼ 8, r=a ¼ 2. The
dashed curves present the charge density in the geometry
of a single boundary at r ¼ a. The dotted line in the
right panel is the current density in the boundary-free
problem.

C. Alternative representation

In the representation (5.12) the current density for
the geometry of a single boundary at r ¼ a is
explicitly separated. The representation with the outer
edge contribution separated is obtained by using the
identity

−
IðaÞnp ðaxÞ
KðaÞ

np ðaxÞ
KnpðrxÞKnpþ1ðrxÞ

¼ KðbÞ
np ðbxÞ

IðbÞnp ðbxÞ
InpðrxÞInpþ1ðrxÞ

þ
X
u¼a;b

nuΩunpðax; bxÞGðuÞ
np;npðux; rxÞGðuÞ

np;npþ1ðux; rxÞ:

ð5:15Þ

With this relation, the current density in the region a ≤
r ≤ b is presented as

hjϕi ¼ hjϕib −
e
π2

X∞
n¼0

X
p¼�

p
Z

∞

m
dx

x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

p

× Re½Ωbnpðax; bxÞGðbÞ
np;npðbx; rxÞGðbÞ

np;npþ1ðbx; rxÞ�:
ð5:16Þ

FIG. 8. Current density versus the field mass for the fields with s ¼ 1 (left panel) and s ¼ −1 (right panel) and for α0 ¼ 1=4, b=a ¼ 8,
r=a ¼ 2. The dashed curves present the current density outside a single boundary at r ¼ a, and the dotted line is the current density in
the boundary-free geometry.

FIG. 7. Current density versus the ratio b=a for irreducible representations s ¼ 1 (left panel) and s ¼ −1 (right panel). The graphs are
plotted for α0 ¼ 1=4, r=a ¼ 1.5 and the numbers near the curves are the values of ma. The dashed curves present the current density in
the geometry of a single boundary at r ¼ a.

INDUCED FERMIONIC CHARGE AND CURRENT … PHYSICAL REVIEW D 94, 105007 (2016)

105007-15



Here

hjϕib ¼ hjϕi0 þ hjϕiðbÞb ; ð5:17Þ

with

hjϕiðbÞb ¼ −
e
π2

X∞
n¼0

X
p¼�

p
Z

∞

m
dx

x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

p

× Re

�
KðbÞ

np ðbxÞ
IðbÞnp ðbxÞ

�
InpðrxÞInpþ1ðrxÞ: ð5:18Þ

By taking into account that for jα0j ≠ 1=2 one has
Ωbnpðaz; bzÞ ∼ a2nþ1þ2α0 for a → 0, from Eq. (5.16) we
conclude that the part hjϕib is the current density in the
region 0 ≤ r ≤ b for the geometry of a single boundary at
r ¼ b and the contribution (5.18) is induced by the
boundary. For points near the center of the disc r ≤ b,
the dominant contribution to the edge-induced part (5.18)
comes from the term n ¼ 0 and it behaves as r1−2jα0j. By
taking into account that the boundary-free part behaves like
1=r2, we see that near the center the current density is
dominated by the boundary-free part.
For the magnetic flux parameter α0 ¼ 1=4, the boun-

dary-induced charge density (5.18) in the geometry of a
single boundary at r ¼ b is plotted in Fig. 9 versus the
radial coordinate and the mass. The dashed curve corre-
sponds to the current density in the boundary-free problem.
The left panel is plotted for a massless field, and the
numbers near the curves on the right panel are the values of
the parameter s, and we have taken r=b ¼ 0.5.
The last term in Eq. (5.16) is the current density induced

in the region a ≤ r ≤ bwhen we add the boundary at r ¼ a
to the geometry of the disc with the radius b. All the
separate terms in the right-hand side of Eq. (5.16) have
jumps at half-odd integer values of α. However, it can be

seen that the total current density is a continuous function
of the magnetic flux, and it vanishes for α ¼ N þ 1=2.
Similar to the case of the charge density, relatively simple
expressions for the second edge-induced parts in the
representations (5.12) and (5.16) are obtained on the edges
r ¼ a and r ¼ b, respectively. The current density on the
edge r ¼ u with u ¼ a, b, is presented in the form

hjϕi ¼ hjϕiu þ
enu
π2

X∞
n¼0

X
p¼�

p
Z

∞

m
dx

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

p

× Re½ðsmþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

p
ÞΩunpðax; bxÞ�: ð5:19Þ

Comparing with Eq. (4.41), we see that the second edge-
induced contribution in the current density on the first edge
is equal to the corresponding charge density for the outer
edge and has the opposite sign on the inner edge. These
relations between the charge and current densities on the
ring edges hold for the total VEVs as well. If we formally
put r ¼ a, b in the mode sums (4.1) and (5.1), then, by
using the Wronskian relation for the Bessel and Neumann
functions and Eq. (3.15) for the eigenvalues of the radial
quantum number, we can see that

hj0ir¼u ¼ nuhjϕir¼u ¼ −
e

4πa2
X
j

X∞
l¼1

X
κ¼�

κTab
βj
ðη; zlÞ

×
Eþ κsm

E
zlBuðzlÞ; ð5:20Þ

with u ¼ a, b and

BaðxÞ ¼ 1; BbðxÞ ¼ JðaÞ2βj
ðxÞ=JðbÞ2βj

ðxb=aÞ: ð5:21Þ

This feature is a consequence of the bag boundary con-
ditions we have imposed on the edges (see also [34]).

FIG. 9. The boundary-induced contribution to the current density inside a single circular boundary with radius b versus the radial
coordinate and the mass for α0 ¼ 1=4. The left panel is plotted for a massless field. For the right panel r=b ¼ 0.5 and the numbers near
the curves are the values of s.
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In the discussion above for the charge and current
densities we have assumed that the fermionic field is in
the vacuum state. If the field is in thermal equilibrium at
finite temperature, in addition to the vacuum parts we have
considered here, the expectation values will receive con-
tributions coming from particles and antiparticles (for finite
temperature effects on the fermionic charge and current
densities in topologically nontrivial spaces see, e.g., [35];
see also [36] for a recent review of finite temperature field
theoretical effects in toroidal topology). For a fermionic
field with the chemical potential μ, obeying the condition
jμj < m, the charge and current densities at zero temper-
ature coincide with the VEVs we have investigated above.
In the case jμj > m, the zero temperature expectation values
in addition to the VEVs will contain contributions from
particles or antiparticles (depending on the sign of the
chemical potential) filling the states with the energies E in
the range m ≤ E ≤ jμj.

VI. CHARGE AND CURRENT DENSITIES IN
P- AND T-SYMMETRIC MODELS WITH
APPLICATIONS TO GRAPHENE RINGS

By using the results from the previous sections we can
obtain the vacuum densities in the parity and time-reversal
symmetric massive fermionic models. In (2þ 1) dimen-
sions the irreducible representations for the Clifford algebra
are realized by 2 × 2 matrices. In cylindrical coordinates,
we can choose the Dirac matrix γ2 in two inequivalent
ways: γ2 ¼ γ2ðsÞ ¼ −isγ0γ1=r, where, as before, s ¼ �1.

The gamma matrices (2.4), we have used in the discussion
above, correspond to the representation with the upper sign.
Two sets of Dirac matrices γμðsÞ ¼ ðγ0; γ1; γ2ðsÞÞ realize two

inequivalent irreducible representations of the Clifford
algebra. In these representations, the mass term in the
Lagrangian density for a two-component spinor field,

Ls ¼ ψ̄ ðsÞðiγμðsÞDμ −mÞψ ðsÞ; ð6:1Þ

is not invariant under the P- and T-transformations. Here
we assume that both the fields ψ ðsÞ obey the same boundary
conditions

ð1þ inμγ
μ
ðsÞÞψ ðsÞðxÞ ¼ 0; ð6:2Þ

on the circular edges r ¼ a, b. In order to recover the
P- and T-invariances, let us consider the combined
Lagrangian density L ¼ P

s¼�1Ls. By appropriate trans-
formations of the fields ψ ð−1Þ and ψ ðþ1Þ, this Lagrangian is
invariant under P- and T-transformations (in the absence of
magnetic fields).
In order to relate the fields ψ ðsÞ to the ones we have

considered in the evaluation of the vacuum densities, let us
introduce new two-component fields ψ 0

ðsÞ in accordance

with ψ 0
ðþ1Þ ¼ ψ ðþ1Þ, ψ 0

ð−1Þ ¼ γ0γ1ψ ð−1Þ. In terms of these

fields, the Lagrangian density is presented as

L ¼
X
s¼�1

ψ̄ 0
ðsÞðiγμDμ − smÞψ 0

ðsÞ; ð6:3Þ

where γμ ¼ γμðþ1Þ. From Eq. (6.3) we conclude that the

equations for the fields with s ¼ −1 and s ¼ þ1 differ by
the sign of the mass term and coincide with Eq. (2.1). From
the boundary conditions (6.2) it follows that the fields in
Eq. (6.3) obey the conditions

ð1þ isnμγμÞψ 0
ðsÞðxÞ ¼ 0; ð6:4Þ

on r ¼ a, b. As it is seen, the field ψ 0
ðþ1Þ obeys the

condition (2.2), whereas the boundary condition for the
field ψ 0

ð−1Þ differs by the sign of the term with the normal to

the boundary. As it has been already noticed in [26], this
type of condition with the reversed sign is an equally
acceptable boundary condition for the Dirac equation.
Combining 2-component spinors ψ 0þ and ψ 0

− in a
4-component one, Ψ ¼ ðψ 0þ;ψ 0

−ÞT , and introducing 4 × 4

Dirac matrices γμð4Þ ¼ σ3 ⊗ γμ, the Lagrangian density (6.3)

is rewritten in the form

L ¼ Ψ̄ðiγμð4ÞDμ −mÞΨ: ð6:5Þ

In this reducible representation, the boundary conditions
(6.4) are combined as

ð1þ inμγ
μ
ð4ÞÞΨðxÞ ¼ 0: ð6:6Þ

The latter has the form of the standard MIT bag condition
for a 4-component spinor.
By taking into account that ψ̄ ðsÞγ

μ
ðsÞψ ðsÞ ¼ ψ̄ 0

ðsÞγ
μψ 0

ðsÞ, for
the total VEV of the current density in the model with the
combined Lagrangian L ¼ P

s¼�1Ls, with Ls form (6.1),
one gets

hJμi ¼ e
X
s¼�1

hψ̄ ðsÞγ
μ
ðsÞψ ðsÞi ¼ e

X
s¼�1

hψ̄ 0
ðsÞγ

μψ 0
ðsÞi: ð6:7Þ

The charge and current densities for the field ψ ðþ1Þ are
obtained from the expressions given in the previous
sections with s ¼ 1. In order to find the VEVs for the
field ψ 0

ð−1Þ, we note that it obeys the field equation (2.1)

with s ¼ −1 and the boundary condition that differs from
Eq. (2.2) by the sign of the term containing the normal to
the boundaries. Consequently, the VEV hψ̄ 0

ð−1Þγ
μψ 0

ð−1Þi is
obtained from the corresponding formulas given above
taking s ¼ −1 and making the replacement

nu → −nu; u ¼ a; b ð6:8Þ
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[see Eq. (2.3) for the definition of nu]. In the final formulas
this replacement is made through the definition (4.17) for
f ¼ I, K. From here we conclude that the expressions for
the VEVs hψ̄ 0

ðsÞγ
μψ 0

ðsÞi, μ ¼ 0, 2, are given by the formulas

in Secs. IV and V where now we should take

fðuÞnp ðzÞ ¼ δfzfnpþ1ðzÞ þ nuðmu þ si
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 −m2

u

q
ÞfnpðzÞ;

ð6:9Þ

with nu defined in accordance with Eq. (2.3). This shows

that one has the relation fðuÞnp ðzÞjs¼−1 ¼ fðuÞ�np ðzÞjs¼1 and,
hence, the same for the functions Ωunpðax; bxÞ and

GðuÞ
np;μðux; rxÞ. Here the star stands for the complex con-

jugate. Assuming that the masses m for the fields with s ¼
þ1 and s ¼ −1 are the same, we can see that the boundary-
induced contributions from these fields to the charge
density cancel each other. By taking into account that
the same is the case for the boundary-free part [see
Eq. (4.32)], we conclude that the VEV of the total charge
density vanishes. For the VEV of the current density, the
contributions from the fields ψ 0

ðþ1Þ and ψ 0
ð−1Þ coincide for

both the boundary-free and boundary-induced parts. The
corresponding expressions for the total current (6.7) are
obtained from those in the previous section for the case
s ¼ 1 with an additional factor 2. Now, for the field ψ 0

ðsÞ the
analog of the relation (5.20) between the charge and current
densities on the edges has the form

hj0ϕir¼u ¼ −nuhj00ir¼u; ð6:10Þ

where hjμ0i ¼ ehψ̄ 0
ð−1Þγ

μψ 0
ð−1Þi, u ¼ a, b, and nu is the

same as in Eq. (5.20).
Note that we could consider another class of P- and

T-invariant models with two-components fields ψ ðsÞ obey-
ing the boundary conditions in which the sign of the term in
Eq. (6.2), containing the normal vector, is reversed. For
these models, the same reversion should be made in the
boundary condition (6.4) for the primed fields. Now we see
that the charge and current densities for the field ψ 0

ð−1Þ
coincide with those in the previous sections for s ¼ −1,
whereas the results for the field ψ 0

ðþ1Þ are obtained from

those before in the case s ¼ 1 by the replacement (6.8). The
total charge density, combined from the fields with s ¼ 1
and s ¼ −1 vanishes as in the previous case, and the current
density is obtained from the expressions in Sec. V in the
case s ¼ −1 with the additional factor 2. As we have seen,
in this case the dependence of the VEVon the field mass is
more interesting. Of course, there is another possibility
when the boundary conditions for the fields ψ ðsÞ are
different for s ¼ 1 and s ¼ −1. For example, we could
impose the condition (6.2) with the additional factor s in the
term involving the normal vector. In this case the primed

fields will obey the same boundary condition [Eq. (6.4)
with s ¼ 1] and the corresponding VEVs exactly coincide
with those in Secs. IV and V. In this variant, there is no
cancellation and the total charge density does not vanish.
The field theoretical models we have considered can be

realized by various graphene made structures. For example,
the geometry with a single boundary at r ¼ a corresponds
to a circular graphene dot if the region r < a is considered
and to a single circular nanohorn (or nanopore) for the
region r > a. The influence of boundaries on the electronic
properties of a circular graphene quantum dot in a magnetic
field has been discussed in [37]. Comparing the analytical
results obtained within the continuum model to those
obtained from the tight-binding model, the authors con-
clude that the Dirac model with the infinite-mass boundary
condition describes rather well its tight-binding analog and
is in good qualitative agreement with experiments.
Considering different boundary conditions in the Dirac
model for graphene devices, a similar conclusion is made in
Ref. [34]. The Aharonov-Bohm effect and persistent
currents in graphene nanorings have been recently inves-
tigated in [29,38]. The effect of impurity on persistent
currents in strictly one-dimensional Dirac systems is
discussed in [39].
The results obtained above can be applied for the

investigation of the ground state charge and current
densities in graphene rings. Graphene is a monolayer of
carbon atoms with honeycomb lattice containing two
triangular sublattices A and B related by inversion sym-
metry. The electronic subsystem in a graphene sheet is
among the most popular realizations of the Dirac physics in
two spatial dimensions (for other planar condensed-matter
systems with the low-energy excitations described by the
Dirac model see Ref. [40]). For a given value of spin
S ¼ �1, the corresponding long wavelength excitations
are described in terms of 4-component spinors ΨS ¼
ðψþ;AS;ψþ;BS;ψ−;AS;ψ−;BSÞT with the Lagrangian density
(in the standard units)

L ¼
X
S¼�1

Ψ̄Sðiℏγ0∂t þ iℏvFγlDl − ΔÞΨS: ð6:11Þ

Here, Dl ¼ ð∇ − ieA=ℏcÞl, l ¼ 1, 2, is the spatial part of
the gauge extended covariant derivative and e ¼ −jej for
electrons. The Fermi velocity vF plays the role of the speed
of light. It is expressed in terms of the microscopic
parameters as vF ¼ ffiffiffi

3
p

a0γ0=ð2ℏÞ ≈ 7.9 × 107 cm=s,
where a0 ≈ 1.42 Å is the interatomic spacing of graphene
honeycomb lattice and γ0 ≈ 2.9 eV is the transfer integral
between first-neighbor π orbitals. The components ψ�;AS

and ψ�;BS of the spinor ΨS give the amplitude of the
electron wave function on sublattices A and B. The indices
þ and − of these components correspond to inequivalent
points, Kþ and K−, at the corners of the two-dimensional
Brillouin zone (see Ref. [2]). The energy gap Δ in
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Eq. (6.11) is related to the corresponding Dirac mass as
Δ ¼ mv2F. It plays an important role in many physical
applications (for the mechanisms of the gap generation in
the energy spectrum of graphene see, for example, Ref. [2]
and references therein). Depending of the physical mecha-
nism for the generation, the energy gap may take values in
the range 1 meV≲ Δ≲ 1 eV.
Comparing with the discussion above, we see that the

values of the parameter s ¼ þ1 and s ¼ −1 correspond to
the Kþ and K− points of the graphene Brillouin zone and
the Lagrangian density (6.11) is the analog of (6.5). From
here we conclude that, for a given value of the spin S, the
expressions for the VEVs of the charge and current
densities for separate contributions coming from the points
Kþ and K− are obtained from the formulas in previous
sections by the replacement m → a−10 Δ=γF, where γF ¼
ℏvF=a0 ≈ 2.51 eV determines the energy scale in the
model. In the expressions for the current density, an
additional factor vF should be added, because now the
operator of the spatial components of the current density is
defined as jμ ¼ evFψ̄ðxÞγμψðxÞ, μ ¼ 1, 2. For a given spin
S, the contributions from two valleys are combined in
accordance with Eq. (6.7). In the problem at hand, the spins
S ¼ �1 give the same contributions to the total VEVs. As it
has been mentioned before, the charge density vanishes as a
result of cancellation of the contributions from the Kþ and
K− points. The effective charge density may appear if the
gap generation mechanism breaks the valley symmetry, and
the mass gap is different for s ¼ þ1 and s ¼ −1. Note that
this will break P- and T-invariances of the model.

VII. SUMMARY

In both the field theoretical and condensed matters
aspects, among the most interesting topics in quantum
field theory is the investigation of the effects induced by
gauge field fluxes on the properties of the quantum
vacuum. In the present paper we have discussed the
combined effects from the magnetic flux and boundaries
on the VEVs of the fermionic charge and current densities
in a two-dimensional circular ring. The examples of
graphene nanoriboons and rings have already shown that
the edge effects have important consequences on the
physical properties of planar systems. In the problem at
hand, for the field operator on the ring edges we have
imposed the bag boundary conditions. The distribution of
the magnetic flux inside the inner edge can be arbitrary. The
boundary separating the ring from the region of the location
for the gauge field strength is impenetrable for the
fermionic field, and the effect of the gauge field is purely
topological. It depends on the total flux alone. The latter
gives rise the Aharonov-Bohm effect for physical charac-
teristics of the ground state. The consideration is done for
both irreducible representations of the Clifford algebra in
(2þ 1) dimensions. In these representations the mass term
in the Dirac equation breaks the parity and time-reversal

invariances. For the evaluation of the VEVs we have
employed the method based on the direct summation over
a complete set of fermionic modes in the ring. The
corresponding positive- and negative-energy wave func-
tions are given by Eq. (3.12) with the radial functions
defined by Eq. (3.13). The eigenvalues of the radial
quantum number are quantized by the boundary conditions
and are roots of the Eq. (3.15). The eigenvalue equations for
the positive- and negative-energy modes differ by the sign
of the energy. Alternatively, we can take the negative-
energy modes in the form (3.21). With this representation,
the eigenvalue equation for the negative-energy modes is
obtained from the positive-energy one by inverting the sign
of the parameter α, the latter being the ratio of the magnetic
flux to the flux quantum.
The mode-sums for VEVs of the charge and current

densities, Eqs. (4.1) and (5.1), contain series over the roots
of Eq. (3.15). The latter are given implicitly, and these
representations are not well adapted for the investigation of
the VEVs. More convenient expressions are obtained by
making use of the generalized Abel-Plana formula (4.3) for
the summation of the series. The formulas obtained in this
way have two important advantages: the explicit knowl-
edge of the eigenvalues is not required and the boundary-
induced contributions to the VEVs are explicitly extracted.
In addition, instead of series with highly oscillatory terms
for large values of quantum numbers, in the new repre-
sentation one has exponentially convergent integrals for
points away from the edges. This is an important point from
the point of view of numerical evaluations.
The VEVs for both the charge and current densities are

decomposed into boundary-free, single boundary-induced
and the second boundary-induced contributions. All them
are odd periodic functions of the magnetic flux with the
period equal to the flux quantum. For the geometry with
two boundaries we have provided two representations,
given by Eqs. (4.15) and (4.36) for the charge and by
Eqs. (5.12) and (5.16) for the azimuthal current. In these
representations the contributions for the exterior or interior
geometries with a single boundary are explicitly extracted.
The last terms in all the representations are induced by the
introduction of the second boundary to the geometry with a
single boundary. The single boundary parts in the VEVs are
given by the expressions (4.21) and (5.13) in the exterior
region and by Eqs. (4.38) and (5.18) for the interior region.
Unlike the case of the boundary-free geometry the

charge and current densities in the ring are continuous at
half-odd integer values for the ratio of the magnetic flux to
the flux quantum, and both of them vanish at these points.
We have shown that the behavior of the VEVs as functions
of the field mass (energy gap in field theoretical models of
planar condensed matter system) is essentially different
for the cases s ¼ 1 and s ¼ −1. With the initial increase of
the mass from the zero value, the modulus for the charge
and current densities decreases for the irreducible
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representation with s ¼ 1 and increases for the one with
s ¼ −1. With further increase of the mass the vacuum
densities are suppressed in both cases. An important feature
that distinguishes the VEVs of the charge and current
densities from those for the energy-momentum tensor is
their finiteness on the boundaries. On the outer edge the
current density is equal to the charge density whereas on the
inner edge they have opposite signs. For a fixed values of
the other parameters, both the charge and current densities
decrease by the modulus with decreasing outer radius.
The boundary condition (2.2) we have considered

contains no additional parameters and is a special case
in a general class of boundary conditions for the Dirac
equation confining the fermionic field in a finite volume. It
is the most popular boundary condition in the investigations
of the fermionic Casimir effect for various types of the bulk
and boundary geometries. On the base of the analysis given
above we can consider another boundary condition that
differs from (2.2) by the sign of the term containing the
normal to the boundary. The corresponding expressions for
the VEVs of the charge and current densities are obtained
from those in Secs. IV and V by making the replacement
(6.8) for nu defined by Eq. (2.3). All the final formulas [for
example, Eqs. (4.15), (5.16)] remain the same with the only
difference in the definition of the notation (4.17), where
now nu should be replaced by −nu. Equivalently, the results
for the field with a given s and with the modified boundary
condition are obtained from the corresponding expressions
for the field with −s and obeying the condition (2.2)

replacing fðuÞnp ðzÞ by its complex conjugate, fðuÞ�np ðzÞ. With
the modified boundary condition, the current density is
equal to the charge density on the inner edge and has the
opposite sign on the outer edge.
The charge and current densities in parity and time-

reversal models are obtained combining the results for the
separate cases with s ¼ 1 and s ¼ −1. These models can be
formulated in terms of four-component spinors constructed
from the 2-component spinors realizing the two different
irreducible representations. Assuming that both these
spinors obey the boundary condition (2.2) and have the
same mass, the resulting charge density vanishes, whereas
the current density is obtained from the expressions given
in Sec. V with the additional factor 2. For the graphene
circular rings, an additional factor 2 comes from the spin
degree of freedom.
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