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The goal of this paper is to extend to higher dimensionality the methods and computations of vacuum
polarization effects in black hole spacetimes. We focus our attention on the case of five dimensional
Schwarzschild-Tangherlini black holes, for which we adapt the general method initially developed by
Candelas and later refined by Anderson and others. We make use of point splitting regularization and of the
WKB approximation to extract the divergences occurring in the coincidence limit of the Green function
and, after calculating the counterterms using the Schwinger–De Witt expansion, we explicitly prove the
cancellation of the divergences and the regularity of the vacuum polarization once counterterms are added
up. We finally handle numerically the renormalized expression of the vacuum polarization. As a check on
the method we also prove the regularity of the vacuum polarization in the six dimensional case in the large
mass limit.
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I. INTRODUCTION

The scalar vacuum polarization is the simplest way to
probe quantum activity at the semiclassical level near a
black hole. This quantity gives indication about symmetry
breaking and it is usually regarded as preparatory to the
more involved calculations of the quantum energy-
momentum tensor, i.e. of the right-hand side of the semi-
classical Einstein equations. Chronologically, Candelas
was the first to challenge the calculation of hϕ2i on the
background of a four dimensional Schwarzschild black
hole and in Ref. [1] he obtained an expression valid at the
horizon. His method relied on point splitting regularization
[2,3] and provided the main technical ingredients necessary
for addressing similar calculations in other static black
hole geometries. Two years later Page showed how to
compute the same quantity outside the horizon by
means of approximation [4] and obtained a remarkably
simple formula, hϕ2i ¼ ðT2

loc − T2
accÞ=12þ corrections,

with T loc ¼ ð1 − 2m=rÞ−1=2=ð8πmÞ being the locally red-
shifted temperature and Tacc ¼ m=ð1 − 2m=rÞ1=2=ð2π2r2Þ

the acceleration temperature corresponding to the local
value of the acceleration (m represents the black hole
mass). The interpretation of this expression is that hϕ2i
divides into a real particle contribution, proportional to T2

loc,
and a pure vacuum polarization contribution, proportional
to T2

acc. Curvature effects make up the corrections which
were found, to some surprise, to be small [5]. Subsequent
work managed to obtain an expression valid outside the
horizon and helped settle some of the details [5–7]. Finally,
Candelas and Jensen obtained hϕ2i inside the event horizon
[8]. An adaptation of these early calculations to general
four dimensional, static, spherically symmetric and asymp-
totically flat black holes came some years later [9]. Since
the early calculations of Refs. [5–7], various explicit cases
have been considered and many works juxtaposed and
followed those initial results, extending the calculations to
various cases. A longer list of early references can be found
in Refs. [10,11].
Two cases have received somewhat less attention and

remain as outstanding problems. The first is the case of
rotating black holes that proves to be technically very
difficult, for which only partial results have been obtained
(See, for example, Refs. [12–16]). The other case, relevant
to the present work, is that of higher dimensional black
holes that, also, has received only marginal attention. The
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first example of the sort is that of Ref. [17], where an
exact expression of hϕ2i at the event horizon of a five
dimensional Schwarzschild black hole was derived.
Reference [18] calculated the vacuum polarization outside
a five dimensional AdS black hole in a modified theory of
gravity. References [19,20] have discussed issues related to
renormalization. Reference [21] appeared more recently
and reported a calculation of hϕ2i for the four dimensional
section of a braneworld black hole. Reference [22]
computes the energy momentum tensor for a higher
dimensional black hole within the framework of the
Schwinger-DeWitt approximation. Finally, after this paper
appeared, Ref. [23] presented a new mode-sum regulari-
zation prescription for computing the vacuum polarization
of a scalar field in static spherically-symmetric black hole
spacetimes in odd dimensions.
In this paper we continue the analysis of quantum

vacuum polarization (for the Hartle-Hawking vacuum
state) around higher dimensional black holes and present
the results for the vacuum polarization outside a D ¼ 5
Schwarzschild-Tangherlini black hole. One of the reasons
to focus on the specific example of five dimensions is that
the calculation becomes increasingly more cumbersome for
higher dimensions and having a way to analyze the lower
end of the dimensionality spectrum may provide a guide for
addressing the problem in more general cases. As a check
on our method we also prove the renormalization of the
vacuum polarization for D ¼ 6 in the large mass limit
where we can compare our results with those of Ref. [19] in
the same limit.
Our method, described in the next section, adapts that of

Refs. [5,9,24] to the present case and makes use of the
WKB approximation along with some rearrangements that
are useful for the subsequent numerical evaluation. In fact,
while the method of Refs. [5,9,24] formally extends to
higher dimensions in a straightforward manner, difficulties
appear at various stages of the calculations. First of all,
in higher dimensions it is necessary to push the WKB
expansion to increasingly high orders for reasons related
to both convergence and renormalization. Second, only
very few explicit results are available beyond four dimen-
sions for the counterterms. In fact, the only result we are
aware of is that of Ref. [19] where an explicit formula for
D ¼ 6 is given. We are not aware of any explicit result in
D ¼ 5 or D > 6. A simpler approach would be to skip the
verification of the regularity, start from the assumption that
the result for the vacuum polarization is renormalizable and
simply drop the divergences from the result. However,
considering the algebraic complexity of the calculation,
explicitly proving the cancellation of the divergences offers
a very nontrivial check on the results. Practically, this
comes at the price of having to compute the counterterms in
higher dimensions, which is also nontrivial. Finally, in
higher dimensions it is indispensable to carry out the
algebraically more complex parts of the calculations using

computer symbolic algebra. Automatization of the calcu-
lation too becomes increasingly more messy as the
dimensionality increases and explicit examples should be
regarded as a useful guide toward addressing the full higher
dimensional problem.

II. THE METHOD

Our calculation deals with the exterior region of a
D-dimensional Schwarzschild-Tangherlini black hole that,
after euclideanization, is described by the following metric

ds2 ¼ fðrÞdτ2 þ f−1ðrÞdr2 þ rNþ1dΩ2
Nþ1; ð1Þ

where τ is the Euclidean time direction with period β, r is
the radial coordinate, ΩNþ1 is the D-dimensional solid
angle,N ¼ D − 3, and fðrÞ ¼ 1 − ð2MBH=rÞN . We remind
the reader that we focus on D ¼ 5 and D ¼ 6 in the next
sections.
The vacuum polarization in the Hartle-Hawking state can

be expressed as the renormalized coincidence limit of the
Euclidean Green function GEðx; x0Þ, which, by definition,
satisfies the differential equation

ð□ −m2 − ξRÞGEðx; x0Þ ¼ −
δðDÞðx − x0Þffiffiffi

g
p ; ð2Þ

where δðDÞðx − x0Þ is the D-dimensional Dirac delta func-
tion, R is the Ricci curvature scalar, g is the determinant of
the metric and m is the mass of the associated scalar field.
Prior to renormalization, it can be written as

GEðx;x0Þ¼
1

β

X∞
n¼−∞

eiωnðτ−τ0Þ
X∞
l¼0

klC
ðN=2Þ
l ðΩ ·Ω0Þ×Glnðr;r0Þ;

ð3Þ

where kl ¼ Γð1þ N=2Þð1þ 2l=NÞ=ð2π1þN=2Þ and ωn ¼
2πn=β, with β being the inverse of the black hole temper-

ature T. The Gegenbauer polynomials CðN=2Þ
l ðΩ ·Ω0Þ gen-

eralize to higher dimensions the Legendre functions and
result from the summation over the azimuthal quantum
numbers of the hyperspherical harmonics in D dimensions
(relevant formulas can be found in Ref. [25]). The radial
part of the Green function can be written in terms of the
two independent solutions χ�nlðrÞ of the homogeneous
radial wave equation

d2χ�nlðrÞ
dr2

þ
�
N þ 1

r
þ f0

f

�
dχ�nlðrÞ
dr

−
�
ω2
n

f2
þ lðlþ NÞ

fr2
þm2 þ ξR

f

�
χ�nlðrÞ ¼ 0; ð4Þ

giving
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Glnðr; r0Þ ¼
1

rNþ1f
χþnlðr<Þχ−nlðr>Þ

hχþnl; χ−nli
ð5Þ

where hχþnl; χ−nli indicates the Wronskian of the two
solutions.
It is well known that direct numerical evaluation of (3) is

impeded by the diverging nature of the coincidence limit.
To bypass the problem, it is customary to use point-splitting
and take the coincidence limit along all directions but one.
Here, we choose to use point-splitting along the time
direction. We then use the WKB approximation to explic-
itly extract the divergences. Subsequently, we compute the
counterterms using the Schwinger–De Witt expansion and
subtract these from the regulated expression of the unrenor-
malized vacuum polarization. This way of proceeding is
nothing but a generalization of the method developed by
Candelas and later refined by Anderson.
A convenient WKB ansatz for the solution is

χ�nlðrÞ ¼
expð� R

r
rs
ΨðzÞ dz

fðzÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi
r1þNΨ

p ; ð6Þ

where we have added the term 1=f in the exponential in
order to make explicit the asymptotic behavior of the
solutions, as it can be checked. ObtainingΨ to first order in
the WKB approximation is sufficient to extract the diver-
gences in the four-dimensional case treated by Anderson,
while higher dimensional cases it is necessary to increase
the order of approximation. By inserting Eq. (6) in Eq. (4),
one may expand Ψ in general as

Ψ−1 ¼ Φ−1=2ð1þ δ1Φþ δ2Φþ � � �Þ ð7Þ

with the dots indicating higher order WKB approximants.
The following expressions can be obtained for the first
three terms

Φ ¼ f
r2

��
lþ N

2

�
2

−
N2

4

�
þ Ω2

n; ð8Þ

δ1Φ ¼
�
5f2

32

Φ02

Φ3
−
f2

8

Φ00

Φ2
−
ff0

8

Φ0

Φ2

�
; ð9Þ

δ2Φ ¼ 11a12Φ02

32Φ4
−
a12Φ00

8Φ3
þ 17a1a2Φ03

32Φ5
−
a1a2Φ0Φ00

4Φ4
−
a1a3Φ000

4Φ3
−
25a1a3Φ03

32Φ5

þ 19a1a3Φ0Φ00

16Φ4
þ 27a22Φ04

128Φ6
−
a22Φ02Φ00

8Φ5
−
51a2a3Φ04

64Φ6
−
a2a3Φ002

8Φ4

þ 41a2a3Φ02Φ00

32Φ5
−
a2a3Φ000Φ0

4Φ4
þ 75a32Φ04

128Φ6
−
a32Φ000

8Φ3
þ 15a32Φ002

32Φ4

−
45a32Φ02Φ00

32Φ5
þ a32Φ000Φ0

2Φ4
; ð10Þ

where

Ω2
n ¼ ω2

n þ μ2f; ð11Þ

μ2 ¼ m2 þ ξRþ N2 − 1

4r2
f þ N þ 1

2r
f0: ð12Þ

Without loss of generality, in the semiclassical regime for
the Schwarzschild-Tangherlini geometry, we may drop the
minimally coupled part and set ξ ¼ 0. However, we retain
such a term for two reasons. First of all, our analytical
computation is valid for more general, other than black
holes, spherically symmetric spacetimes. In this case such
nonminimally coupled terms are present if the spacetime
has a nonvanishing Ricci curvature scalar and generate
additional diverging contributions to the vacuum polariza-
tion that should also be compensated by counterterms.
Second, once these terms are added additional cancellations
should take place with the counterterms providing another
stringent check on the results.

In the following we will regroup all the WKB approx-
imants and define, for notational convenience, δΦ ¼
δ1Φþ δ2Φþ � � �. Using Eq. (3) and Eq. (5) we can express
the coincidence limit of the Green function as

GEðx; xÞ ¼
1ffiffiffiffiffiffi
4π

p
β

1

ðπr2Þ1þN
2

Γð1þ N
2
Þ

Γð1þ NÞ

×
X
n;l

ðlþ 1ÞfN−1g
��

lþ N
2

�
Ψ−1

�
; ð13Þ

where the quantity ðbÞfag defines the Pochhammer symbol

ðbÞfag ¼ Γðbþ aÞ
ΓðbÞ : ð14Þ

It is usual to subtract off the divergences in l by adding
terms proportional to δðτ − τ0Þ that do not alter the Green
function and remove the nonphysical divergences. We will
carry out this procedure at the end by dropping the
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n-independent contributions diverging for large l, corre-
sponding to the above mentioned subtraction. We should
note that Eq. (13) is formal as we have not yet added the
counterterms.
It is convenient to rearrange the unrenormalized Green

function as GEðx; xÞ ¼ G0 þ δG separating the terms
containing the divergences,

G0 ¼
1ffiffiffiffiffiffi
4π

p
β

1

ðπr2Þ1þN
2

Γð1þ N
2
Þ

Γð1þ NÞ × 2
X∞
n¼1

X∞
l¼0

0
JðDÞ
n;l ð15Þ

from those that are regular by construction,

δG ¼ 1ffiffiffiffiffiffi
4π

p
β

1

ðπr2Þ1þN
2

Γð1þ N
2
Þ

Γð1þ NÞ

×

�X∞
l¼0

0
JðDÞ
0;l þ

X∞
n¼−∞

X∞
l¼0

ð ~JðDÞ
n;l − JðDÞ

n;l Þ
�
: ð16Þ

In the formulas above, we have defined JðDÞ
n;l ¼

ðlþ 1ÞfN−1gðlþ N=2Þð1þ δΦÞ= ffiffiffiffi
Φ

p
, that is the WKB

approximation for ~JðDÞ
n;l ¼ ðlþ 1ÞfN−1gðlþ N=2Þ=Ψ. The

primes in the summations are a reminder that the diverging
contributions at large l have to be dropped. The second
term in δG is nothing but the reminder of the WKB
approximation and it can be directly evaluated numerically.
Including higher order WKB approximants makes this
difference smaller.
A general procedure to extract the divergences follows

by making use of the Abel-Plana summation formula that
allows turning the summation over l into an integral

expression. Defining jðDÞ
n ðlÞ≡ JðDÞ

n;l , in order to highlight
the l dependence, we find

G0 ¼
1=ð ffiffiffi

π
p

βÞ
ðπr2Þ1þN

2

Γð1þ N
2
Þ

Γð1þ NÞ
X∞
n¼1

�
jðDÞ
n ð0Þ
2

þ
Z

∞

0

jðDÞ
n ðxÞdx

þ i
Z

∞

0

jðDÞ
n ðixÞ − jðDÞ

n ð−ixÞ
e2πx − 1

dx

�
: ð17Þ

The first term above can be computed using zeta-
regularization techniques, while the second integral can
be performed analytically with the results expressed in
terms of hypergeometric functions. The third integral can
be computed by approximation. The divergences can be
extracted, after the sums and integrals are calculated, by
expanding for large frequencies. Already for D ¼ 5 results
become very lengthy and we will not report here any
formula, although below we will explicitly give the
divergences that are generated from each of the above
terms.

To arrive at the renormalized vacuum polarization we
need to add appropriate counterterms. These have been
computed by Christensen in Ref. [3] in four-dimensional
spherically symmetric spacetimes using the short-distance
(Schwinger–De Witt) approximation of the propagator in
curved space. His results have made the subtraction
procedure straightforward in most cases. In higher dimen-
sions, Ref. [19] has reported explicit results for the
counterterms in six-dimensional spherically symmetric
spacetimes. We are not aware of any relevant results in
D ¼ 5 or for D > 6. Here we compute the counterterms
independently and aside for reproducing Christensen’s
four-dimensional results as a check, we obtain new
expressions in five dimensions. We also calculate them
in the six dimensional large mass limit, reproducing the
counterterms calculated in Ref. [19].

III. FIVE DIMENSIONS

As discussed in the previous section, the renormalized
vacuum polarization consists of two parts, G0 and δG,
plus the counterterms. The contribution δG is regular by
construction and it contains the reminder of the WKB
approximation. It can be calculated numerically once an
explicit form for the metric is chosen. The contribution G0

can be evaluated analytically in the way we have described
in the previous section with the divergences extracted from
a high frequency expansion. For the five dimensional
case, all the divergent contributions are encoded in the
first order WKB approximant δ1Φ. However, here we will
retain terms up to second order, i.e. δΦ ¼ δ1Φþ δ2Φ, as
this will improve the numerical approximation. The result
we find for G0, with the explicit behavior at large l
subtracted, is

G0 ¼
1

2π2r3β

X∞
n¼1

X∞
l¼0

�
ðlþ 1Þ2Ψ−1 −

ðlþ 1Þrffiffiffi
f

p
�

¼ 1

2π2r3β

X∞
n¼1

�
Zð1Þ

reg þ
X13
k¼5

αkZðkÞ þ J reg þ Preg

�

þ Gdiv; ð18Þ

where

ZðkÞ ¼
X∞
n¼1

ðω2
n þ fμ2Þ−k=2;

Zð1Þ
reg ¼ 1

2

X∞
n¼1

�
ðω2

n þ fμ2Þ−1=2 − 1

ωn

�
; ð19Þ

and
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α5 ¼ −
3f2ð−f02x2 þ f0frþ 3f2Þ

32r4
;

α7 ¼
3f3ð−4f03r3 þ 33f02fr2 þ 30f0f2r − 105f3Þ

256r6
;

α9 ¼
9f4ð11f04r4 − 78f03fr3 þ 13f02f2r2 þ 606f0f3rþ 525f4Þ

1024r8
;

α11 ¼ −
27f6ðf0rþ fÞ2ð−101f02r2 þ 361f0frþ 693f2Þ

4096r10
;

α13 ¼
93555f8ðf0rþ fÞ4

65536r12
:

The expression for J reg can be calculated explicitly in
terms of hypergeometric functions. However, the result is
very long and will not be reported here, although it can be
obtained more or less straightforwardly using a symbolic
manipulation program. It should also be noted that the
upper bound on the sum over k in (18) reflects the order of
the WKB approximation, since higher orders increases the

numbers of zeta functions to be added up. The fact that the
WKB approximation part of the vacuum polarization can
be expressed as a series of such zeta functions was already
noted in Ref. [24]. Rather than showing the explicit results
for the integrals, it is more instructive to explicitly report
the diverging contributions generated by each term, which
we subtract in order to regulate each expression:

J reg ¼
Z

∞

0

jð5Þn ðxÞdx −
�
−

1

3ωn
þ r3ω2

n

2f3=2

�
1þ ln

�
rωn

2
ffiffiffi
f

p
��

þ ~a1

�
1þ ln

�
rωn

2
ffiffiffi
f

p
���

ð20Þ

where

~a1 ¼
r3

8
ffiffiffi
f

p
�
m2 − ½a1� þ

f0

r
−
f02

4f
þ f00

3

�
;

with ½a1� ¼ −ðξ − 1=6ÞR being the first nontrivial heat-kernel coefficient (for m ¼ 0) and

Preg ¼ i
Z

∞

0

jð5Þn ðixÞ − jð5Þn ð−ixÞ
e2πx − 1

dxþ 1

6ωn
: ð21Þ

The terms that we have subtracted to define the regulated quantities correspond to the divergent contributions that each term
generates. Adding all these contributions we are left with the divergent part of the Green function

Gdiv ¼
1

16π2f3=2β

X∞
n¼1

�
4ω2

n

f
þ
�
m2 − ½a1� þ

f0

r
−
f02

4f
þ f00

3

���
1þ ln

�
rωn

2
ffiffiffi
f

p
��

; ð22Þ

which should be compensated by the counterterms, leaving
a perfectly regular expression for the renormalized vacuum
polarization. It is worth noticing that the divergences
proportional to the inverse frequency 1=ωn cancel against
each other, i.e. in five dimensions the counterterms do not
generate such divergences.
The computation of the counterterms is also lengthy, but

with the help of computer symbolic manipulation it can be
carried out directly. The general expression for the adia-
batic Schwinger-DeWitt expansion of the propagator in
general dimensions is already known from Christensen’s

work [3] (see also Refs. [17,19]) that we report for the
convenience of the reader:

GSDWðx; x0Þ ¼
iπΔvvmðx; x0Þ
ð4πiÞD=2

X
k≥0

akðx; x0Þ
�
−

∂
∂m2

�
k

×

�
−

z
2im2

�
1−D=2

Hð2Þ
D=2−1ðzÞ; ð23Þ

where Δvvmðx; x0Þ is the Van Vleck-Morette determinant,
z2 ¼ −2m2σðx; x0Þ with 2σðx; x0Þ ¼ s2ðx; x0Þ being the
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square of the geodesic distance, and Hð2Þ
D=2−1ðzÞ is a Hankel

function of second kind. From the above expression, the
procedure to extract the counterterms consists in choosing
a separation between the points and expanding. Splitting
along the time direction, for which

σ ¼ f
2
ε2 −

ff02

96
ε4 þOðε6Þ; ð24Þ

computing the various quantities involved, and expanding
for small separation, gives the result

hϕ2idiv≡GSDWðx;xÞ

¼ lim
ε→0

�
−

1

8π2f3=2ε3

−
1

16π2
ffiffiffi
f

p
ε

�
m2− ½a1� þ

f0

4r
−
f02

16
þ f00

12

��
ð25Þ

for the divergent part of the vacuum polarization that needs
to be subtracted. In order to perform the subtraction
of the above counterterms, we first need to reexpress the
quantity above in terms of summation over ωn. This can be
done by adapting the general procedure outlined in [9,26],
using the Abel-Plana rearrangement for the function
ða2ω2

nÞs cos ðωnεÞ, taking the first derivative with respect
to s and then setting s ¼ 0. One then arrives at the
following expression

X∞
n¼1

log ða2ω2
nÞ cos ðωnεÞ ¼ −

πβ

2πε
þOðεÞ: ð26Þ

Differentiating three times gives the relevant rearrange-
ments for 1=ε3. It is then a matter of algebra to show
that the counterterms, hϕ2idiv, precisely compensate the

divergences Gdiv that we have extracted using the WKB
approximation.
The next part of the calculation involves the numerical

evaluation of the renormalized vacuum polarization,
given by

hϕ2iren ¼ ðG0 þ δGÞ − hϕ2idiv: ð27Þ

The numerical procedure can be carried out in a
straightforward manner. The only term that becomes
computationally demanding is the remainder. A way to
proceed in this case is to increase the order of the WKB
approximation which renders this term small. In our
numerical evaluation we have used up to third order
approximation and ignored the reminder. Results are
illustrated in Fig. 1 for various values of the parameters.
As it should, results are regular at the horizon and
we find no problem of convergence in the numerical
approximation.

IV. A CHECK IN SIX DIMENSIONS

The six-dimensional case is computationally more
demanding and extracting the divergences is not trivial.
The reason for the increased complexity comes from the
fact that higher order WKB terms give rise to additional
ultraviolet divergent contributions and this leads to alge-
braically very cumbersome combinations of hypergeomet-
ric functions. Computing the counterterms also becomes
more difficult as the dimensionality increases. Some
simplification can be achieved in the specific limit of large
mass and here, as a check on the method, we have limited
our analysis to this case. The procedure to extract the
divergences is basically the same as in five dimensions and
consists in operating on the Abel-Plana rearrangement of
G0. Keeping the first two leading terms in a large mass
expansions we find the following diverging behavior for the
Green function:

FIG. 1. Profile of the renormalized vacuum polarization for the Hartle-Hawking state in D ¼ 5 for the following values of the
parameters: MBH ¼ 5 (left-panel) and MBH ¼ 15=2 (right-panel)and for ρ ¼ m

2MBH
.
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Gð6DÞ
div ≈

1

64π3β

X∞
n¼1

1

ωn

�
m4 þm2

�
4ω2

n

f

þ 2

�
1

6
− ξ

��
f00 þ 8f0

r
þ 12f

r2
−
12

r2

���
; ð28Þ

where ≈ reminds us that we are considering only the first
two terms in a large mass expansion. In extracting the
divergences above all the terms above are generated by the
second integral in the Abel-Plana rearrangement (17) in six
dimensions. The form of the divergences can be quickly
understood from the general form of the heat-kernel
coefficients and dimensional analysis. It can be noted that
the last term multiplying m2 is the scalar curvature in six
dimensions, as one might have guessed from dimensional
analysis and from the general form of the heat-kernel
coefficients. The counterterms can be extracted similarly to
what we did in five dimensions, giving, in the large mass
limit,

hϕ2ið6Þdiv ¼
�

m4

64π3
−
½a1�m2

32π3

�
log ε −

m2

16π3f
1

ε2
: ð29Þ

Using the expressions from Refs. ([9,26]), relating log ε
and 1=ε2 with sums of powers of ωn, it is easy to check that
our result exactly compensates the divergences and agrees
with the result of Ref. [19] in the same limit.

V. CONCLUSIONS

In this paper we have studied the renormalized vacuum
polarization for a higher dimensional Schwarzschild-
Tangherlini black hole. We have presented a general

approach for computing the vacuum polarization and fully
analyzed the problem in five dimensions. We have
extracted the divergences using the WKB approximation
and explicitly calculated the counterterms proving the
regularity of the result. Finally, we have evaluated the
renormalized expression numerically. In six dimensions,
we have limited ourselves to proving the regularity of the
vacuum polarization in the large mass limit. We have too,
in this case, extracted the divergences using the WKB
approximation, calculated the counterterms and explicitly
verified the regularity. Our results for the counterterms in
the large mass limit coincide with those of Ref. [19].
Straightforward generalizations of the calculations of this
paper include other black hole geometries with charge and
cosmological constant in five dimensions. It should also be
possible to relax the high mass approximation and work out
in full detail along similar lines the six dimensional case
with some effort. The most interesting and nontrivial
generalization consists in increasing the number of dimen-
sions for which the computations presented in this paper are
a very useful warm-up.

ACKNOWLEDGMENTS

We are grateful to R. Thompson for sharing with us his
results for the six-dimensional case. This work is supported
in part by the MEXT-Supported Program for the Strategic
Research Foundation at Private Universities “Topological
Science” (Grant No. S1511006) and by the Fundação para a
Ciência e Tecnologia of Portugal (FCT) through Projects
No. PEst-OE/FIS/UI0099/2015 and No. SFRH/BD/
92583/2013.

[1] P. Candelas, Vacuum polarization in Schwarzschild space-
time, Phys. Rev. D 21, 2185 (1980).

[2] B. De Witt, Dynamical Theory of Groups and Fields
(Gordon and Breach, New York, 1965).

[3] S. M. Christensen, Vacuum expectation value of the stress
tensor in an arbitrary curved background: The covariant
point separation method, Phys. Rev. D 14, 2490 (1976);
Regularization, renormalization, and covariant geodesic
point separation, Phys. Rev. D 17, 946 (1978).

[4] D. N. Page, Thermal stress tensors in static Einstein spaces,
Phys. Rev. D 25, 1499 (1982).

[5] P. Candelas and K.W. Howard, Vacuum hφ2i in
Schwarzschild space-time, Phys. Rev. D 29, 1618 (1984).

[6] M. S. Fawcett and B. F. Whiting, in Proceedings of Quan-
tum Structure Of Space and Time, London (Cambridge
University Press, Cambridge, 1981), p. 131.

[7] M. S. Fawcett, The energy momentum tensor near a black
hole, Commun. Math. Phys. 89, 103 (1983).

[8] P. Candelas and B. P. Jensen, The Feynman Green function
inside a Schwarzschild black hole, Phys. Rev. D 33, 1596
(1986).

[9] P. R. Anderson, hϕ2i for massive fields in Schwarzschild
space-time, Phys. Rev. D 39, 3785 (1989); P. R.
Anderson, W. A. Hiscock, and D. A. Samuel, Stress-
energy tensor of quantized scalar fields in static
spherically symmetric space-times, Phys. Rev. D
51, 4337 (1995).

[10] See Chapter 11 of V. P. Frolov and I. D. Novikov, Black
Hole Physics (Kluwer, Dordrecht, 1998).

[11] L. E. Parker and D. J. Toms, Quantum Field Theory in
Curved Space, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge, England,
2009).

[12] V. P. Frolov, Vacuum polarization near the event horizon
of a charged rotating black hole, Phys. Rev. D 26, 954
(1982).

BLACK HOLE QUANTUM VACUUM POLARIZATION IN … PHYSICAL REVIEW D 94, 105001 (2016)

105001-7

http://dx.doi.org/10.1103/PhysRevD.21.2185
http://dx.doi.org/10.1103/PhysRevD.14.2490
http://dx.doi.org/10.1103/PhysRevD.17.946
http://dx.doi.org/10.1103/PhysRevD.25.1499
http://dx.doi.org/10.1103/PhysRevD.29.1618
http://dx.doi.org/10.1007/BF01219528
http://dx.doi.org/10.1103/PhysRevD.33.1596
http://dx.doi.org/10.1103/PhysRevD.33.1596
http://dx.doi.org/10.1103/PhysRevD.39.3785
http://dx.doi.org/10.1103/PhysRevD.51.4337
http://dx.doi.org/10.1103/PhysRevD.51.4337
http://dx.doi.org/10.1103/PhysRevD.26.954
http://dx.doi.org/10.1103/PhysRevD.26.954


[13] G. Duffy and A. C. Ottewill, The renormalized stress tensor
in Kerr space-time: Numerical results for the Hartle-
Hawking vacuum, Phys. Rev. D 77, 024007 (2008).

[14] A. Belokogne and A. Folacci, Renormalized stress tensor
for massive fields in Kerr-Newman spacetime, Phys. Rev. D
90, 044045 (2014).

[15] M. Cvetic, Z. H. Saleem, and A. Satz, Analytical result for
the vacuum polarization of subtracted rotating black holes,
Phys. Rev. D 92, 064030 (2015).

[16] M. Cvetic, G. W. Gibbons, Z. H. Saleem, and A. Satz,
Vacuum polarization of STU black holes and their
subtracted geometry limit, J. High Energy Phys. 01
(2015) 130.

[17] V. P. Frolov, F. D. Mazzitelli, and J. P. Paz, Quantum effects
near multidimensional black holes, Phys. Rev. D 40, 948
(1989).

[18] K. Shiraishi and T. Maki, Vacuum polarization near asymp-
totically anti-de Sitter black holes in odd dimensions,
Classical Quantum Gravity 11, 1687 (1994).

[19] R. T. Thompson and J. P. S. Lemos, DeWitt-Schwinger
renormalization and vacuum polarization in d dimensions,
Phys. Rev. D 80, 064017 (2009).

[20] Y. Decanini and A. Folacci, Hadamard renormalization of
the stress-energy tensor for a quantized scalar field in a
general spacetime of arbitrary dimension, Phys. Rev. D 78,
044025 (2008).

[21] C. Breen, M. Hewitt, A. C. Ottewill, and E. Winstanley,
Vacuum polarization on the brane, Phys. Rev. D 92, 084039
(2015).

[22] J. Matyjasek and P. Sadurski, Stress-energy tensor of the
quantized massive fields in Schwarzschild-Tangherlini
spacetimes. The back reaction, Phys. Rev. D 91, 044027
(2015); Inside the Schwarzschild-Tangherlini black holes,
Phys. Rev. D 92, 044023 (2015).

[23] P. Taylor and C. Breen, A mode-sum prescription for
vacuum polarization in odd dimensions, arXiv:1609.08166.

[24] A. Flachi and T. Tanaka, Vacuum polarization in asymp-
totically anti-de Sitter black hole geometries, Phys. Rev. D
78, 064011 (2008).

[25] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,
Series, and Products, 7th ed. (Academic Press, New York,
2007).

[26] K.W. Howard, Vacuum hTμ
νi in Schwarzschild spacetime,

Phys. Rev. D 30, 2532 (1984).

FLACHI, QUINTA, and LEMOS PHYSICAL REVIEW D 94, 105001 (2016)

105001-8

http://dx.doi.org/10.1103/PhysRevD.77.024007
http://dx.doi.org/10.1103/PhysRevD.90.044045
http://dx.doi.org/10.1103/PhysRevD.90.044045
http://dx.doi.org/10.1103/PhysRevD.92.064030
http://dx.doi.org/10.1007/JHEP01(2015)130
http://dx.doi.org/10.1007/JHEP01(2015)130
http://dx.doi.org/10.1103/PhysRevD.40.948
http://dx.doi.org/10.1103/PhysRevD.40.948
http://dx.doi.org/10.1088/0264-9381/11/7/009
http://dx.doi.org/10.1103/PhysRevD.80.064017
http://dx.doi.org/10.1103/PhysRevD.78.044025
http://dx.doi.org/10.1103/PhysRevD.78.044025
http://dx.doi.org/10.1103/PhysRevD.92.084039
http://dx.doi.org/10.1103/PhysRevD.92.084039
http://dx.doi.org/10.1103/PhysRevD.91.044027
http://dx.doi.org/10.1103/PhysRevD.91.044027
http://dx.doi.org/10.1103/PhysRevD.92.044023
http://arXiv.org/abs/1609.08166
http://dx.doi.org/10.1103/PhysRevD.78.064011
http://dx.doi.org/10.1103/PhysRevD.78.064011
http://dx.doi.org/10.1103/PhysRevD.30.2532

