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We study the quantum mechanics of self-gravitating thin shell collapse by solving the polymerized
Wheeler-DeWitt equation. We obtain the energy spectrum and solve the time-dependent equation using
numerics. In contradistinction to the continuum theory, we are able to consistently quantize the theory for
super-Planckian black holes, and find two choices of boundary conditions which conserve energy and
probability, as opposed to one in the continuum theory. Another feature unique to the polymer theory is the
existence of negative energy stationary states that disappear from the spectrum as the polymer scale goes
to 0. In both theories the probability density is positive semidefinite only for the space of positive energy
stationary states. Dynamically, we find that an initial Gaussian probability density develops regions of
negative probability as the wave packet approaches R ¼ 0 and bounces. This implies that the bouncing
state is a sum of both positive and negative eigenstates.
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I. INTRODUCTION

The quantummechanical regime of gravitation continues
to be opaque to our probing, both theoretically and
experimentally, in the latter case due to the extreme
weakness of the gravitational interaction. There are now
many theoretical probes, including (but not limited to)
string theory, loop quantum gravity, spin foams, causal sets,
causal dynamical triangulations and asymptotic safety.
However, none of these are yet complete or able to predict
phenomena which can be seen experimentally. Given the
lack of experimental direction, we must rely heavily on
philosophy and mathematics to justify any particular
approach. These circumstances have motivated the careful
study of mathematical toy models, often obtained by
imposing symmetry and/or changing the number of dimen-
sions of spacetime. Such models, if exactly solvable, could
help us to see around the obstacles occluding our view of
the quantum regime of realistic theories of gravity. It is also
possible that results obtained in the toy models might
survive the transition to realistic models, and provide the
basis for attempts to experimentally test quantum gravity.
Gravitational collapse of a spherically symmetric thin

shell of dust in 3þ 1 dimensions presents a simple model of

a matter-gravity interaction that has both classical and
quantum solutions. Classically, the theory is parametrized
completely by a pair of phase space variables: the radius R
of the shell and its conjugate momentum P. This is
effectively a theory of particle mechanics, yet it is rich
enough to describe dynamical black hole formation, includ-
ing the evolution of apparent horizons and singularity
formation. On the quantum side, this is a rare solvable
model which describes a fully quantum interaction between
gravity and matter. As such significant attention has been
given to the quantum theory [1–6]. Perhaps the most
influential work in this area is that of Hájíček et al. [1]
where a Wheeler-DeWitt quantization was successfully
completed for shells with a rest mass m < 1 (in Planck
units). Using a particular choice of time coordinate t and a
separation ansatzΨðt; RÞ ¼ eiEtψðRÞ, the authors were able
to solve for the complete spectrum of time-independent
bound and scattering states.
In the present paper, we study quantization of the thin

shell model along the same line as Hájíček et al. The key
difference is that we employ polymer quantization [7]
rather than standard techniques which assume that space-
time is a continuum. Polymer quantization posits that space
is fundamentally discrete near or below some microscopic
scale μ, and that the continuum emerges only as a coarse-
grained approximation. Our results agree with Hájíček
et al. in the μ → 0 limit, and we find interesting new
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results for the case of small but finite μ. In particular, we are
able to consistently quantize the theory for rest mass
m > 1, and using numerical methods we are also able to
solve the fully quantum equations of motion.

II. CLASSICAL THEORY

In this section we establish the classical theory upon
which the quantum theory is built. We begin by sketching a
derivation of the classical equations of motion for a thin
shell of dust collapsing under its own gravitation. Details
can be found, for example, in chapter 3 of Eric Poisson’s
text book [8]. After these equations of motion are obtained
we develop the canonical theory to set up quantization in
the next section.
Now consider the spacetime corresponding to a

collapsing thin shell, which represents a codimension-
one hypersurface of spacetime. Outside of the shell the
spacetime is described by the Schwarzschild metric, while
inside the shell spacetime is flat. The in, out and shell line
elements are

ds2in ¼ −dt2 þ dr2 þ r2dΩ2; ð1Þ

ds2out ¼ −fðrÞdT2 þ f−1ðrÞdr2 þ r2dΩ2; ð2Þ

ds2shell ¼ −dτ2 þ R2dΩ2; ð3Þ

where fðrÞ≡ 1 − 2E=r and E is the total gravitational
energy of the shell.
The next step is to impose the junction conditions at the

shell in order to form a complete spacetime. These
conditions require that the metric induced on the shell
hypersurface hab from the out spacetime agrees with the
metric induced at the shell from the in spacetime.
Furthermore, the junction conditions tell us that a nontrivial
stress energy is associated with the shell, given by

Tab ¼
1

8π
ð½Kab� − ½K�habÞ; ð4Þ

where square brackets denote the difference between the
outer and inner values of the extrinsic curvature Kab and its
trace K.
We take the stress energy of the shell to be that of a

perfect fluid with two-dimensional density ρ traveling with
the velocity ua of the shell

Tab ¼ ρuaub: ð5Þ

Equating the stress energy given in (4) with that of (5) is
most easily done in terms of shell coordinates (R, τ). Doing
so reveals that the rest mass m ≔ 4πR2ρ of the shell is a
constant of motion, and the first integral of the radial
equation of motion is

E ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dR
dτ

�
2

s
−
m2

2R
¼ constant: ð6Þ

The velocity in the above equation is determined using
the time coordinate τ of a co-moving observer on the shell.
This implies a foliation of the spacetime into hypersurfaces
labeled by constant values of τ. Going to a canonical theory
in terms of R and its conjugate momentum P, one finds that
the Hamiltonian is not easily represented as an operator in
the quantum theory. Following the steps outlined below,
one arrives at the following Hamiltonian:

H ¼ m cosh
P
m
−
m2

2R
: ð7Þ

In the quantum theory, the cosh term must be treated as an
infinite sum which is difficult to work with, although
significant progress was made by Hajicek [2]. If we instead
choose the inner flat space time coordinate t, we obtain a
Hamiltonian that is more manageable.
The relationship between the two time coordinates in

question is dτ2 ¼ −dt2 þ dR2, from which one can derive

�
dR
dτ

�
2

¼ ðdRdt Þ2
ð1 − ðdRdt Þ2Þ

: ð8Þ

Putting this into (6) gives

E ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p −
m2

2R
; ð9Þ

where from now on a dot represents a derivative with
respect to the inner time coordinate t. This is the energy of a
relativistic particle in a Coloumb potential V ¼ m2

2R.
In order to arrive at the canonical theory, we take the total

energy to be the Hamiltonian, that is, E → H, and find the
momentum which is conjugate to R for this Hamiltonian,

P ¼
Z

dH
_R

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH þ VÞ2 −m2

q
: ð10Þ

From this we obtain the following expression:

ðH þ VÞ2 ¼ P2 þm2: ð11Þ

At this point we could take the phase space parametrized
by ðR;PÞ, solve for the Hamiltonian H in terms of these
variables and proceed with quantization. However, the
resulting Hamiltonian has a square root which is difficult
to handle in the quantum theory. To avoid this problem we
proceed by putting the Hamiltonian into parametrized form,
as in [1], by extending the phase space to include the time t
and its momentum p. The equation (11) is treated as a
constraint as described in the remainder of this section.

ZIPRICK, GEGENBERG, and KUNSTATTER PHYSICAL REVIEW D 94, 104076 (2016)

104076-2



The extended phase space has two canonical pairs ðR;PÞ
and ðt; pÞ where the momentum conjugate to time is
p ¼ −H. The canonical action is

I ¼ dR
ds

Pþ dt
ds

p − λh; ð12Þ

where s is the evolution parameter and λ is a Lagrange
multiplier. The dynamics is generated by the Hamiltonian
constraint

h ≔ −ðp − VÞ2 þ P2 þm2; ð13Þ

which is quadratic in the momenta and does not have a
square root.
The equations of motion are

dt
ds

¼ −2λðp − VÞ; ð14Þ

dp
ds

¼ 0; ð15Þ

dR
ds

¼ 2λP; ð16Þ

dP
ds

¼ λ
m2ðp − VÞ

R2
: ð17Þ

These expressions are equivalent to the dynamics described
by (9), which can be seen as follows. The second equation
tells us that p ¼ −E is a constant of motion. Using the first
equation, we find from (16) and (17) respectively that

_R ¼ dR
ds

ds
dt

¼ P
Eþ V

; ð18Þ

_P ¼ dP
ds

ds
dt

¼ −
m2

2R2
: ð19Þ

Taking the t-derivative of (18) and combining this with
(19), one obtains an expression which is equivalent to the
t-derivative of (9).
This establishes the classical, canonical theory that we

quantize in the next section.

III. QUANTUM THEORY

In this section we establish a Hilbert space of functions
Ψðt; RÞ, and represent the phase space variables ðt; p; R; PÞ
as operators on this space. We then write (13) as a quantum
constraint ĥ in terms of these operators and look for
solutions.

A. Auxiliary Hilbert space

The polymer Hilbert space is built upon the real line
with discrete topology (i.e., the Bohr compactification of

the real numbers x ∈ RBohr) [7,9]. Position eigenstates are
defined as

ψxðRÞ ¼
�
1; R ¼ x

0; R ≠ x
: ð20Þ

The basis is uncountable and therefore unseparable, but we
find that solutions to the constraint ĥ are defined on a
superselection sector which has a countable basis and is
separable.
The polymer inner product is

ðψx;ψx0 Þ ¼ δx;x0 ; ð21Þ

where δx;x0 is the Kronecker delta.
A general, time-dependent state is written as

Ψðt; RÞ ¼
X
x

cxðtÞψxðRÞ; ð22Þ

where each cxðtÞ is a time-dependent coefficient for the
basis state ψxðRÞ. Using the inner product we find that the
norm squared is

ðΨ̄ðt; RÞ;Ψðt; RÞÞ ¼
X
x

c̄xðtÞcxðtÞ; ð23Þ

which notably depends upon time.
We choose the usual representation for the first pair of

operators where t̂ acts by multiplication and p̂ ¼ i∂t acts as
a partial derivative

t̂Ψ ¼ tΨ; p̂Ψ ¼ i
X
x

_cxψx: ð24Þ

The second pair of operators requires more care. Since we
have position eigenstates, the action of the position
operator is simply

R̂ψx ¼ xψx: ð25Þ

However, the usual definition of the momentum operator P̂
as a continuum partial derivative is not well defined
because space is discrete. In order to construct a well-
defined P̂, we introduce a finite translation operator Ûμ ≔
eiP̂μ which shifts a position eigenstate by μ ∈ R,

ÛμψxðRÞ ¼ ψxðRþ μÞ ¼ ψx−μðRÞ: ð26Þ

A well-defined momentum operator which depends upon
the spacing μ is given by

P̂ ¼ 1

iμ
ðÛμ

2
− Û†

μ
2

Þ: ð27Þ
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Squaring this yields

P̂2 ¼ 1

μ2
ð2 − Ûμ − Û†

μÞ: ð28Þ

In principle, μ is free to vary in both time and space.
However in order to keep the equations manageable, we
choose μ to be an arbitrary fixed constant. This amounts to
partially choosing a lattice. Since μ enters the constraint
equation only in the P̂2 term, a choice of μ picks out
the superselection sector; only the coefficients cx and
eigenstates ψx which correspond to points x on a regular
μ-spaced lattice have an effect on each other. In general, a
lattice is the following set of points,

Lσ ¼ fx ¼ σ þ kμjk ∈ Zg; ð29Þ

where the choice of 0 ≤ σ < μ picks the superselection
sector. Here we study the theory on two of these lattices
corresponding to the choices σ ¼ 0, 1

2
, one which contains

the point x ¼ 0 and one which does not.
Notice that the lattices defined above do not have a

bound on x. This is necessary for the P̂2 operator to be well
defined (with the same definition) on all position eigen-
states [10]. This means that, in principle, we are allowing
for negative eigenvalues of the position operator, but since
the R̂ operator comes from a positive semidefinite radial
variable R ≥ 0, we study solutions with support on the
x ≥ σ lattice points only. There are conserved currents
coming from the constraint equation, and we apply boun-
dary conditions which conserve the corresponding charges
on the x ≥ σ portion of the lattice.
We now define the auxiliary Hilbert space (without

boundary conditions),

Hσ
aux ≔

�
Ψðt; RÞ ¼

X
x

cxðtÞψxðRÞ
����
X
x∈Lσ

c�xðtÞcxðtÞ ≤ ∞
�
:

ð30Þ

This is a general space of functions within which the
operators and inner product are well defined. The solutions
to ĥ comprise a subset of this space, and appropriate
boundary conditions are introduced to define the charge-
conserving portion of this solution space.

B. Hilbert space of constraint solutions

In this subsection we define the physical Hilbert space of
solutions to ĥΨ ¼ 0, or equivalently

−½p̂ − VðR̂Þ�2Ψðt; RÞ þ ½P̂2 þm2�Ψðt; RÞ ¼ 0: ð31Þ

Using the definitions in the previous subsection, the
constraint equation for states in Haux can be written as

X
x

��
c̈x −

im2

x
_cx þ

�
2

μ2
þm2 −

m4

4x2

�
cx

�
ψx

−
cx
μ2

ðψxþμ þ ψx−μÞ
	
¼ 0: ð32Þ

If we shift the summation for the last two terms, and
notice that the above condition must hold independently at
each point x, we arrive at an equation of motion for the
coefficients

c̈x −
im2

x
_cx þ

�
2

μ2
þm2 −

m4

4x2

�
cx

−
1

μ2
ðcxþμ þ cx−μÞ ¼ 0: ð33Þ

Notice that some of the terms in the above equation are
divergent at x ¼ 0 on the lattice with σ ¼ 0, but only in
this case.
In order to fix boundary conditions, we first note that

there are two conserved charges. These are the polymer
analogs to the Klein-Gordon (KG) inner product and the
energy form defined in [1]. Given two states Φ ¼ P

xbxψx
and Ψ ¼ P

xcxψx, we define the following bilinear forms:

qðΦ;ΨÞ ¼ 1

2

X
x≥σ

�
iðb̄x _cx − _̄bxcxÞ þ

m2

x
b̄xcx

�
; ð34Þ

eðΦ;ΨÞ ¼ 1

2

X
x≥σ

��
_̄bx _cx þ

1

μ2
ðb̄xþμ − b̄xÞðcxþμ − cxÞ

þ
�
m2 −

m4

4x2

�
b̄xcx

��
; ð35Þ

where q is the KG inner product and e is the energy.
In defining the polymer theory there is some freedom in

defining the momentum operator, even for fixed spacing μ,
which effectively prescribes how radial derivatives in the
continuum theory are replaced by differences between
coefficients in the discrete theory. Since q has no radial
derivatives in the continuum theory, the corresponding
polymer definition is unique, but there is a choice in
defining the second term of e involving differences
between coefficients at x and xþ σ. Each choice must
agree with the continuum definition in the limit of μ → 0,
and leads to a unique boundary condition as described in
the following paragraph.
One can check that e and q are conserved on the x ≥ σ

portion of the lattice under the dynamics defined by (33)
provided that one of the following boundary conditions
holds:

condition 1∶ bσ ¼ cσ ¼ 0; ð36Þ

condition 2∶ bσ ¼ bσ−μ; cσ ¼ cσ−μ: ð37Þ
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Having a choice of boundary conditions which conserve
the charges is different than in the continuum theory where
only a single option is available. This is a direct result of
discretization: the continuum boundary condition defines
the limiting form of the wave function at small R, while the
polymer boundary conditions involve the value of Ψðt; RÞ
at one or two distinct points using (36) or (37), respectively.
We find numerically (as described below) that in the limit
of μ → 0, the two polymer boundary conditions agree,
cσ−μ ¼ cσ ¼ 0, so that there is no contradiction with the
continuum theory.
We now define the Hilbert space of solutions to the

quantum constraint by applying additional conditions to the
more general Hσ

aux,

Hσ
I ¼ fΨ ∈ Hσ

auxjĥΨ ¼ 0; βI ¼ 0g; ð38Þ
where the subscript I ¼ 1, 2 labels the choice of boundary
conditions,

β1 ≔ cσ; β2 ≔ cσ − cσ−μ: ð39Þ
States in this Hilbert space satisfy the quantum constraint
and preserve the q and e charges on the x ≥ σ portion of the
lattice. With this definition we can move forward and solve
for these states explicitly.

IV. SOLUTIONS

In this section we find solutions to the constraint
ĥΨ ¼ 0. We first look at time-independent solutions and
then study the dynamics.

A. Stationary states

Let us now find explicitly the states ΨE ∈ Hσ
I which are

eigenstates of the Hamiltonian ĤΨ ¼ EΨ (where Ĥ ¼ i∂t
in this representation), within the solution space of the
quantum constraint ĥΨ ¼ 0. These are found using the
following ansatz for the time-dependent part of the states,

cxðtÞ ¼ Cxe−iEt; ð40Þ

where each Cx ∈ C is independent of t. Putting this ansatz
in (33) results in the following difference equation for the
constants [12],

ð2 − μ2Δ − fkÞCk − Ck−1 − Ckþ1 ¼ 0; ð41Þ

where we have used the integer label k ¼ ðx − σÞ=μ for
points on the lattice and defined

Δ≡ E2 −m2; fk ≡ μ2m2

�
E
x
þ m2

4x2

�
: ð42Þ

On a positive energy eigenstate of the form (40), the KG
inner product (34) and energy form (35) are

qðΨ;ΨÞ ¼ 1

2

X
x≥σ

�
Eþm2

2x

�
jCxj2; ð43Þ

eðΨ;ΨÞ ¼ 1

2

X
x≥σ

��
E2 þm2 −

m4

4x2

�
jCxj2

þ 1

μ2
jCxþμ − Cxj2

	
: ð44Þ

Notice that each summand of q is positive semidefinite for
E > 0. The energy summands may become negative at
small values of x, but are positive definite for x ≥ m

2
. In the

continuum theory, the fall-off conditions at small R
guarantee that the energy form is positive definite. Note
however that only the total sums q and e are physical
observables while the summands themselves are not.
Using (41) and either boundary condition, the energy

form is found to be

eðΨ;ΨÞ ¼ EqðΨ;ΨÞ; ð45Þ

so that if the states are normalized to make q ¼ 1, then the
bilinear form e measures energy.
The difference equation cannot be solved analytically,

but using the fact that limk→∞fk ¼ 0, we can solve the
equation at large k,

Ck ¼ A�k; A≡ 1 −
μ2Δ
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

μ2Δ
2

�
2

− 1

s
: ð46Þ

These large k solutions have different behaviors for differ-
ent values of energy at fixedm and μ, and this characterizes
the states.
Bound states For jEj < m we have that jAj > 1. Normal-
izable states require the negative choice of sign Ck ¼ A−k,
giving states which go to 0 at large k.
Scattering states For energies in the range m ≤ jEj <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4
μ2
þm2

q
we get that jAj ¼ 1 so that these solutions are

neither normalizable nor divergent. Energy may be of either
sign, and the bounds go to �∞ in the limit of μ → 0.

Nonexistent states For the range jEj ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
μ2
þm2

q
we have

that jAj < 1 which requires a positive choice of sign Ck ¼
Ak for normalizable solutions. These states have no
counterpart in the continuum theory since in the μ → 0
limit, bound and scattering states cover the entire energy
spectrum. In the polymer theory, we do not find any states
at these energies which satisfy either boundary condition.
Since the difference equation cannot be solved analyti-

cally we resort to numerical techniques. A time-independent
solution is defined by knowing all of the nonzero coefficients
Ck, and these can be found using a shooting method. To do
so, one checks many different values of E to search for those
which satisfy the boundary conditions. Given a particular
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“guess” E, one begins with the solution (46) at some kwhich
satisfies k ≫ μE and k ≫ m=2, then iterates downward
according to the full difference equation (41). After the
coefficients are found all the way down to the first lattice
point, one checks whether one of the boundary conditions
(36) and (37) is satisfied. If the guess at E results in a
solution which satisfies the choice of boundary condition,
this state is recorded as an eigenstate. Otherwise it is
discarded as lying outside the space of solutions. (All of
the results in this section were confirmed using an alternative
numerical method based on continued fractions [14].)

1. Bound states

Let us first review the results of the continuum theory
for comparison where bound states were found only for
m < 1; there are no continuum solutions for m ≥ 1

which satisfy the boundary conditions. The spectrum for
m < 1 is

En ¼ m
2ðλþ nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m4 þ 4ðλþ nÞ2
p ; λ ¼ 1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m4

p
;

ð47Þ
where n is an integer greater than or equal to zero. Notably,
the entire spectrum is positive.
In the polymer theory we also find bound states, but

without any restriction onm. These exist on both choices of
lattice (σ ¼ 0 and σ ¼ μ=2) and for both choices of
boundary conditions. For m < 1 the continuum spectrum
is recovered in the limit of μ → 0.
In Fig. 1 the densities associated to the KG inner product

and energy forms are plotted for the lowest four bound

FIG. 1. Probability and energy densities of the lowest four bound eigenfunctions for m ¼ 0.9 satisfying C0 ¼ 0 on the lattice with
σ ¼ 0 and μ ¼ 0.1. The corresponding energies are (0.8067, 0.8785, 0.8909, 0.8950). Notice in (c) and (d) that the energy density grows
near the origin while the probability density goes to 0.
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eigenfunctions for m ¼ 0.9 satisfying C0 ¼ 0 on the lattice
with σ ¼ 0 and μ ¼ 0.1. Since the energies are all positive,
the KG inner product is positive semidefinite and may be
interpreted as the probability density. The two densities
have similar profiles outside of the first ten or so lattice
points; as the eigenvalue increases, both densities move
further from the origin and become more spread. Increasing
m tends to focus the densities closer to R ¼ 0, while the
solutions are insensitive to the choice of μ. A large μ gives a
coarse approximation to the same curves. For comparison,
we also provide plots in Fig. 2 of the lowest four bound
eigenfunctions for m ¼ 1.1 satisfying C−1 ¼ C0 on the
x ¼ μkþ 1

2
lattice.

Using the probability density, we can calculate radial
expectation values and check where stationary states lie in
relation to their Schwarzschild radii. We note here that
such values are not physical observables since R̂ does not
commute with ĥ, and comment more on this in the
discussion. In Table I the radial expectation values
corresponding to the plots in Fig. 1 are compared with
the Schwarzschild radii. None of these expectation values
are within the corresponding Schwarzschild radius, get-
ting further out as the eigenvalue increases. The radial
expectation values lie within the Schwarzschild radius
only form ≪ 1 [1], but we are unable to probe low enough
values due to numerical limitations.

FIG. 2. Probability and energy densities of the lowest four bound eigenfunctions for m ¼ 1.1 satisfying C−1 ¼ C0 on the lattice with
σ ¼ 1

2
and μ ¼ 0.1. The corresponding energies are (0.8995, 1.0468, 1.0764, 1.0868). Notice in (c) and (d) that there are cusps

at x ¼ σ þ μ in the probability and energy densities due to the choice of boundary condition. The coefficients themselves do not have
a cusp.
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Figure 3 shows the spectrum for m ¼ 0.9 at various
spacings μ. It is interesting that for the boundary condition
(37) the ground state may have a negative energy eigen-
value for a certain range of μ. As μ goes to 0, this negative
eigenvalue goes below −m and leaves the spectrum, and the
next lowest eigenstate becomes the ground state. When

m < 1, for any choice of lattice or boundary condition the
polymer spectrum agrees with the continuum spectrum in
the limit of μ → 0. Note that one cannot use boundary
condition (36) on the σ ¼ 0 lattice due to divergences in the
difference equation which prevent finding c−1.
The polymer boundary conditions have no dependence

on m so there are bound state eigenvalues for m > 1 which
have no counterpart in the continuum theory. As the
spacing μ → 0, the eigenvalues in the m > 1 spectrum
continue to fall for smaller and smaller μ, and do not
converge to any fixed values, so that there is no contra-
diction between the polymer and continuum theories. See
Fig. 4 which shows the spectrum for m ¼ 2 at various
spacings μ. For m > 1 the ground state may have negative

TABLE I. Radial expectation values hRin of the lowest four
energy eigenstates compared with the Schwarzschild radii 2En.
Here we usedm ¼ 0.9 and the boundary condition C0 ¼ 0 on the
lattice with σ ¼ 0 and μ ¼ 0.1.

hRin 3.0839 13.9558 33.0511 60.3732
2En 1.6134 1.7570 1.7817 1.7900

FIG. 3. Polymer energy spectra for rest massm ¼ 0.9with different lattice spacings μ ranging from 0.05 to 0.5. The spectrum resulting
from Dirac quantization is shown in blue filled circles at μ ¼ 0 (the y axis).
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energy with either boundary condition, at certain values of
μ, but the first excited state and above are found to be
positive in all cases tested numerically.

2. Scattering states

In the continuum theory, scattering solutions are found
only when m < 1 as is the case for bound states. The
solutions are given by Coulomb wave functions and have a
continuous energy spectrum for both positive and negative
energies m < jEj < ∞.
From the limiting form of the solution at large k (46),

scattering solutions in the polymer theory are

Ck ∼ e�iωk ð48Þ

where cosω ¼ 1 − μ2Δ
2
. At large k these solutions are

ingoing and outgoing modes.
On the lattice with σ ¼ 0 and using boundary condition

(36), one finds that the coefficient Cþ
0 obtained from the

shooting method starting with eiωk at large k is the complex
conjugate of the coefficient C−

0 obtained from the solution
which is e−iωk at large k, e.g. Cþ

0 ¼ C̄−
0 for any choice of E

in the scattering range. See Fig. 5 for an example. Therefore
the following linear combination satisfies (36) for any
scattering energy,

ΦE ¼ Ψþ − e2i argC
þ
0 Ψ−; ð49Þ

where Ψ� are the solutions with Ck ∼ e�iωk at large k. A
similar argument applies for other choices of lattice and

FIG. 4. Polymer energy spectra for rest mass m ¼ 2 with different lattice spacings μ ranging from 0.05 to 0.5. No such eigenvalues
exist in the continuum theory.
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boundary condition (36) and (37). This argument shows
that the scattering spectrum is continuous for either choice
of boundary condition and any choice of σ, as one would
expect. Furthermore, at large k the scattering solutions are a
linear combination of ingoing and outgoing modes indicat-
ing a bounce at the origin with a particular phase shift as in
the continuum theory [1].

B. Time-dependent states

In the previous subsection we obtained the complete
energy spectrum, and each value in the spectrum labels a
solution to ĥΨE ¼ 0. Consider a Hilbert space defined
using the KG inner product on such states. If we restrict to
the positive energy states, the KG density is positive
semidefinite and may be used as a measure of probability.
In this Hilbert space, an arbitrary state is written as

Φ ¼
X
E

βEðtÞΨE: ð50Þ

In principle, one could build an electronic database
which represents the Hilbert space described in the pre-
vious paragraph. This would involve storing the coeffi-
cients of a large number of energy eigenstates for a fixedm,
on a given lattice and for a given choice of boundary
condition. One could then attempt to construct semiclass-
ical initial data and study the evolution of such data by
calculating the equations of motion for the coefficients
βEðtÞ. However, we have not taken up this task here.
Rather, we pursue a numerical solution to (33) based on the
finite differences naturally defined by the polymer theory.
From this angle, we can ask whether the dynamics we find
can be described using positive energy eigenstates only.

Equation (33) is well suited to numerics since the terms
coming from P̂2 effectively define a second order finite
difference derivative with local error terms on the order of
OðμÞ. The lattice is also fixed by the polymer theory, up to
choices of σ and μ, and the boundary conditions necessary
to conserve the q and e charges have been given in (36) and
(37). In fact, the only thing left to do is to choose a method
of time integration. For this purpose we use Heun’s method,
which is second order accurate in the time step dt. Stability
(the CFL condition [15]) requires that we limit the number
of lattice spaces that data can move in a single time step,
which is done by setting dt ¼ μ

2
.

In the code, we specify initial coefficients cx and initial
velocities _cx, then integrate forward in time according to
(33). In a collapse problem such as this, one often
encounters difficulty near the origin where the data may
become large relative to values elsewhere. Summing large
numbers near R ¼ 0 can yield significant round-off errors
and lead to numerical instability. Because of this it is often
useful to impose a fall-off condition on the solution in order
to improve the stability of the code.
In order to improve stability we borrow from the

continuum theory, since the numerical solutions converge
to continuum solutions in the μ → 0 limit. In [1] it was
found that the fall-off behavior at small R must be Rλþ

where λ� ¼ 1
2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m4

p
. There exists another solution

in the continuum theory which falls off as Rλ− , but this one
does not satisfy the boundary condition. For m < 1 the
“good” solution goes to 0 while the “bad” solution
diverges, but for m ≥ 1 both solutions have the same
fall-off up to oscillatory terms. For m < 1, we improve
[16] the stability of our code by writing the coefficients as
bx ≔ Rλþcx and solving for the bx data at each time step.

FIG. 5. Real and imaginary parts of the coefficients describing typical scattering solutions. Here m ¼ 1
2
, E ¼ 1, and the lattice is

x ¼ kμ. Notice that the real parts of C0 are the same for both solutions, while the imaginary parts have the same magnitude but
opposite sign.
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We monitor stability by tracking the charges q and e
throughout the dynamics. Decreasing the lattice spacing
and time step improves the conservation while increasing
run time.
We study semiclassical ingoing initial data of the

following form:

cxð0Þ ∼
ffiffiffiffiffi
2x

p
e−

ðx−x0Þ2
2w2 ; _cxð0Þ ∼

cxþμ − cx
μ

; ð51Þ

with the proportionality constants chosen to fix q ¼ 1. For
such data, the probability density is an inward-moving (up
to some small outgoing corrections) Gaussian pulse of
width w centered at x0, and the KG density is positive
semidefinite. We choose the proportionality constants to
normalize q ¼ 1 so that e is a measure of the energy.
In the following cases, we study the dynamical behavior

for different values of the rest mass m on the lattice with
σ ¼ 0. Animations of the KG and energy densities for each
of the solutions discussed below can be found at http://ion
.uwinnipeg.ca/~gkunstat/Polymer/.
[m≲ 0.1] For small values of rest mass we find that the
wave function collapses inward, bounces at the origin, then
moves outward toward infinity. Animations of the KG and
energy densities for m ¼ 0.01 with μ ¼ 10−3 can be found
at the web address given above. The energy density shows
two peaks which bounce off the origin while maintaining
their shape. The KG density begins as a single pulse which
splits during the bounce leaving a completely negative
region which coincides with the outer energy peak. Due to
this negative region, we are hesitant to refer to the KG
density as a probability density. The total energy is 5.05 ×
104 in Planck units with deviations of less than 0.3%, while
q remains fixed at 1 with deviations of less than 6 × 10−5%.
[0.1≲m < 1] As the rest mass approaches the Planck mass
from below, we find that the wave function continues to
bounce off the origin, but now exhibits self-interaction
(dispersion) throughout the process. The increasing spread
of the densities implies the state is moving away from
semiclassicality and becoming more quantum as m in-
creases. As an example, we have generated animations of
the KG and energy densities for m ¼ 0.5. Here the total
energy is 25.2 with deviations of less than 1.6%, while q
remains normalized within 8 × 10−5%.
[m ≥ 1] The numerics become increasingly unstable as m
exceeds the Planck mass, and may crash for certain choices
of the other parameters. Given that this polymer theory is
effectively a finite difference approximation of the con-
tinuum, we expect the numerical solution to follow the
continuum behavior more closely as μ → 0. Since the
continuum theory does not have solutions for this range
of m, we expect the numerics to fail for small μ. These
numerical difficulties are lessened for large values of μ
which move the first lattice point further from the origin
where the potential diverges [17]. For example, withm ¼ 1

and μ ¼ 10−4, the code becomes unstable when the pulse
reaches the origin, while it exhibits a bounce (with some
noise near the origin) when μ ¼ 0.1. See for example the
animations of KG and energy densities for m ¼ 1 with
μ ¼ 0.1. Here the total energy is 10.0 but undergoes a large
deviation of ∼9% during the bounce, while the KG inner
product remains conserved within 0.6%.
For all parameter ranges for which the code is stable, we

find generically that the probability density becomes
negative locally at some time during the evolution, and
these negative portions do not go away as evolution
continues. It is possible that such an effect could be due
to numerical inaccuracy. However, negative KG density for
ingoing Gaussian initial data is seen even for very small
values of m where the numerics are optimal. The impli-
cation is that the dynamics we find numerically cannot be
described in terms of positive energy eigenstates, i.e., these
states Ψðt; RÞ are not within the Hilbert space discussed at
the beginning of the section. Whether negative eigenstates
are a requisite component of any bouncing state is an open
question.

V. DISCUSSION

We studied the polymer quantum mechanics of a self-
gravitating thin shell. The energy spectrum was found by
solving for stationary eigenstates using the shooting
method. Whenm < 1, the spectrummatches the continuum
spectrum found in [1] as the polymer scale μ → 0. We find
two independent choices of boundary conditions which
conserve energy and the KG inner product, and in the limit
μ → 0 these are both satisfied and are consistent with the
(m < 1) continuum boundary condition. For finite values of
μ we find that there may be negative energies associated
with bound states which is something not seen in the
continuum theory. For m ≥ 1 where no continuum sol-
utions exist, we find that the bound state spectrum does not
converge to fixed values as μ → 0, so that there is no
contradiction.
In the classical theory, all initial conditions lead to black

hole formation. Bound states are not present, so it is very
interesting to find them in the quantum theory. Replacing
the classical particle (shell) by a quantum wave function
has allowed for a superposition of ingoing and outgoing
solutions with total energy jEj < m which satisfy the
boundary condition. For positive energies, these states
have positive definite KG density. If we interpret this as
the probability density, these are highly quantum states
with a large uncertainty in position. Scattering states for
jEj ≥ m are explicitly a combination of ingoing and out-
going states at large x. Since charges are conserved by these
states, no energy is lost down a singularity at R ¼ 0,
indicating a unitary quantum evolution.
A question this work brings to light is the meaning

of states in quantum gravity. Each state is a function of
both time and space, representing a superposition of shell
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spacetimes. In this formalism, how can we extract semi-
classical information and recover a single notion of
spacetime? The physical observables seem limited to the
total energy, which defines the location of a Schwarzschild
radius but does not indicate the shell location. If one wants
to learn more about the spacetime, it seems something more
is needed. To this end we considered the radial expectation
value to represent the position of the shell. Even classically,
the value of the radius at a particular time is a slicing
(gauge) dependent quantity. In quantum gravity we may
need to be open to such gauge-dependent observables.
We studied the dynamics of an ingoing Gaussian

probability density, taken to represent a semiclassical
ingoing shell for small m ≪ 1, and becoming increasingly
quantum (with a larger spread in probability density) as m
approaches the Planck mass from below. The probability
density is positive semidefinite only for positive energy
eigenstates. For all m less than one Planck mass, we find
that the wave packet bounces off the origin, but picks up
regions of negative probability density. This implies that
the bouncing states we find cannot be represented as a sum
over positive energy eigenstates. This suggests that

negative energy eigenstates may play an important role
in quantum singularity resolution. It is not clear whether or
not the standard physical interpretation of these states as
positive energy solutions moving background in time is
relevant in the present context. In any case, the present
model seems to be an ideal theoretical laboratory for
studying this and other important issues in quantum
gravity.
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