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In this work we present Finsler gravitational waves. These are a Finslerian version of the well-known
pp-waves, generalizing the very special relativity line element. Our Finsler pp-waves are an exact solution
of Finslerian Einstein’s equations in vacuum and describe gravitational waves propagating in an anisotropic
background.
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I. INTRODUCTION

Finsler geometry is a generalization of Riemannian
geometry in which geometrical quantities are direction
dependent. The main object is the so-called Finsler struc-
ture F, which defines the infinitesimal line element ds ¼ F.
Riemannian geometry is recovered when the square of the
Finsler function is constrained to be quadratic in dx,

Fðx; dxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gijðxÞdxidxj

q
. Finsler geometry has found

applications in several fields of research where anisotropic
media play a role, such as seismology [1], optics [2], and
medical imaging [3–6]. Finsler geometry is also appealing
in relativity and cosmology [7,8], in particular concerning
scenarios violating full Lorentz invariance.
In this work we consider the very special relativity

(VSR) framework proposed by Cohen and Glashow [9],
where only a subgroup of the full Lorentz group is
preserved. Gibbons et al. [10] pointed out the Finslerian
character of the corresponding line element, an anisotropic
generalization of Minkowski spacetime. The question
arises whether it is possible to find anisotropic generaliza-
tions of curved spacetimes, which satisfy Finslerian
Einstein’s equations. Several approaches to Finslerian
extensions of the general relativity equations of motion
have been suggested [11–14]. Finslerian extensions of
well-known exact solutions such as the Schwarzschild
metric have been proposed [15]. In the context of cosmol-
ogy, Finslerian versions of the FRW metric have been
studied [16,17]. Finslerian linearized gravitational waves
have also been explored [18,19].
In this work we choose to adopt the framework by Pfeifer

and Wohlfarth [13,14], in which the Finslerian field
equation is derived from a well-defined action and the
geometry-related term obeys the same conservation law as
the matter source term. In this context we propose a

Finslerian version of the well-known pp-waves. The pp-
waves belong to a wider class of spacetimes with the
property that all curvature invariants of all orders vanish,
the so-called vanishing scalar invariant (VSI) spacetimes
[20]. These are relevant in some supergravity and string
theory scenarios since they are, due to the VSI property,
exact solutions to the corresponding equations of motion
[21–23]. We show that our Finsler pp-waves are an exact
solution of the Finslerian field equation in vacuum.

II. THEORY

A. (Pseudo-)Finsler geometry in a nutshell

Let M be an n-dimensional C∞ manifold. We denote
the tangent bundle of M, the set of tangent spaces TxM
at each x ∈ M, by TM ≔ fTxMjx ∈ Mg. We can write
each element of TM as ðx; yÞ, where x ∈ M and y ∈ TxM.
A Finsler structure is a function defined on the tangent
bundle TM

F∶ TM → ½0;∞Þ ð1Þ
satisfying the following properties:
(1) Regularity: F is C∞ on the slit tangent bundle

TMn0 ¼ TMnfy ¼ 0g.
(2) Homogeneity: Fðx; λyÞ ¼ λFðx; yÞ, ∀λ > 0 and

ðx; yÞ ∈ TM.
(3) Strong convexity: The fundamental metric tensor

gijðx; yÞ ¼
1

2

∂2F2ðx; yÞ
∂yi∂yj ð2Þ

with i; j ¼ 1;…; n, is positive definite for all
ðx; yÞ ∈ TMn0.

The pair ðF;MÞ is called a Finsler manifold or Finsler
space. A Finsler manifold is Riemannian when the funda-
mental tensor is independent of the tangent vector y,
gijðxÞ≡ gijðx; yÞ. A thorough treatment of Finsler geom-
etry can be found in [24]. To be precise, in this work we
consider pseudo-Finsler spaces, for which the regularity
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property may not hold on the null vectors and the
fundamental tensor is not restricted to be positive definite.

B. Finslerian generalization of Einstein’s equations

In this section we treat one of the approaches to construct
a Finslerian version of Einstein’s equations. In doing so we
consider the particular case of vacuum and Berwald spaces,
which we characterize later.
We introduce in what follows a number of Finslerian

objects needed to state the field equation. The geodesic
spray coefficients are defined as

Gi ≔ γijkyjyk ð3Þ
where γijk are the formal Christoffel symbols of the
fundamental metric tensor (2). These adopt the same form
as in the Riemannian case, but in this setting we generally
have γijk ¼ γijkðx; yÞ. As their name suggests the geodesic
spray coefficients play a role in the Finslerian geodesic
equations, which in the simplest case take the form

ẍi þ Gi ¼ 0 ð4Þ
where in Gi we set yi ≔ _xi ¼ dxi=dt, with t parametrizing
the geodesic curve. A useful identity reads

Gi ¼ Γi
jkyjyk ð5Þ

where Γi
jk are the so-called Chern connection coefficients.

These adopt the same form as the formal Christoffel
symbols γijk, but the usual partial derivative is replaced
by the following derivative:

δ

δxi
≔

∂
∂xi − Nj

i
∂
∂yj ð6Þ

where Nj
i ¼ ð1=2Þð∂Gj=∂yiÞ is known as the nonlinear

connection. The Chern connection is one of the possible
connections in Finsler geometry, and probably the most
studied one. It has no torsion (i.e., Γi

jk ¼ Γi
kj), and it is

almost metric compatible.
Note that identity (5) does not imply that the Chern

connection coefficients and the formal Christoffel symbols
are equal. In fact, the contribution to the Chern connection
coefficients which arises from the nonlinear connection in
(6) vanishes always when contracted with the y-quadratic
term in Eq. (5), due to homogeneity considerations.
From the geodesic spray coefficients the tensor known as

the predecessor of the flag curvature can be constructed as
follows:

Ri
k ¼

1

F2

�
∂xkG

i −
1

4
∂ykG

j∂yjG
i

−
1

2
yj∂xj∂ykG

i þ 1

2
Gj∂yj∂ykG

i

�
ð7Þ

where ∂xk ¼ ∂=∂xk, ∂yk ¼ ∂=∂yk. This curvature tensor is
related to the Finslerian Riemann tensor. Note that it does
not reduce to the Ricci tensor in the Riemannian limit. We
are now ready to introduce the simplest curvature scalar in
Finsler geometry, the Finslerian Ricci scalar, as the trace of
the tensor Ri

k [24]:

Ric ≔ Ri
i: ð8Þ

Clearly, its construction is notably different from that of the
Ricci scalar in Riemannian geometry.
The following Finslerian Ricci tensor has been

proposed [25]:

Ricij ≔
1

2
∂yi∂yjðF2RicÞ: ð9Þ

This tensor is manifestly covariant and symmetric.
Moreover, if the Finsler structure F is Riemannian, it
reduces to the usual Ricci tensor. It is therefore a natural
generalization of the Ricci tensor.
In what follows we adopt the approach by Pfeifer and

Wohlfarth [13,14]. Here, a Finslerian Einstein-Hilbert
action is proposed and the following vacuum Finslerian
scalar field equation is derived:

gijRicij − 3Ricþ gijð∇B
i
_Ak

kj þ F∂yi Ä
k
kjÞ ¼ 0: ð10Þ

Here gij is the inverse of the fundamental tensor (2),∇B is the
Berwald covariant derivative, _Aijk ¼−ð1=4Þylð∂yi∂yj∂ykG

lÞ
and Äijk ¼ _Aijkjsðys=FÞ, where j denotes the horizontal
covariant derivative (see [14,24] for the explicit form of
the Berwald and horizontal covariant derivatives). If the
Finsler structure F is Riemannian, Eq. (10) is equivalent to
the Einstein vacuum equations Rij ¼ 0 [14].
From now on we only consider a particular class of

Finsler spaces, the so-called Berwald spaces. These are
defined by the property that the geodesic spray coefficients
Gi, Eq. (3), are quadratic in y. Equivalently, the Chern
connection coefficients Γi

jk (in natural coordinates) are
independent of y. A remarkable property of Berwald spaces
is that the Chern connection coefficients coincide with the
Christoffel symbols of a (non-unique) Riemannian metric
on M, as proved by Szabó [26]. Berwald spacetimes have
for example been considered in [27].
In the Berwald case the quantities _Aijk trivially vanish

(recall that the geodesic spray coefficients are quadratic
in y). Therefore, Eq. (10) reduces to

gijRicij − 3Ric ¼ 0 ð11Þ

which we regard as the Finslerian vacuum field equation for
Berwald spaces. Note that this equation can also be
reformulated as R − 3Ric ¼ 0, where R ¼ gijRicij is the
Finslerian analog of the scalar curvature.
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C. Very special relativity

Cohen and Glashow [9] pointed out that the local
laws of physics do not need to be invariant under the
full Lorentz group but only under a certain subgroup,
ISIM(2). This is called very special relativity.
Subsequently, Gibbons, Gomis and Pope [10] studied
deformations of the subgroup ISIM(2), investigating
possibilities to incorporate gravity into the theory.
They showed that the 1-parameter family DISIMbð2Þ,
where D stands for deformation and b is a dimension-
less parameter, is the only physically acceptable defor-
mation of the VSR subgroup. The line element which is
invariant under DISIMbð2Þ reads

ds ¼ ð−2dudvþ ðdx1Þ2 þ ðdx2Þ2Þð1−bÞ=2ð−duÞb ð12Þ

where we use coordinates xμ ¼ðu;v;x1;x2Þ, and u¼
ð1= ffiffiffi

2
p Þðt−x3Þ, v ¼ ð1= ffiffiffi

2
p Þðtþ x3Þ are light-cone coor-

dinates. Obviously, this reduces to the Minkowski line
element for b ¼ 0. As Gibbons et al. noted, (12) is a
Finslerian line element, which had already been sug-
gested by Bogoslovsky [28]. The associated Finsler
structure is given by

Fðx; yÞ ¼ ð−2yuyv þ ðy1Þ2 þ ðy2Þ2Þð1−bÞ=2ð−yuÞb ð13Þ

where yμ ¼ ðyu; yv; y1; y2Þ. This space is locally
Minkowskian [i.e. the Finsler structure is independent
of x, Fðx; yÞ≡ FðyÞ] and it has vanishing geodesic
spray coefficients:

Gi ¼ 0: ð14Þ
Therefore Finslerian curvature tensors are zero, and
geodesics are defined by linear equations. Such a space
is called projectively flat.

D. Finsler pp-waves

Let us now consider the spacetime:

ds ¼ ðgμνdxμdxνÞð1−bÞ=2ð−duÞb: ð15Þ
This is a modification of the Bogoslovsky line element
given by Eq. (12), where the Minkowski metric is sub-
stituted by a general Riemannian metric gμν. We propose
the case where gμν ≡ pp-waves. The well-known pp-wave
metric is given by [29]

ds2¼−2dudv−Φðu;x1;x2Þdu2þðdx1Þ2þðdx2Þ2: ð16Þ

This metric is an exact vacuum solution of the Einstein’s
equations when the function Φ is harmonic, △ðx1;x2ÞΦ ¼ 0,
and it describes exact gravitational waves propagating in a
Minkowski background. Thus we have the following
ansatz:

ds ¼ ð−2dudv − Φðu; x1; x2Þdu2
þ ðdx1Þ2 þ ðdx2Þ2Þð1−bÞ=2ð−duÞb: ð17Þ

Note that we recover the pp-wave metric in the case b ¼ 0.
The associated Finsler structure is of the form

Fðx; yÞ ¼ ð−2yuyv − Φðu; x1; x2ÞðyuÞ2
þ ðy1Þ2 þ ðy2Þ2Þð1−bÞ=2ð−yuÞb: ð18Þ

From Fðx; yÞ we derive the fundamental tensor (see
Appendix), the Christoffel symbols, and the geodesic spray
coefficients defined by Eq. (3):

Gu ¼ 0;

Gv ¼ yuy1∂x1Φþ yuy2∂x2Φþ ðyuÞ2
2

∂uΦ;

G1 ¼ ðyuÞ2
2

∂x1Φ;

G2 ¼ ðyuÞ2
2

∂x2Φ:

These are obviously quadratic in y, and thus the postulated
Finslerian space is of Berwald type. We can now compute
the Chern connection coefficients by Γi

jk ¼ ð1=2Þ∂yj∂ykG
i

(which holds for Berwald spaces):

Γv
uu ¼

1

2
∂uΦ; Γv

u1 ¼ Γ1
uu ¼

1

2
∂x1Φ;

Γv
u2 ¼ Γ2

uu ¼
1

2
∂x2Φ: ð19Þ

Remarkably, these are exactly the same as the Christoffel
symbols of the metric (16), which also implies that
geodesic equations adopt the same form. Therefore, the
proposed Finslerian line element (17) is an example of a
(pseudo-Finsler) Berwald space whose Chern connection
coincides with the Levi-Civita connection of a certain
pseudo-Riemannian metric on M, the pp-wave metric.
This is an example of a nontrivial metric satisfying Szabó’s
theorem in the context of pseudo-Finsler spaces.
The Finslerian Ricci scalar can be computed to be

Ric ¼ ðyuÞ2
2F2

ð∂2
x1Φþ ∂2

x2ΦÞ: ð20Þ

Hence, the Finslerian Ricci tensor has only the nonzero
component:

Ricuu ¼
1

2
ð∂2

x1Φþ ∂2
x2ΦÞ ¼

1

2
△ðx1;x2ÞΦ: ð21Þ

The Finslerian vacuum field equation (11) reduces to

guuRicuu − 3Ric ¼
�
1

2
guu −

3

2

ðyuÞ2
F2

�
△ðx1;x2ÞΦ: ð22Þ
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Therefore, we conclude that every harmonic function Φ
leads to an exact solution of the Finslerian Einstein’s
equations in vacuum (for Berwald spaces). This is com-
pletely analogous to the pp-waves case. We call the line
element (17), with Φ a harmonic function, Finsler
pp-waves. It describes exact gravitational waves propagat-
ing in an anisotropic background.
As a curiosity, we point out that the Finslerian analog of

the scalar curvature is of the form

R ¼ guuRicuu ¼
2b

1þ b
Ric ð23Þ

which vanishes as expected in the Riemannian limit b ¼ 0.
Remark.—The fundamental tensor arising from line

element (15) is ill defined in the subspaces yu ¼ 0 and
gμνyμyν ¼ 0, the null cone of the Riemannian metric. In
such cases the Finsler structure (18) vanishes and the
fundamental tensor becomes singular. However, this is not
specific to our Finsler pp-waves since it holds for the
Bogoslovsky line element (12) as well, in the subspaces
yu ¼ 0 and ημνyμyν ¼ 0, with ημν the Minkowski metric.
This shortcoming of pseudo-Finslerian line elements of this
type has already been discussed in [14]. In fact, the issues
regarding the null cone of the Riemannian metric can
seemingly be avoided by working with a smooth function L
such that F ¼ jLjð1−bÞ=2, instead of the Finsler structure
F [30].

III. DISCUSSION

In this work we present a Finslerian version of the well-
known pp-waves, which generalizes the (deformed) VSR
line element investigated by Gibbons et al. Our Finsler pp-
waves are an exact solution of Finslerian Einstein’s
equations in vacuum (for Berwald spaces). This result
shows that the considered Finslerian gravity theory permits,
as Einstein’s gravity, traveling gravitational waves. It
should be noted that Finsler and Riemannian pp-waves
lead to geodesics of the same form, which poses the
question of whether they could actually be distinguished
from each other by standard tests of gravity. The presented
solution also has interesting mathematical properties, since
it is an example of a nontrivial metric satisfying Szabó’s
theorem in the context of pseudo-Finsler spaces.
In future work we will consider a number of open

questions. First of all, the physical implications of the
singularities of the fundamental tensor should be inves-
tigated. It would also be interesting to study the curvature
scalar invariants corresponding to the presented Finsler pp-
waves solution. Recall that Riemannian pp-waves belong
to the class of spaces with vanishing scalar invariants.
However, it is not clear how such spaces would be defined

in a Finsler setting since scalar quantities, such as the
Finslerian Ricci scalar and the Cartan scalar, are in
principle direction dependent. Last, an obvious next step
would be to consider solutions of Finslerian VSI type,
where generalizations of the pp-wave metric are employed,
both in four and in higher dimensions.
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APPENDIX

The components of the fundamental tensor gij
corresponding to ansatz (18) read as follows, with
α ¼ ð−2yuyv − Φðu; x1; x2ÞðyuÞ2 þ ðy1Þ2 þ ðy2Þ2Þ:

guu ¼
F2

α

�
−Φ − b

×

�ððy1Þ2 þ ðy2Þ2Þ2 − 2bððy1Þ2 þ ðy2Þ2 − yuyvÞ2
αðyuÞ2

−
2ðyvÞ2 − ðyuÞ2Φ

α
þ Φ

��

guv ¼
F2

α

�
−1 − b

�
ð1 − 2bÞ þ 2ð1 − bÞ y

uyv þ ðyuÞ2Φ
α

��

gvv ¼
F2

α
ð−2bÞð1 − bÞ ðy

uÞ2
α

g11 ¼
F2

α
ð1 − bÞ

�
1 − 2b

ðy1Þ2
α

�

g22 ¼
F2

α
ð1 − bÞ

�
1 − 2b

ðy2Þ2
α

�

gu1 ¼
F2

α
2bð1 − bÞ

�
y1

yu
þ y1ðyv þ yuΦÞ

α

�

gu2 ¼
F2

α
2bð1 − bÞ

�
y2

yu
þ y2ðyv þ yuΦÞ

α

�

gv1 ¼
F2

α
2bð1 − bÞ y

1yu

α

gv2 ¼
F2

α
2bð1 − bÞ y

2yu

α
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