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In this work, the three-dimensional nonlinearly charged black holes have been considered with a power-
law modified electromagnetic theory. The black hole solutions to Einstein’s three-dimensional field
equations with a negative cosmological constant have been constructed in the presence of power-law
nonlinear electrodynamics. Through the physical and mathematical interpretation of the solutions, a new
class of asymptotically anti–de Sitter (AdS) black hole solutions has been introduced. The area law, surface
gravity, and Gauss’s law are utilized to obtain the entropy, temperature, and electric charge of the new AdS
black holes, respectively. The quasilocal mass of the solutions has been calculated based on the counterterm
method. A Smarr-type formula for the mass as a function of entropy and charge has been obtained. It has
been shown that the thermodynamical quantities satisfy the first law of thermodynamics for the new AdS
black holes. Also, it has been found that in order for the Smarr mass formula to be compatible with the first
law of black hole thermodynamics, the cosmological parameter Λ should be treated as a thermodynamical
variable and the generalized first law of thermodynamics has been introduced. Through the canonical
ensemble method, the black hole remnant or phase transitions have been investigated regarding the black
hole heat capacity. It has been found that the AdS black hole solutions we just obtained are
thermodynamically stable.
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I. INTRODUCTION

Black holes, as one of the interesting predictions of
Einstein’s theory of relativity, have been investigated
by theoretical physicists in four and higher dimensional
spacetimes for a long time. From 1992, when the first
(2þ 1)-dimensional black hole solutions were discovered
by Banados, Teitelboim, and Zanelli (BTZ) [1], this subject
area has been considered extensively [2], and it still has
many unknown parts to be studied. A large number of
studies on charged and uncharged black holes, dilatonic
black holes, hairy black holes, rotating black holes, etc., in
the presence or absence of a cosmological constant in
(2þ 1)-dimensional spacetimes have been done by many
authors [3]. Among the reasons it should be interesting to
study the physics of lower dimensional spacetimes, we
mention that black holes in lower dimensions are easier to
study and can essentially lead to a deeper insight into the
fundamental ideas in comparison to higher dimensional
black holes. In addition, according to (A)dS/CFT corre-
spondence, there is a dual between quantum gravity on anti
(–de Sitter) space and a Euclidean conformal field theory
on the lower dimensional spacetimes [4,5]. Therefore, it is
useful for understanding quantum field theory on A(dS)
spacetimes.
Recently, the study of black hole physics, and especially

charged three-dimensional black holes, has been general-
ized making use of the nonlinear theory of electrodynamics.

The initial idea to modify Maxwell’s theory of electro-
magnetics was apparently outlined for the first time by
Born and Infeld [6]. The modification itself originates from
the quest of finding a new electromagnetic theory that is
able to produce a finite amount of self-energy for pointlike
charges. From 1934 up to now, a large number of modified
theories of electromagnetics (or nonlinear electromagnetic
theory) have been introduced, which are constructed by
nonlinear combinations of the Maxwell invariant [7–10].
All of the proposed nonlinear electromagnetic theories
reduce to the usual theory of electromagnetics in the special
cases [8]. Models of nonlinear electrodynamics can be
considered as the effective models with the quantum
corrections are taken into account. Maxwell’s theory of
electrodynamics is a special case of nonlinear electromag-
netic theory for weak fields. If the electromagnetic fields
are high strength, the self-interaction of the photons cannot
be forgotten and the electromagnetic theory has to be
generalized to nonlinear models. Also the properties and
their applications to the geometrical physics and especially
physics of charged black holes have been studied exten-
sively [7–11]. Even if the nonlinear electrodynamics
originally was proposed as an instrument for removing
the divergences from the classical electrodynamics, it is
now a helpful theory for studying the properties of the
charged black holes.
On the other hand, after the works of Bekenstein [12], of

Bardeen, Carter, and Hawking [13], and of Hawking [14], it
is well known that black holes can be considered as the
thermodynamical systems with a temperature proportional*m.dehghani@ilam.ac.ir
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to the surface gravity and with entropy equal to one-fourth
of the horizon area. The main object here is to provide a
detailed analysis of the thermodynamical properties of
three-dimensional electrically charged black holes in the
presence of the power-law Maxwell field. The power-law
Maxwell field is one of the nonlinear models that has been
considered in the context of black hole physical and
thermodynamical properties by many authors [9,10].
This paper is outlined based on the following order. In

Sec. II, we obtained the general form of the nonlinear
electromagnetic and gravitational field equations by vary-
ing the proper three-dimensional action. By introducing
the power-law model of nonlinear electrodynamics we
solved the field equations in a spherically symmetric
three-dimensional geometry. The physical and mathemati-
cal properties of the solutions are analyzed, and through
consideration of the mathematical constraints on the param-
eters in the proposed model, we introduced a new class of
asymptotically AdS black hole solutions. Section III is
devoted to thermodynamical analysis of the new black hole
solutions we just obtained. We have calculated the temper-
ature, entropy, electric potential, conserved mass, and
charge of the black holes. We showed that the black hole
thermodynamical first law is satisfied for the BTZ and the
new black hole solution we just obtained. We found that, in
order to overcome the incompatibility between the Smarr
mass formula and the first law of thermodynamics, the
cosmological parameter Λ must be treated as a thermody-
namical variable. Also the proper form of the Smarr mass
formula, as the integral form of the thermodynamical first
law, has been obtained. Finally, making use of the canonical
ensemblemethod and regarding the black hole heat capacity,
the thermodynamical stability and phase transitions of the
black holes are studied. The results are summarized and
discussed in Sec. IV.

II. FIELD EQUATIONS AND SOLUTIONS

The action for three-dimensional Einstein-Λ-nonlinear
electrodynamics theory can be written in the following
general form:

I ¼ −
1

16π

Z ffiffiffiffiffiffi
−g

p
d3x½R − 2Λþ LðF Þ�; ð2:1Þ

where R is the Ricci scalar, Λ ¼ −1=l2 is the AdS
cosmological constant, and LðF Þ denotes the
Lagrangian of nonlinear electrodynamics as a function
of Maxwell’s invariant F ¼FμνFμν with Fμν¼∂μAν−∂νAμ

and Aμ is the electromagnetic potential. Varying action
(2.1) with respect to the gravitational field we get Einstein’s
field equations as

Rμν −
1

2
Rgμν −

1

l2
gμν ¼ Tμν; ð2:2Þ

and the corresponding stress-energy tensor Tμν is given by

Tμν ¼
1

2
LðF Þgμν − 2L0ðF ÞFμαFν

α; ð2:3Þ

where L0ðF Þ means the derivative of LðF Þ with respect to
the argument. Also varying action (2.1) with respect to the
electromagnetic field yields

∇μ½L0ðF ÞFμν� ¼ 0

or equivalently ∂μ½
ffiffiffiffiffiffi
−g

p
L0ðF ÞFμν� ¼ 0: ð2:4Þ

The only nonvanishing component of the electromagnetic
field is that of Ftr. Assuming as a function of r, that is,
Ftr ¼ EðrÞ ¼ −h0ðrÞ, we have

F ¼ −2E2ðrÞ ¼ −2ðh0ðrÞÞ2: ð2:5Þ

We consider the following ansutz as the three-dimensional
spherically symmetric solution to Einstein’s field equa-
tions (2.2):

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dθ2: ð2:6Þ

It leads to the following independent differential equations:

f0 −
2

l2
r ¼ r½LðF Þ þ 4ðh0ðrÞÞ2L0ðF Þ�; ð2:7Þ

f00 −
2

l2
¼ LðF Þ: ð2:8Þ

Also, we obtain the Ricci scalar, Ricci, and Riemann
invariants as

R ¼ gμνRμν ¼ −f00 −
2f0

r
; ð2:9Þ

RμνRμν ¼
1

2

�
f00 þ f0

r

�
2

þ
�
f0

r

�
2

; ð2:10Þ

RμνρλRμνρλ ¼ ðf00Þ2 þ 2

�
f0

r

�
2

: ð2:11Þ

In the following subsection, by introducing a nonlinear
model of electrodynamics we try to solve the above
differential equations for obtaining f, h, and Ftr as
functions of radial component r. Also, we consider the
singularities of the spacetime described by metric (2.6).

A. Power-law nonlinear electrodynamics

We begin with the following Lagrangian for the power-
law nonlinear electrodynamics [10]
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LðF Þ ¼ ðαpF Þp; ð2:12Þ

where αp is a coupling constant. Since the power-law
nonlinear electrodynamics is considered as the extension of
Maxwell’s electromagnetic theory, it must be reduced to
Maxwell’s electromagnetic theory as a special case. For this
purpose we set αp ¼ −1. In the case of p ¼ 1 the power-
law nonlinear theory of electromagnetics recovers the
standard Maxwell’s electromagnetic theory.
From Eq. (2.12) with αp ¼ −1 we can write

L0ðF Þ ¼ −pð−F Þp−1: ð2:13Þ

Now making use of Eq. (2.13) together with Eqs. (2.4)
and (2.5) we have

ðh0ðrÞÞ2p−2½h0ðrÞ þ ð2p − 1Þrh00ðrÞ� ¼ 0: ð2:14Þ

The solution to the differential equation (2.14) can be
obtained as

hðrÞ ¼
(
q lnðrlÞ for p ¼ 1;

qðrlÞ
2p−2
2p−1 for p ≠ 1;

ð2:15Þ

where q is the integration constant related to the black hole
charge. Also the nonzero component of the electromagnetic
field is given by

Ftr ¼
8<
:

q
r for p ¼ 1;

q
l

�
2p−2
2p−1

�
ðrlÞ

−1
2p−1 for p ≠ 1.

ð2:16Þ

Now, making use of Eqs. (2.12) and (2.13) in Eq. (2.7), the
metric function fðrÞ can be calculated as

fðrÞ ¼
( r2

l2 − 2q2 lnðrlÞ −m for p ¼ 1;

r2

l2 þ l2ð2Þpð1 − 2pÞq2p
�
2p−2
2p−1

�
2p−1ðrlÞ

2p−2
2p−1 −m for p ≠ 1;

ð2:17Þ

where m is an integration constant related to the black hole
mass. Noting Eq. (2.12), one can easily show that the
metric function fðrÞ satisfies the last independent differ-
ential equation (2.8).
Let us determine the range of parameter p for which our

obtained solutions have reasonable behavior and physically
are more interesting for us. There is a restriction on p based
on the fact that the electric potential hðrÞ should have a
finite value at infinity. This leads to

2p − 2

2p − 1
< 0 or equivalently

1

2
< p < 1: ð2:18Þ

Since ð2p−2
2p−1Þ2p−1 appears in the metric function as a

coefficient, it must be noted that for the metric function
to be a real one, 2p cannot be a rational number with an
even number in the denominator. Figure 1 shows the plot of
fðrÞ versus r for alternative allowed p values. It is clear
from Fig. 1 that, if one fixes the black hole mass and charge
properly, it is possible to produce different kinds of black
holes (i.e., naked singularity, extreme, and two-horizon
black holes) that correspond to suitable choices of allowed
p values.
To investigate the asymptotic behavior of the solutions,

we notice the metric function fðrÞ for the limit of r → ∞.
One can show that the p dependent power of r (i.e., 2p−2

2p−1)

is negative for 1
2
< p < 1, positive for p < 1

2
or p > 1,

and equal to 2 for p ¼ 0. Thus it can be obtained from
(2.17) that

lim
r→∞

fðrÞ ¼ r2

l2
−m for

1

2
< p < 1; ð2:19Þ

which confirms that the metric function fðrÞ describes an
asymptotically AdS spacetime for the allowed p values.
Also the spacetime is pure AdS for p ¼ 0 with the
following effective cosmological constant:

1

l2
eff

¼ 1

l2
þ 1

2
: ð2:20Þ

0 1 2 3 4 5

0

10

20

30

r

f
r

FIG. 1. fðrÞ versus r for M ¼ 1, Q ¼ 1, and l ¼ 1. Red,
brown, and green lines correspond to p ¼ 3

5
, p ¼ 5

7
, and p ¼ 9

7
,

respectively. They show black holes with two horizons. The blue
line (p ¼ 4

5
) shows an extreme black hole, and the black line

(p ¼ 6
7
) shows the naked singularity. Note that Eqs. (3.16) and

(3.24) have been used.
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Making use of Eqs. (2.9)–(2.11) and (2.17), one can rewrite the Ricci scalar, Ricci, and Riemann invariants in the following
forms:

R ¼ −
6

l2
þ
( 2q2

r2 for p ¼ 1;

ð2Þpq2pð4p − 3Þ
�
2p−2
2p−1

�
2pðrlÞ

−2p
2p−1 for 1

2
< p < 1;

ð2:21Þ

RμνRμν ¼
12

l4
þ
( 4q4

r4 − 8q2

l2r2 for p ¼ 1;

ð2Þpþ2q2p

l2

�
2p−2
2p−1

�
2pð3 − 4pÞðrlÞ

−2p
2p−1 þ ð4Þpq4pð6p2 − 8pþ 3Þ

�
2p−2
2p−1

�
4pðrlÞ

−4p
2p−1 for 1

2
< p < 1;

ð2:22Þ

RμνρλRμνρλ ¼
12

l4
þ
( 12q4

r4 − 8q2

l2r2 for p¼ 1;

ð2Þpþ2q2p

l2

�
2p−2
2p−1

�
2pð4p− 3ÞðrlÞ

−2p
2p−1 þ ð4Þpq4pð8p2 − 8pþ 3Þ

�
2p−2
2p−1

�
4pðrlÞ

−4p
2p−1 for 1

2
< p < 1.

ð2:23Þ

Note that the Ricci scalar, Ricci, and Riemann invariants
diverge for the allowed p values. There is singularity at
r ¼ 0 (i.e., r ¼ 0 is an essential singularity) for both the
charged BTZ black holes (p ¼ 1) and the asymptotically
anti–de Sitter (1

2
< p < 1) black holes.

III. THERMODYNAMICS

In this section we explore thermodynamical properties of
three-dimensional nonlinearly charged black hole solutions
we have obtained. Also the black hole stability and phase
transitions are considered regarding the black hole heat
capacity. At first we are interested in the charged BTZ
black holes.

A. The BTZ black hole with Maxwell
electrodynamics (p= 1)

The BTZ black hole is a solution to the Einstein-
Maxwell theory in AdS space. It is identified with the
metric function (2.17) with p ¼ 1, that is,

fðrÞ ¼ r2

l2
− 2q2 ln

�
r
l

�
−m; ð3:1Þ

where q and m are the integration constants and are related
to the black hole charge Q and mass M through the
following relations [15]:

m ¼ 8M; q ¼ 2Q: ð3:2Þ

One can obtain the Hawking temperature associated with
the black hole horizon r ¼ rþ, which is the root of
fðrþÞ ¼ 0, in terms of the surface gravity κ as

T ¼ κ

2π
¼ 1

4π

d
dr

fðrÞjr¼rþ ¼ 1

2π

�
rþ
l2

−
q2

rþ

�
: ð3:3Þ

Next, we calculate the entropy of the black hole. It can be
considered as the three-dimensional generalization of the
Hawking-Bekenstein entropy-area law, that is,

S ¼ A
4
¼ πrþ

2
; ð3:4Þ

and the electric potential can obtained as [10]

Φ ¼ Aμχ
μjreference − Aμχ

μjr¼rþ ¼ −2Q ln

�
rþ
l

�
; ð3:5Þ

where χ ¼ ∂t is the null generator of the horizon. Note that
Eq. (3.2) has been used.
To investigate the consistency of these quantities with the

thermodynamical first law, from Eqs. (3.1)–(3.4), we can
obtain the black hole mass as the function of S andQ that is

MðS;QÞ ¼ S2

2π2l2
−Q2 ln

�
2S
πl

�
: ð3:6Þ

One can regard the parameters S and Q as a complete set
of extensive parameters for the massMðS;QÞ and define T
and Φ as the intensive parameters conjugate to S and Q.
These quantities can be obtained as

T ¼
�∂M
∂S

�
Q
¼ S

π2l2
−
Q2

S
;

Φ ¼
�∂M
∂Q

�
S
¼ −2Q ln

�
2S
πl

�
; ð3:7Þ

which are compatible with the temperature and electric
potential given in Eqs. (3.3) and (3.5). It means that the
thermodynamics quantities we obtained in this section
satisfy the first law of black hole thermodynamics,
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dM ¼ TdSþ ΦdQ: ð3:8Þ

Finally, we would like to study the local stability and
phase transition of the BTZ black hole in the canonical
ensemble. It is well known that a black hole, as a
thermodynamical system, is locally stable if its heat
capacity is positive. A nonstable black hole may undergo
phase transitions to be stabilized. The phase transition
points are where the heat capacity vanishes or diverges. In
the vanishing points (roots of heat capacity) the phase
transition is named conventionally as the type one phase
transition. The points where the heat capacity diverges are
known as the type two phase transition points. With these
issues in mind we proceed with the heat capacity
CQ ¼ Tð∂S=∂TÞQ. Making use of the chine rule it can
be rewritten as

CQ ¼ T

� ∂S
∂rþ

�
Q

�∂rþ
∂T

�
Q
¼ πrþ

2

�r2þ
l2 − 4Q2

r2þ
l2 þ 4Q2

�
: ð3:9Þ

From Eq. (3.9), it is obvious that the BTZ black hole is
stable if rþ > 2lQ. It undergoes a type one phase transition
if rþ ¼ 2lQ. The heat capacity does not diverge, and there
is no type two phase transition. If we notice the Hawking
temperature (3.3) and if we accept that it must be positive to
have physical meaning, we have rþ > 2lQ and as the final
result the positivity of the heat capacity and stability of the
BTZ black holes is guaranteed. It is notable that the
positivity of the black hole temperature restricts the black
hole charge as 2Q < rþ=l. It means that it is necessary for
the black hole to be thermodynamically stable to have an
electric charge in this region. Most of the results obtained in
this subsection have been covered by Frassino et al. [16].
At this stage we return to the Smarr mass formula as the

integral form of the first law of thermodynamics, that is,

D − 3

D − 2
M ¼ TSþD − 3

D − 2
ΦQþ ΩJ; ð3:10Þ

for arbitrary D-dimensional black holes. For the present
case (i.e., D ¼ 3 and Ω ¼ 0), the Smarr formula results in
ST ¼ 0, which is in contradiction to Eqs. (3.3) and (3.4).
As in Refs. [17–20], to overcome this problem, the
cosmological parameter Λ must be treated as a thermody-
namical variable. This idea has been proposed originally by
Kastor et al. [21]. It has recently been used by Hendi et al.
[8] for overcoming the problem of ensemble dependency of
the BTZ-like black hole stability. Now the thermodynam-
ical first law must be generalized to

dM ¼ TdSþ ΦdQþ ΩdJ þ ΞdΛ; ð3:11Þ

with

Ξ ¼
�∂M
∂Λ

�
S;Q;J

¼ −
1

2

�
S2

π2
þQ2

Λ2

�
: ð3:12Þ

Also the Smarr formula can be generalized as [22]

D − 3

D − 2
M ¼ TSþD − 3

D − 2
ΦQþΩJ −

2

D − 2
ΞΛ: ð3:13Þ

It removes the above-mentioned problem. The generalized
nonlinearly charged BTZ will be considered in the follow-
ing subsection.

B. Asymptotically AdS black holes with nonlinear
electrodynamics (12 < p < 1)

In this section, we seek satisfaction of the first law of
thermodynamics for our three-dimensional AdS black hole
solutions. As it has been emphasized before, in order for the
metric function fðrÞ as well as the electromagnetic strength
to be reasonable, physically, only the numbers in the range
1
2
< p < 1 are allowed.
We start with the calculation of the black hole electric

chargeQ, as a conserved quantity, by calculating the flux of
the electromagnetic field at infinity (i.e., r → ∞), that is,

Q ¼ 1

4π

Z ffiffiffiffiffiffi
−g

p
L0ðF ÞFμνnμuνdΩ; ð3:14Þ

where nμ and uν are the unit spacelike and timelike normals
to the hypersurface of radius r defined through the
following relations:

nμ ¼ 1ffiffiffiffiffiffiffiffi−gtt
p ¼ dtffiffiffiffiffiffiffiffiffi

fðrÞp ; uν ¼ 1ffiffiffiffiffiffi
grr

p ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
dr:

Making use of Eq. (2.16) after some simple calculations we
arrived at

Q ¼ −pð2Þðp−2Þ
�
qð2p − 2Þ
2p − 1

�
2p−1

; ð3:15Þ

which can be rewritten as

q ¼ 2p − 1

2p − 2

�
−Q

pð2Þðp−2Þ
�
1=ð2p−1Þ

: ð3:16Þ

The electric potentialΦ, measured at infinity with respect to
the horizon, is defined by Eq. (3.5). In terms of the nonzero
component of electromagnetic potential At ¼ hðrÞ given in
Eq. (2.15), it can be written as

Φ ¼ −q
�
rþ
l

�2p−2
2p−1

: ð3:17Þ

The black hole entropy is given by Eq. (3.4), and the
black hole horizons are the roots of lapse function
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fðrþÞ ¼
r2þ
l2

þ ð2Þpq2p
�
2p− 2

2p− 1

�
2p−1

ð1− 2pÞ
�
rþ
l

�2p−2
2p−1

−m

¼ 0: ð3:18Þ

Next, the Hawking temperature at the black hole horizon
can be calculated through the use of the definition of
surface gravity, as

T ¼ κ

2π
¼ 1

4π

d
dr

fðrÞjr¼rþ

¼ 1

4πl

�
2rþ
l

þ ð2Þpq2pð1 − 2pÞ
�
2p − 2

2p − 1

�
2p
�
rþ
l

� −1
2p−1

�
:

ð3:19Þ

Since the spacetime under consideration is an asymptoti-
cally AdS one, we can use the counterterm method [18] to
obtain the conserved mass. In the counterterm method the
metric of asymptotically AdS spacetime must be written in
the following form:

ds2 ¼ l2

r2
dr2 þ r2

l2
ð−dt2 þ dx2Þ þ δgabdxadxb: ð3:20Þ

Making use of the first order δgab the tt component of the
divergence free stress tensor is written as

8πTtt ¼
r4

2l5
δgrr þ

δgxx
l

−
r
2l

∂rδgxx; ð3:21Þ

and the black hole mass M in terms of the mass parameter
m may be calculated as

M ¼
Z

dxTtt; for large r: ð3:22Þ

In the present case, x ¼ lθ, δgxx ¼ 0, and δgrr can be
obtained as

δgrr ¼
1

fðrÞ −
l2

r2
: ð3:23Þ

Now, substituting Eqs. (3.21) and (3.23) in Eq. (3.22), after
integration it yields

m ¼ 8M ð3:24Þ

once again, but this time m is obtained from Eq. (3.18).
Here, we check the first law of thermodynamics for the

quantities obtained in this subsection. At first we obtain the
mass as a function of the extensive quantities S and Q as

MðQ;SÞ¼ S2

2π2l2
−ð2Þ3−3p2p−1ðpÞ −2p

2p−1
ð2p−1Þ2
2p−2

ðQÞ 2p
2p−1

�
2S
πl

�2p−2
2p−1

;

ð3:25Þ

where Eqs. (3.4), (3.16), and (3.18) have been used. By
treating Q and S, as the thermodynamical extensive
variables, one can calculate

Φ ¼
�∂M
∂Q

�
S
; T ¼

�∂M
∂S

�
Q
; ð3:26Þ

and show that the results are compatible with those of
Eqs. (3.17) and (3.19). It confirms the validity of the
thermodynamical first law in the form of Eq. (3.8).
The positivity of heat capacity CQ ¼ Tð∂S=∂TÞQ ¼

T=ð∂2M=∂S2ÞQ or equivalently the positivity of ð∂S=∂TÞQ
or ð∂2M=∂S2ÞQ with T > 0 is sufficient to ensure the local
stability of the black hole. The unstable black holes undergo
phase transitions to be stabilized. Making use of Eq. (3.19)
together with the relation S ¼ πrþ=2, the black hole heat
capacity is

CQ ¼ πT
2

� ∂T
∂rþ

�
−1

Q

¼ π2Tl2

�
1þ ð2Þp−1q2p

�
2p − 2

2p − 1

�
2p
�
rþ
l

�
− 2p
2p−1

�−1
:

ð3:27Þ

On the other hand, Eq. (3.19) can be rewritten as

T ¼ rþ
2πl2

�
1− ð2Þp−1ð2p− 1Þ

�
qð2p− 2Þ
2p− 1

�
2p
�
rþ
l

�
− 2p
2p−1

�
:

ð3:28Þ

It is notable that for 1
2
< p < 1 the p-dependent term in the

brackets is positive; it results in a positive temperature, if

ð2Þp−1ð2p − 1Þ
�
qð2p − 2Þ
2p − 1

�
2p
�
rþ
l

�
− 2p
2p−1

< 1; ð3:29Þ

as it must be for a physically acceptable black hole. Thus the
heat capacity does not vanish. Indeed, the inequality (3.29) is
a restriction on the black hole charge. Making use of
Eq. (3.16), it can be rewritten as

Q < p
rþ
l
2

3p−1
2p ð2p − 1Þ−2p−1

2p : ð3:30Þ

For a stability interpretation of the black holewe examine the
roots of the denominator in Eq. (3.27). It yields
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�
rþ
l

� 2p
2p−1 þ ð2Þp−1

�
qð2p − 2Þ
2p − 1

�
2p

¼ 0: ð3:31Þ

Since both terms in this equation are positive, it does not
have any real roots. In summary, the heat capacity neither
diverges nor vanishes, and as a result the black hole is
thermodynamically stable and does not undergo any types of
phase transitions.
Here, we return to the Smarr mass formula once again. In

the case of D ¼ 3 it results in ST ¼ 0, which is not
compatible with the T and S values we have obtained in
this subsection. Noting Eq. (3.19) we have

ST ¼ r2þ
8

�
−2Λ − 2pð2p − 1Þ

�
qð2p − 2Þ
2p − 1

�
2p

× ðrþÞ−
2p

2p−1ð−ΛÞ p−1
2p−1

�
: ð3:32Þ

To overcome this problem we consider the cosmological
parameter Λ as a thermodynamical variable with the same
definition in Eqs. (3.11) and (3.12). But this timeM is given
by Eq. (3.25) with Λ ¼ −1=l2, which yields

Ξ ¼
�∂M
∂Λ

�
S;Q;J

¼ r2þ
8

�
−1þ 2p−1ð2p − 1Þ

�
qð2p − 2Þ
2p − 1

�
2p

× ðrþÞ−
2p

2p−1ð−ΛÞ −p
2p−1

�
; ð3:33Þ

and the generalized Smarr mass formula is none other than
the statement given in Eq. (3.13).

IV. CONCLUSION

This work considers an extension of the Einstein-
Maxwell three-dimensional black hole solutions in which
the usual Maxwell theory has been generalized to a power-
law nonlinear one. We obtained the gravitational and
electromagnetic field equations by varying the action of
the Einstein–nonlinear Maxwell with respect to the metric
tensor and electromagnetic potential, respectively. Through
considering a static spherically symmetric geometry, we
obtained the solutions of the gravitational and electromag-
netic field equations and found that different black hole

solutions can be distinguished according to different
choices of parameters in the nonlinear theory of electro-
dynamics. For the obtained solutions having physical
meaning, we found that the value of p (i.e., the power
of the Maxwell invariant in the nonlinear theory) must be
restricted to the range 1

2
< p < 1 except the values for

which 2p is a rational value with an even number in the
denominator. The black solutions with these constraints are
a new class of asymptotically AdS black hole solutions we
just obtained. Also in the case of p ¼ 1 the solution
coincides with the charged BTZ black hole.
In the next part of the paper, we considered the

thermodynamics of the obtained black hole solutions and
discussed the thermal stability and phase transitions
through the canonical ensemble approach. In the case of
BTZ solutions, at first we confirmed the validity of the first
law of black hole thermodynamics. Next we showed that
the black hole is thermally stable and no phase transitions
take place. Also we found that, for the BTZ black hole to be
thermodynamically stable, the black hole charge must be
restricted to 2Q < rþ=l. For the asymptotically AdS black
hole solutions, as the new black hole solutions obtained
here, at first we calculated the entropy and temperature of
the black hole, making use of the concepts of the horizon
area and surface gravity. Also, we obtained the charge and
mass of the black hole, as the conserved quantities, by
using Gauss’s law and counterterm method, respectively.
By considering the black hole mass as a function of both
the charge and the entropy, we confirmed the validity of the
black hole thermodynamical first low. Finally, through the
canonical ensemble method by calculating the black hole
heat capacity, we analyzed the black hole remnant or phase
transitions and found that the new AdS black holes are
thermally stable and do not undergo any types of phase
transitions. The charge of the physically reasonable AdS
black holes has been restricted through Eq. (3.30). In either
of the black hole solutions (i.e., the BTZ and the new AdS
black holes) we found that, in order for the Smarr mass
formula to be consistent with the first law of black hole
thermodynamics, the cosmological parameter Λ must be
treated as a thermodynamical variable.
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