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Atomic interferometry can be used to probe dark energy models coupled to matter. We consider the
constraints coming from recent experimental results on models generalizing the inverse power law
chameleons such as fðRÞ gravity in the large curvature regime, the environmentally dependent dilaton and
symmetrons. Using the tomographic description of these models, we find that only symmetrons with
masses smaller than the dark energy scale can be efficiently tested. In this regime, the resulting constraints
complement the bounds from the Eötwash experiment and exclude small values of the symmetron
self-coupling.
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I. INTRODUCTION

Dark energy [1] has proved to be elusive since its
discovery some 15 years ago [2,3]. The only tangible
proof of its existence follows from a host of cosmological
observables ranging from the original SNIa supernovae
data to the more recent results obtained by the Planck
mission [4] and the observation of baryonic acoustic
oscillations [5]. A better understanding of its nature would
wish to complement indirect evidence with experimental
data in the laboratory [6–9] in a way akin to what has been
attempted over the last decades for dark matter. Effects of
dark energy on small scale experiments require the pres-
ence of a coupling to matter, and as a result the dark energy
models with possible experimental tests in the laboratory
fall within the class of dark energy/modified gravity
theories [10]. They have been recently classified according
to the type of screening mechanism that shields the dark
energy interaction with matter in our local, i.e. solar,
environment [11]. There are three broad families of such
models: the ones subject to the Vainshtein [12] or K-
mouflage mechanisms [13], or the generalized chameleon
property [14–21]. The latter is the one which will concern
us in this paper. In a nutshell, the chameleon screening
occurs in regions of space where the Newtonian potential is
large enough. This can occur in two typical ways. The first,
and this is the original chameleon mechanism, is where the
dark energy field becomes massive enough in the presence
of matter [14]. The second is the Damour-Polyakov
property [16] whereby the interaction coupling between
dark energy and matter becomes very small in dense matter.
Both types of models can be mathematically described

using a tomographic method [22] whereby the coupling
function and potential can be reconstructed from the sole
knowledge of the density dependence of both the mass and
the interaction coupling.
Laboratory tests of dark energy have been considered in

the last ten years with wide-ranging techniques; see for
instance [23,24] and a summary of the bounds on chame-
leons [25] and modified gravity models [26]. Stringent
constraints [27–29] follow from torsion pendulum experi-
ments such as Eötwash [30,31] where the presence of new
forces can be tested [32]. Another promising technique uses
the potential deviation from the Casimir interaction [7,33]
between two plates [34,35]. Forthcoming experiments such
as CANNEX may potentially exclude all models of the
inverse chameleon type [36]. Finally neutrons can be
efficiently used [8]. First of all, the energy levels of
neutrons in the terrestrial gravitational field have been
measured [8,37] and deviation from this pattern would
signal the existence of new interactions of the inverse
chameleon type [38–40]. Neutron interferometry can also
be implemented as new interactions of the chameleon type
[39] would induce a phase shift and therefore a change in
the interferometric patterns [41]. More recently, atomic
interferometry [42] has been suggested as a new technique
for probing dark energy. Experimental results have already
been obtained [43] and constraints on inverse power law
chameleons deduced [44,45]. In this paper, we will general-
ize this analysis to all models described by the tomographic
method and therefore subject to either the chameleon or the
Damour-Polyakov screening mechanisms [46]. This cap-
tures interesting models such as fðRÞ gravity in the large
curvature regime [47], the environmentally dependent
dilaton [20] and the symmetron [19]. We find that the
only models which can be efficiently tested by atomic
interferometry are the symmetrons with masses falling
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below the dark energy scale. Symmetrons with mass larger
than the present Hubble rate are known to have relevant
implications cosmologically, but cannot be tested by this
method [22]. On the other hand, symmetrons with masses
of order of the dark energy scale are within reach of the
Eötwash types of experiments [48]. Here we find that
atomic interferometry can probe symmetrons with masses a
few orders of magnitude below the dark energy scale,
typically with a range in vacuum smaller than a few
centimeters.
The paper is arranged as follows. In Sec. II, we recall

details of the tomographic method and its link to models
such as inverse power law chameleons, fðRÞ gravity in the
large curvature regime, the environmentally dependent
dilaton and the symmetron. In Sec. III, we provide
analytical details about scalar fields in a cylinder as suited
to analyze current experimental data. In Sec. IV, we apply
the tomographic method to atomic interferometry experi-
ments. In Sec. V, we give details about constraints on
models and we focus on symmetrons. Conclusions are in
Sec. VI. There are three appendixes in which we compute
the field profile in the cavity, the force profile and scalar
charge and the Eöt-Wash bounds using the tomographic
method for the symmetron.

II. TOMOGRAPHIC MODELS

A. The tomographic method

In this paper, we shall focus on inverse power law
chameleons, the only case for which atomic interferometry
constraints have been given, and their generalizations. All
these models are scalar-tensor theories described by the
Lagrangian

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πGN
−
ð∂ϕÞ2
2

− VðϕÞ
�

þ Smðψ ; A2ðϕÞgμνÞ ð2:1Þ

where AðϕÞ specifies the coupling between matter fields ψ
and the scalar ϕ. The coupling to matter itself is given by
the derivative

βðϕÞ ¼ mPl
d lnAðϕÞ

dϕ
: ð2:2Þ

A salient feature of these models is that the dynamics are
determined by an effective potential which takes into
account the presence of the conserved matter density ρ
of the environment:

VeffðϕÞ ¼ VðϕÞ þ ðAðϕÞ − 1Þρ: ð2:3Þ

All the tomographic models [22] are obtained when the
effective potential acquires a matter dependent minimum
ϕðρÞ, for instance when VðϕÞ decreases and AðϕÞ

increases. At the minimum of the effective potential, the
mass of the scalar becomes also matter dependent mðρÞ.
In this case, all scalar-tensor theories can be described
parametrically only from the knowledge of the mass
function mðρÞ and the coupling βðρÞ at the minimum of
the potential [21,22]. In the following, we shall use the
simpler description where the functions mðρÞ and βðρÞ
become the function of the scale factor of the Universe a
using the mapping of the matter density

ρðaÞ ¼ ρ0
a3

ð2:4Þ

where ρ0 ¼ 3Ωm0H2
0m

2
Pl, a ≤ 1 and a0 ¼ 1 today. This

allows one to describe models in a simple way. The field
value is given by

ϕðaÞ − ϕi

mPl
¼ 9Ωm0H2

0

Z
a

ai

da
βðaÞ

a4m2ðaÞ ; ð2:5Þ

where the Hubble rate now is H0 ∼ 10−43 GeV and the
matter fraction is Ωm0 ∼ 0.27. The choice of the lower
bound ai only shifts the value of the constant ϕi. The mass
function is identified as the second derivative

m2ðaÞ ¼ d2Veff

dϕ2

����
ϕ¼ϕðρðaÞÞ

ð2:6Þ

and the coupling to matter is given by

βðaÞ ¼ mPl
d lnA
dϕ

����
ϕ¼ϕðρðaÞÞ

: ð2:7Þ

The potential can also be reconstructed and is given by

VðaÞ − Vi ¼ −27Ω2
m0H

4
0

Z
a

ai

da
β2ðaÞm2

Pl

a7m2ðaÞ ; ð2:8Þ

where Vi is a constant. Eliminating a amongst these
expressions allows one to obtain VðϕÞ and AðϕÞ implicitly
from mðaÞ and βðaÞ. While these equations have been
written in terms of cosmological parameters, Ωm0, H0, this
is for calculational convenience and does not imply that the
parametrization is only valid cosmologically. Indeed, we
have used this previously when applying laboratory con-
straints to other modified gravity models [46]. The para-
metrization very efficiently encompasses the range of
models being tested and the typical mass parameter of
the dark energy scale.
In the following subsections, we will give details about

the tomographic method for many popular models ranging
from the inverse power chameleon to the symmetron. In a
nutshell, we will give the ðmðaÞ; βðaÞÞ parametrization and
use (2.5) and (2.8) to calculate both ϕðaÞ and VðaÞ.
Eliminating a will give the dependence VðϕÞ. We can
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also infer βðϕÞ and by integration AðϕÞ. In fact the
ðmðaÞ; βðaÞÞ parametrization is all we will need to compare
to atomic interferometry data. In particular, the dependence
ϕðaÞ allows us to determine the variation of the field ϕðρÞ
as the function of the matter density at the minimum of the
effective potential (2.3). Indeed, all one needs to do is to use
the mapping (2.4) to get the ρ dependence. Similarly, one
can use the tomographic mapping in another way. For
instance, the value of the field ϕc at the center of a cavity is
not directly related to the density in the cavity. It is a
function of the size of the cavity (see (3.6) and (3.15) in
Sec. III). Nevertheless we can associate a scale factor ac
such that ϕc ¼ ϕðacÞ. The values of ac associated to the
field in the center of a cavity will be given below for each
model. We will make all this explicit for the inverse power
law chameleons in the next subsection and give fewer
details for the other models.

B. Inverse power law chameleons

The only models which have been used so far when
analyzing atomic interferometry results [42] are the cha-
meleons with an inverse power law potential of the type

VðϕÞ ¼ Λ4 þ Λ4þn

ϕn þ… ð2:9Þ

with n > 0, Λ ∼ 10−3 eV is the cosmological vacuum
energy now, and the coupling function is such that β is
constant, i.e.

AðϕÞ ¼ exp

�
βϕ

mPl

�
; ð2:10Þ

which implies that

βðaÞ ¼ β: ð2:11Þ

It is easy to see that using the mass dependence on the scale
factor

mðaÞ ¼ m0a−r ð2:12Þ

in (2.5) leads to a power law for ϕðaÞ,

ϕðaÞ
mPl

¼ 9Ωm0H2
0

m2
0

β

2r − 3
a2r−3; ð2:13Þ

and for VðaÞ in (2.8),

VðaÞ ¼ V0 −
27Ω2

m0H
4
0

m2
Plm

2
0

β2

2r − 6
a2r−6; ð2:14Þ

for a constant V0. Eliminating a between these two
expressions, we retrieve the inverse power law model
where r ¼ 3ðnþ2Þ

2ðnþ1Þ and the mass scale m0 is determined by

m2ðnþ1Þ
0 ¼ ðnþ 1Þnþ1

3n
ð3βΩm0H2

0mPlÞnþ2

Λ4þn : ð2:15Þ

This implies that inverse chameleon models have a cos-
mological interaction range 1=m0 much shorter than the
size of the observable Universe for β0 ≳ 1. In the following,
we will generalize this simple parametrization to more
complex models. The same method can be applied to all the
models presented below.

C. Large curvature f ðRÞ
Chameleon models involve a scalar field. Surprisingly,

some models of modified gravity which do not seem to
involve a scalar field can in fact be mapped to scalar-tensor
theories. This is the case of a large class of interesting
models such as the large curvature fðRÞ models with the
action [47]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fðRÞ
16πGN

ð2:16Þ

involving the function fðRÞ which is expanded in the large
curvature regime

fðRÞ ¼ Λ0 þ R −
fR0

n
Rnþ1
0

Rn : ð2:17Þ

Here Λ0 is the cosmological constant term leading to the
late time acceleration of the Universe and R0 is the
present day curvature. These models can be described
using the constant βðaÞ ¼ 1=

ffiffiffi
6

p
and the corresponding

mass function

mðaÞ ¼ m0

�
4ΩΛ0 þΩm0a−3

4ΩΛ0 þ Ωm0

�ðnþ2Þ=2
ð2:18Þ

where the mass at a large cosmological scale is given by

m0 ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ΩΛ0 þ Ωm0

ðnþ 1ÞfR0

s
; ð2:19Þ

and ΩΛ0 ≈ 0.73 is the dark energy fraction now [21]. When
a ≪ 1 corresponding to dense environments, the mass
dependence on a is a power law,

mðaÞ ∼m0a−r ð2:20Þ

where r ¼ 3ðnþ2Þ
2

.

D. Generalized power law models

The inverse power law chameleons and fðRÞ models in
the large curvature limit are described by power law
functions of the scale factor
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mðaÞ ¼ m0a−r; βðaÞ ¼ β0a−s ð2:21Þ

for different choices of r and s [46]. In fact, all these models
are equivalently defined by power law potentials

VðϕÞ ¼ V0 þ ϵΛ4−p
p ϕp ð2:22Þ

where V0 is a constant, and the exponent is given by

p ¼ 2r − 6 − 2s
2r − 3 − s

ð2:23Þ

as long as ð2r − 3 − sÞ > 0. The sign ϵ ¼ �1 is positive
when p < 0 and vice versa. As for inverse power law
chameleon models, it is convenient to introduce the
effective scale

Λ4−p
p ¼ 27

j2r−6−2sj
Ω2

m0β
2
0H

4
0m

2
Pl

m2
0

�
2r−3−s

9

m2
0

Ωm0β0H2
0mpl

�
p

ð2:24Þ

which is a function of both m0 and β0. Using these
ingredients, we find that the coupling function is given by

AðϕÞ ¼ 1þ β0
mPl

ϕl

Ml−1 ð2:25Þ

where the power l is simply

l ¼ 2r − 3 − 2s
2r − 3 − s

ð2:26Þ

and the coupling scale is

M1−l ¼ Ωm0

l

�
9

2r − 3 − s
Ωm0β0H2

0mPl

m2
0

� s
2r−3−s

: ð2:27Þ

This field theoretic parametrization is only given here as an
illustration since the ðmðaÞ; βðaÞÞ description is far easier
to use.

E. Dilaton

The chameleon and fðRÞ models are screened by the
chameleon mechanism. We will now give examples where
the Damour-Polyakov mechanism is at play [16]. This is
the case of the environmentally dependent dilaton [20]
which is inspired by string theory in the large string
coupling limit and has an exponentially runaway potential

VðϕÞ ¼ V0e
− ϕ
mPl ð2:28Þ

where V0 is determined to generate the acceleration of the
Universe now and the coupling function is quadratic:

AðϕÞ ¼ A2

2m2
Pl

ðϕ − ϕ⋆Þ2: ð2:29Þ

These models can be described using the coupling function

βðaÞ ¼ β0a3 ð2:30Þ
where β0 is related to V0 and is determined by requiring
that ϕ play the role of late time dark energy which sets
β0 ¼ ΩΛ0

Ωm0
∼ 2.7. The mass function which reads

m2ðaÞ ¼ 3A2

H2
0

a3
ð2:31Þ

and is proportional to the Hubble rate with the mass on
cosmological scales now given by m0 ¼

ffiffiffiffiffiffiffiffi
3A2

p
H0.

F. Symmetrons

The symmetron [19] uses a similar type of coupling
function as the dilaton with a quartic potential with a
nonvanishing minimum

VðϕÞ ¼ V0 þ
λ

4
ϕ4 −

μ2

2
ϕ2: ð2:32Þ

The coupling function is chosen to be

AðϕÞ ¼ 1þ ϕ2

M2⋆
ð2:33Þ

where the transition from the minimum of the effective
potential at the origin to a nonzero value happens at a ¼ a⋆
where

ρ⋆ ¼ M2⋆μ2 ð2:34Þ

corresponding to

ρ⋆ ¼ ρ0
a3⋆

: ð2:35Þ

The symmetrons are defined by the three parameters
ðλ; μ;M⋆Þ. In the following, it will be convenient to change
these parameters and to define

m⋆ ¼
ffiffiffi
2

p
μ; ϕ⋆ ¼ 2β⋆ρ⋆

m2⋆mPl
; ð2:36Þ

where

λ ¼ μ2

ϕ2⋆
: ð2:37Þ

The symmetron model can be reconstructed using

mðaÞ ¼ m⋆

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
a⋆
a

�
3

s
ð2:38Þ
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and

βðaÞ ¼ β⋆

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
a⋆
a

�
3

s
ð2:39Þ

for a > a⋆ and βðaÞ ¼ 0 for a < a⋆. In a dense environ-
ment, the field is at the origin while in a sparser one with
a > a⋆ we have

ϕ ¼ ϕ⋆

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
a⋆
a

�
3

s
: ð2:40Þ

When the field is at the origin, the mass squared becomes
m2 ¼ ð ρρ⋆ − 1Þμ2. In the tomographic parametrization, the

three parameters of the symmetron models are now
ðm⋆;ϕ⋆; a⋆Þ. For cosmological applications, it is custom-
ary to consider that μ≳ 103H0 while previous laboratory
searches have focused on μ ∼ Λ. Here we will see that
atomic interferometry is only sensitive to values of μ
smaller than Λ.

III. SCALAR FIELD IN A CYLINDER

A. The scalar field profile

Atomic interferometry experiments constrain the extra
acceleration that an atom of (typically) caesium may
experience inside the interferometer when interacting with
a source (typically an aluminum ball). The experiment
takes place in a cylindrical cavity and the scalar accel-
eration depends on the value taken by the scalar field at the
center of the cavity. In this section, we will analyze this
situation using known results [49]. We consider an infinite
cylinder of radius Rc filled with a gas of density ρin
surrounded by a bore of high density ρ∞. The minimum
values of the field in these environments are respectively
ϕin and ϕ∞. Inside the cylinder, the field has a value close to
ϕc which is reached in the center of the cylinder. The mass
of the scalar in the bore is assumed to satisfy m∞Rc ≫ 1.
This leads to the self-consistency equation for the
field ϕc [49],

ϕ∞ − ϕc ¼
dVeff
dϕ jϕc

m2
c

ðJ0ðimcRcÞ − 1Þ; ð3:1Þ

where J0 is the Bessel function of zeroth order. Using the
tomographic method which associates to ϕc a value of the
scale factor ac, we have the expression

dVeff

dϕ

����
ϕc

¼ ðρ0 − ρcÞ
βc
mPl

ð3:2Þ

where ρc ¼ ρ0
a3c

by definition of ϕc ¼ ϕðacÞ. We can

simplify the analysis using that ρin ≪ ρc and ϕc ≫ ϕ∞,
and we find that

J0ðimcRcÞ ¼ 1þ ϕcm2
cmPl

βcρc
: ð3:3Þ

This determines the values of mc as a function of Rc and
leads to a resonance condition.

B. The resonance condition

We are going to analyze (3.6) for the tomographic
models presented in Sec. II. Let us first consider the case
of generalized power law models. Using (2.5)

ϕc ∼
9Ωm0β0H2

0

m2
0

a2r−3−sc

2r − 3 − s
ð3:4Þ

and we find that the field inside the cylinder must satisfy the
resonance condition

J0ðimcRcÞ ¼ 1þ 3

2r − 3 − s
: ð3:5Þ

As a result we expect that

mcRc ¼ ξ ð3:6Þ

where the parameter ξ is determined by

J0ðiξÞ ¼ 1þ 3

2r − 3 − s
: ð3:7Þ

For inverse power law chameleons we find that

J0ðiξÞ ¼ nþ 2 ð3:8Þ

while for large curvature fðRÞ it becomes

J0ðiξÞ ¼
nþ 2

nþ 1
ð3:9Þ

and for dilatons

J0ðiξÞ ¼ 2: ð3:10Þ

In all these cases we have that mcRc ¼ Oð1Þ [15,43,44],
implying that the range of the scalar force is of the order of
the size of the cavity. This guarantees that ϕc ≫ ϕ∞ as the
vacuum range of the scalar interaction is much larger than
the cavity.
The symmetron behaves significantly differently and we

find that the resonance condition reads
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J0ðimcRcÞ ¼
1þ m2

c
m2⋆

1 − m2
c

m2⋆

: ð3:11Þ

This equation admits a solution when m⋆Rc ≲ 1 corre-
sponding to a force whose cosmological range is larger than
the size of the cavity:

mcRc ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

m2⋆R2
c
− 1

s
∼

8
ffiffiffi
2

p

m⋆Rc
: ð3:12Þ

This implies that the range of the force inside the cavity is
smaller than the size of the cavity. In particular we have that

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

a3⋆
a3c

s
∼

8
ffiffiffi
2

p

ðm⋆RcÞ2
≫ 1 ð3:13Þ

which is obviously a contradiction. So when m⋆Rc ≲ 1, we
find that the field inside the cavity vanishes like in the bore,

ϕc ¼ 0; ð3:14Þ

which is a solution of (3.1) and (3.2) when βc ¼ 0. This
phenomenon is similar to the one already obtained in the 1d
case between infinite plates [46,48].
When m⋆Rc ≫ 1, i.e. when the cosmological range is

smaller than the cavity, the solution is such that

mc ¼ m⋆
�
1 −

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2
m⋆Rc

r
e−m⋆Rc

�
ð3:15Þ

which is exponentially close to m⋆. This implies that the
range of the symmetron inside the cavity is essentially
given by 1=m⋆, i.e. the cosmological one which is smaller
than the size of the cavity.
In both cases, the relations (3.6) and (3.15) correspond to

a scale factor ac from which one can calculate the value of
the field ϕc inside the cavity as

ϕc ≡ ϕðacÞ ð3:16Þ

which is obtained using (2.5). Hence the tomographic
method allows us to calculate the value of the field ϕc for all
tomographic models.

IV. ATOMIC INTERFEROMETRY

A. Experimental constraints

The atomic interferometry experiments constrain the
anomalous acceleration of an atom in the terrestrial
gravitational field in the presence of an external ball of
matter. They provide relevant tests of screening mecha-
nisms. Indeed the external ball induces an extra acceler-
ation compared to the Newtonian one with [43,44]

aS ≲ 5.5μm=s2 ð4:1Þ

at a distance d ¼ RS þ dS where RS ¼ 0.95 cm is the
radius of the ball and dS ¼ 0.88 cm is the distance to
the interferometer. The whole apparatus is embedded
inside a cavity of radius Rc ¼ 6.1 cm. The acceleration
due to the scalar is given by (see the Appendix A for a
general discussion)

aB ¼ 2QSQB
GNmS

d2
¼ 2QSQB

ΦNRS

d2
ð4:2Þ

where mS is the mass of the source and ΦN is the
Newtonian potential at the surface of the ball. A good
approximation for the scalar chargesQS andQB is obtained
by considering that in the screened case the value of the
scalar is constant inside the object, leading to

QA ¼ jϕA − ϕcj
2mPlΦN

ð4:3Þ

when the object A is screened, i.e. when

QA ≤ βc ð4:4Þ

where βc is the coupling in the vacuum of the cavity and ϕc
the field there. We have denoted by ϕA the value of the field
inside the screened object. If the object is not screened then

QA ¼ βc: ð4:5Þ

The value of the field inside the cavity is such that

mc ¼
ξ

Rc
ð4:6Þ

where ξ is a fudge factor of order 1 which must be fitted to
more precise numerical simulations; see the previous
section for a theoretical discussion and below where ξ is
fitted to the actual experimental setup in the chameleon
case [44]. This determines a scale factor ac characteristic of
the cavity. For symmetrons we have mc ∼m⋆.
These constraints are only valid when the Yukawa

suppression factor in the exact expression for the
acceleration

aB ¼ 2QSQB
ΦNRS

d2
e−mcdS ð4:7Þ

can be safely put to 1, i.e. when

mcdS ≪ 1 ð4:8Þ

which occurs when the experiment is designed such that

Rc ≫ ξdS: ð4:9Þ
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The current experimental results are obtained for Rc=dS ∼ 6
which requires a rather small value of ξ.

B. Screening of the nucleus

The comparison with the experimental constraint
requires one to know whether the atom and in particular
its nucleus is screened. The nucleus is screened when

jϕc − ϕBj ≤ 2mPlβcΦB ð4:10Þ

where ΦB is the Newtonian potential at its surface. For a
caesium atom this is around ΦB ∼ 10−38. This criterion can
be rewritten as

9Ωm0H2
0

2ΦB

Z
ac

aB

da
βðaÞ

a4m2ðaÞ ≤ βc ð4:11Þ

where aB corresponds to the nuclear density, i.e. aB ≪ ac
and

ρB ¼ 3Ωm0m2
PlH

2
0

a3B
: ð4:12Þ

For all power law models, this constraint reads

9Ωm0H2
0

2ΦBm2
0

a2r−3c

2r − 3 − s
≤ 1 ð4:13Þ

while for the symmetron, assuming that ac > a⋆ and
aB < a⋆,

ϕ⋆
2mPlΦB

≤ β⋆; ð4:14Þ

i.e.

M2⋆ ≡ ρ⋆
μ2

≤ 2m2
PlΦB: ð4:15Þ

For dilatons we find that

A2 ≥
Ωm0

2ΦB
; ð4:16Þ

implying that cosmologically interesting dilatons where
A2 ∼ 106 are such that the nucleus is always unscreened. In
the case of large curvature fðRÞ models we find that the
nucleus is screened for

fR0
≤
�
2A2ðnþ 1ÞΦB

3Ωm0

�
nþ2

ðAH0RcÞ−2ðnþ1Þ ð4:17Þ

where

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ΩΛ0 þ Ωm0

nþ 1

r
: ð4:18Þ

Numerically for all models with n ≥ 1, the nucleus is
screened when fR0

≲ 1. Similarly chameleons are screened
inside the nucleus when

β0 ≥
3Ωm0ðnþ 1Þ

2ΦB

H2
0

M2
0

�
M0Rc

ξ

�
2=ðnþ2Þ

ð4:19Þ

with

M0 ¼
�ðnþ 1Þnþ1

3n
ð3Ωm0H2

0mPlÞnþ2

Λnþ4

�
1=2ðnþ1Þ

ð4:20Þ

which is larger than the current bounds on β0. Thus we will
consider the nucleus to be unscreened. Finally for gener-
alized power law models

9Ωm0

2ΦB

H2
0

m2
0

ðm0Rcξ
−1Þð2r−3Þ=r

2r − s − 3
≤ 1 ð4:21Þ

for screening. The nucleus is always screened for large
enough values of r.

V. CONSTRAINTS ON MODELS

A. Model independent constraint

Let us assume that the atoms are not screened and the
source is screened. The scalar charge of the source becomes

QS ¼
9Ωm0H2

0

2ΦN

Z
ac

aS

da
βðaÞ

a4m2ðaÞ ð5:1Þ

where the density of the source can be parametrized as

ρS ¼
3Ωm0m2

PlH
2
0

a3S
: ð5:2Þ

In this case the interferometry constraint reads

9Ωm0H2
0

Z
ac

aS

da
βðaÞ

a4m2ðaÞ ≤ Cβ−1c ð5:3Þ

where

C ¼ 5.5
d2S
RS

μm=s2 ∼ 2.10−24 ð5:4Þ

is a pure number. When the nucleus is screened, the
constraint changes and becomes

ATOMIC INTERFEROMETRY TEST OF DARK ENERGY PHYSICAL REVIEW D 94, 104069 (2016)

104069-7



9Ωm0H2
0

Z
ac

aS

da
βðaÞ

a4m2ðaÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
2CΦB

p
: ð5:5Þ

B. Power law models

For power law models we have

ac ¼
�
m0Rc

ξ

�
1=r

ð5:6Þ

and as long as aS ≪ ac, we find the constraint

2ΦNQSβc ¼
9Ωm0β

2
0

2r − 3 − s

�
H0

m0

�
2

a2r−3−2sc ≤ C ð5:7Þ

where 2r − 3 − s > 0. This is the case when the atoms are
not screened. When the nucleus is screened, the constraint
becomes slightly different:

9Ωm0β0
2r − 3 − s

�
H0

m0

�
2

a2r−3−sc ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
2CΦB

p
: ð5:8Þ

For different power law models with m0 ¼ 103H0 and
s ¼ −1;−0.5, 0, 0.5, 1 we have plotted in Fig. 1 the upper
bound on β0 as a function of r assuming that ξ ¼ 1. We can
see that models with β0 ¼ Oð1Þ are excluded when s > 0
and models with s ≤ 0 are excluded when r is large
enough. We can also specialize to other well-known
models.

1. Chameleons

In this case, the mass m0 is related to Λ, n and β0 and we
obtain the bound

β0 ≤
M2

0

H2
0

�
M0Rc

ξ

�
− 2
nþ2 CedSξ=Rc

3Ωm0ðnþ 1Þð1þ ξ RS
Rc
Þ ð5:9Þ

where ξ has been numerically fitted according to [44]

ξ ¼ ξðnþ2Þ=2
J ð5:10Þ

where 0.55≲ ξJ ≲ 0.65 has been used. The effect of
changing ξJ is shown in Fig. 2. We have also reinstated
the Yukawa suppression factor as it is not completely
irrelevant with the current experimental setup. This upper
bound on β0 is displayed in Fig. 2 and shows that β0 ≲ 105

as already obtained in [44]. The agreement between our
analytical results and the numerical analysis of [44] is good.

2. Large curvature f ðRÞ
In this case we obtain a bound on fR0

for different values
of n using the fact that the nucleus is always screened. We
find that

fR0
≤
�
2ðnþ 1ÞA2

ffiffiffiffiffiffiffiffiffiffiffiffi
2CΦB

p
9Ωm0β0

�
nþ2

ðAH0RcÞ−2ðnþ1Þ ð5:11Þ

which gives fR0
≤ 1020 for n ¼ 1 and even looser bounds

for larger n. Hence the atomic interferometry bound is not
effective for fðRÞ models.

FIG. 1. The upper bound on the coupling β0 for power law
models as a function of the index r for s ¼ −1;−0.5, 0, 0.5, 1
from top to bottom. For large r and large β0, the nucleus of the
test atom is screened. Models with s > 0 and β0 ¼ Oð1Þ are
excluded while models with s ≤ 0 are excluded at large r.

FIG. 2. The upper bound on the coupling β0 for chameleons as
a function of the index n for the two extreme values of ξJ ¼ 0.55
and ξJ ¼ 0.65.
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C. Environmentally dependent dilaton

In this case, the bound implies that A2 is bounded by

A2 ≤
1

9Ωm0β
2
0

C
ðH0RcÞ4

ð5:12Þ

where β0 ¼ ΩΛ0
Ωm0

. This is also not effective as this means

A2 ≲ 1085, which is much larger than the cosmologi-
cal value.

D. Symmetron

In the following, we will assume that m⋆Rc ≳ 1 and take
μ ¼ αΛ which satisfies this criterion for α ≥ 10−3.
Typically we will take α ¼ 0.05 which corresponds to a
range m−1⋆ ∼ 1.1 mm. This is smaller than the size of the
cavity in the atomic interferometry case, which implies that
the symmetron does not vanish in the cavity. This is a valid
result provided the density inside the vacuum chamber is
low enough, i.e. ρin ≤ ρ⋆, which implies that

M⋆ ≥
�
ρin
μ2

�
1=2

ð5:13Þ

where we have introduced

M⋆ ≡ ρ⋆
μ2

; ð5:14Þ

which corresponds to M⋆ ≥ 1.410−4 GeV for μ ∼
1.210−4 eV for a density of ρin ¼ 6.610−17g=cm3. For
such a value of μ, the Eötwash constraint applies [48],
as the range is well below 6 mm, as discussed in
Appendix C. These bounds are reproduced in Fig. 3.
When the nucleus is not screened we find a bound on
the parameters

β⋆ϕ⋆
mPl

≤
Cem⋆dS

1þm⋆Rc
ð5:15Þ

where we have reinstated the Yukawa suppression as it
plays a crucial role here. Using the link between the
tomographic parameters ðm⋆;ϕ⋆; a⋆Þ and the symmetron
Lagrangian parameters ðλ; μ;M⋆Þ

m⋆ ¼
ffiffiffi
2

p
μ; ϕ⋆ ¼ μffiffiffi

λ
p ð5:16Þ

and

β⋆ ¼ μmPlffiffiffi
λ

p
M2⋆

ð5:17Þ

this leads to a bound on the coupling to matter:

M2⋆ ≥
μ2ð1þm⋆RSÞ

λC
e−m⋆dS : ð5:18Þ

This is only valid when the atoms are not screened. When
they are, the bound becomes

ϕ⋆
mPl

≤
ffiffiffiffiffiffiffiffiffiffiffiffi
2CΦB

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm⋆RS

p em⋆dS=2 ð5:19Þ

implying that

λ ≥
μ2ð1þm⋆RSÞ

m2
Pl

1

2ΦBC
e−m⋆dS ð5:20Þ

where ΦB ∼ 10−38 for a caesium atom. The Yukawa
suppression has an important impact on this lower bound.
In particular for large values of μ such as μ ¼ Λ where
μdS ≫ 1, the lower bound is essentially irrelevant.
Moreover the mass μ cannot be pushed to very low values
as the cosmological range becomes then bigger than the
size of the cavity and therefore no force is exerted on the
atoms. This implies that for a given size of the cavity and a
given distance between the source and the interferometer, a
limited range of masses μ can be tested by atomic
interferometry. We have plotted in Fig. 3 the parameter
space of symmetrons with μ ¼ 0.05Λ in the ðλ;M⋆Þ plane.
The interferometry experiment excludes regions of very
small λ. Notice that for very small a⋆ ≲ 10−7, the nucleus is
not screened, while for more interesting cosmological
values a⋆ ≳ 10−7, the nucleus is screened. In conclusion,

FIG. 3. The parameter space of symmetrons with μ ¼ 0.05Λ as
a function of ðλ;M⋆Þ. The portion of parameter space between the
horizontal brown and red curves (middle and top) is excluded by
the Eötwash experiment. Notice that the excluded region is a
good approximation to the corresponding exclusion plot obtained
using numerical simulations in [48]. The interferometry experi-
ment excludes the entire region to the left of the blue curve
(leftmost one). Regions with very low values of M⋆ below the
ones represented here are such that the vacuum is always in the
symmetric phase where no effect can be measured.
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the symmetrons with very small couplings are not excluded
by the Eötwash experiment, whereas they are excluded by
atomic interferometry, and thus the two different types of
experiments are complementary.

E. Discussion

The results that we have presented in this section depend
on both the size of the cavity and the distance between the
source and the atom. It could be experimentally relevant to
see if changing one of these distances could change our
result significantly. For models such as dilatons, fðRÞ in the
large curvature regime or inverse power law chameleons,
the range of the field in the cavity is given by the resonance
condition and is therefore always larger than the distance
between the source and the atom. As a result, reducing this
distance would lead to less Yukawa suppression of the
signal and improved bounds. In practice, the Yukawa
suppression is not so large in the case that we have
numerically presented with a cavity of 6.1 cm that this
would imply a drastic change. Increasing the size of the
cavity has an interesting effect, as it leads to a smaller mass
for the field inside the cavity. For fðRÞ and dilatons as can
be seen in (5.11) and (5.12), the bounds on fR0

and A2

depend on the ratio between the size of the cavity and the
size of the cosmological horizon. A change of the cavity
size by a factor of say 10 would not bring the bounds into
the competitive ballpark with cosmological and astrophysi-
cal limits. For inverse power law chameleons, a change in
cavity size by a factor of 10 would lower the bound on the
coupling β by a factor of order 10 or more depending on n,
i.e. bringing it closer to the lower bounds deduced from the
Eötwash results and hence closer to closing almost entirely
the chameleon parameter space. For symmetrons, the
situation is slightly different, as changing the distance
between the source and the atom implies a change of the
Yukawa suppression, which is always relevant for symme-
trons. Changing the size of the cavity implies that the
interval of μ’s such that the range of the scalar in the cavity
is smaller than the cavity is also affected. In a loose sense,
the range of testable values by interferometry is

1=Rc ≲ μ≲ 1=dS ð5:21Þ

and within this range the bounds (5.18) and (5.20) do not
depend on the size of the cavity. They strongly depend on
the distance of the source to the atom dS with improved
bounds obtained with a smaller dS.

VI. CONCLUSION

We have studied how dark energy models coupled to
matter subject to the chameleon and Damour-Polyakov
screening mechanisms can be tested by atomic interfer-
ometry experiments. We have used the tomographic
description of these models. Apart from inverse power

law chameleons whose coupling to matter must be less than
105, we find that symmetrons with masses in the sub-meV
region, corresponding to ranges shorter than a few centi-
meters, can be adequately constrained in a portion of their
parameter space left untouched by torsion pendulum
experiments such as Eötwash. In particular we find that
the symmetron self-coupling must be bounded from below
and therefore cannot be arbitrarily small. Future experi-
ments with better sensitivities will certainly lead to
improvements on the bounds presented here. This will
also help in constraining and maybe even excluding certain
chameleon or symmetron models. In the future dark energy
coupled to matter may even be eventually detected by such
experiments. Having such tests of dark energy in the
laboratory, independently of any cosmological signature,
is certainly a necessity in order to understand better the
nature of the dark interactions of the Universe.
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APPENDIX A: THE FIELD PROFILE

We consider the profile of the scalar field inside and
outside a dense object of size Rwhen the scalar mass inside
min satisfies minR ≫ 1. The scalar field is then given by

ϕ ¼ ϕin þ A
sinhminr
minr

ðA1Þ

inside for r ≤ R and

ϕ ¼ ϕout þ B
e−moutðr−RÞ

r
ðA2Þ

for r ≥ R. Imposing continuity of the field and its derivative
at the boundary leads to

B ¼ −
A
min

minR coshminR − sinhminR
1þmoutR

ðA3Þ

and

A ¼ ð1þmoutRÞ
ϕin − ϕout

coshminRþmoutR
sin hminR
minR

ðA4Þ
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which can be approximated when minR ≫ 1 as

A ¼ ð1þmoutRÞ
ϕout − ϕin

coshminR
ðA5Þ

and

B ¼ −Rðϕout − ϕinÞ: ðA6Þ

When moutR ≪ 1 we find that

ϕ ¼ ϕout þ ðϕin − ϕoutÞ
R
r

ðA7Þ

outside. In the general case we have

ϕ ¼ ϕout þ ðϕin − ϕoutÞ
R
r
e−moutðr−RÞ: ðA8Þ

In particular, the gradient of ϕ is given by

∂rϕ ¼ −ð1þmoutrÞðϕin − ϕoutÞ
R
r2
e−moutðr−RÞ ðA9Þ

and

r2∂rϕjr¼R ¼ −ð1þmoutRÞðϕin − ϕoutÞR: ðA10Þ

Notice that this result is valid for any value of moutR, i.e.
irrespectively of the presence or not of the Yukawa
suppression term outside the object. We will calculate
the scalar charge in the following appendix.

APPENDIX B: THE FORCE LAW

In the main text we have used the scalar charge of
screened and unscreened objects. In this appendix, we will
give a more rigorous treatment following the discussion in
[51]. First of all let us recall that in the Einstein frame the
Einstein equation reads

Gμν ¼ 8πGNðTm
μν þ Tϕ

μνÞ ðB1Þ

where we have that the energy-momentum of matter is

Tm
μν ¼ AðϕÞρUμUν ðB2Þ

where ρ is the conserved matter density andUμ the velocity
4-vector. The scalar energy momentum is

Tϕ
μν ¼ ∂μϕ∂νϕ − gμν

�ð∂ϕÞ2
2

þ V

�
: ðB3Þ

We work in the Newton gauge for the metric

ds2 ¼ −ð1þ 2ΦNÞdt2 þ ð1 − 2ΦNÞdx2 ðB4Þ

and we expand both the scalar field and the Newton
potential as

ΦN ¼ Φ0 þ Φout; ϕ ¼ ϕ0 þ ϕout ðB5Þ

where “0” denotes the background quantities and “out” the
fields sourced by the objects. In the vicinity of an object,
the background field can be expanded to linear order:

Φ0ð~xÞ¼Φ0ð0Þþ∂iΦ0ð~xÞxi; ϕ0ð~xÞ¼ϕ0ð0Þþ∂iϕ0ð~xÞxi:
ðB6Þ

The field outside the given object and created by the object
is such that, as long as minR ≫ 1, where min is the mass of
the scalar field inside the object and R its typical size,

ϕ ¼ ϕout þ ðϕin − ϕoutÞ
R
r
e−moutðr−RÞ: ðB7Þ

We also assume that the object creates the Newtonian
potential

ΦoutðrÞ ¼ −
GNM
r

ðB8Þ

whereM is the mass of the object. We assume that matter is
responsible for the Newtonian potential, and that the scalar
field energy scale is negligible compared to matter inside
the object and very small outside.
The Einstein equation can be rewritten as

Gð1Þ
μν ¼ 8πGNðTm

μν þ Tϕ
μν þþtμνÞ ðB9Þ

where Gð1Þ
μν is linear in the Newton potential and the

pseudotensor is given by

tμν ¼ −
1

8πGN
Gð2Þ

μν ðB10Þ

where Gð2Þ
μν contains all the higher order terms in the

Newton potential. This corresponds to the gravitational
pseudo-energy-momentum tensor.
We can now identify the expression for the massM of the

object which is given by

M ¼ −
Z
V
d3x ~T0

0 ðB11Þ

where we draw a sphere of volume V encircling the object
and

~Tμν ¼ Tm
μν þ Tϕ

μν þ tμν: ðB12Þ

Neglecting the scalar contribution to the energy density, the
mass is given by the integral over the object
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M ¼
Z
V
AðϕÞρd3x ðB13Þ

which is constant as long as the scalar field is time
independent and we can neglect the radiation by gravita-
tional waves.
The momentum of the object is simply given by

Pi ¼
Z
V
d3x ~T0

i : ðB14Þ

The noncovariant Bianchi identity implies that ∂μ ~Tμν ¼ 0
and therefore we get

_Pi ¼ −
Z
∂V

dSj ~T
j
i ðB15Þ

where the surface integral is on the surface of the outer
sphere. There the matter energy-momentum tensor is
negligible, and similarly for the contribution from the
scalar field energy density. Only two terms have a relevant
flux: the scalar and gravitational ones. The gravitational
flux has been computed in [51] and yields

Z
∂V

dSjt
j
i ¼

r2

GN

∂Φout

∂r ∂iΦ0 ¼ M∂iΦ0 ðB16Þ

which gives a contribution equal to the GR prediction. The
new contribution from the scalar field is simply dominated
by the large gradient of the scalar field ϕoutðrÞ compared to
the scales over which the background quantities vary

−
Z
∂V

dSjT
ϕj
i ¼ −4πr2

∂ϕout

∂r
����
r¼R

∂iϕ0

¼ 4πð1þmoutRÞðϕin − ϕoutÞR∂iϕ0; ðB17Þ

using (A10), and the flux is evaluated at the outer surface of
the object. As a result we obtain that

_Pi ¼−M∂iΦ0−4πð1þmoutRÞðϕout−ϕinÞR∂iϕ0: ðB18Þ

Now the center of mass coordinates

MXi ¼ −
Z
V
d3xxit00 ðB19Þ

are such that Pi ¼ M _Xi and therefore

Ẍi ¼ −∂iΦ0 − ð1þmoutRÞ
ðϕout − ϕinÞ
2mPlΦNðRÞ

∂iϕ0

mPl
ðB20Þ

where ΦNðRÞ ¼ GNM
R . We can immediately identify the

charge of a given object

βobject ¼ ð1þmoutRÞ
ðϕout − ϕinÞ
2mPlΦNðRÞ

; ðB21Þ

such that

Ẍi ¼ −∂iΦ0 − βobject
∂iϕ0

mPl
ðB22Þ

which is exactly what we used in the main text. From this
we can immediately deduce that the field generated by an
extended object is given by

∂iϕout ¼ 2βobjectmPl∂iΦout: ðB23Þ

This implies that when the external fieldsΦ0 and ϕ0 are due
to another extended object, we find that the motion of the
object A is due to the total potential ð1þ 2βAβBÞΦB, where
ΦB is the Newtonian potential due to a second object B,
such that we have

Ẍi
A ¼ −ð1þ 2βAβBÞ∂iΦB ðB24Þ

which is also the result that we have used in the main text.

APPENDIX C: THE EÖTWASH BOUND

The Eötwash experiment has been analyzed numerically
in [32,48] and analytically in [46]. We follow the latter in
this appendix. The search for the presence of new inter-
actions by the Eötwash experiment [6] involves two plates
separated by a distance d in which holes of radii rh have
been drilled regularly on a circle. The two plates rotate with
respect to each other. The gravitational and scalar inter-
actions induce a torque on the plates which depends on the
potential energy of the configuration. The potential energy
is obtained by calculating the amount of work required to
approach one plate from infinity [29,32]. Defining by AðθÞ
the surface area of the two plates which face each other (this
is not the whole surface area because of the presence of the
holes), a good approximation to the torque, expressed as the
derivative of the potential energy of the configuration with
respect to the rotation angle θ, is given by

T ∼ aθ

Z
dmax

d
dx

�
ΔFϕ

A
ðxÞ

�
ðC1Þ

where aθ ¼ dA
dθ depends on the experiment. The pressure

ΔFϕ

A ðxÞ is the Casimir pressure due to the scalar field
between the two plates separated by a distance x. When the
Casimir pressure due to the scalar field decreases fast
enough with x, the upper bound dmax can be taken to be
infinite. When this is not the case, the upper bound is the
maximal distance below which the scalar force is not
suppressed by the Yukawa falloff.

PHILIPPE BRAX and ANNE-CHRISTINE DAVIS PHYSICAL REVIEW D 94, 104069 (2016)

104069-12



For the 2006 Eötwash experiment [31], we consider the
bound obtained for a separation between the plates of
d≲ 1 mm,

jTj ≤ aθΛ3
T ðC2Þ

where ΛT ¼ 0.35Λ [29]. The pressure between the two
plates is low 10−6 T corresponding to a redshift of
ab ∼ 1.410−6. We must also modify the expression of
the torque (C1) in order to take into account the effects
of a thin electrostatic shielding sheet of width ds ¼ 10μm
between the plates. This reduces the observed torque which
becomes

Tobs ¼ e−msdsTθ ðC3Þ

where ms is the mass of the scalar field in the shield. When
the mass in dense media is very large, this imposes a strong
reduction of the signal.
The scalar Casimir pressure has been calculated [46],

ΔFϕ

A
¼ VeffðϕbÞ − VeffðϕdÞ; ðC4Þ

corresponding to the difference between the effective
potential in vacuum ϕb compared to the value it takes in
between the plates ϕd (at the midpoint between the plates).
As long as the density between the plates is lower than the
density in the plates, the scalar field forms bubbles reaching
a value ϕd ≠ ϕb. This can also be expressed using the
tomographic mapping as

ΔFϕ

A
¼ −27Ω2

m0H
4
0m

2
Pl

Z
ab

ad

da
β2ðaÞ

a7m2ðaÞ
�
1 −

a3

a3b

�
ðC5Þ

where ρb ¼ ρ0
a3b
and ϕd ¼ ϕðadÞ. Hence the scalar field adds

an extra attracting pressure between the plates, as the
integrand is always positive. The value of ϕd depends on
the masses mplate and mb in the plates and in the vacuum.
When mplatesd≳ 1, the field has a nontrivial profile
between the plates, i.e. there is a bubble of scalar field,
and the scalar Casimir pressure does not vanish. When
mplated≲ 1, the field is constant between the plates and
ϕd ¼ ϕplate, implying a constant scalar Casimir pressure.
Finally when the plates are not screened and mplateDplate ≲
1 where Dplate is the width of the plates, we have ϕd ¼ ϕb

and no Casimir pressure is present.

The case of chameleons and symmetrons can be found
explicitly treated in [46]. Here we repeat our results for the
symmetrons as we have used them in Fig. 3. In the
symmetron case, we find a constant pressure for close
enough plates and no pressure when they are far apart.
Indeed as long as mbd ≤

ffiffiffi
2

p
π, we have that

ϕd ¼ 0 ðC6Þ

and the Casimir pressure is given by a constant,

ΔFϕ

A
¼ −

μ4

4λ
; ðC7Þ

which is the height of the symmetron potential. We have
assumed that the vacuum is perfect between the plates.

When d ≳ dc ¼
ffiffi
2

p
π

mb
, the interaction between the plates is

Yukawa suppressed, implying that we can approximate it to
be vanishing. Hence the torque is given by

Tθ ¼ −aθ
μ4ðdc − dÞ

4λ
ðC8Þ

which depends on μ and λ.
The mass of the scalar field in the shield of density ρs is

given by

m2
s ¼

ρs
M2⋆

− μ2: ðC9Þ

As a result the Eötwash bound can be expressed as

M⋆ ≤
ffiffiffiffiffi
ρs

p
ds

ðln2ðμ4ðdc−dÞ
4λΛ3

T
Þ þ μ2d2sÞ1=2

ðC10Þ

as long as 4λΛ3
T ≤ πμ4ðdc − dÞ, i.e. the upper bound on λ

in Fig. 3.
The torque calculation that we have presented applies

only when a⋆ ≥ aplate where

a⋆ ¼
�

ρ0
μ2M2⋆

�
1=3

: ðC11Þ

For larger values of M⋆ we have a⋆ ≲ aplate and therefore
the symmetron is nearly in its vacuum phase in the plates
and in the vacuum. This leads to hardly any torque between
the plates.
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