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We show that Schwarzschild black hole solutions in asymptotically anti-de Sitter (AdS) and de Sitter
spaces may, up to a conformal factor, be reproduced in the framework of analogue gravity. The
aforementioned derivation is performed using relativistic and nonrelativistic Bose-Einstein condensates.
In addition, we demonstrate that the (2þ 1) planar AdS black hole can be mapped into the nonrelativistic
acoustic metric. Given that AdS black holes are extensively employed in the gauge/gravity duality, we then
comment on the possibility of studying the AdS/CFT correspondence and gravity/fluid duality from an
analogue gravity perspective.
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I. INTRODUCTION

It is well known that kinematic aspects of classical and
quantum theories in curved spacetimes can be understood
by using condensed matter systems, which admits a
hydrodynamical description [1,2]. More precisely, there
is a theorem which states that linearized perturbations over
a moving fluid may, under suitable conditions (barotropic,
inviscid, and irrotational flows), be described in the same
way as massless scalar fields propagating in a curved
spacetime. This class of models belongs to the broader
research field of analogue models of gravity, which has led
to several interesting outcomes in the past decades, such as
the understanding of the robustness of Hawking radiation
against high energy physics [3] as well as its realisation in a
laboratory setting [4] or the simulation of cosmological
solutions [5].
Among the various gravity systems investigated so far,

black holes are the most studied ones and still the subject of
intense investigation both for their theoretical implications as
well as for their possible realization in a laboratory. In
Refs. [6,7], for instance, the acoustic geometry has been
mapped into the Schwarzschild metric. The equivalence is
not exact, but up to a conformal factor, which is enough for
analyzing basic features of Hawking radiation. Spherically
symmetric flows of incompressible fluid, which give rise to
canonical acoustic black holes, have beenunder investigation
as well [2,6,7], and even black hole solutions of gravitational
theories with intrinsic preferred frames have been modelled
in the analogue gravity framework [7]. On the experimental
side, flow configurations with analogue horizons have been
reproduced in concrete laboratory setups, leading to obser-
vations of classical and quantum features of the emission

from black hole configurations [8–11]. Furthermore, there
has been growing interest in the attempt to simulate rotating
black holes for understanding superradiance from the ana-
logue gravity point of view as well as for testing theoretical
predictions in the lab [12–14].
In an attempt to further extend the class of spacetimes

reproducible within an analogue gravity framework, it was
recently shown that one can mimic a spatial slice of an anti-
de Sitter (AdS) black hole which has the same dimension as
the boundary of the bulk spacetime [15,16]. Obviously, the
interest in this class of solutions goes beyond the mere issue
of experimental realizability as they could be used as well
to probe tantalizing features of gravitation such as the
AdS/CFT [17] and gravity/fluid duality [18]. For example,
it would be interesting to understand if the latter could be
seen as a natural outcome in an emergent gravity frame-
work as that epitomized by analogue gravity. For example,
in Refs. [15,16], it was conjectured—inside the context of
gauge/gravity duality—that there may exist a connection
between the weakly coupled condensed matter system
mimicking a projection of the bulk and the strongly coupled
condensed matter living at the boundary. In addition,
attempts to investigate the AdS/CFT correspondence in
the formalism of analogue gravity have also been explored
in Refs. [19–24], albeit in these cases the analogue system
was built up at the boundary, and not in the bulk, as in
Refs. [15,16].
Unfortunately, an inherent obstruction for drawing

stronger conclusions about these tantalizing features of
gravitational theories in AdS spacetimes is given by the
fact that the Einstein equations are not generically repro-
duced by the background field equations of the analogue
gravity system. Nonetheless, simpler gravitational theories
can be reproduced within the analogue gravity frame-
work where Bose-Einstein condensates were used to
reproduce Newtonian [25] as well as Nördstrom scalar
gravity [26] with a cosmological constant. Since in the
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above-mentioned scenario we have a well-defined fluid,
which gives rise to a gravity theory in the bulk, one could
explore if there is some deeper connection between the
fluid living in the bulk and the conformal theory at
the boundary (which admits a fluid description leading
to the so-called gravity/fluid duality).
Our aim in this paper is then twofold:
1. To show that black holes in asymptotic AdS and

de Sitter (dS) spaces can be formulated in the context
of analogue gravity by using relativistic and non-
relativistic moving fluids (without the need for
projections to lower dimensions).

2. To provide insight toward the possible use of
analogue gravity as a toy model for understanding
features of the gauge-fluid/gravity duality in a
scenario of emergent gravity dynamics.

The remainder of this paper is organized as follows. In
Sec. II, we review the basic ingredients of the Bose-
Einstein condensate formation in the relativistic regime,
showing the emergence of the effective acoustic metric for
the linearized perturbations. The nonrelativistic regime is
obtained afterward. In Sec. III, we derive the Schwarzschild
AdS and dS acoustic black hole metrics in arbitrary
dimensions using the relativistic condensate. In Sec. IVA,
we derive the AdS and dS black hole for the nonrelativistic
acoustic metric. In Sec. IV B, we map the (2þ 1)-
dimensional planar AdS black hole into the nonrelativistic
acoustic metric. At the end, in Sec. V, we present our
conclusions and discuss the gauge/gravity duality in the
context of emergent gravity dynamics from the analogue
gravity perspective.
In our conventions, the signature of the metric is

ð−;þ; � � � ;þÞ.

II. BOSE-EINSTEIN CONDENSATES

In this section, we review the basic features of the Bose-
Einstein condensate in both the relativistic and nonrelativ-
istic regimes and how the quasiparticles over them can be
described in terms of an effective acoustic metric. For
further details, we refer to Ref. [27]. Let us start by
considering the Lagrangian density for a complex scalar
field ϕðx; tÞ, which can be written as

L ¼ −ημν∂μϕ
�∂νϕ −

�
m2c2

ℏ2
þ Vðt;xÞ

�
ϕ�ϕ

−Uðϕ�ϕ; λiÞ; ð1Þ

where m is the mass of bosons, Vðt;xÞ is an external
potential, c is the speed of light,U is a self-interaction term,
and λiðt;xÞ are the coupling constants.
The Lagrangian (1) is invariant under the global Uð1Þ

symmetry and has a conserved current,

jμ ¼ iðϕ�∂μϕ − ϕ∂μϕ�Þ; ð2Þ

which is related to a conserved ensemble charge N − N̄,
where NðN̄Þ is the number of bosons (antibosons).
In the absence of self-interactions (U ¼ 0) and no

external potential (V ¼ 0), the average number of bosons
nk in a state of energy Ek can be written as

N − N̄ ¼ Σk½nk − n̄k�; ð3Þ

where

nkðμ; βÞ ¼ 1=fexp½βðjEkj − μÞ� − 1g;
n̄kðμ; βÞ ¼ 1=fexp½βðjEkj þ μÞ� − 1g; ð4Þ

μ is the chemical potential, T ≡ 1=ðkBβÞ is the temperature,
and the energy of the state k is given by E2

k ¼ ℏ2k2c2þ
m2c4.
In a system of volume V, the relation between the

conserved charge density, n ¼ ðN − N̄Þ=V, and the critical
temperature Tc is

n ¼ C
Z

∞

0

dkkd−1
sinhðβcmc2Þ

coshðβcjEkjÞ − coshðβcmc2Þ ; ð5Þ

where C ¼ 1=ð2d−1πd=2Γðd=2ÞÞ and βc ≡ 1=ðkBTcÞ.
The nonrelativistic and ultrarelativistic limits can be

obtained directly from Eq. (5). When kBTc ≪ mc2, the
nonrelativistic limit is given by

kBTc ¼
2πℏ2

n

�
n

ζðd=2Þ
�

2=d
; ð6Þ

where ζ is the Riemann zeta function. The ultrarelativistic
limit is characterized by the condition kBTc ≫ mc2, which
implies that

ðkBTcÞd−1 ¼
ℏdcd−2Γðd=2Þð2πÞd
4mπd=2ΓðdÞζðd − 1Þ n: ð7Þ

The condensation of the relativistic Bose gas occurs
when T ≪ Tc, where, using the mean-field approximation,
the dynamics of the condensate is described by the non-
linear Klein-Gordon equation

□ϕ −
�
m2c2

ℏ2
þ V

�
ϕ −U0ϕ ¼ 0: ð8Þ

In this phase, it is possible to uncouple the Bose-Einstein
condensate (BEC) ground state from its perturbations. To
perform this split, one can insert ϕ ¼ φð1þ ψÞ in Eq. (8),
where φ is the classical background field satisfying the
equation

□φ −
�
m2c2

ℏ2
þ V

�
φ −U0φ ¼ 0 ð9Þ
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and ψ is a quantum relative fluctuation (i.e., of order ℏ).
The modified Klein-Gordon equation (9) gives the dynam-
ics of the ground state of the relativistic condensate.
It is also convenient to decompose the degrees of

freedom of the complex classical scalar field in terms of
the Madelung representation, φ ¼ ffiffiffi

ρ
p

eiθ. Using this pre-
scription, the continuity equation and the condensate
equation (9) assume the form

∂μðρuμÞ ¼ 0; ð10Þ

−uμuμ ¼ c2 þ ℏ2

m2

�
VðxμÞ þU0ðρ; λiðxμÞÞ −

□
ffiffiffi
ρ

p
ρ

�
; ð11Þ

where

uμ ¼ ℏ
m
∂μθ ð12Þ

is the unnormalized 4-velocity of the condensate.
The linearized perturbation ψ satisfies

�
½iℏuμ∂μ þ Tρ�

1

c20
½−iℏuν∂ν þ Tρ� −

ℏ2

ρ
ημν∂μρ∂ν

�
ψ ¼ 0;

ð13Þ

where c20 ≡ ℏ2

2m2 ρU00 is related to the interaction strength
and

Tρ ≡ −
ℏ2

2m
ð□þ ημν∂μ ln ρ∂νÞ ð14Þ

is a generalized kinetic operator. Albeit c0 has dimension of
velocity, it is not the speed of sound in the relativistic
condensate. Nevertheless, as we will see in the relation
(27), both variables are connected.
Equation (13) is the relativistic generalization of the

Bogoliubov-de Gennes equation. The dispersion relation
associated to (13) has several limiting cases of interest
which were fully explored in Ref. [27]. Here, we are
particularly interested in the low momentum regime which
is characterized by the condition

jkj ≪ mu0

ℏ
ð1þ bÞ; ð15Þ

where b≡ ðc0=u0Þ2. Taking into account the phononic
limit defined by (15) and assuming that the background
quantities u, ρ, and c0 vary slowly in space and time on
scales comparable with the wavelength of the perturbation,
i.e.,				 ∂tρ

ρ

				≪ w;

				 ∂tc0
c0

				≪ w;

				 ∂tuμ
uμ

				≪ w; ð16Þ

one can disregard the quantum potential Tρ, implying that
the quasiparticles can be described in terms of an effective
acoustic metric. Let us then show that the acoustic
description can be achieved at the aforementioned scales.
Applying the above assumptions, it is easy to see that
Eq. (13) reduces to

�
uμ∂μ

�
1

c20
uν∂ν

�
−
1

ρ
ημν∂μðρ∂νÞ

�
ψ ¼ 0: ð17Þ

Now, in order to arrive at the acoustic metric, one can
make use of the continuity equation (10) and rewrite (17) as

∂μ

�
−ρημν þ ρ

c20
uμuν

�
∂νψ ¼ 0: ð18Þ

Equation (18) can be expressed as

∂μðγμν∂νψÞ ¼ 0; ð19Þ

where γμν is

γμν ¼ ρ

c20
ðc20ημν − uμuνÞ: ð20Þ

Identifying γμν ¼ ffiffiffiffiffiffi−gp
gμν, we get

ffiffiffiffiffiffi
−g

p ¼ ρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − uαuα=c20

q
; ð21Þ

and

gμν ¼ 1

ρc20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − uαuα=c20

p ðc20ημν − uμuνÞ: ð22Þ

Therefore, one can cast Eq. (18) in the form

Δψ ≡ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νψÞ; ð23Þ

which is a d’Alembertian for a massless scalar in a
curved background. Inverting gμν, one can then see that
the acoustic metric gμν for the quasiparticles propagation in
a (3þ 1)-dimensional relativistic, barotropic, irrotational
fluid flow is given by

gμν ¼
ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − uαuα=c20
p �

ημν

�
1 −

uαuα

c20

�
þ uμuν

c20

�
: ð24Þ

Sometimes, it is more convenient express the acoustic
metric (24) as

gμν ¼
�
ρ
c
cs

�
2=d−1

�
ημν þ

�
1 −

c2s
c2

�
vμvν
c2

�
; ð25Þ
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where

vμ ¼ c
uμ

‖u‖
ð26Þ

is the normalized 4-velocity and the speed of sound cs is
defined by

c2s ¼
c2c20=‖u‖2

1þ c20=‖u‖2
: ð27Þ

It is obvious from Eq. (25) that the acoustic metric gμν is
related via a disformal transformation to the background
Minkowski spacetime. Writing in the lab coordinates
(xμ ≡ ct, xi), the relativistic acoustic line element takes
the form

ds2 ¼


ρ
c
cs

� 2
d−1
h


−1þ ξ
v02

c2

�
c2dt2 þ 2ξ

v0vi
c2

cdtdxi

þ


δij þ ξ

vivj
c2

�
dxidxj

i
; ð28Þ

where ξ≡ ð1 − c2s=c2Þ. The normalization condition v2 ¼
−c2 allows us to rewrite the above acoustic element line as

ds2 ¼


ρ
c
cs

� 2
d−1
h
−ðc2s − ξv2Þdt2 � 2ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

c2

s
ðvidxiÞdt

þ


δij þ ξ

vivj
c2

�
dxidxj

i
; ð29Þ

where v2 ¼ vivi is the square normalized 3-velocity.
To find the nonrelativistic limit of the above acoustic

metric, one needs to make some further assumptions. First,
in the nonrelativistic regime, the speed of sound cs and the
flow velocity vi are much smaller than the speed of light,
which implies that

ξ ¼ 1þ c2s
c2

≈ 1; 1þ v2

c2
≈ 1: ð30Þ

Moreover, the self-interaction between the atoms must
be weak, i.e., c0 ≪ c. Besides that, u0 → c. In addition, we
note that the speed of sound (27) goes to c0. Under these
assumptions, the 4-velocity takes the form vμ ≈ ðc; uiÞ.
Finally, applying all these conditions into the relativistic
acoustic metric (29), we promptly arrive at

ds2 ¼ ρm
cs

½−ðc2s − u2Þdt2 � 2uidxidtþ δijdxidxj�; ð31Þ

where ρm is the mass density and u2 ¼ uiui is the square
unnormalized 3-velocity. The form of the line element (31)
is the usual nonrelativistic acoustic metric.

III. ANALOGUE OF SCHWARZSCHILD-ADS AND
DS BLACK HOLES IN RELATIVISTIC BEC

We now turn our attention to black holes in asymptotic
AdS and dS spaces. The line elements of these geometries
are given by

ds2 ¼ −
�
1 −

r0
rd−2

� r2

L2

�
c2sdτ2

þ
�
1 −

r0
rd−2

� r2

L2

�−1
dr2 þ r2dΩ2; ð32Þ

where 1=L2 equals the cosmological constant Λ, d is the
spatial dimension, r0 is a constant, and the þ and − signs
pertain respectively to the AdS and dS solutions.
Here, we will derive both these solutions in the frame-

work of relativistic acoustic geometries. To find such a map
between the relativistic flow and the aforementioned
metrics, we start by rewriting (29) in spherical coordinates
and assuming an isotropic fluid, i.e., vθ ¼ vϕ ¼ 0.
Considering the normalized velocity profile given by

v2r ¼
c2s
ξ

�
r0
rd−2

∓ r2

L2

�
; ð33Þ

the relativistic acoustic metric (29) assumes the form

ds2 ¼
�
ρ
c
cs

� 2
d−1

(
−
�
1 −

r0
rd−2

� r2

L2

�
c2sdt2

− 2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r0
rd−2

∓ r2

L2

�s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

c2s
c2

�
1 −

r0
rd−2

� r2

L2

�s !
csdtdr

þ
�
1þ c2s

c2

�
r0
rd−2

∓ r2

L2

��
dr2 þ r2dΩ2

)
; ð34Þ

where the physical meaning of the ∓ signs will become
clear at the end. The normalized radial velocity (33) implies
that the unnormalized radial flow is

ur ¼ u0ðcs=ξÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0=rd−2Þ ∓ ðr=LÞ2

p
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðc2s=ξÞððr0=rd−2Þ ∓ ðr=LÞ2Þ

p : ð35Þ

According to the (dþ 1) continuity equation (10), it
reduces to

∂rðrd−1ρurÞ ¼ 0; ð36Þ

which can be satisfied only for a incompressible fluid,
where the density profile ρ takes the form
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ρ ¼
�

A
rd−1

�
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðc2s=ξÞððr0=rd−2Þ ∓ ðr=LÞ2Þ

p
u0ðcs=ξÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0=rd−2Þ ∓ ðr=LÞ2

p : ð37Þ

In the above relation, A and the speed of sound cs are both
position-independent factors.
Next, we define a new time coordinate τ by

csdτ ¼ csdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

r0
rd−2

∓ r2

L2

�s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

c2s
c2

�
1 −

r0
rd−2

� r2

L2

�s

×

�
1 −

r0
rd−2

� r2

L2

�
−1
dr: ð38Þ

Substituting back the coordinate transformation (38) into
the relativistic acoustic line (34), we promptly find

ds2 ¼
�
ρ
c
cs

� 2
d−1
�
−
�
1 −

r0
rd−2

� r2

L2

�
c2sdτ2

þ
�
1 −

r0
rd−2

� r2

L2

�−1
dr2 þ r2dΩ2

�
; ð39Þ

which is conformal to the AdS and dS black hole
geometries (32) with L−2 ¼ Λ. Also, by confronting (32)
with the above metric, one can now see that the—sign
in (34) refers to the AdS black hole solution, while theþ is
related to the dS black hole geometry. So, in conclusion,
we have found that it is possible to mimic in any number
of dimensions a spacetime conformal to that of a
Schwarzschild-AdS/dS black hole with an analogue model
which reduces to a relativistic fluid in some limit (just like
the relativistic BEC described above).1

IV. ANALOGUE OF ADS AND DS BLACK
HOLES IN NONRELATIVISTIC BEC

A. Acoustic Schwarzschild-AdS and dS black holes

We have so far considered only relativistic condensates
in order to derive the AdS and dS acoustic black hole
metrics. Now, we will show that the previous solutions can
also be found through the use of nonrelativistic BECs. The
derivation of such an outcome is quite similar to the
relativistic case. So, starting from the nonrelativistic
acoustic metric (31), and considering a fluid only in the
r-direction given by

ur ¼ cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r0
rd−2

−
r2

L2

�s
; ð40Þ

one easily finds

ds2 ¼
�
ρ

cs

� 2
d−1
�
−
�
1 −

r0
rd−2

þ r2

L2

�
c2sdt2

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r0
rd−2

−
r2

L2

�s
drðcsdtÞ þ dr2 þ r2dΩ2

�
: ð41Þ

Again, as in the relativistic case, to satisfy the continuity
equation (36), one needs to consider an incompressible
fluid, where the density ρ now is given by

ρ ¼ B
cs

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r0
rd−2

−
r2

L2

�s !−1

ð42Þ

and B is not a function of spacetime. It means that, similar
to the relativistic case, at most, one can simulate the AdS
and dS black hole acoustic metrics up to a conformal factor.
Therefore, applying the coordinate transformation

csdτ ¼ csdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

r0
rd−2

∓ r2

L2

�s �
1 −

r0
rd−2

� r2

L2

�−1
dr

ð43Þ
in (41), one gets the AdS and dS black hole metrics (39) up
to a conformal factor. Again, as in the relativistic case, the
AdS solution is valid only when the condition rd < r0L2 is
satisfied.

B. Acoustic planar AdS black holes

We have just seen that Schwarzschild black holes in
asymptotic AdS and dS spacetimes can be mimicked using
relativistic and nonrelativistic fluids. Now, we would like to
go one step further and see if it is possible to map the
acoustic metric into the planar AdS black hole. This class of
black holes is the most commonly used in the formalism of
the gauge/gravity duality. A first attempt to obtain this class
of solutions was made in Ref. [15]. The author found that
such a map is feasible only when considering a projection
of the bulk solution. Here, we will show that, under some
appropriate choices, it is possible to simulate all the bulk
without any projection.
To begin with, we note that the (dþ 1) planar AdS black

hole metric in Poincaré coordinates takes the form

ds2 ¼ L2

z2

��
1 −

zd

zd0

�
c2dt2 þ

�
1 −

zd

zd0

�−1
dz2

þ
Xd−1
i¼1

dxidxi
�
: ð44Þ

Now, considering the acoustic metric (having planar
symmetry), for a nonrelativistic fluid flowing in Z direc-
tion, performing the coordinate transformation

1It must be noted that, while the fluid which defines the dS
acoustic black hole is well behaved everywhere in the acoustic
spacetime, the AdS black hole solution is valid only in the regime
in which the velocity profile (33) is nonzero, i.e., when the
condition rd < r0L2 is satisfied.
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dτ ¼ dtþ uzdz
ðc2s − u2zÞ

; ð45Þ

we arrive at the diagonal form of the acoustic line element
given by

ds2 ¼
�
ρ

cs

� 2
ðd−1Þ
�
−
�
1 −

u2z
c2s

�
c2sdτ2

þ
�
1 −

u2z
c2s

�−1
dz2 þ

Xd−1
i¼1

dxidxi
�
: ð46Þ

Now, comparing (44) and (52), it is natural to identify

�
ρ

cs

� 2
ðd−1Þ ¼

�
L
z

�
2

→ ρ ¼ cs

�
L
z

�
d−1

; ð47Þ

and

u2z
c2s

¼ zd

zd0
→ uz ¼ cs

�
z
z0

�
d=2

; ð48Þ

where we are picking the speed of sound cs as position
independent.
From the above relations, the density goes to ρ ∼ z1−d,

while the flow velocity goes to uz ∼ zd=2. Under the planar
symmetry, and taking into account that we are in the static
regime, the continuity equation (10) reduces to

∂zðρuzÞ ¼ 0; ð49Þ

which can be satisfied only for d ¼ 2 due to the relation
ρuz ∼ z1−d=2. Hence, we proved that nonrelativistic acoustic
metrics can exactly mimic (2þ 1) planar AdS black holes
in the bulk.
In Ref. [15], the number of spatial dimensions of the

analogue system was taken to be different from the number
of dimensions of the AdS black hole that had to be
mimicked. For the choice of coordinate system used in
Ref. [15] and given that the analogue system is conjectured
to live in (3þ 1) dimensions, imposing the continuity
equation (49) fixes the spatial dimensions of the planar
black hole to be d ¼ 4. This in turn implies that only a
projection of the (4þ 1) AdS black hole geometry to one
lesser dimension could be reproduced. In our case, the
dimensions of the analogue system and those of the AdS
black hole geometry are taken to coincide a priori which in
turn implies that both must be equal to 2.
However, let us stress that the above constraints on the

dimensions can be overcome if one is interested in
mimicking metrics which are just conformallyrelated to
the planar AdS black hole (44). Indeed, in this case, it is
easy to check that one can always choose a conformal
factor such that ρuz ¼ constant and thus the fluid satisfies
the continuity equation (49) trivially.

Coming back to the possibility of exactly simulating
planar black holes in arbitrary dimensions, of course a
natural question would be if the adoption of an analogue
system based on a relativistic fluid (such as a relativistic
BEC) could improve things. Unfortunately, the answer is
no. To see it explicitly, we first consider a d-dimensional
relativistic fluid flow in the z-direction given by

vz ¼
cs
ξ1=2

�
z
z0

�
d=2

: ð50Þ

Now,we shall bring the relativistic acousticmetric (29) into
the diagonal form through the coordinate transformation

csdτ ¼ csdtþ
zd=2

zd=20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

c2s
c2

�
1 −

zd

zd0

�s �
1 −

zd

zd0

�−1
dz;

ð51Þ

where, after the above transformation, Eq. (29) becomes

ds2 ¼
�
ρ
c
cs

� 2
ðd−1Þ
�
−
�
1 − ξ

v2z
c2s

�
c2sdτ2

þ
�
1 − ξ

v2z
c2s

�−1
dz2 þ

Xd−1
i¼1

dxidxi
�
: ð52Þ

Comparing Eqs. (52) and (44), we promptly find that

�
ρ
c
cs

� 2
ðd−1Þ ¼

�
L
z

�
2

→ ρ ¼ cs
c

�
L
z

�
d−1

: ð53Þ

However, according to the four-normalized velocity
relation (50), the unnormalized flow velocity uz takes
the form

uz ¼ u0

c
csðz=z0Þd=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðcs=cÞ2ðz=z0Þd
p ; ð54Þ

which, due to our previous choice for the density profile
Eq. (53), does not satisfy the continuity equation (10), and
even allowing a position dependence in the speed of sound
cs, one still cannot satisfy the continuity equation (49).
Again, it is worth stressing that also in this case the
introduction of a conformal factor, relating the acoustic
and AdS planar black hole metrics, can be used to mimic
the latter while allowing it at the same time to satisfy the
continuity equation (10). To see how we can find such a
conformal mapping, one can multiply Eq. (44) by an
arbitrary function fðzÞ, where the planar AdS black hole
line element becomes
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ds2 ¼ fðzÞL
2

z2

��
1 −

zd

zd0

�
c2dt2 þ

�
1 −

zd

zd0

�−1
dz2

þ
Xd−1
i¼1

dxidxi
�
: ð55Þ

Assuming the same normalized velocity as in Eq. (50),
which automatically gives the unnormalized fluid flow
(54), and picking up a position-independent speed of sound
cs, we promptly obtain to the density profile

�
ρ
c
cs

� 2
ðd−1Þ ¼ fðzÞ

�
L
z

�
2

→ ρ ¼ fðzÞðd−1Þ2

�
cs
c

��
L
z

�
d−1

:

ð56Þ

It is now obvious that an appropriate choice of
the function fðzÞ will satisfy the continuity equation (10)
(in this case, in any dimensions), allowing the planar AdS
black hole metric be conformally mapped into the relativ-
istic acoustic geometry.

V. SUMMARY AND DISCUSSION

Mapping black hole metrics is one of the most interesting
applications of analogue models of gravity. However, only
Schwarzschild metric and spatial sections of rotating
spacetimes have been obtained so far. In the present work,
we have applied for the first time the analogy between
Schwarzschild AdS/dS black holes and condensed matter
systems using a BEC. Starting from both relativistic and
nonrelativistic Bose-Einstein condensates, we have con-
formally mapped the acoustic metric in the aforementioned
solutions for BECs of arbitrary dimension. It is an
interesting fact that the (2þ 1)-dimensional planar AdS
black holes can be exactly mimicked using a nonrelativistic
BEC. Nevertheless, higher-dimensional ones can be mim-
icked modulo a conformal factor.
Nowadays, there are several laboratory setups underway

based on theoretical models that have been proposed over
the past years in the analogue gravity framework. Currently,
such experimental realizations include mainly nonrelativ-
istic Bose-Einstein condensates, optical fibers, and shallow
wave systems [2]. Although relativistic Bose-Einstein
condensates provide us with a very rich framework to
explore analogue models of gravity, differently from the
nonrelativistic case where some features can be simulated,
the experimental realization seems far from being achieved
in a nearby future. Indeed, the use of relativistic BECs for
theoretical studies is mainly focused on issues related to
Hawking radiation and spacetime and gravity emergent
phenomena.2

In this latter declination, given that we now know how to
mimic AdS black holes in analogue gravity, it would be
interesting to investigate if one can acquire some knowl-
edge about AdS/CFT [17] correspondence and gravity/fluid
duality [18] from this perspective. However, in the context
of analogue gravity, the Einstein equations cannot emerge
since the classical condensate fluid equations are not fully
background independent. In this sense, the lack of a well-
defined classical gravitational action on the bulk seems to
prevent any advancement along this line of research.
Nonetheless, it was recently shown in Ref. [26] that the

field equations for Nördstrom gravity may emerge taking
into account relativistic BECs in the massless limit. For
such a realization, a real ground state of the aforementioned
condensed matter system (constant phase) was assumed
which implied a speed of sound equal to the speed of
light which implies the absence, in this tuned system, of
the Lorentz breaking transition between a low energy
(phononic) Lorentz group and an high energy (atomic)
one. Indeed, the main goal of Ref. [26] consisted of
showing that there can be an exact (not accidental)
relativistic emergent gravity dynamics arising from an
analogue system endowed with a UV completion provided
by the atomic structure.
Quite surprisingly, this investigation also showed that an

unavoidable cosmological constant is induced in the
emergent gravitational dynamics as a byproduct of the
atomic interaction and the quantum nonequivalence of
the phononic and atomic vacua. While the first contribution
is positive for repulsive interactions, it was shown in
Ref. [25] that the second is generally negative (being related
to the backreaction of the atoms not in the condensate phase
associated to the so-called depletion). Then, the interplay
between these two different contributions (which can be
tuned to be of comparable size) can be used to mimic both
positive and negative cosmological constants (and interest-
ingly even transitions between opposite sign values).
Therefore, in such analogue systems, one could mimic a

well-defined gravity theory in the bulk, i.e., Nördstrom
gravity, which, remarkably, can be described by an
Einstein-Hilbert action with a cosmological constant plus
a Lagrange multiplier term fixing the Weyl tensor to be zero
[28]. Indeed, this fact is quite relevant because it implies
(see Appendix A for an explicit demonstration) that the
boundary stress tensor for the bulk theory is still the
standard Brown-York one [29], which in turn is known
to take the form, for black hole geometries in AdS, of a
perfect fluid stress-energy tensor leading to the fluid/
gravity duality. In this sense, it would be quite interesting
to be able to simulate AdS black holes-like geometries in
this system.
In order to find such solutions, we first note that the

required equality of the speed of sound to the speed of light
implies that the acoustic disturbances in such a special
system propagates under an acoustic metric which is

2However, it is perhaps worth stressing that our results apply to
general nonrelativistic and relativistic superfluids as well.
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actually conformally flat (actually a necessary condition for
them being a solution of Nördstrom gravity) and given by

gμν ¼ ϕ2ημν; ð57Þ
where ϕ is the (real) ground state of the condensate.
Indeed, there are static, spherically symmetric, and

asymptotically flat solutions for Nördstrom gravity given by

ds2 ¼
�
1 −

m
r

�
½−dt2 þ dr2 þ r2dΩ2�: ð58Þ

The above metric can be exactly mapped in both relativistic
and nonrelativistic BECs by imposing a fluid flow at rest and
a density profile given by ρ ≈ ð1 −m=rÞ. Although the
above metric does not have the usual black hole properties,
the existence of a Killing horizon is enough to ensure the
existence of an acoustic black hole.
Now, natural AdS generalizations of this solution could

be provided, e.g., by taking the line elements

ds2 ¼
�
1 −

m
r
þ r2

L2

�
½−dt2 þ dr2 þ r2dΩ2�; ð59Þ

ds2 ¼
�
1 −

m
r

��
1þ r2

L2

�
½−dt2 þ dr2 þ r2dΩ2�: ð60Þ

Unfortunately, none of the above (or similarly constructed)
solutions seems to be able to satisfy the background fluid
equations of motion (which also coincide with the Einstein-
Fokker equations of Nördstrom gravity with a cosmologi-
cal constant).
It is not clear if such an obstruction has a deep meaning

about the limits of analogue gravity as an emergent gravity
toy model (for example, related to the issue raised in
Ref. [30] about the notion of locality) or simply a technical
issue which, e.g., could be solved working perturbatively
close to the Nördstrom limit of the relativistic BEC but still
allowing for a different speed of sound and light and hence
full disformal geometries. All we can say for certain is that
no no-go theorem seems to forbid AdS black holes
solutions in Nördstrom gravity and that finding such
solutions could pave the way to understanding the grav-
ity/fluid [31,32] duality at a fundamental level within a
well-defined emergent gravity scenario. For example,
having such a solution would allow for a direct confronta-
tion of the fluid dynamics induced on the boundary, via the
computation of the renormalized stress-energy tensor, with
the underlying hydrodynamics in the bulk from which the
structure of spacetime emerged. By doing so, one could
understand the origin of the fluid/gravity duality within an
analogue setup (one way would be to obtain the transport
coefficients of the induced boundary fluid system starting
from the underlying fundamental fluid) and have a better
understanding of it within an emergent gravity setup. We
hope this investigation will stimulate further studies in this
direction.
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APPENDIX: EMERGENT
NÖRDSTROM GRAVITY

In the context of analogue gravity, one might ask if the
equations governing the dynamics of the quasiparticles
(linearized fluctuations on the top of the relativistic con-
densate in this case) have similarity with any known
gravitational field equations. A striking resemblance was
found in Ref. [26] where it was shown that the fluctuations
of the condensate in the zero mass limit would experience a
curved geometry determined by the Einstein-Fokker equa-
tion describing Nordström gravity. Using the Ricci scalar
for the acoustic metric, which is given as R ¼ −6□ϕ

ϕ3 , the

relativistic Gross-Pitaevskii equation can be written as

Rþ 6
m2

ϕ2
þ 12λ ¼ hTi; ðA1Þ

where hTi ¼ −12λ½3hψ1i þ hψ2i� and ψ1, ψ2 are the real
and imaginary parts of the fluctuation field. In the massless
limit and after identifying the Newton and cosmological
constants, one gets the Einstein-Fokker equation

R − Λ ¼ 24π
G
c4

T: ðA2Þ

In the above equation, we have not taken into account the
quantum corrections to the cosmological constant, but after
considering it, the sign of the cosmological constant might
be different from what appears here. Remarkably, this
equation of motion can be derived from the Einstein-
Hilbert action supplemented by a Lagrange multiplier.
One can start with a covariant action given as

S½gμν; λμνρσ� ¼ −
c3

48πG

Z ffiffiffiffiffiffi
−g

p
ddx½Rþ Λ

þ λμ
νρσCμ

νρσ�; ðA3Þ

whereG is the Newton constant, R is the scalar curvature,Λ
is the cosmological constant, Cμ

νρσ is the Weyl tensor, and
λμ

νρσ is a Lagrange multiplier having all the symmetries of
the Weyl tensor. Variation with respect to gμν, imposing
certain boundary condition on the variation of the metric
and its first derivative and taking the trace part gives the
Einstein-Fokker equation describing Nordström gravity
with a negative cosmological constant, which is
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R − Λ ¼ 24π
G
c4

T; ðA4Þ

and variation of the action with respect to λμ
νρσ yields

Cμ
νρσ ¼ 0; ðA5Þ

which implies that the traceless part of the curvature is zero
and we are left with only the trace part as required. Instead
of imposing conditions on the first derivative of the metric,
we can add a counterterm to the action of which the
variation would precisely cancel the variation of first
derivative of metric term as obtained by extremization of
the original action. The variation of the above action with
respect to gμν can be written as

δS½gμν; λμνρσ� ¼
c3

48πG

Z
d4x½−Eμνδgμν þ ∂μVμ�; ðA6Þ

where Eμν gives the field equation and the boundary term is
given as

Vμ ¼ −2Dσλ
μðνρÞσδgνρ þ ½gνρgμσ − gμðgρÞσ

− 2λμðνρÞσ�δΓσ
νρ: ðA7Þ

In the above expression, we can set the first term to zero
by assuming the variation of the metric vanishes at the

boundary. The second and the third term are canceled by
adding the Gibbons Hawking term to the original action,
and the last term is the nonzero part for the action we started
with. Now, we must note that all solution of the Nordström
equation of motion must be conformally flat, and for such
metrics δΓσ

νρ ∼ Bσδηνρ þ δCσηνρ. Here, again the first term
can be set to zero by our previous argument, and the second
term contacted with λμðνρÞσ becomes zero due to the
symmetries of λ. Hence, the action (A3) with the counter-
terms becomes

S½gμν; λμνρσ� ¼ −
c3

48πG

Z
M

ddx
ffiffiffiffiffiffi
−g

p ½Rþ Λþ λμ
νρσCμ

νρσ�

−
c3

24πG

Z
∂M

dd−1x
ffiffiffiffiffiffi
−γ

p
K; ðA8Þ

where K is the trace of the extrinsic curvature and γ is the
determinant of the boundary metric γαβ. From the above
action, we can see that the boundary stress tensor of
spacetime, i.e., the so-called Brown-York stress-energy
tensor, will have the same form as obtained for general
relativity [33] as it depends on the on-shell variation of the
surface term with respect to the boundary metric, and in this
case, we obtain the same boundary term as in the case of
general relativity.
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