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We numerically investigate the interior of a four-dimensional, asymptotically flat, spherically symmetric
charged black hole perturbed by a scalar fieldΦ. Previous study byMarolf andOri indicated that late infalling
observers will encounter an effective shock wave as they approach the left portion of the inner horizon. This
shock manifests itself as a sudden change in the values of various fields, within a tremendously short interval
of proper time τ of the infalling observers. We confirm this prediction numerically for both test and self-
gravitating scalar-field perturbations. In both cases we demonstrate the effective shock in the scalar field by
exploringΦðτÞ along a family of infalling timelike geodesics. In the self-gravitating casewe also demonstrate
the shock in the area coordinate r by exploring rðτÞ. We confirm the theoretical prediction concerning the
shock sharpening rate, which is exponential in the time of infall into the black hole. In addition we
numerically probe the early stages of shock formation.We also employ a family of null (rather than timelike)
ingoing geodesics to probe the shock in r. We use a finite-difference numerical code with double-null
coordinates combined with a recently developed adaptive gauge method in order to solve the
(Einsteinþ scalar) field equations and to evolve the spacetime (and scalar field)—from the region outside
the black hole down to the vicinity of the Cauchy horizon and the spacelike r ¼ 0 singularity.
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I. INTRODUCTION

A. Background

The inner structure of classical black holes (BHs) has been
a subject of continuous investigationover the last half century.
The interior of a Reissner-Nordström (RN) or Kerr BH
(representing a charged or spinning BH, respectively) is
drastically different from that of a Schwarzschild BH. In the
latter there is a fatal, destructive, spacelike singularity at
r ¼ 0, and all infalling observers inevitably crash at that
singularity. By contrast, in the RN and Kerr solutions there is
an inner horizon (IH) at finite r, instead of a spacelike
singularity. An r ¼ 0 singularity still exists in these two
solutions, but it is timelike rather than spacelike; it is located
beyond the inner horizon, and infalling geodesics generically
avoid it (unlike the Schwarzschild case). Figure 1(a) displays
the Penrose diagramof the eternal (analytically extended)RN
spacetime. The Kerr case is basically similar (at least with
regards to the aspects considered in this paper).1

The IH in the RN and Kerr spacetimes also serves as a
Cauchy horizon (CH), a null hypersurface which marks the
future boundary of physical predictability (for initial data
specified in the external world). Note that in a RN or Kerr
BH there are two distinct inner-horizon hypersurfaces [see

Fig. 1(a)], namely a left-going arm and a right-going one. In
the case of an eternal BH, the CH contains both IH arms (up
to their bifurcation point b). This is directly related to the
presence of two external asymptotic universes, W and W’.
However, in the case of a noneternal charged BH produced
in spherical charged collapse [see Fig. 1(b)], the left-right
symmetry breaks, and the asymptotic universe W’ no
longer exists. In this case only the left-going arm of the
IH is a CH. The other IH arm seems to have no special
causal role in the charged-BH spacetime. The situation with
spinning BHs is basically similar: In the eternal Kerr
spacetime the CH contains both arms of the IH; but in
the noneternal, spinning-collapse case (with asymptotically
Kerr exterior) only the left-going arm belongs to the CH.2

In the late 1960s Penrose pointed out that the CH, in both
RN and Kerr geometries, is a locus of infinite blue shift. [1]
He suggested that this diverging blue shift would lead to
divergent energy fluxes, and hence to a curvature singu-
larity instead of a regular IH. Since then, many inves-
tigations have made an attempt to analyze the effect of
perturbations on the internal structure of the (charged or

1Certain differences and additional subtleties arise in the
spacetime diagram of Kerr geometry, but they all occur beyond
the IH and are hence not so relevant to the present paper. (We
mention two such differences: The r ¼ 0 singularity in Kerr
geometry is actually a ring, and at its “other side(s)” there is an
additional external asymptotic universe, of a different type.)

2In the case of spherical charged collapse, the spherically
symmetric electrovac exterior is uniquely described by the RN
geometry. But in the spinning analog, the vacuum exterior
generically fails to be Kerr geometry. Indeed, at late time the
geometry should approach a Kerr BH (the “no-hair” principle).
However, in this case the CH becomes a weak curvature
singularity (in contrast with the regular CH in the cases of pure
Kerr and RN geometries, and in the case of unperturbed spherical
charged collapse). We shortly discuss this type of weakly singular
CH.
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spinning) BH—particularly at the CH. In order to simplify
the analysis, most of these investigations [2–13] were
restricted to spherical charged BHs, because spherical
symmetry drastically simplifies the structure of spacetime.
Of particular importance were the works of Hiscock [3] and
of Poisson and Israel [6,7]: Hiscock considered an ingoing
null fluid perturbation, and showed that a (nonscalar) null
curvature singularity forms at the CH. Poisson and Israel
introduced the mass-inflation model, which contains two
null fluids. They concluded that a scalar-curvature null
singularity will form at the CH in this case, the so-called
mass-inflation singularity. Ori [8] then found (using a
simplified shell model) that the mass-inflation singularity
is actually weak (in Tipler’s [14] sense; see also [15]),
despite its scalar-curvature character. Namely, the metric
tensor approaches a finite (nonsingular) limit at the CH; and
extended objects only experience finite (possibly small)

tidal distortion on approaching the CH. Subsequently,
several authors extended these studies to the case of a
spherical charged BH perturbed by a self-gravitating scalar
field. Numerical investigations [10,11] revealed that in this
case too, a weak null curvature singularity develops at the
CH. In addition, the CH undergoes contraction due to
crossing energy fluxes, and eventually it shrinks to zero
area (namely r ¼ 0). Various numerical simulations
[10–12,16] indicated that at this point of full contraction,
the null CH meets a spacelike r ¼ 0 singularity, as seen in
Fig. 6 below. This basic picture, of a weak null singularity
forming at the CH, was recently confirmed mathematically
by Dafermos [17].
The nonsphericalmodel of a rotatingBH is of coursemuch

more realistic than its spherical-charged counterpart (as
astrophysical BHs are presumably rotating but not signifi-
cantly charged). Considering the case of a perturbed asymp-
totically flat spinning BH, it was found [18] (based on
nonlinear perturbation analysis) that the situation is similar in
many respects to the case of perturbed spherical-charged
BHs discussed above: Owing to the infinite blue shift of the
infalling gravitational perturbations, a null weak scalar-
curvature singularity develops at the CH in this case too.
Later an independent analysis [19] yielded consistent results.
Note a remarkable difference between the spinning and
spherical-charged cases, though: In the spinning case the CH
singularity turns out to be oscillatory [20], unlike the
monotonic growth of curvature scalars in the mass-inflation
singularity. This oscillatory behavior was recently confirmed
by a numerical simulation of linear gravitational perturba-
tions (Weyl scalars ψ0 and ψ4) inside a Kerr BH [21].3

The accumulation of all these investigations, over the last
few decades, led to a fairly clear and coherent picture4:
Consider either a spinning or charged BH produced in
gravitational collapse. A (null and weak) scalar-curvature
singularity generically develops at the CH, namely the left-
going section of the IH. No such curvature singularity is
expected to form at the latter’s right-going section—which,
as mentioned above, is not a CH [23].

B. Experience of infalling observers

Consider now a hypothetical observer who arrives at a
charged (or spinning) noneternal BH a long time after the
collapse, and decides to jump in. In view of the no-hair
principle, the BH will look pretty much like a RN (or Kerr)
BH, with only negligible deviations, perhaps even unde-
tectable ones. This asymptotic RN metric has a final mass
and charge parametersMf andQf, and hence outer and inner

FIG. 1. Penrose diagrams of the eternal RN spacetime [panel
(a)] and a charged BH produced by thin-shell collapse [panel (b)].
In the latter, the geometry is RN outside the collapsing shell (the
dashed blue curve) and Minkowski inside the shell, with a regular
center at r ¼ 0 (the solid blue curve). In both panels, solid black
diagonal lines denote null infinity; solid red diagonal lines denote
the CH. Dashed black diagonal lines denote the event horizon
(EH) and the IH; the latter partly overlaps with the CH in both
cases. Wavy vertical lines denote the timelike r ¼ 0 singularity of
RN spacetime. The eternal RN spacetime in panel (a) includes a
twin set of asymptotically flat universes, W and W’. This panel
also shows a typical timelike geodesic (the dotted blue curve)
which falls into the BH from the external universe W, avoids the
timelike r ¼ 0 singularity, then emerges from a white hole and
arrives at a future external universe (isometric to W). The
spacetime diagram in panel (a) is right-left symmetric; and
the CH has two arms which intersect at a bifurcation point b.
The charged-collapse diagram in panel (b) is not right-left
symmetric, and the CH includes only one arm of the IH (the
left-going one). When the collapsing charged BH of panel (b) is
generically perturbed, a null week singularity forms at the CH;
and an effective shock develops along the solid green line denoted
“S” (at the right-going IH).

3However, there seems to be a conflict between this numerical
simulation and the results from perturbation analysis [20,22]
regarding the asymptotic behavior of ψ4 at the CH.

4We point out, however, that several cardinal questions
concerning the interior of classical BHs still remain open.
Perhaps the most important one is whether a spacelike singularity
forms inside a generically perturbed spinning BH.
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horizon radius r� ¼ Mf � ðM2
f −Q2

fÞ1=2, where relativistic
units c ¼ G ¼ 1 are used throughout the paper. (In the Kerr
case, Qf should be replaced by the asymptotic spin
parameter af.) Once inside the BH, the observer inevitably
falls towards the IH, and its r value monotonically decreases
from rþ to r−. Throughout most of this journey from the EH
to the IH, the deviations from the RN/Kerr metric are still
negligible—and, ignoring these tiny deviations, the observer
would have the same experience as moving in an exact RN/
Kerr geometry. Assuming that the observer is equipped with
a rocket, he can choose whether to reach r ¼ r− at the right
portion of the IH, or at its left portion. We refer to such
observers as right fallers or left fallers, respectively.5

Let us consider first the experience of a right faller. The
right portion of r− is the CH, which, as was discussed
above, is a locus of a curvature singularity. Throughout
most of the travel from rþ to r− the observer feels nothing
but the background RN/Kerr curvature (which would be
fairly mild for a supermassive BH), with only negligible
deviations. Only when r becomes very close to r− will tidal
forces start to grow very rapidly, and diverge at the CH
itself. (Although, the integrated deformation is finite even
at the CH itself.6) This is the basic picture that emerges
from the collection of the various investigations over the
last few decades.
But what will be the experience of a left faller? The above-

mentioned investigations have not directly addressed this
question, except that they collectively made clear one
important fact: Since theBH is noneternal (it has presumably
been produced in gravitational collapse), the left portion of
r ¼ r− isnot a locus of divergent curvature (because it is not a
CH); hence, in principle, spacetime should be perfectly
smooth on crossing this portion of the IH.
Of course, the left faller should expect very serious

troubles to come later on; for example, a strong spacelike
singularity may exist in the perturbed spacetime, say at
r ¼ 0. But this should happen somewhere at r < r−,
namely sometime after crossing r ¼ r−. Exactly where
the fatal tidal forces will be encountered might depend on
the details of the BH model. These considerations might
lead to the impression that the experience of a left faller is
rather nonuniversal and hard to predict, and, in particular, it
might be sensitive to various details of the collapse scenario.

C. Effective shock wave

Despite the above, Marolf and Ori (MO) [24] recently
found that the experience of late left fallers, when recorded
as a function of their own proper time τ, does exhibit an
interesting universal pattern—a shocklike behavior [25].
Namely, various measurable quantities undergo abrupt
changes as r ¼ r− is approached. For any individual left
faller, this change actually takes a finite lapse of proper time
Δτ (in line with the aforementioned regularity of spacetime
at the left section of r ¼ r−). However, this finite width Δτ
rapidly decreases with the delaying of the moment of infall
into the BH. Based on simple theoretical arguments, MO
concluded that Δτ ∝ e−κ−Δt, where κ− is the IH surface
gravity, and Δt is (roughly speaking) the time lapse from
BH formation to the moment of jumping in, expressed in
terms of asymptotic time coordinate t in the external
universe. (Later we reexpress this exponential relation
more precisely in terms of Eddington’s advanced time
coordinate ve.) For a left faller which jumps in after a time
delay Δt of, say, a few tens or hundreds times the BH mass
M, the width scale Δτ is tremendously smaller than Planck
time, by many orders of magnitude, so small that it is not
clear if it could be resolved by any physical probe. We
therefore refer to this rapid change in the various measur-
able quantities as an “effective discontinuity,” or effective
shock wave, which forms at the left-arm IH.
The analysis by MO addressed both charged and spin-

ning BHs. The effective shock wave shows itself in various
quantities, e.g. metric functions as well as other perturbing
fields. In this paper we consider the model of a spherical
charged BH perturbed by a scalar field, and focus on the
shock formation in two quantities: the perturbing scalar
field, and the area coordinate r, which is essentially a
(square root of the) metric function for the angular sector.

D. Numerical verification

The analysis in Ref. [24] was carried out entirely
analytically, by focusing on the late-time behavior of the
relevant perturbation fields inside the BH. The investigation
was thus heavily based on perturbation analysis, although
at certain points it also involved some qualitative consid-
erations concerning the dynamics beyond the small-
perturbation domain.
As an example, consider the shock in r: It involves a

sudden decrease of r from r− towards r ¼ 0, within an
extremely small Δτ (see Sec. V C below). This clearly
involves a large deviation of rðτÞ from its smooth RN
counterpart. This situation is thus beyond the domain of
validity of perturbation analysis. Hence it would be
worthwhile to confirm this shock behavior by independent,
nonperturbative, analysis. Another limitation of the analy-
sis by MO was that it was mostly restricted to the late-time
domain, and therefore was incapable of resolving the earlier
times where the shock just starts to develop [namely, the
domain of small-moderate Δt values at which Δτ starts its

5To avoid confusion that may potentially be associated with
this right-left terminology, we emphasize that the right (or left)
portion of r ¼ r− is left-going (or right-going); see Fig. 1(a). Note
also that in the RN case, an infalling geodesic always takes the
observer directly to the left portion of r ¼ r−; he would have to
turn on his rocket in order to reach the right portion. However, in
the Kerr case geodesics reach either the left or right portions.

6Recall that, since the CH singularity is weak, the integrated
tidal deformation is finite (and nondestructive) even at the
singularity; furthermore, for sufficiently late infall time, the
overall singularity-induced deformation may be arbitrarily small.
Nevertheless, the tidal force itself always diverges at the singular
CH.
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decrease from its initial OðMÞ value to its later ≪ M
values].
We therefore found it important to carry out detailed

numerical simulations for exploring the shock phenomenon
inside the BH. Specifically we were motivated by several
goals and objectives, including (i) verifying the very
existence of the effective shock, (ii) verifying the shock’s
exponential sharpening rate, (iii) exploring the early phase
of shock formation, and (iv) exploring the well-developed
shock in r, all the way down to r ≪ r− values (which, as
pointed out above, are out of the perturbative domain).
To this end, we carried out a numerical analysis of a

spherical charged BH perturbed by either a test scalar field
or a self-gravitating one. We used the double-null numeri-
cal code [16] which we recently developed for that purpose.
We study the effective shock in the scalar field and (in the
self-gravitating case) also in the area coordinate r. We
explore both the early shock formation and the later domain
of fully developed shock. In the latter domain, we also
measure the rate of shock sharpening, and compare it to
MO’s prediction in [24]. We found nice agreement between
this prediction and our numerical results, concerning both
the very existence of the shock and its rate of sharpening.
The paper is organized as follows: We formulate the

physical problem in terms of the unknown functions, the
field equations, and the setup of initial conditions in Sec. II;
we summarize our numerical algorithm in Sec. III. Since
we discussed both of these subjects extensively in our
previous paper [16], here we only summarize them briefly.
We then numerically analyze the case of a test scalar-field
perturbation on a prescribed RN background in Sec. IV. In
particular, we demonstrate the formation of effective shock
in the scalar field, and show that its development exhibits a
continuous sharpening, in nice quantitative agreement with
the prediction made by MO. The case of a self-gravitating
scalar field perturbation on a spherical charged background
is analyzed in Sec. V, where we demonstrate the expected
shock formation in both the scalar field and the metric
function r. The rate of shock sharpening (for both the scalar
field and r) is measured and compared to MO’s prediction.
In addition, we also explore the shock in r as expressed in
terms of the affine parameter λ along null (rather than
timelike) ingoing geodesics. We find that null geodesics
provide an efficient tool for exploring the shock. Finally,
we discuss our results and conclusions in Sec. VI.

II. PHYSICAL SYSTEM AND FIELD EQUATIONS

We explore the formation and development of the shock
wave in two different physical scenarios: (i) evolving test
scalar field on a prescribed, static, RN background, and
(ii) the evolution of a self-gravitating scalar field on a
dynamical charged BH background.
In the first scenario the background metric is fully

known, a priori and analytically; in principle, one could
solve the scalar-field wave equation only, on the prescribed

RN background. We found it more convenient, however, to
numerically solve the Einstein equation as well—with
electrovac initial data. The evolving metric then yields
the RN solution (up to negligible numerical errors). This
setup allows more flexible switching between scenarios (i)
and (ii), which, in particular, yields better debugging
capabilities. Also, it allows easier handling of the gauge
used for the background RN geometry—simply by dictat-
ing the gauge of the initial functions. As a consequence, the
basic numerical setting of the self-gravitating system
described in this section—namely the simultaneous
numerical solution of the Einstein and scalar-field equa-
tions—actually applies to the test-field case as well.7

The scalar field Φ is uncharged, massless, and minimally
coupled, satisfying the standard wave equation □Φ ¼ 0.
The geometry is initially RN, but is subsequently perturbed
by an ingoing pulse of scalar field (see below). The initial
RN geometry has massM0 and charge Q. The line element
may be expressed in double-null coordinates ðu; v; θ;φÞ
(applicable to both the RN and perturbed geometries),

ds2 ¼ −eσðu;vÞdudvþ rðu; vÞ2dΩ2; ð1Þ

where dΩ2 ≡ dθ2 þ sin2θdφ2. Our three unknown func-
tions are the scalar field Φðu; vÞ and the metric functions
rðu; vÞ and σðu; vÞ.
The general setup of our simulation, and the location of

the numerical grid in the (would-be) RN background, are
illustrated in Fig. 2. The scalar-field perturbation is taken to
be an ingoing initial pulse which propagates toward the
BH, and is partly scattered and partly absorbed by it. The
initial pulse has a finite support on the outgoing initial
ray u ¼ u0; it starts at v ¼ v1 and ends at v ¼ v2.
Correspondingly, at v < v1 the geometry is precisely RN
with mass M0 and charge Q. In the test-field case, this
situation remains unchanged throughout the simulation. In
the self-gravitating case, the metric is no longer RN (and no
longer static) at v > v1. In particular, the mass function
(defined below) steadily grows with v.
Two remarks should be made here: First, in Fig. 2 we

placed the rectangular numerical domain of integration on
the eternal RN background, just for simplicity. However,
we can equally well place this rectangle in the RN exterior
of a collapsing charged shell, shown in Fig. 1(b). In fact,
this latter setting is the more physically motivated one,
because the physical situation mostly relevant to shock
formation is that of the charged (or spinning) BH produced
in gravitational collapse. The same remark also applies to
the self-gravitating setup illustrated in Fig. 6. Second,

7For similar reasons of numerical-scheme uniformity, we also
chose to numerically treat the test scalar field as a self-gravitating
one but with an “effectively infinitesimal” prefactor, which we
took here to be A0 ¼ 10−20. (The self-gravity effects are then all
multiplied by 10−40, which is smaller than our numerical
resolution by many orders of magnitude.)
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ideally we would like to explore the evolution of perturba-
tions up to the CH, located at v → ∞. For obvious practical
reasons we have to pick a finite vmax value in our numerics.
Nevertheless, below we choose a sufficiently large vmax,
such that the domain of integration extends deeply into the
late-time domain, and expose the evolution of the various
perturbation fields up to the neighborhood of the CH.
The derivation of the model’s field equations is fairly

standard; it is described in some detail in our preceding
paper [16] (see, in particular, Sec. II), as well as in other
[13] previous works. Overall, we have a system of three
evolution equations,

Φ;uv ¼ −
1

r
ðr;u Φ;v þr;v Φ;u Þ; ð2Þ

r;uv ¼ −
r;u r;v
r

−
eσ

4r

�
1 −

Q2

r2

�
; ð3Þ

σ;uv ¼
2r;u r;v

r2
þ eσ

2r2

�
1 −

2Q2

r2

�
− 2Φ;uΦ;v; ð4Þ

and two constraint equations,

r;uu −r;u σ;u þrðΦ;u Þ2 ¼ 0; ð5Þ

r;vv −r;v σ;v þrðΦ;v Þ2 ¼ 0: ð6Þ

The constraint equations need only be imposed at the initial
hypersurface, due to the consistency of the evolution and
constraint equations.
We occasionally use the mass function mðu; vÞ, intro-

duced in Ref. [7], which translates in our coordinates to

m ¼ ð1þ 4e−σr;u r;v Þr=2þQ2=2r: ð7Þ

The location of the event horizon is important in various
aspects of this investigation. Here we define it to be the
(first) u value where r;v, evaluated at the final ingoing ray
of the numerical grid v ¼ vmax, changes its sign from
positive to negative. We denote it as uh. We define the
black-hole final mass mfinal as the value of the mass
function at the intersection point ðuh; vmaxÞ.8 In the test-
field case, mfinal ¼ M0 of course.
The characteristic initial hypersurface consists of the two

null rays u ¼ u0 and v ¼ v0 (below we set u0 ¼ v0 ¼ 0 in
the numerics). On each initial ray we choose initial
conditions for two functions, Φ and σ. The remaining
function r is dictated [apart from initial conditions at the
vertex (u0, v0)] by the relevant constraint equation—Eq. (5)
at v ¼ v0 and Eq. (6) at u ¼ u0. The choice of initial
conditions for σ amounts to a gauge choice: under the
gauge transformation v → v0ðvÞ; u → u0ðuÞ, the variables r
and Φ are unchanged, while σ changes according to

σ → σ0 ¼ σ − ln

�
du0

du

�
− ln

�
dv0

dv

�
: ð8Þ

The gauge is thus determined by the choice of initial
conditions for σ along u ¼ u0 and v ¼ v0.

III. BASIC NUMERICAL ALGORITHM

We discretize the field equations on a double-null grid
with fixed spacingΔu;Δv. Usually we takeΔu ¼ Δv ¼ M0

N ,
where M0 is the initial BH mass and N takes several values
in each run (typically 80, 160, 320, 640), in order to verify
numerical convergence. The numerical solution progresses
along rays of constant u, starting from the initial ray u ¼ u0
and up to the final ray u ¼ umax; along each outgoing ray the
solution is advanced step by step from v ¼ v0 to v ¼ vmax.
We discretize the evolution equations (2)–(4) and apply a

FIG. 2. This figure describes the location of the numerical
domain of integration with respect to the (initial) RN spacetime.
Double lines represent the boundary of numerical domain
(u ¼ u0, u ¼ umax, v ¼ v0 and v ¼ vmax); solid lines represent
future and past null infinity ðr ¼ ∞Þ. Dashed and dashed-dotted
lines represent the event horizon ðr ¼ rþÞ and inner horizon
ðr ¼ r−Þ, respectively. The ingoing scalar-field pulse is drawn
schematically on the outgoing initial ray u ¼ u0. The pulse is
confined (on u ¼ u0) to the range v1 ≤ v ≤ v2. The null rays
v ¼ v1 and v ¼ v2 (the putative pulse boundaries) are marked by
dotted lines.

8Note that, owing to the finiteness of vmax, the true horizon
location is slightly earlier than uh. Also, the final BH mass is
slightly larger than our mfinal. Both effects are caused by scalar-
field inward backscattering that takes place at v > vmax. These
two deviations are negligibly small, however, owing to asymp-
totic flatness combined with the large values of vmax (always
taken to be ≫ mfinal) in our simulations. See also footnote 17.
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predictor-corrector scheme, with second order accuracy, as
described in Ref. [16].
This basic scheme works very well (second order con-

vergence in all unknowns) as long as the domain of
integration does not penetrate into the BH. Even if it does
penetrate, it still works well as long as Δve, the grid size (in
outgoing direction) in terms of advanced Eddington coor-
dinate ve (defined below), is not too large. However, when
the horizon is included and Δve ≫ M0, the numerical error
typically grows as eκþve along the EH,where κþ is the latter’s
surface gravity. IfΔve is greater than, say, 20 or 25 timesM0

(the actual number depends on κþ and on a few other
numerical parameters), the truncation error runs out of
control and the numerics breaks down. This phenomenon
was demonstrated and thoroughly analyzed in Ref. [16].

A. The maximal-σ gauge

In order to circumvent this problem of exponentially
growing truncation error, we use the maximal-σgauge (see
Sec. VII in [16]) throughout most of the domain of
integration. This gauge is defined by

σmaxðuÞ ¼ 0; σvðvÞ ¼ 0; ð9Þ

where σvðvÞ≡ σðu0; vÞ, namely the initial value of σ along
the outgoing characteristic ray; and σmaxðuÞ is defined as
the maximal value of σ (in the range v0 ≤ v ≤ vmax) along
each ray of constant u.9 This entirely resolves the afore-
mentioned numerical problem at the event horizon (as well
as an analogous problem which may arise at the inner
horizon), as demonstrated in Ref. [16].

B. The singularity-approach gauge variant

At late u values, somewhere beyond the EH, we switch
to a new gauge condition (for u), for a reason which we
now explain.
As wasmentioned in the introduction, in the presence of a

self-gravitating scalar field the energy flux across the CH
causes the latter to contract: r steadily decreases from r−
down to full contraction at r ¼ 0, where the shrinking CH
intersects the r ¼ 0 spacelike singularity (see Fig. 6). One of
the interesting issues which has not been addressed yet is the
asymptotic behavior of the shrinking CH (and its neighbor-
hood) on approaching the point of full contraction. This
topic is, in principle, amenable to numerical investigation,
provided that the numerical code is capable of effectively
resolving the shrinking CH close to full contraction.
A straightforward approach for improving numerical

resolution near full contraction is to refine the steps in u

while r shrinks along the CH. Our basic strategy, however,
is to achieve such an effective refinement by controlling the
gauge condition for u, as we did earlier for successfully
crossing the EH and IH. To this end, we developed a special
variant of u-gauge, the singularity-approach gauge. This
gauge coincides with the maximal-σ gauge up to a certain u
value inside the BH, which we denote us. Beyond u ¼ us
we further decrease σ (which effectively amounts to
refinement of the u coordinate), by an amount that depends
on the smallness of r at the CH. We find that a useful choice
for the new σ is via eσmaxðuÞ ∝ rðu; vmaxÞ2. (We point out that
in our numerical simulations vmax is sufficiently large, such
that it effectively represents the CH itself.) The gauge
condition at u > us is thus

σmaxðuÞ ¼ 2 ln ½rðu; vmaxÞ=M0� þ const; σvðvÞ ¼ 0:

ð10Þ

The const is fixed by requiring continuity of σmax at u ¼ us,
namely −2 ln ½rðus; vmaxÞ=M0�.
We point out that for the main objective of this paper—

exploring the shock structure along the outgoing IH—the
fine resolution of the CH close to full contraction is not
needed. We could actually use the original maximal-σ
gauge (9) throughout the domain of integration. However,
we designed our numerical code as a multipurpose tool, and
for this reason we chose to implement the singularity-
approach gauge variant in the code.

C. Presentation of numerical results

As was mentioned above, in our numerical simulations
we used several grid refinement levels, N ¼ 80, 160, 320,
640, to test convergent rate and final accuracy. Throughout
the paper, in all figures which display data along individual
timelike geodesics, we plot the data for both N ¼ 640
(solid curves) and N ¼ 320 (dashed curves). In all figures
but one, there is an excellent agreement between these two
resolutions and the two curves effectively overlap; hence
the dashed curves cannot be noticed. The only exception is
the highly zoomed Fig. 11, where the dashed lines can
barely be noticed (but still, the deviations are small). In
figures which display processed timelike geodesics data
(such as 5, 9 or 13) or data along null geodesics (Figs. 14
and 15), we plot the data from the best resolution
(N ¼ 640) only.
Note also that in all graphs below, we use units in which

the initial RN mass parameter is M0 ¼ 1 (in addition to
c ¼ G ¼ 1), and we also set u0 ¼ v0 ¼ 0.

IV. TEST SCALAR FIELD

In this section we consider the evolution of a test scalar
field on a prescribed RN background, and numerically
explore the evolving shock wave in this field. For con-
venience we denote this test field by ϕ, to distinguish it

9The gauge condition σmaxðuÞ ¼ 0 translates into a choice of
concrete initial value σðu; v0Þ through an extrapolation procedure
explained in Sec. VIIA of [16]. The same type of interpolation
procedure also applies to the singularity-approach variant de-
scribed below.
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from its self-gravitating counterpart Φ. This field satisfies
the same field equation as Φ, namely □ϕ ¼ 0 [and hence
the same equation as (2)]. However, it has no contribution
to the Einstein equations; hence the geometry remains RN
throughout.
We first describe the setup of initial data for ϕ. Then we

introduce a family of timelike infalling geodesics, which
probe ϕ inside the BH as a function of their proper time τ
and thereby expose the effective shock-wave structure.
Then we move on to analyze the shock properties, and, in
particular, how its width decreases with infall time.

A. Basic parameters and initial conditions

The test scalar field propagates in the RN geometry,
which in Schwarzschild coordinates reads

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2; ð11Þ

where f ≡ 1–2M=rþQ2=r2. The EH and IH are located at

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð12Þ

The surface gravity at the IH and EH is given by

κ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
r2�

:

We choose here mass parameter M ¼ 1
10 (which actually

reflects our choice of units), and charge Q ¼ 0.92.11 The
event and inner horizon values are then rþ ≃ 1.392 and
r− ≃ 0.608, respectively, and the corresponding IH surface
gravity is κ− ≃ 1.06.
The location of the numerical grid with respect to the RN

background is illustrated in Fig. 2. While the outgoing
initial ray u ¼ u0 is located outside the EH, the ingoing ray
v ¼ v0 penetrates into the BH and subsequently crosses the
IH as well. In practice we set the values of the two initial
null rays to be u0 ¼ v0 ¼ 0 for convenience.
The initial value for the metric variable σ was chosen so

as to conform with the singularity-approach gauge con-
dition described in Sec. III B. In particular, σ vanishes
along the u ¼ u0 initial ray. The initial data for the scalar
field are taken to be those of ingoing pulse at u ¼ u0, as
schematically shown in Fig. 2 (in particular, ϕ vanishes
along v ¼ v0). The ingoing pulse on u ¼ u0 has a finite
support at v1 ≤ v ≤ v2, and we choose it such that both ϕ
and its derivative are smooth at the edges v1;2. Specifically
we take the symmetric initial pulse

ϕðu0;vÞ¼ϕ0ðvÞ≡
(

64ðv−v1Þ3ðv2−vÞ3
ðv2−v1Þ6 jv1≤v≤v2

0 jotherwise:
ð13Þ

The polynomial form was selected due to its simplicity.
The prefactor 64 was introduced such that the ingoing pulse
has a unit amplitude.12 In our test field runs we chose
v1 ¼ 1, v2 ¼ 3. Overall the domain of integration was
taken to be u0 ¼ v0 ¼ 0, umax ¼ 105, and vmax ¼ 120. The
value of r at the initial vertex was rðu0; v0Þ ¼ 5, and along
the outgoing initial ray it grew monotonically up to
rðu0; vmaxÞ≃ 52.8.
The numerical code was then run with the four reso-

lutions N ¼ 80, 160, 320, 640, in order to control accuracy
and convergence rate, as described in Sec. III.

1. Double-null Eddington coordinates

We denote the Double-null Eddington coordinates by ue
and ve. In the RN background (outside the BH) they are
defined by

ve ≡ tþ r�; ue ≡ t − r�;

where r� is the tortoise coordinate given by

r�ðrÞ ¼ rþ r2þ
rþ − r−

ln jr − rþj −
r2−

rþ − r−
ln jr − r−j

þ const: ð14Þ

The integration constant in this equation may be chosen at
will. Owing to time-translation symmetry these coordinates
are defined up to a global displacement. We find it
convenient to set ue ¼ 0 at the initial ray u ¼ u0, and to
set ve ¼ 0 at the end of the injected pulse, namely at
v ¼ v2. This choice fixes the integration constant in
Eq. (14), by requiring r� ¼ 0 at rðu0; v2Þ.
We hereafter reserve the symbols u, v to the double-null

coordinates that we actually use in the numerical simulation
(namely, those defined by the gauge conditions prescribed
in Sec. III B). Later we need to use the relation veðvÞ. This
function is easily determined numerically, at the outgoing
initial ray u ¼ u0, using ve − ue ¼ 2r�. Since ue vanishes
at that ray by definition, we obtain

veðvÞ ¼ 2r�ðrðu0; vÞÞ: ð15Þ

10As was already mentioned in Sec. II, our code actually solves
the electrovac Einstein equations and numerically constructs the
RN metric (in the chosen gauge). Consequently there is a small
numerical drift in M. This drift, however, is of order ∼2 × 10−7

and does not affect any of our results.
11This value of Q was chosen to obtain κ− value close to 1.

12As was already noted in footnote 7, in the numerical run we
actually multiply this initial function by an extremely small
overall factor A0 ¼ 10−20 (so as to numerically “mimic” a test
field). Throughout this section all the results for ϕ are presented
with this artificial prefactor scaled out (namely, we divide the
actual numerical data by A0).
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B. Family of timelike geodesics

Following Ref. [24], we consider here a family of
timelike geodesics related to each other by time translation,
and use them to probe the BH interior. We refer to such a
family as a time-translated set of geodesics (TTSG). In the
present case of test perturbation, this family consists of
exact RN geodesics, all sharing the same energy ðE ¼ −utÞ
and angular momentum ðL ¼ uφÞ values, which fall into
the BH. Each geodesic is marked by a typical timing
parameter. We adopt here the same timing parameter as in
[24], namely veh, the value of Eddington null coordinate ve
at the moment of EH crossing.
For concreteness and simplicity, we choose here the set

of geodesics E ¼ 1, L ¼ 0, representing a family of
infalling observers on marginally bound radial geodesics.
These observers probe the scalar field inside the BH as a
function of their proper time τ and infall time parameter veh.
We set the proper time value τ ¼ 0, at each geodesic, at the
moment of EH crossing. The parameter veh for each
geodesic is determined from the value of v at horizon
crossing, via Eq. (15).
Our numerical code produces values of the unknowns r,

σ,Φ on a discrete set of grid points in the (u, v) coordinates,
as described in Sec. III. However, for the shock-wave
analysis we have to evaluate these functions on the
aforementioned radial timelike geodesics. The latter may
be considered as a set of bent curves vðuÞ, obtained from
the geodesic equation (see Appendix A 1 for more details).
Generically, these curves do not pass at grid points.
Therefore, at each grid value of u we interpolate our
numerical results (given on the discrete v values) to the
desired value vðuÞ on the geodesic. To this end we use
second-order interpolation.

C. Shock wave in the scalar field

The effective shock-wave formation in the test scalar
field ϕ is demonstrated in Fig. 3, which displays ϕðτÞ for
various infalling geodesics, labeled by their veh values. In
these geodesics, whereas r monotonically decreases
towards r−, the scalar field ϕ is nonmonotonic: it decreases
at some stage but then increases again [this is better seen in
panel (b), in which τ is shifted to enable visual separation of
the different geodesics]. The evolving shock structure
manifests itself as a rapid sharpening (with increasing
veh) of both the decrease phase and the subsequent increase
phase. The increase phases in all geodesics (except the
earliest ones, say veh ¼ 4–5) form an effectively vertical
line. These vertical lines, in all geodesics, occur approx-
imately at the same proper time (τ≃ 0.7438); hence they
all overlap in panel (a), forming the “wall-like” structure.
Also, these vertical sections occur in all geodesics at
approximately the same r value, namely r ¼ r−.

13

In order to enable visual separation of the different
geodesics, such that the shock (and preshock) phase of the
individual geodesics is seen, in panel (b) the τ value of each
geodesic is shifted by a certain amount, proportional to
its veh.
Whereas Fig. 3 demonstrated the shock formation

phase by presenting relatively early geodesics (veh≤15),
Fig. 4(a) displays much later infalling geodesics
20 ≤ veh ≤ 100. The shock structure is now fully devel-
oped: It takes the form of a vertical line, located at the same
proper time for all geodesics. It is placed just at the τ value
that corresponds to r ¼ r− (the dashed vertical line).

FIG. 3. Shock-wave formation in the test scalar field ϕ. Both panels present ϕ as a function of proper time τ along a family of radial
timelike geodesics with E ¼ 1. Panel (a) uses true τ values at each geodesic (with τ ¼ 0 set at EH crossing); panel (b) uses τ values
artificially shifted by an amount ði − 1Þ × 2 × 10−3 for the ith geodesic (i ¼ 1;…; 12, corresponding to veh ¼ 4;…; 15), in order to
enable clear visual separation of the different geodesics. Geodesics are distinguished by different colors and different veh values. veh
increases by increments of 1 from the bottom/left ðveh ¼ 4Þ to the top/right ðveh ¼ 15Þ. The vertical dashed line in panel (a) represents
the RN theoretical τ value of IH crossing, τ≃ 0.7438.

13Note that in the way we set the family of geodesics, they all
share the same function rðτÞ, due to time-translation invariance.
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1. Shock resolution and shock sharpening

Figures 3(a) and 4(a) made it clear that the shock
structure involves extremely short τ intervals—which
further shorten with increasing veh. Still, we can resolve
the shock by using a logarithmic scale for τ. To this end,
however, we have to use the shifted variable jτ − τfinalj,
where τfinal is the last proper time value for each geodesic
(achieved at u ¼ umax arrival). Figure 4(b) provides such a
logarithmic representation of ϕ as a function of jτ − τfinalj,
for the same set of geodesics as in Fig. 4(a) (namely,
20 ≤ veh ≤ 100).
This figure demonstrates that the shock structure [which

actually enfolds alternating domains of decreasing and
increasing ϕðτÞ] is essentially unchanged while veh
increases. The main effect of the increase in veh is to
shorten the proper-time width of the configuration. This
sharpening is expressed in Fig. 4(b) by the overall right-
ward shift in the logarithmic scale, with increasing veh.
According to the analysis of Ref. [24], the decrease in

any proper-time width scale Δτ associated with the scalar-
field shocklike signal should be exponential (for suffi-
ciently late geodesics): Δτ ∝ e−κveh , where κ ≡ κ− is the
surface gravity at the inner horizon. To test this prediction
we chose here a specific width scale Δτ: the difference in τ
between the minimum and maximum points in ϕðτÞ14 at
each geodesic. The results are presented in Fig. 5. As

expected Δτ decays exponentially, in nice agreement with
the theoretically predicted rate e−κveh .15

Note that Marolf and Ori mainly focused in their shock-
wave analysis [24] on the late-time domain, where the
background geometry is approximately static. However, as
Fig. 3 demonstrates, the shocklike behavior can also be
detected for very early infalling geodesics, even for e.g.
veh ¼ 4.16 Notice, in addition, that the nice agreement of
the points in Fig. 5 with the straight diagonal dashed line
(representing the theoretical sharpening rate Δτ ∝ e−κveh)
starts already at veh ≈ 15.

V. SELF-GRAVITATING SCALAR-FIELD
PERTURBATION

In the case of self-gravitating scalar perturbation, the
shock wave manifests itself in the scalar field Φ and also in
the metric. In this section, after describing the setup of the
problem, we first present the shock in Φ, and subsequently
the shock in the metric function r. Then we reanalyze the
shock in r using a family of ingoing null geodesics (rather
than timelike ones).

FIG. 4. Shock-wave structure at late time. The graph displays ϕðτÞ along a family of radial timelike geodesics with E ¼ 1, this time for
later geodesics, 20 ≤ veh ≤ 100. The different geodesics are again marked by different colors and different veh values; veh increases by
increments of 10 from top/left ðveh ¼ 20Þ to bottom/right ðveh ¼ 100Þ. Panel (a) uses a linear scale in τ, clearly showing the well-
developed shock structure (the vertical line at the right); panel (b) uses a logarithmic scale in jτ − τfinalj, where τfinal is the final τ value at
u ¼ umax. The vertical dashed line in panel (a) again represents the theoretical τ value of IH crossing in RN spacetime, τ≃ 0.7438. Panel
(b) exhibits the sharpening of the shock—the width of the scalar-field pulse exponentially decreases with veh, as inferred from the
apparently “rigid” shift to the right (with respect to the logarithmic scale) with increasing veh.

14To be more specific, these are the (last) maximum and
minimum points in the profile shown in Fig. 4(b) for each
geodesic.

15Similar results were obtained for another choice of typical
width, the full width at half maximum of ϕðτÞ at the various
geodesics.

16We point out that the observation of the shocklike behavior is
obviously scale dependent: clearly, a sufficient zoom on the τ
scale in e.g. Fig. 3 would resolve the sharp features. We argue,
however, that since the τ scale in Fig. 3 is already rather small [the
overall horizontal scale of panel (a) is ≈0.025, which is≪ 1], the
sharp features seen in that panel indeed indicate a shocklike
behavior.
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A. Setup and initial conditions

The setup in the present case is similar to the test-field
case presented in Sec. IV, except that our scalar field is now
self-gravitating. Initially (at v < v1) we have an exact RN
geometry with massM0 ¼ 1 and charge Q ¼ 0.95. Then at
v1 < v < v2 we inject the ingoing scalar-field pulse, as
schematically shown in Fig. 6. (Note that Φ vanishes at the
ingoing initial ray v ¼ v0.) The scalar field then spreads
throughout the domain v > v1. At later times the field
backscatters and decays, and eventually we have an
approximate RN geometry at large v, with the same charge
Q ¼ 0.95 but with final mass mfinal > M0.
The injected scalar-field pulse is taken to be of the form

Φðu0; vÞ ¼ Aϕ0ðvÞ;

where ϕ0ðvÞ is the basic finite-support pulse function
given in Eq. (13), and A is a free amplitude parameter.
We chose here the values A ¼ 0.115 along with pulse
boundary parameters v1 ¼ 1, v2 ¼ 7. With this choice the
final mass becomes mfinal ≅ 1.4587.17 The corresponding

inner-horizon surface gravity parameter is κ ≃ 8.94. We
picked these parameters (despite the relatively large result-
ant value of κ) in order to achieve significant focusing of the
CH within the numerical domain.18

The initial conditions for the metric function σ are set in
accordance with the singularity-approach gauge condition
presented in Sec. III B. In particular, σ vanishes along the
u ¼ u0 initial ray. The initial data for r are calculated, along

FIG. 5. Exponential sharpening rate of the test scalar field shock,
as demonstrated by the decrease of Δτ with increasing veh. Each
point represents a single E ¼ 1 radial timelike geodesic; the
geodesics are in the range 10 ≤ veh ≤ 100, with increments of
5. The straight diagonal dashed green line is the theoretical fit,
lnðΔτÞ ¼ −κveh þ const. All geodesics show excellent agreement
with the theoretical fit, except the first geodesic veh ¼ 10 (which is
seemingly too early for the late-time theoretical relation to hold).

FIG. 6. This figure describes the location of the numerical
domain of integration with respect to the perturbed charged BH
spacetime. Double lines represent the boundary of the numerical
domain (u ¼ u0, u ¼ umax, v ¼ v0 and v ¼ vmax); solid lines
represent future and past null infinity ðr ¼ ∞Þ. The left-going
dashed line at bottom/left represents the external horizon
(r ¼ rþðM0Þ) of the initial RN geometry at v < v1. The right-
going dashed line represents the event horizon of the perturbed
BH. The ingoing scalar-field pulse is drawn schematically on the
outgoing initial ray u ¼ u0. The dashed-dotted line at top/right
represents the CH inside the BH. It steadily shrinks due to the
scalar-field perturbation, from r ¼ r−ðmfinalÞ down to r ¼ 0. The
vertical wavy line represents the timelike r ¼ 0 singularity of
the initial RN geometry. The horizontal wavy line represents the
spacelike r ¼ 0 singularity in the perturbed geometry. Note,
however, that these two singularities are located outside the
domain of integration.

17In principle, mfinal should be defined as the limit of the mass
function m along the EH as v → ∞. It practice we only monitor
the evolution up to vmax; hence we take mfinal to be the mass
function evaluated at the EH at v ¼ vmax. We verified, by
inspecting the large-v freezing of mðvÞ along the horizon, that
the change in this function at v > vmax is negligible, probably
smaller than 10−6.

18The focusing effect, in this context, is a gradual decrease of r
along the CH. While we do not actually reach the CH in our
numerical simulation (it corresponds to v → ∞), we get relatively
close to it in terms of the behavior of the various fields, and, in
particular, Φ and r. With the choice A ¼ 0.115 we get a
significant focusing in our numerical domain: r shrinks along
v ¼ vmax down to ≈10−2 or even less. This significant focusing is
advantageous as it allows a better visibility of the shock behavior
in r (discussed in Sec. V C).

EHUD EILON and AMOS ORI PHYSICAL REVIEW D 94, 104060 (2016)

104060-10



both initial rays, from the constraint equations. As before,
we set u0 ¼ v0 ¼ 0 for convenience. The other boundaries
of the domain of integration are umax ¼ 182 and
vmax ¼ 120. The value of r at the initial vertex is again
rðu0; v0Þ ¼ 5, and along the outgoing initial ray it grows
monotonically up to rðu0; vmaxÞ≃ 44.0.
Note that there are two different RN phases in spacetime:

(i) an exact initial RN geometry at v < v1, and (ii) an
approximate RN geometry at late time, namely v ≫ 1.19

The effective shock wave is essentially a phenomenon that
takes place at late times; hence it is the approximate RN
domain (ii) that is mostly relevant to the shock analysis
below. The event and inner-horizon values of this domain
are rþ ≃ 2.566 and r− ≃ 0.352, respectively.

1. Family of timelike geodesics

In order to probe the shocklike behavior of the
various fields, in the test-field case we employed a family
of radial timelike RN geodesics related to each other by
time-translation symmetry, namely a radial TTSG.
Unfortunately, in the self-gravitating case the geometry
is no longer static, and an exact TTSG does not exist.
Nevertheless, since at large v the geometry becomes
asymptotically RN (hence asymptotically static), we can
still construct a family of geodesics which are related by an
approximate time translation—an approximation that
improves with increasing v. Note that this construction
is not unique; there are many ways to construct such an
approximate TTSG. All we require is that this family
asymptotically approaches a TTSG at large v.
To define such a family of radial timelike geodesics, it is

sufficient to prescribe the _r value of each geodesic as it
crosses the initial outgoing ray u ¼ u0. We mimic as much
as possible the behavior of a radial TTSG in exact RN
spacetime. In the latter case we have

_r ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −

�
1 −

2M
r

þQ2

r2

�s
;

which for E ¼ 1 reduces to −ð2M=r −Q2=r2Þ1=2. In the
self-gravitating case, we replace the constantM by the mass
functionm. Correspondingly we set the initial condition for
the geodesics at u ¼ u0 to be

_rðu0; vÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðu0; vÞ
rðu0; vÞ

−
Q2

rðu0; vÞ2

s
: ð16Þ

At the large-v limit this one-parameter set of geodesics
indeed approaches the E ¼ 1 radial TTSG in RN space-
time, as desired.

Here again, for all infalling geodesics we set τ ¼ 0 at EH
crossing, as we did in the test-field case.

2. Outgoing Eddington-like coordinate ve
In the test-field case we have used the Eddington

coordinate ve (evaluated at EH crossing) to parametrize
the infalling geodesics. However, in the self-gravitating
case the double-null Eddington coordinates are not
uniquely defined, as the metric is no longer static. We
therefore introduce here the extended notion of the
Eddington-like outgoing null coordinate, and denote it as
before by ve. The function veðvÞ is hereby defined by
Eq. (15), similar to the test-field case.20 As before we set
ue ¼ 0 at u ¼ u0 and ve ¼ 0 at v ¼ v2 (end of pulse
injection), which in turn fixes the integration constant in
Eq. (14) by dictating r� ¼ 0 at rðu0; v2Þ.
Once the Eddington-like null coordinate ve is defined,

the infalling timelike geodesics are parametrized by their
veh, namely the value of ve at EH crossing.
Note that in the present case ve vanishes at v ¼ v2 ¼ 7,

whereas the domain of integration starts at v ¼ v0 ¼ 0. The
range 0 < v < 7 thus corresponds to negative ve.
Accordingly, some of the infalling geodesics admit neg-
ative veh values, as can be seen in e.g. Fig. 7. (But this
negative value of ve or veh has no special significance.)

B. Shock wave in the scalar field

The shock wave in the scalar field is demonstrated in
Figs. 7 and 8, by displaying ΦðτÞ for various infalling
geodesics. The early phase of shock formation is presented
in Fig. 7: Whereas early geodesics with say veh < −2 look
smooth, geodesics with larger veh exhibit a sharp feature. In
fact, this sharp feature involves a rapid decrease followed
by an even more rapid increase: This can be seen in e.g. the
geodesic veh ¼ −1.8. The same behavior also occurs in
later geodesics (−1.6 to −1), although in these geodesics
the decrease-increase phases are too narrow and cannot be
distinguished without additional zoom.
Figure 8 shows much later geodesics, with 20 ≤ veh ≤

70. In the linear scale of panel (a), all the geodesics form a
seemingly vertical “wall,” at τ ≈ 1.789. This value agrees,
to a very good approximation, with the proper-time interval
τRN ≅ 1.7889 to move from the EH to the IH, for an E ¼ 1
radial geodesic in a RN geometry with Q ¼ 0.95 and mass
mfinal ≅ 1.4587. This proper-time value τRN is marked in
Fig. 8(a) by a vertical dashed line.
Note that in the early phase shown in Fig. 7, unlike its

test-field counterpart in Fig. 3(a), the different geodesics
develop their shocks at notably different τ values. This

19A more precise condition would be v − v2 ≫ mfinal (but in
the present case the two conditions are essentially the same).

20The function r�ðrÞ appearing in this formula is given in
Eq. (14). It involves the parameters rþ and r−, which in the RN
case are given byM � ðM2 −Q2Þ1=2. In the self-gravitating case,
for the sake of defining ve we replaceM bymðu0; vmaxÞ ≅ 1.4591
(which is very close to mfinal).
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directly results from the dynamical character of the non-
linearly perturbed spacetime, which breaks time-translation
invariance. On the other hand, in the late-time phase
[Fig. 8(a)] the spacetime is approximately static; hence
the shocks of all geodesics fall approximately at the same τ
value, ≈1.789.

1. Shock resolution and shock sharpening

To resolve the shock structure, in Fig. 8(b) we use a
logarithmic horizontal scale. To this end we again employ
the shifted variable jτ − τfinalj, where, recall, τfinal is the last
proper time value for each geodesic (at u ¼ umax arrival).
This panel shows that in the self-gravitating case too, for
sufficiently late geodesics the shock shape is essentially
unchanged while veh increases—apart from a uniform
rightward motion, which expresses an overall shrinking
of the shock’s τ scale.
To quantify the rate of shock sharpening, we again resort

to the width parameter Δτ, defined to be the difference in τ
between the minimum and maximum points in ΦðτÞ [those
seen in Fig. 8(b)] at each geodesic. Figure 9 displays Δτ of
the various geodesics as a function of their infall time veh. It
again shows excellent agreement with the exponential
sharpening rate Δτ ∝ e−κveh (represented by the straight
diagonal dashed line), theoretically predicted in Ref. [24]
(for late-infall geodesics). Exceptional are the two earliest
geodesics shown in the graph, namely veh ¼ 0 and veh ¼ 5.

C. Shock wave in r

We next consider the shock wave in the variable r, which
is in fact a metric function (in the sense that r2 ¼ gθθ). We

FIG. 8. Numerical results for Φ as a function of proper time τ along a family of radial timelike geodesics. Panel (a) employs a linear
scale in τ; panel (b) employs a logarithmic scale in jτ − τfinalj, to allow shock resolution. Both panels display the same set of geodesics.
The different geodesics are marked by different colors and different veh values; veh increases by increments of 10 from bottom/left
(veh ¼ 20) to top/right (veh ¼ 70). The vertical dashed line in panel (a) represents τRN ≅ 1.7889, which is the proper-time moment of IH
crossing for a marginally bound radial geodesic in RN spacetime with Q ¼ 0.95 and mass mfinal ¼ 1.4587. Panel (b) exhibits the
sharpening of the shock: The width of the scalar-field profile seems to decrease exponentially with veh. It may also be seen that the shape
of the scalar-field profile at late times (say veh ≳ 40) is essentially unchanged.

FIG. 7. Numerical results for the self-gravitating scalar field Φ
as a function of proper time τ along the family of radial timelike
geodesics described in the main text. The geodesics are distin-
guished by different colors and different values of veh (the
geodesic’s ve value at EH crossing); veh increases by increments
of 0.2 from the top of the graph ðveh ¼ −3Þ to the bottom
ðveh ¼ −1Þ. We set τ ¼ 0 at the EH crossing event for each
geodesic. The shock formation process manifests itself as a
gradual sharpening of the scalar-field profile with increasing veh.
The smaller value of the increments (compared to the test-field
case shown in Fig. 3), and the negative values of veh in the present
case, imply a more rapid shock formation process in the self-
gravitating case. This may be explained by the higher κ value in
the present case (8.94 compared to 1.06).
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use the same numerical setup and family of timelike
geodesics described in Sec. VA. Figure 10 displays rðτÞ
for various timelike geodesics. The early geodesics shown
in panel (a) reveal the initial phase of shock formation:
While the earliest geodesics look fairly smooth, the latest

ones develop an approximately vertical section (clearly
seen for e.g. veh ≥ −1.4).
Panel (b) of Fig. 10 presents late geodesics, demonstrat-

ing the nature of the fully developed shock in r. Note that
although a single purple/red curve is visible in this graph, it
actually enfolds many late geodesics in the range veh ≥ 10.
The dotted black curve displays rðτÞ for an E ¼ 1 radial
geodesic in pure RN metric with the final asymptotic mass
mfinal ≅ 1.4587 (andQ ¼ 0.95). The horizontal dashed line
marks the corresponding IH value, r− ≅ 0.35177, of this
asymptotic RN metric. The graph clearly shows that to a
very good approximation, all late geodesics follow the
pure RN geodesic curve—but only at r > r−. When r
approaches r−, rðτÞ abruptly decreases, forming the red
vertical section. This is the (fully developed) gravitational
shock wave.
Figure 11 zooms in on the late geodesics near the

“corner” at r ¼ r−. It illustrates how, when veh increases,
(i) the corner at each individual geodesic sharpens, and
(ii) the function rðτÞ becomes closer (at r > r−) to its
asymptotic-RN counterpart. As veh → ∞ the limiting
function rðτÞ should just coincide with the asymptotic
RN curve all the way down to r−; then it should abruptly
fall towards r ¼ 0.

1. Shock resolution and shock sharpening

We again employ a logarithmic presentation (in τ − τfinal)
to resolve the exponentially small proper-time duration of
the shock. Figure 12 demonstrates that in this case too, for
late geodesics the function rðτ − τfinalÞ just shifts rightward
with increasing veh, with no appreciable change in its form.

FIG. 9. Exponential sharpening rate of the self-gravitating
scalar-field shock, as demonstrated by the decrease of Δτ with
increasing veh. Each point represents a single timelike radial
geodesic; the geodesics are in the range 0 ≤ veh ≤ 75, with
increments of 5. The straight dashed green line is the theoretical
fit, lnðΔτÞ ¼ −κveh þ const. All geodesics show excellent agree-
ment with the theoretical fit, except the two earliest ones
(veh ¼ 0, 5).

FIG. 10. Numerical results for rðτ) along the prescribed family of radial timelike geodesics. The black dotted curve denoted RN is the
theoretical rðτÞ function for an E ¼ 1 radial geodesic in the asymptotic RN solution (with parameters m ¼ 1.45867, Q ¼ 0.95);
the dashed horizontal line represents the inner-horizon r value (r− ≅ 0.35177) in that asymptotic RN solution. The solid curves represent
the numerical results for rðτÞ along the various geodesics. Panel (a) shows early geodesics (negative veh regime, from −3 to −1). The
different geodesics are marked by different colors and different veh values; veh increases by increments of 0.2. Panel (b) presents late
geodesics (positive veh in the range 10 ≤ veh ≤ 80, with increments of 5). In this scale these 15 different geodesics are unresolved; they
are all represented by the same red/purple curve. (The differences between these geodesics are shown in the zoomed Fig. 11.)
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This shift indicates an exponential decrease in the shock’s
proper-time scale.
To quantify this sharpening, we again need to define a

measure Δτ of the shock width (for each geodesic). In this
case we cannot take it to be the proper-time duration
between maximum and minimum points because, unlike
the scalar field, rðτÞ is monotonic in the relevant domain.
Instead, we can take Δτ to be the proper time it takes for r
to change from a certain value to another, smaller one.
For concreteness, we define here Δτ to be the proper-time
duration to drop from 0.75r− to 0.25r− along the geodesic.
(Here, as before, r− ≅ 0.35177 is the IH radius of the late-
time asymptotic RN geometry.) Figure 13 displays this
width as a function of veh, confirming again the exponential
sharpening relation Δτ ∝ e−κveh predicted in Ref. [24].

D. Probing the shock with ingoing null geodesics

So far we used timelike geodesics to probe the shock. It
is also possible, however, to use null geodesics for that
purpose. To this end we should focus on the dependence of
r (or Φ, or any other variable of interest) on the affine
parameter λ along a given null geodesic. The shock
manifests itself as a sharp feature in rðλÞ [or ΦðλÞ].
Indeed, timelike geodesics may be considered more

physical than their null counterparts, as they represent
the actual orbits of physical probes. However, null geo-
desics are more convenient in several respects: First of all,
the usage of null rather than timelike geodesics reduces the

FIG. 11. Zoom on panel (b) of Fig. 10, near the corner. The
figure shows rðτÞ for the same set of 15 late geodesics as in
Fig. 10(b), but this time (most of) the individual geodesics are
resolved. The different geodesics are marked by different colors
and different veh values; veh increases by increments of 5 from
left (veh ¼ 10) to right (veh ¼ 80). Recall that each of the
timelike geodesics is actually represented (here and throughout
the paper) by two curves, presenting our two best numerical
resolutions N ¼ 640 (solid curve) and N ¼ 320 (dashed curve).
In this highly zoomed figure, these two resolutions can be
distinguished, although barely.

FIG. 12. Logarithmic presentation of the numerical results
for r as a function of jτ − τfinalj, along the prescribed family
of radial timelike geodesics. The different geodesics are marked
by different colors and different veh values; veh increases by
increments of 10 from left (veh ¼ 10) to right (veh ¼ 70).

FIG. 13. Exponential shock sharpening as demonstrated by
the decrease of Δτ, the difference between τðr ¼ 0.75r−Þ
and τðr ¼ 0.25r−Þ. Each point represents a single timelike
radial geodesic; the geodesics are in the range 0 ≤ veh ≤ 75,
with increments of 5. The diagonal dashed green line is a fit to the
theoretical relation lnðΔτÞ ¼ −κveh þ const. The graph indicates
a very good agreement between the theoretical prediction and
the numerical results, especially for the late-time geodesics
(e.g. veh ≳ 20).
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amount of arbitrariness involved in the construction of the
set of ingoing geodesics, because the degree of freedom of
choosing E no longer exists. In particular, if we restrict
attention to radial geodesics (which is obviously the natural
thing to do for spherically symmetric backgrounds), the
family of null geodesics becomes unique. Second, there is
no need to solve the geodesic equation in the null case,
because radial null orbits are trivial. In fact, our numerical
results are given on ingoing null geodesics, namely the grid
lines v ¼ const, already in the first place. All that is needed,
in order to generate the requested function rðλÞ [orΦðλÞ], is
to compute λðuÞ along the desired v ¼ const rays. This is
an easy task, as we show in Appendix A 2.

Note that along each null geodesic, λðuÞ is uniquely
defined up to two free parameters: A global multiplicative
constant, and a global shift. Here we fix both parameters at
the EH (for each ingoing geodesic), by setting λ ¼ 0 and
dr=dλ ¼ −1 at horizon crossing.
In what follows we focus on the shock wave in r. The

function rðλÞ along an ingoing null geodesic admits two
convenient properties: (i) it decreases monotonically, and
(ii) it becomes exactly linear in the pure RN case (see
Appendix A 2 a). Due to these properties, a three-
dimensional graphics turns out to be especially useful
for presenting the shock in r. Figure 14 demonstrates
the shock formation phase by displaying rðλÞ for early

FIG. 14. Shock formation in r, as demonstrated by a series of ingoing radial null geodesics in the early phase ð−4 < ve < 6Þ of our
numerical simulation. Each line represents rðλÞ for a single null geodesic (constant ve value). The gradual development (with increasing
ve) of a sharp break point is clearly seen. The location of this break agrees with the r value of the IH (r− ≅ 0.35177). The geodesics are
displayed here in a limited range of r (0 < r ≤ 0.6) in order to improve shock visibility. (Although, geodesics with very small ve arrive
u ¼ umax at r values well above 0.)

FIG. 15. Fully developed shock in r, as demonstrated by a large set of late radial null geodesics (solid colored lines) in the range
10 < ve < 85.2. The figure also displays the corresponding set of ingoing null geodesics in the exact RN geometry (dotted black lines).
These pure RN geodesics are given by the linear function rðλÞ ¼ rþ − λ. The geodesics are restricted here to a limited range of r
(0 < r ≤ 0.6) in order to improve shock visibility. In the range r ≳ r− the dotted lines are in fact invisible, because they coincide with the
corresponding solid lines (that is, the geodesics in the perturbed spacetime are indistinguishable from their pure RN counterparts). This
situation changes abruptly at the break line at r ≈ r−. Beyond that line, at r ≲ r−, the perturbed-spacetime geodesics suddenly fall
(seemingly vertically) towards 0, whereas the RN geodesics continue their straight linear course.
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ingoing null geodesics (−4 < ve < 6), as a function of their
ve value. Notice the smoothness of rðλÞ for very early
geodesics (say ve ≲ 1), and the development of an apparent
corner (at r≃ r−) for larger ve.
Figure 15 does the same, but for much later geodesics

(up to ve ≈ 85). In addition, it also displays the correspond-
ing function rðλÞ for radial null geodesics in the exact RN
geometry21 (the straight dotted black lines). This function is
given by rðλÞ ¼ rþ − λ (independent of ve). The three-
dimensional graph clearly demonstrates (i) the nice agree-
ment of rðλÞ with its RN counterpart up to a clear “break
line,” which occurs at r ≈ r− ≃ 0.352, and (ii) the sharp,
seemingly vertical, decline of rðλÞ beyond that break line.
The vertical wall that forms at r≲ r− is perhaps the clearest
visual presentation of the shock phenomenon.

VI. DISCUSSION

We numerically confirmed the existence of an effective
shock at the left inner-horizon section of a perturbed
spherical charged BH, as predicted by MO [24]. We
demonstrated this here for both test scalar-field perturba-
tions and self-gravitating ones. In both cases, the scalar
field Φ exhibits an effective shock. In the self-gravitating
case, the area coordinate r also exhibits such an effective
shock. Since r2 is a metric function (¼ gθθ), this actually
amounts to an (effective) gravitational shock wave.22

This shock expresses itself as an effective discontinuity
in r (or similarlyΦ) as a function of proper time τ, along the
worldlines of late left fallers—namely, free-falling observ-
ers heading toward the left inner-horizon section. As these
left fallers approach the (would-be) inner horizon, they
experience a sudden decrease in r, within an extremely
short proper-time interval Δτ. Furthermore, this proper-
time scale Δτ decreases exponentially with the time of
infall into the BH. For delay times (from collapse to jump
in) of typical astrophysical time scales (e.g.) this Δτ
becomes tremendously small—smaller than Planckian by
many orders of magnitude.
MO predicted a sharpening rate Δτ ∼ e−κveh , where κ is

the IH surface gravity of the late-time asymptotic BH, and
veh is the jump-in time expressed in terms of the asymptotic
Eddington advanced time ve. We numerically confirmed
this exponential sharpening rate, for both r and Φ.
The analysis by MO [24] mostly concentrated on late-

time observers who enter the BH at veh ≫ M, after
perturbation tails along the EH have decayed. In their
discussion they argued, however, that earlier observers
should also experience the shock (provided that veh≳ a few
timesM). We numerically confirmed this prediction too, as

seen in Figs. 3(a), 7, and 10(a). Our numerical analysis
shows the shock development from the early formation
stage (relatively small veh) up to the stage of well-
developed shock (at much larger veh).
In addition to timelike geodesics, we also used null

ingoing geodesics to probe the shock (with τ replaced by
the affine parameter λ). This method has some advantages,
in particular, it allows a simpler and more transparent
presentation of the effective shock using three-dimensional
graphics.
We emphasize an important property of the shock: As

was mentioned above, while veh increases, the shock width
Δτ rapidly decreases. However, apart from this sharpening,
the shock amplitude (as well as its internal shape) is
insensitive to the increase in veh. Let us consider the shock
in r for concreteness: Very late left fallers (veh → ∞)
experience, enfolded in the shock, a large decrease in r, all
the way from r− down to r ¼ 0. This is demonstrated in e.g.
Fig. 12 or 15. In particular, this implies an unbounded,
totally destructive, tidal compression on approaching the
(left arm) IH. This should be contrasted with the experience
of late right fallers, heading towards the CH: They
experience a bounded tidal deformation on approaching
the CH; and the magnitude of this deformation typically
decreases as an inverse power of veh, and vanishes as
veh → ∞.
This research may be extended in several directions. The

most obvious extension is to consider some other types of
perturbations of spherical charged BHs, and to explore the
effective shock formation they induce. Specifically, the
addition of null fluids to our numerical code is rather
straightforward as it merely involves a minor modification
of the constraint equations. MO have not discussed null-
fluid perturbation specifically; however, their arguments
could probably be generalized to this case as well. Note that
null fluid is a fairly realistic perturbation as it can well
represent (at least to some extent) the accretion of cosmic
microwave background (CMB) radiation by the BH.
Gravitational and electromagnetic perturbations would also
be interesting, but they are considerably harder to numeri-
cally analyze (beyond the linear level) because of the
inevitable breakdown of spherical symmetry.
The extension of this analysis to spinning BHs would be

strongly motivated, because realistic astrophysical BHs are
expected to be spinning. For instance, in both gravitational-
wave events GW150914 [26] and GW151226 [27], the
mergers resulted in BHs with significant spins a=m ∼ 0.7.
However, the numerical study of perturbed spinning BHs
would probably be much more challenging, due to the lack
of spherical symmetry.
In this study, like in Ref. [24], we only considered

asymptotically flat BHs, with perturbations that decay at
late time. Hamilton and Avelino [23] pointed out, however,
that realistic astrophysical BHs steadily accrete dust as well
as CMB photons along cosmological time scales. It will be

21This RN geometry is taken with the appropriate asymptotic
parameters, namely Q ¼ 0.95 and M ¼ mfinal, yielding rþ ≃
2.566 and r− ≃ 0.352.

22Although in this specific case this gravitational shock is not a
free-gravity phenomenon, it has been triggered by the scalar field.
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interesting to extend the shock analysis to such a situation,
where a charged (or spinning) BH accretes for very long
times. The null-fluid formulation will presumably be
especially useful for this purpose.
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APPENDIX A: NUMERICAL SOLUTION
OF THE GEODESIC EQUATION

1. Ingoing radial timelike geodesics

We process here the geodesic equation and bring it to a
form convenient for numerical integration in our numerical
code. We begin with the well-known covariant form of the
geodesic equation,

_uα ¼
1

2
gμν;α uμuν; ðA1Þ

where uα ≡ gαβuβ, an overdot denotes d=dτ, and uμ ≡ _xμ

(not to be confused with the null coordinate u).
Manipulating the right-hand side,

gμν;α uμuν ¼ gμν;α gμεuεuν ¼ −gμε;αgμνuεu
ν ¼ −gμε;αuμuε;

we obtain

_uα ¼ −
1

2
gμν;α uμuv: ðA2Þ

Using the line element (1) we have −ð1=2Þguv ¼ e−σ,
and Eq. (A2) yields

_uu ¼ −2e−σuuuvσ;u ; _uv ¼ −2e−σuuuvσ;v : ðA3Þ

We replace this set by another set in which the inde-
pendent variable is u (rather than τ). Hereafter a prime
denotes d=du (along the geodesic). Note that d=du ¼
ðuuÞ−1d=dτ, or more conveniently, −ð1=2ÞeσðuvÞ−1d=dτ.
From Eq. (A3) we now derive the simple equations for u0u
and u0v,

u0u ¼ σ;u uu; u0v ¼ σ;v uu: ðA4Þ

To complement the set of equations we need the differ-
ential equation for vðuÞ along the geodesic, namely
v0 ≡ dv=du ¼ uv=uu, which we rewrite as

v0 ¼ uu
uv

: ðA5Þ

Equations (A4) and (A5) form a closed set of first-order
differential equations for the three unknowns vðuÞ; uuðuÞ;
uvðuÞ, provided that σ;u and σ;v are known functions of u

and v. We use a standard predictor-corrector scheme in
order to propagate the unknowns v; uu and uv in u along the
geodesics, with finite stepsΔu (the same Δu parameter that
we use in the numerical simulation of the field equations).
The derivatives σ;u and σ;v are evaluated on the relevant
grid points via finite differences, and then second-order
interpolated to the geodesic point vðuÞ. Similar second-
order interpolation is used in order to evaluate the functions
Φ, r, σ (and the mass function m) on the geodesic point
once vðuÞ is known. The proper time τ along the geodesic is
found via integration of dτ=du ¼ 1=uu ¼ −ð1=2Þeσ=uv.

2. Ingoing radial null geodesics

We begin with the null analog of the covariant-form
geodesic equation (A1),

_kα ¼
1

2
gμν;α kμkν; ðA6Þ

where kμ ≡ dxμ=dλ. From the double-null form of the
metric (1) it immediately follows that _kα ¼ 0 for any radial
null geodesic (because for each such geodesic only one
component is nonvanishing, either ku or kv). In particular,
for our ingoing radial null geodesics, we get kv ¼ const
(and ku vanishes); therefore du=dλ≡ ku ¼ const · guv.
Inverting this relation, and substituting 1=guv ¼ guv ¼
−ð1=2Þeσ , we obtain dλ=du ¼ Ceσ where C is an
arbitrary normalization constant. Thus, along each v ¼
const geodesic,

λðuÞ ¼ C
Z

u
eσð ~u;vÞd ~u: ðA7Þ

Note that this function λðuÞ is defined up to two free
parameters: the integration constant, and the global nor-
malization constant C.

a. Numerical implementation

The integration is performed retroactively after σ is
known at all grid points along the geodesic. We use a
simple integration procedure,

λðuþ ΔuÞ ¼ λðuÞ þ Ce½σðu;vÞþσðuþΔu;vÞ�=2Δu; ðA8Þ

which is second-order accurate. The parameter C is
determined by requiring dλ=dr ¼ −1 at the EH.

b. The RN case

Consider now ingoing radial null geodesics in pure RN
geometry. When the latter is expressed in the double-null
form (1) using Eddington coordinates (ue,ve), one finds
eσ ¼ fðrÞ≡ 1 − 2M=rþQ2=r2. The above expression for
dλ=du then reduces to dλ=due ¼ CfðrÞ. Switching from ue
to the tortoise coordinate r� ¼ ðve − ueÞ=2 we get
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dλ=dr� ¼ −2CfðrÞ (recalling that ve is constant along the
ingoing ray). Since r� satisfies dr=dr� ¼ fðrÞ, we find that
dλ=dr ¼ −2C. Thus, λðrÞ is linear along ingoing null
geodesics (and the same for outgoing ones).

Again we have two arbitrary constants (C and the
integration constant), and as before we choose them such
that at the EH λ vanishes and dλ=dr ¼ −1, obtaining
rðλÞ ¼ rþ − λ.
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