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We discuss static spherically symmetric metrics which represent nonsingular black holes in four- and
higher-dimensional spacetime. We impose a set of restrictions, such as a regularity of the metric at the
center r ¼ 0 and Schwarzschild asymptotic behavior at large r. We assume that the metric besides massM
contains an additional parameter l, which determines the scale where modification of the solution of the
Einstein equations becomes significant. We require that the modified metric obeys the limiting curvature
condition; that is, its curvature is uniformly restricted by the value ∼l−2. We also make a “more technical”
assumption that the metric coefficients are rational functions of r. In particular, the invariant ð∇rÞ2 has the
form PnðrÞ= ~PnðrÞ, where Pn and ~Pn are polynomials of the order of n. We discuss first the case of four
dimensions. We show that when n ≤ 2 such a metric cannot describe a nonsingular black hole. For n ¼ 3

we find a suitable metric, which besidesM and l contains a dimensionless numerical parameter. When this
parameter vanishes, the obtained metric coincides with Hayward’s one. The characteristic property of such
spacetimes is −ξ2 ¼ ð∇rÞ2, where ξ2 is a timelike at infinity Killing vector. We describe a possible
generalization of a nonsingular black-hole metric to the case when this equality is violated. We also obtain a
metric for a charged nonsingular black hole obeying similar restrictions as the neutral one and construct
higher dimensional models of neutral and charged black holes.
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I. INTRODUCTION

The general relativity is ultraviolet incomplete, in both
the classical and the quantum domains. A well-known
problem of the classical Einstein’s theory of gravity is the
inevitable existence of singularities. For example, solutions
of the Einstein equations, describing stationary isolated
black holes, such as Schwarzschild, Reisner-Nordström,
and Kerr metric, have curvature singularity in their interior.
It is generally believed that the general relativity should be
modified in the regions where the spacetime curvature
becomes high. Such a modification is also required if one
searches for a theory which is ultraviolet (UV) complete.
There exist several different proposals how such a modi-
fication can be achieved. For example, quite a long time
ago it has been demonstrated that the addition of the higher
order in curvature terms, as well as the terms containing
higher derivatives, can improve the UV properties of the
Einstein gravity [1–4]. However, such theories usually have
nonphysical degrees of freedom (ghosts). Recently a new
version of the UV complete modification of the general
relativity was proposed which is free from this problem
[5–7]. It was named a ghost-free gravity [5–14]. Such a
theory contains an infinite number of derivatives and, in
fact, is nonlocal [10,13]. A similar theory appears naturally
also in the context of noncommutative geometry deforma-
tion of the Einstein gravity [15,16] (see a review [17] and
references therein). The application of the ghost-free theory

of gravity to the problem of singularities in cosmology and
black holes can be found in [18–25].
In the absence of the adopted theory it is instructive to

discuss what kind of modifications one could expect when
gravity is UV complete. Such an analysis can be fruitful
only if some “natural” assumptions concerning the proper-
ties of such a “full” theory are imposed. In the present paper
we present some results on so-called nonsingular models of
black holes.
One of the main assumptions is that there exists a critical

energy μ and the corresponding length-scale parameter
l ¼ μ−1. The metric should be modified when the space-
time curvature R becomes comparable with l−2. At the
same time we assume that one can use the classical metric
gμν, which is a solution of the effective action of the
modified gravity. In other words, the length scale λ, where
quantum gravity effects become important, is much smaller
than l. We are looking for black-hole metrics which do not
have curvature singularities. The first model of a non-
singular black hole was proposed by Bardeen [26], who
considered a collapse of a charged matter with a charged
matter core inside the black hole instead of its singularity.
Different models of neutral, charged, and rotating non-
singular black holes were proposed and discussed later
[27–39]. A general review of different models of non-
singular black holes and additional references on this
subject can be found in [40].
In a general case a regular solution besides some

critical scale parameter l, which is a parameter of the*vfrolov@ualberta.ca
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corresponding UV complete theory, contains also such
parameters as mass and charge, which specify a concrete
solution. The regularity of the solution means that for a
fixed value of these parameters the curvature of the
spacetime is finite. However, in a general case there is
no guarantee that the maximal value of the curvature would
not infinitely grow when, say, the mass (and/or charge)
becomes infinitely large. It is reasonable to assume that for
a viable fundamental theory the absolute maximal value of
the curvature is restricted by some fundamental value. In
other words, the curvature invariants are uniformly
restricted by some universal value

jRj ≤ c
l2

; ð1:1Þ

where c is a dimensionless constant which depends only on
the type of the curvature invariant. This assumption, called
the limiting curvature conjecture, was proposed in [41–43].
In the present paper we assume that the limiting curvature
condition is satisfied. To make this condition more con-
crete, we shall check restriction (1.1) for the Ricci scalar, as
well as for the square roots of the quadratic in the curvature
invariants. We shall demonstrate that the limiting curvature
condition imposes a significant restriction on regular
metrics. Many of the proposed earlier nonsingular black-
hole models violate this property.
In the present paper we consider spherically symmetric

nonsingular black holes. This simplifying assumption
allows one to make many results more concrete. For
example, simple analysis of the spherically symmetric
metrics shows that if such a spacetime has an apparent
horizon, it cannot cross the center r ¼ 0 without the
creation of the curvature singularity (see next section).
This means that besides an outer horizon, close to the
classical gravitational radius, such a regular metric has also
an inner horizon, close to r ¼ 0. Either these two horizons
never meet in the future or the apparent horizon is closed
[44]. New (baby) universe creation inside a black hole,
discussed in [45,46], is an example of the former case. (See
also [47–52].) A model, describing a complete quantum
evaporation of a nonsingular black hole, described in [44],
is an example of the latter case. Such models were later
intensively discussed in the literature [20,53–60].
Nonsingular black hole models in the dilaton two-
dimensional (2D) gravity were discussed in [61–65].
A special interest to a nonsingular model of a completely

evaporating black hole is connected with a long-standing
problem of the information loss in black holes. In a case
when the apparent horizon is closed, the event horizon is
absent, and all the information, accumulated inside such a
“black hole,” can return to the spacetime, visible by an
external observer, after the evaporation is completed (see
e.g. [58] and references therein).
A model of a nonsingular black hole, which is conven-

ient for the analysis, was proposed by Hayward [54]

(see also [58]). It describes an isolated four-dimensional
spherically symmetric regular spacetime and, besides the
fundamental length l, contains only one parameter, mass
M. At a large distance it reproduces the Schwarzschild
metric, while at the origin it is regular and has de Sitter
form. ForM ≥ 3

ffiffiffi
3

p
l=4 the metric has two branches (outer

and inner) of the apparent horizon. The outer horizon is
located near 2M, while the inner one is close to l. The
property which makes this metric simple for the analysis is
its scaling behavior. Namely, there exists a scaling trans-
formation of the coordinates, metric, and its parameters,
which preserves the form of the metric. We discuss this
property in Sec. II.
In the present paper we propose and discuss useful

generalizations of the Hayward metric. A first important
generalization is a wide class of metrics, with a nontrivial
redshift factor. We also present a higher dimension gen-
eralization of a nonsingular metric, as well as metrics for
charged nonsingular black hole spacetimes.

II. METRIC OF A NONSINGULAR BLACK HOLE

A. A nonsingular black-hole model

A general static metric in a four-dimensional spacetime
can be written in the form

dS2 ¼ −FA2dV2 þ 2AdVdrþ r2dω2; ð2:1Þ

where F ¼ FðrÞ and A ¼ AðrÞ are two arbitrary functions.
This metric has the Killing vector ξμ∂μ ¼ ∂V. It is easy to
see that

F ¼ ð∇rÞ2; FA2 ¼ −ξ2: ð2:2Þ

In a spacetime with a horizon, FðrÞ vanishes at the position
r0 of the apparent horizon. For a regular static metric such a
horizon is at the same time the Killing horizon, so that
Aðr0Þ is finite there.
If the metric has a horizon where Fðr0Þ ¼ 0, then

ξνξμ;ν ¼H κξμ; κ ¼ 1

2
ðAF0Þjr¼r0 : ð2:3Þ

By definition, κ is the surface gravity. The value of κ
depends on the choice of the normalization of the Killing
vector. In an asymptotically flat spacetime one usually puts
ξ2jr¼∞ ¼ −1. A condition that there is no solid angle deficit
implies Fj∞ ¼ 1. Hence one also has Aj∞ ¼ 1.
Let R be the Ricci scalar, Sμν ¼ Rμν − 1

4
gμνR, and Cμναβ

be the Weyl tensor. Let us define the following quadratic in
the curvature invariants:

S2 ¼ SμνSμν; C2 ¼ CμναβCμναβ: ð2:4Þ

Then one has
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R ¼ F00 þ 4

r
F0 − 2

F − 1

r2

þ 1

A

�
2FA00 þ 3F0A0 þ 4

r
FA0

�
; ð2:5Þ

C ¼ 1ffiffiffi
3

p
�
F00 −

2

r
F0 þ 2

F − 1

r2

þ 1

A

�
2FA00 þ 3F0A0 −

2

r
FA0

��
: ð2:6Þ

An expression for S is similar but quite long, and we do not
present it here.
We assume that the metric (2.1) is finite at the origin

r ¼ 0, so that

F ¼ F0 þ F1rþ F2r2 þOðr3Þ;
A ¼ A0 þ A1rþ A2r2 þOðr3Þ: ð2:7Þ

In a general case the curvature invariants R and C are
singular at the origin and have divergences ∼r−2 and ∼r−1.
Conditions that these divergences are absent and the metric
is regular are

F0 ¼ 1; F1 ¼ A1 ¼ 0: ð2:8Þ

By substituting (2.7) in the expression for S2 and using
relations (2.8) one can check that the conditions of
regularity of S2 at r ¼ 0 are identically satisfied. One also
has

R ¼ −12
�
F2 þ

A2

A0

�
þOðr2Þ; ð2:9Þ

S ¼ 2
ffiffiffi
3

p A2

A0

þOðr2Þ; C ¼ Oðr2Þ: ð2:10Þ

Let us notice that A0 is an arbitrary constant. Its meaning
is connected with a time delay between infinity and
r ¼ 0. For a fixed value of r at far distance one has
Δτ∞ ≡ Δt ¼ ΔV, where τ∞ is the proper time measured by
the clocks at the infinity. For the same interval ΔV the
proper time measured at the center r ¼ 0 is Δτ0 ¼ A0ΔV.
Hence

Δτ0 ¼ A0Δτ∞: ð2:11Þ

For A0 < 1 (A0 > 1) the time at the center “goes” slower
(faster) than at the infinity. For a monochromatic wave φ
propagating in a static spacetime one can write
φ ∼ exp ðiΦÞ, where Φ ¼ ωV. If ω∞ ¼ dΦ=dτ∞ and
ω0 ¼ dΦ=dτ0, then one has

ω0 ¼ A−1
0 ω∞: ð2:12Þ

For A0 > 1 (A0 < 1) the frequency of a signal, registered at
the center r ¼ 0, is redshifted (blueshifted) with respect to
the frequency of the signal emitted at the infinity. In what
follows we refer to AðrÞ as a redshift function.
We are interested in a metric which describes a black

hole. For this reason we assume that the function FðrÞ
vanishes at some value r ¼ rþ, where the event horizon is
located. In order for the metric to be regular at r ¼ 0 it must
have at least one more zero at r ¼ r− > 0. For simplicity
we assume that the function FðrÞ has exactly two zeros at
rþ > r− > 0. Our final assumption is that the curvature
invariants jRj, jSj, and jCj are uniformly restricted by some
values proportional to l−2. We call this parameter l the
fundamental length. The latter requirement means that our
metric satisfies the Markov’s limiting curvature conjecture
[41–43].
To fix the scale of the parameter l one can put

jF2j ¼ l−2, so that the metric function F at the origin
r ¼ 0 has the form

F ¼ 1þ εr2=l2 þOðr4Þ; ε ¼ �1: ð2:13Þ

We assume that the spacetime is asymptotically flat, so
that

F ¼ 1 −
rg
r
þOðr−2Þ; rg ¼ 2M: ð2:14Þ

We call a spacetime (2.1) satisfying the above described
properties (including the limiting curvature condition) a
nonsingular black hole. Certainly one cannot require that
this metric is a solution of the Einstein equations. One should
assume that the Einstein equations should be modified in the
UV domain. The curvature of the Schwarzschild spacetime,
∼rg=r3, reaches the critical value l−2 at the radius
rl ¼ ðrgl2Þ1=3. At this radius themodified solution becomes
essentially different from the Einstein’s solution.

B. Uncharged nonsingular black-hole metric

1. Scaling property

In the absence of a “final”UV complete theory of gravity
there is a wide ambiguity in the choice of metric functions
F and A for the metric describing a modified black hole.
This ambiguity is reduced by adopting constraints
described in the previous section, but it is still quite wide.
We impose additional “natural” restrictions.
Let us consider the Schwarzschild metric which is a

vacuum spherically symmetric solution of the Einstein
equations. For this metric

F ¼ 1 −
rg
r
¼ r − rg

r
; A ¼ 1: ð2:15Þ

The form of the metric is fixed by the Einstein equations,
and it contains one parameter, rg ¼ 2M, which is the
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integration constant. Moreover, F has the form of the
rational function, which is the ratio of two first order in r
polynomials. For a special value of the parameter rg ¼ 0

the spacetime is flat. An additional property of the
Schwarzschild metric is its scale invariance. Namely, its
form does not change under the following scale trans-
formations

r → βr; rg → βrg; v → βv; ds2 → β2ds2:

ð2:16Þ

This symmetry property allows one to write

ds2 ¼ r2gðds2Þjrg¼1: ð2:17Þ

In other words, by using the dimensional quantity rg as a
general scale parameter, one reduces the original metric
with one parameter (mass), to the metric ðds2Þjrg¼1, which
does not contain any arbitrary parameters at all.

2. Case n ≤ 2

Let us consider a generalization of this metric obeying
the condition A ¼ 1. We assume that F is a rational
function of r

FðrÞ ¼ PnðrÞ
~PnðrÞ

; ð2:18Þ

where Pn and ~Pn are polynomials of the order n > 1. For
example, one may try the following form of F:

F ¼ 1 −
rgr

r2 þ l2
: ð2:19Þ

Here the fundamental scale l plays the role of the
regularizer. At a far distance the metric correctly reproduces
the Schwarzschild solution, and deflection from it is of the
order of l2. At the origin the metric is finite. However, it is
not regular. Moreover, its curvature invariants have the
form

R ¼ 1

l2

rg
l
fðρÞ; ð2:20Þ

where ρ ¼ r=l. For any fixed ρ the corresponding
curvature invariant can be made arbitrarily large by simply
increasing the mass parameter rg. This means that the
metric (2.1) with (2.19) for a black hole does not satisfy the
limiting curvature condition [66].
Can we reach desired properties of the metric when

n ¼ 2? One can write (2.18) for this case as follows:

F ¼ r2 þ a1rþ a0
r2 þ b1rþ b0

: ð2:21Þ

Condition F0 ¼ 1 implies b0 ¼ a0. It is also easy to check
that the condition F1 ¼ 0 requires that b1 ¼ a1. But in this
case F is identically 1 and the spacetime is flat. To
summarize, metrics (2.18) with n ≤ 2 cannot be used as
a consistent model of a nonsingular black hole.

3. Case n = 3

Let us analyze metrics (2.18) with n ¼ 3,

F ¼ r3 þ a2r2 þ a1rþ a0
r3 þ b2r2 þ b1rþ b0

: ð2:22Þ

Regularity of the spacetime at the origin r ¼ 0 implies

b0 ¼ a0; b1 ¼ a1; ð2:23Þ

so that one has

F ¼ 1 −
ðb2 − a2Þr2

r3 þ b2r2 þ b1rþ a0
: ð2:24Þ

In order to have a proper Schwarzschild asymptotic form
one must put b2 − a2 ¼ rg. To satisfy the condition (2.13)
one must choose a0 ¼ rgl2. Hence the metric function F
takes the form

F ¼ 1 −
rgr2

r3 þ b2r2 þ b1rþ rgl2
: ð2:25Þ

This function, besides the fundamental length l and the
gravitational radius rg ¼ 2M, contains two arbitrary param-
eter b1 and b2 with the dimensionality ½length�2 and
[length], respectively. We assume that these parameters
have the form of the product of non-negative integer powers
of rg and l. Then b2 ∼ l and b1 ∼ rgl or b1 ∼ l2. The cases
when b2 ∼ rg and b1 ∼ r2g are excluded by the condition that
in the limit l → 0 the metric must coincide with the
Schwarzschild one.
We write the metric function (2.25) as

F ¼ 1 −
rgr2

r3 þ c2lr2 þ ðcl2 þ c1lrgÞrþ rgl2
: ð2:26Þ

One has the following series expansion

F ¼ 1 −
rg
r
þ c2lrg

r2
þ lrg½ðc − c2Þlþ c1rg�

r3
þOðr−4Þ:

ð2:27Þ
In the quantum gravity the fundamental length is

l ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=G

p
. Loop expansions contain integer powers of

ℏ, or, what is equivalent, integer powers of l2. In such a
case the terms linear in l in (2.27) should vanish, and
one has
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F ¼ 1 −
rgr2

r3 þ cl2rþ rgl2
; ð2:28Þ

where c is a dimensionless numerical parameter. Let us
denote

β ¼ ðl=rgÞ1=3; q ¼ ð2Ml2Þ1=3; r ¼ qy: ð2:29Þ

The curvature invariants for metric (2.28) are

R ¼ 2

l2

−y4zþ 3y2z2 − 3y3 þ 8yzþ 6

ðy3 þ yzþ 1Þ3 ;

C ¼ 1ffiffiffi
3

p
l2

2yð−3y5 þ y3zþ 6y2 þ zÞ
ðy3 þ yzþ 1Þ3 ;

S ¼ 1

l2

yð5y3zþ yz2 þ 9y2 þ 2zÞ
ðy3 þ yzþ 1Þ3 : ð2:30Þ

Here z ¼ cβ2. We assume that z ≥ 0, so that the denom-
inators in (2.30) are strictly positive.
Figures 1, 2, and 3 show plots of the invariants l2R=12,

l2C, and l2S, respectively. These plots demonstrate that
these invariants are uniformly bounded. Hence, the metric
(2.28) satisfies the limiting curvature condition, and it can
be used as a nonsingular model of a black hole.

C. Hayward model

The metric (2.28) contains a free dimensionless param-
eter c. It takes a simpler form when this parameter vanishes,

F ¼ 1 −
2Mr2

r3 þ 2Ml2
: ð2:31Þ

This form of metric for a nonsingular black hole was
proposed and discussed in [54].

At large r one has

F ¼ 1 −
2M
r

þOðr−4Þ: ð2:32Þ

Let us denote by y the dimensionless coordinate

r ¼ ð2Ml2Þ1=3y: ð2:33Þ

Then one has

F ¼ 1 − B
y2

y3 þ 1
; R ¼ −

6

l2

y3 − 2

ðy3 þ 1Þ3 ; ð2:34Þ

S ¼ 9

l2

y3

ðy3 þ 1Þ3 ; C ¼
ffiffiffiffiffi
12

p

l2

y3ðy3 − 2Þ
ðy3 þ 1Þ3 : ð2:35Þ

Here B ¼ ð2M=lÞ2=3.
The rational functions of y, which enter expressions for

R, S, and C, are regular, are finite, and have their absolute
value restricted by some numerical factor. This means that

FIG. 1. Plot of l2R=12 as a function of y and z.

FIG. 2. Plot of l2C as a function of y and z.

FIG. 3. Plots of l2S as a function of y and z.
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the metric (2.1), (2.31) satisfies the limiting curvature
condition. The plots of these invariants as functions of y
are presented in Fig. 4.
The metric (2.1), (2.31) is invariant under the following

scaling transformation:

r → αr; V → αV; M → αM;

l → αl; dS2 → α2dS2: ð2:36Þ

Using this property one can choose the scale parameter as it
is convenient as well as to work after this with the
dimensionless form of the metric. The original metric
(2.1), (2.31) contains two parameters, the mass M and
the fundamental scale l. However, only their (dimension-
less) ratio is really important.
The metric function (2.31) can be written in the form

F ¼ ðr − r−Þðr − rþÞðr − r0Þ
r3 þ B

: ð2:37Þ

This form of F contains 4 parameters: r−, rþ, r0, and B.
However, they are not independent. The condition
F0ð0Þ ¼ 0 gives

r0 ¼ −
rþr−

rþ þ r−
; ð2:38Þ

while the condition Fð0Þ ¼ 1 implies

B ¼ r2þr2−
rþ þ r−

: ð2:39Þ

Using relations (2.13) and (2.32) one finds

l ¼ rþr−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ rþr− þ r2−

p ; ð2:40Þ

M ¼ r2þ þ rþr− þ r2−
2ðrþ þ r−Þ

: ð2:41Þ

For given l andM one can solve Eqs. (2.40) and (2.41) and
find the radii of the outer and inner horizons, r− and rþ.
Solutions exist only if M ≥ M� ¼ 3

ffiffiffi
3

p
l=4. For this

minimal value of mass one has rþ ¼ r− ¼ ffiffiffi
3

p
l.

There exists another convenient parametrization of the
metric. One can choose r− as a scale factor and define new
dimensional coordinates and parameters as follows:

x ¼ r=r−; p ¼ xþ=r−; m ¼ M=r−;

b ¼ l=r−; v ¼ V=r−: ð2:42Þ

One has

dS2 ¼ r2−ds2;

ds2 ¼ −fdv2 þ 2dvdxþ x2dω2;

f ¼
ðx − pÞðx − 1Þðxþ p

pþ1
Þ

x3 þ p2

pþ1

: ð2:43Þ

One also has

r− ¼ l
b
; b ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ pþ 1
p ; m ¼ p2 þ pþ 1

2ðpþ 1Þ :

ð2:44Þ

The metric (2.43) has two horizons located at p and 1.
The corresponding dimensionless surface gravity at these
horizons is

κþ ¼ ðp − 1Þðpþ 2Þ
2pðp2 þ pþ 1Þ ; κ− ¼ −

ðp − 1Þð2pþ 1Þ
2ðp2 þ pþ 1Þ :

ð2:45Þ

We denoted by p a position of the outer horizon, so
that one has p ≥ 1. In the limit of the large mass, p → ∞,
one has

r−=l → 1; rþ=l → 2m; κþ →
1

2p
;

κ− → −1: ð2:46Þ

D. Modified Hayward metric

In the previous sections we have assumed that the
redshift function AðrÞ is trivial, A ¼ 1. This means that
there is no frequency shift for the radiation propagating
from infinity to the center r ¼ 0 of the regular black hole.
This assumption is rather restrictive. We describe now
nonsingular black hole models with a nontrivial frequency-
shift property. We show that there exist such smooth
functions AðrÞ which produce an arbitrary red- or blueshift
effect in the center of the black hole without violating its
regularity [67].

FIG. 4. Plots of l2R=12 (solid line), l2C (dotted line), and l2S
(dashed line) as functions of y.
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It is convenient to start with the form (2.43) of the
Hayward metric and modify it as follows:

dS2 ¼ r2−ds2;

ds2 ¼ −fA2dv2 þ 2Advdxþ x2dω2;

f ¼
ðx − pÞðx − 1Þðxþ p

pþ1
Þ

x3 þ p2

pþ1

;

A ¼ xn þ 1

xn þ pk : ð2:47Þ

Here n and k are properly chosen positive integer numbers.
At a large distance one has

A ∼ 1þ 1 − pk

xn
þOðx−2nÞ: ð2:48Þ

In order to preserve the correct Schwarzschild asymptotic
form one must put n ≥ 2. In the presence of the function A
the surface gravity (2.45) is modified,

κ− →
2

pk þ 1
κ−;

κþ →
pn þ 1

pn þ pk κþ ¼ 1 −
1 − pk

1þ pn−k κþ: ð2:49Þ

These relations show that for a large mass, p → ∞, the
surface gravity at the inner horizon is reduced by the factor
pk, while κþ remains practically the same.
To illustrate properties of the modified metric we

consider a special case n ¼ 6 and k ¼ 4,

A ¼ x6 þ 1

x6 þ p4
: ð2:50Þ

For this form of the redshift function, in the limit of large
mass (p → ∞), the surface gravity of the inner horizon
becomes small, κ− ∼ p−4, while the surface gravity κþ
remains practically unchanged.
Let us check that the curvature invariants (2.5) for such a

metric satisfy the limiting curvature condition. Figures 5–7
show plots R, C, and S as functions of x and p. They have
similar behavior. Namely, they are uniformly bounded by
numerical factor, independent of x and p. In the limit
p → ∞ they have the following asymptotic form:

R ∼
12ð11x6 − 7x4 þ 1Þ

x6 þ 1
þOðp−1Þ;

C ∼
4

ffiffiffi
3

p
x4ð7x2 − 4Þ
x6 þ 1

þOðp−1Þ;

S ∼
6

ffiffiffi
3

p
x4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22x4 − 28x2 þ 9

p

x6 þ 1
þOðp−1Þ: ð2:51Þ

Hence, the metric (2.47) with nontrivial redshift property
satisfies the limiting curvature condition.

III. HIGHER-DIMENSIONAL NONSINGULAR
BLACK HOLES

The metric (2.1), (2.31) allows a higher-dimensional
generalization. Let us consider static, spherically symmet-
ric D ¼ nþ 1-dimensional spacetime

dS2 ¼ −FdV2 þ 2dVdrþ r2dω2
n−1; ð3:1Þ

FIG. 5. Plot of r2−R=132 as a function of x and p.

FIG. 6. Plot of r2−C=12 as a function of x and p.

FIG. 7. Plots of r2−S=36 as a function of x and p.
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where F ¼ FðrÞ is of the form

F ¼ 1 −
rn−2g r2

rn þ rn−2g l2
: ð3:2Þ

For l ¼ 0 this metric reproduces the Tangherlini solution
of the Einstein equations. In the four-dimensional case
(n ¼ 3) this metric reduces to (2.1), (2.31) with rg ¼ 2M.
At r → ∞ and r ¼ 0 one has

F ¼ 1 −
�
rg
r

�
n−2

þOðr−2ðn−1ÞÞ; ð3:3Þ

F ¼ 1 −
�
r
l

�
2

þOðrnþ2Þ: ð3:4Þ

Conditions Fðr�Þ ¼ F0ðr�Þ ¼ 0 determine the critical
value of the gravitational radius

r�g ¼
�

n
n − 2

�
1=2

�
n
2

�
1=ðn−2Þ

l: ð3:5Þ

For rg > r�g the metric (3.1)–(3.2) has two horizons,
while for rg < r�g the horizons do not exist. For the four-
dimensional spacetime, where n ¼ 3, one reproduces the
result of Sec. II. 2.

IV. CHARGED NONSINGULAR BLACK HOLE

A. Four-dimensional spacetime

Let us consider the metric (2.1) with

F ¼ 1 −
ð2Mr −Q2Þr2

r4 þ ð2MrþQ2Þl2
: ð4:1Þ

In the limit l → 0 this metric reproduces the Reissner-
Nordström metric. At r → ∞ and r ¼ 0 one has

F ¼ 1 −
2M
r

þQ2

r2
þ l2Oðr−4Þ; ð4:2Þ

F ¼ 1þ r2

l2
þOðr6Þ: ð4:3Þ

The latter relation means that the corresponding metric is
regular at the origin, where its curvature is of the order of
l−2. Deflection of this metric from the Reissner-Nordström
metric at a far distance is small, and it is controlled by the
parameter l2.
Let us demonstrate that the metric (4.1) satisfies the

limiting curvature property. For this purpose we rewrite F
in the form

F ¼ 1 −
1

l2

ðar − zÞr2
r4 þ arþ z

; a ¼ 2Ml2; z ¼ Q2l2:

ð4:4Þ

The calculations give

R ¼ AR

l2N
; S ¼ AS

l2N
; C ¼ AC

l2N
; ð4:5Þ

AR ¼ −6a2r6 þ 12a3r3 þ 20r4z2

þ 24a2r2zþ 4arz2 − 12z3; ð4:6Þ

AS ¼ rð2r7zþ 9a2r5 þ 6ar4z

− 14r3z2 − 2a2rz − 4az2Þ; ð4:7Þ

AC ¼ 2rð−3ar8 þ 6r7zþ 6a2r5

þ 9ar4z − 10r3z2 − 2az2Þ; ð4:8Þ

N ¼ ðr4 þ arþ zÞ3: ð4:9Þ

We use a notation A• to denote any of the quantities A
which enter the expressions for the curvature invariants
(4.5)–(4.9). Each of A• contains three types of the terms:
(i) Terms independent of charge; (ii) Terms independent of
mass; and (iii) Terms which depend on both mass and
charge. We show now that the contribution of each of these
types to the curvature invariants obeys an inequality

jA•j
N

< c•; ð4:10Þ

where the constants c• are independent of mass and charge.
For the case (i) one has

jA•ðz ¼ 0Þj
N

≤
jA•ðz ¼ 0Þj
Nðz ¼ 0Þ : ð4:11Þ

But the expressions in the right-hand side coincide with
similar expressions for the uncharged nonsingular black
hole, (2.34), and for this reason they obey the property (4.10).
For the case (ii) we denote r ¼ z1=4y. Then one has

jA•ða ¼ 0Þj
N

≤
jA•ða ¼ 0Þj
Nða ¼ 0Þ ¼ jPðyÞj

ðy4 þ 1Þ3 : ð4:12Þ

Here PðyÞ is a polynomial of y of the power less than or
equal to 8. Thus the inequality (4.10) is also valid for this
contribution.
Let us focus now on the case (iii). Simple analysis shows

that there are three types of contributions,

Q1 ¼
az2r
N

; Q2 ¼
a2zr2

N
; Q3 ¼

azr5

N
: ð4:13Þ
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Since a ≥ 0 and z ≥ 0, these functions have similar
behavior. They are non-negative and vanish at r ¼ 0 and
r → ∞. Putting equal to zero the derivatives of these
objects with respect to r and solving the obtained relations
with respect to z, one finds

z1 ¼ rð11r3 þ 2aÞ; z2 ¼ rð5r3 þ a=2Þ;
z3 ¼

r
5
ð7r3 − 2aÞ: ð4:14Þ

In the last case one should have 7r3 − 2a > 0. Under these
conditions the second derivatives of Qi with respect to r at
the critical points are negative. Thus the functionsQi have a
maximum. Putting r ¼ a1=3u one obtains that at the points
of their maximum the values of Qi are

maxðQ1Þ ¼
1

27

ð11u3 þ 2Þ2
ð4u3 þ 1Þ3 ; ð4:15Þ

maxðQ2Þ ¼
4

27

10u3 þ 1

ð4u3 þ 1Þ3 ; ð4:16Þ

maxðQ3Þ ¼
25

27

ð7u3 − 2Þu3
ð4u3 þ 1Þ3 : ð4:17Þ

This implies that these contributions satisfy (4.10). Thus we
proved that the invariants jRj, jSj, and jCj satisfy the
limiting curvature condition.
To summarize, the metric (2.1) with the metric function

(4.1) describes a nonsingular black hole. Its asymptotic at
large r correctly reproduces the Reissner-Nordström met-
ric, so that one can interpret this metric as a nonsingular
version of the charged black hole. Certainly, one should
assume that besides the gravitational field a system contains
also the electromagnetic field, so that the metric (4.1) is a
solution of a coupled system of Maxwell and modified
gravity equations.
Let us find a relation between charge Q and mass M for

which the outer and inner horizons coincide. It happens
when

F ¼ F0 ¼ 0; ð4:18Þ

where F is given by (4.1) and F0 is

F0 ¼ −
rð−ar5 þ 2a2r2 þ 2arzþ 2zr4 − 2z2Þ

ðr4 þ arþ zÞ2 : ð4:19Þ

Solving equation F ¼ 0 one finds

a ¼ ðl2r4 þ l2zþ r2zÞ
rð−l2 þ r2Þ : ð4:20Þ

Substituting (4.20) into the equation F0 ¼ 0 and solving it,
one gets

z ¼ l2r4ðr2 − 3l2Þ
−l4 þ r4 þ 4l2r2

: ð4:21Þ

And finally substituting (4.21), one finds

a ¼ 2l2ðr2 þ 2l2Þr3
−l4 þ r4 þ 4l2r2

: ð4:22Þ

Relations (4.21) and (4.22) determined the relation between
mass and charge, written in the parametric form. Since both
of the quantities a and z should be positive, one has
r ≥

ffiffiffi
3

p
.

The plot presented in Fig. 8 shows critical mass M as a
function of charge Q. For small Q one has

M ¼ rg=2 ∼
3

ffiffiffi
3

p

4
lþ 1ffiffiffi

3
p Q2

l
þOðQ4Þ: ð4:23Þ

B. Higher dimensional generalization

By comparing (3.2) with (4.1) one can obtain the
following higher dimensional version of the charged non-
singular black hole. Namely, one uses the form of the
metric (3.1) with the metric function of the form

F ¼ 1 −
ðrn−2g rn−2 −Q2ðn−2ÞÞr2

r2ðn−2Þ þ l2ðrn−1g rn−2 þQ2ðn−2ÞÞ : ð4:24Þ

This metric in the limit l → 0 correctly reproduces the
higher dimensional Reissner-Nordström metric

F ¼ 1 −
�
rg
r

�
n−2

þ
�
Q
r

�
2ðn−2Þ

þ l2Oðr2ðn−1ÞÞ: ð4:25Þ

It is regular at the origin r ¼ 0

FIG. 8. Critical mass M=l for the charged nonsingular black
hole as a function of Q=l.
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F ¼ 1þ r2

l2
þ � � � : ð4:26Þ

V. DISCUSSION

In the present paper we discussed nonsingular black hole
metrics. We restrict ourselves by metrics which are spheri-
cally symmetric and static. Besides natural assumptions of
regularity at the center r ¼ 0 and proper asymptotic
behavior at infinity, we required that the corresponding
metric also satisfies the limiting curvature condition. The
latter condition is rather restrictive and narrows the class of
feasible models. The metric proposed by Hayward [54] is
an important example of the metric for a neutral black hole
satisfying these conditions. However, this metric has a
property which makes it problematic for a self-consistent
description of the evaporating black hole. Outgoing field
modes propagating near the inner horizon are accumulating
near it and experience huge blueshift [58]. One can expect
that this effect for a quantum field results in the quantum
emission of energy [68]

ΔE ∼ expð−κ−TBHÞ: ð5:1Þ
Here κ− is the (negative) surface gravity at the inner
horizon, which for the Hayward model is of the order of
l−1, and TBH ∼M3 is the lifetime of the evaporating black
hole. For a self-consistent model of an evaporating black

hole one should expect ΔE < M. The expression (5.1) for
M ≫ l does not satisfy this restriction. This indicates that
there exists a severe self-consistency problem when one
tries to apply the Hayward model to “realistic” quantum
black holes.
In the present paper we proposed a class of metrics,

which may help to solve this problem. Namely, we used a
modification of the metrics with a nontrivial redshift
function AðrÞ. We demonstrate that this function can be
chosen so that the surface gravity jκ−j becomes sufficiently
small, so that ΔE, estimated as in (5.1), can be made
rather small.
We also presented a nonsingular model for a charged

black hole, which obeys the limiting curvature condition.
We briefly discussed higher dimensional versions of such
nonsingular black holes. It would be interesting to discuss
the application of the presented nonsingular metrics for
study of the self-consistent models of evaporating black
holes. They also might be interesting for a discussion of the
information loss paradox. We hope to address these
problems in our future work.
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