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We calculate the vacuum entanglement entropy of Maxwell theory in a class of curved spacetimes
by Kaluza-Klein reduction of the theory onto a two-dimensional base manifold. Using two-dimensional
duality, we express the geometric entropy of the electromagnetic field as the entropy of a tower of scalar
fields, constant electric and magnetic fluxes, and a contact term, whose leading-order divergence was
discovered by Kabat. The complete contact term takes the form of one negative scalar degree of freedom
confined to the entangling surface. We show that the geometric entropy agrees with a statistical definition of
entanglement entropy that includes edge modes: classical solutions determined by their boundary values
on the entangling surface. This resolves a long-standing puzzle about the statistical interpretation of the
contact term in the entanglement entropy. We discuss the implications of this negative term for black hole
thermodynamics and the renormalization of Newton’s constant.

DOI: 10.1103/PhysRevD.94.104053

I. INTRODUCTION

The entanglement entropy of a region of space [1–3] is a
quantity with broad applications including to black hole
physics [4], condensed matter theory [5] and the AdS/CFT
correspondence [6,7]. In all of these applications one
encounters field theories with gauge symmetry, and for
gauge theories multiple new subtleties arise that are not
present in the case of scalar and spinor fields. For
minimally coupled scalars and for spinors, the entangle-
ment entropy can be computed by Euclidean methods.
For nonminimally coupled scalars, gauge fields, and
gravitons the Euclidean formula contains a contact term
that does not have a known interpretation as entanglement
entropy [8–10]. Understanding these contact terms has
been identified as one of the major open problems in the
entanglement entropy of black holes [4]. The goal of the
present paper is to resolve these issues in the context of
Uð1Þ Maxwell theory (i.e. compact QED with no charges).
The geometric entropy of a static spacetime with a

bifurcate Killing horizon (such as the Schwarzschild black
hole, Rindler, or de Sitter) can be calculated by means of a
conical variation of the Euclidean path integral. In terms of
the covariant partition function Z, the geometric entropy is
given by [11]

S ¼ ð1 − β∂βÞ lnZjβ¼2π; ð1Þ
where the variation of the angular period β not only
changes the temperature but also inserts a conical singu-
larity at the bifurcation surface of the Killing horizon.
Formally, this is similar to a protocol used to calculate the
entanglement entropy,

SðρÞ ¼ −trðρ ln ρÞ; ð2Þ

of the reduced density matrix ρ of a region bounded by
an entangling surface, where in this case the entangling
surface is the bifurcation surface. While the term geometric
entropy has sometimes been used interchangeably with
the term entanglement entropy, here we wish to draw a
distinction between the two quantities, as in general they
can be different. If the fields couple nontrivially to
curvature, the geometric entropy contains a contact term
due to interaction of the fields with the conical singularity.
These contact terms appear for nonminimally coupled
scalar fields, gauge fields, and gravitons [4,10]. Such
contact terms need not have an interpretation in terms of
a von Neumann entropy.
We will show that in the case of Maxwell theory, the

contact term in fact does have a statistical interpretation:
it is the entanglement entropy of edge modes, which are
degrees of freedom localized on the entangling surface.
To see how contact terms arise, a useful illustrative

example is that of a nonminimally coupled scalar field
[12–15]. Consider a scalar field ϕwith the Euclidean action

I½ϕ� ¼ 1

2

Z ffiffiffi
g

p ð∇aϕ∇aϕþ ξRϕ2Þ: ð3Þ

The action contains a direct coupling to curvature, which
leads to a contact interaction with the conical singularity.
The contribution of this interaction to the geometric
entropy takes the form of a quantum expectation value
of Wald’s entropy formula [16–18], which for this action
takes the form

Scontact ¼ −2πξ
Z
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with the integral taken over the entangling surface.
This expectation value is divergent and can have either
sign depending on the parameter ξ of the nonminimal
coupling. This term cannot be part of the entanglement
entropy, as it would lead to the conclusion that the
entanglement entropy in flat spacetime depends on
the value of the nonminimal coupling parameter ξ. But
the entanglement entropy should only be a function of the
state ρ, and the vacuum wave function in flat spacetime is
independent of ξ. In the case of the nonminimally coupled
scalar, the contact term can be understood as an additional
contribution to the generalized entropy that must be
included even classically in order to obtain a quantity
obeying the generalized second law [19]. This gives a
consistent picture of the contact term for nonminimally
coupled scalars, albeit one without a statistical interpreta-
tion at low energies. However, such terms may still
arise from a high energy theory in which all entropy is
statistical [14,20].
The geometric entropy of Maxwell theory was first

calculated by Kabat [8]. He found that the partition function
of Maxwell theory also has a contact term which can be
traced to the nonminimal coupling in the spin-1 Laplacian
Δ1 ¼ −gab∇2 þ Rab. This contact term contributes nega-
tively to the entropy, leading to an overall negative sign
of the leading-order divergence for D < 8. The meaning of
the contact term of Maxwell theory has remained obscure,
and there has been much disagreement as to whether it
should be regarded as physical [21–28].
While it may be tempting to also interpret the Maxwell

contact term as a Wald entropy, this interpretation is
untenable for several reasons [25]. First, the coefficient
of the nonminimal coupling in Maxwell theory is fixed;
thus one cannot rule out an entanglement interpretation
by comparing different nonminimal couplings, as was done
in the case of a scalar field. Moreover, if one repeats
the argument leading to (4), one arrives at the integral of
the gauge-dependent expression −πhA2⊥i, where A⊥ is the
projection of the gauge potential onto the normal plane of
the entangling surface.1 This would-be contact term in fact
represents an ambiguity in the definition of Wald’s entropy
formula [17,29] when generalized to the situation of
fluctuating quantum fields. This ambiguity was recently
resolved for the case of classical higher derivative gravity
[30,31] and when applied to the case of classical Maxwell
theory, this refinement of Wald’s formula gives zero
[28,32]. Finally, unlike the nonminimally coupled scalar,
there is no need to add an additional term to the generalized

entropy: since Maxwell fields satisfy the null energy
condition, the classical second law is already satisfied.
We take this as evidence that the divergent contact term in
Maxwell theory cannot be interpreted as a quantum version
of Wald entropy. Hence some other explanation for the
contact term divergence is needed.
As an alternative to the Euclidean path integral, one can

calculate entanglement entropy using a physical regulator,
such as a lattice [33–37]. In Hamiltonian lattice gauge
theory (without matter), the configuration space degrees of
freedom are integrals of the gauge field along links of a
spatial lattice. The space of physical states is not the full
tensor product of link Hilbert spaces; it is a quotient of this
space by gauge transformations. This physical Hilbert
space thus does not admit a canonical factorization accord-
ing to regions of space. One approach [33,34] is to embed
the physical Hilbert space into a tensor product of local
Hilbert spaces. The local Hilbert spaces include edge mode
degrees of freedom living on the boundary, which arise due
to the Gauss constraint, that give a positive contribution to
the entropy.2 In the case of the toric code, this definition
reproduces the well-known value for the universal sub-
leading term in the entanglement entropy (the topological
entanglement entropy [38,39]) which persists in the con-
tinuum limit. In this case the entire entropy, including its
universal piece, comes from the sum over edge modes.
So the edge modes are essential for obtaining the universal
terms in the continuum entanglement entropy, and we will
see that the same is true for Maxwell theory.
In Ref. [25], the contact term was studied with a focus on

the case of two-dimensional spacetimes, particularly those
such as two-dimensional de Sitter which are compact after
Wick rotation. There it was found that once the topological
sector of the theory is treated correctly, the geometric
entropy is equal to the entanglement entropy. However two
dimensions is a rather special case, since two-dimensional
Maxwell theory has only global degrees of freedom.
The goal of the present paper, which expands on the

arguments of Ref. [40] (cf. [41]), is to extend the analysis
of Ref. [25] to spacetime dimension D > 2, using a
continuum analogue of the lattice entropy defined in
Refs. [33,34]. We will use a result for the partition function
of Maxwell theory that properly takes into account the
effects of the compact gauge group [42], which is reviewed
in Sec. II.
We consider product manifolds of the form B × F ,

where B is a two-dimensional manifold with a bifurcate
Killing horizon and a compact Euclidean section (the base)
andF is any compact manifold (the fiber). For example, we
can consider a geometry in which one spatial dimension
is exponentially expanding to the past or future, while the

1In the family of ’t Hooft gauges, the regulators can be
adjusted to make the result independent of the gauge parameter ξ
[26]. This suggests that the contact term may contain some
universal gauge-invariant information, and indeed we will show
that this is the case. However the expression in terms of
fluctuations of A⊥ does nothing to establish its meaning as a
gauge-invariant statistical entropy.

2This definition is closely related to the “electric” definition of
entanglement entropy in Ref. [35] although there are some
differences in topologically nontrivial regions.
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other dimensions stay a fixed size. This is represented by a
geometry dS2 × F, which Wick rotates to S2 × F .
We then treat the contact term by Kaluza-Klein reducing

onto B in Sec. III. The Uð1Þ Maxwell theory on the
manifold B × F reduces to multipleUð1ÞMaxwell theories
on B (representing electric and magnetic fluxes), together
with a number of periodic massless scalar fields and towers
of massive scalar and vector fields. The advantage of this
reduction is that we can dualize all vector degrees of
freedom on B to scalar degrees of freedom. This leaves us
with towers of fields for which the geometric entropy
agrees with the entanglement entropy; what remains is the
contact term. This contact term takes the form of a negative
scalar field confined to the entangling surface. Its leading
divergence agrees with the result of Ref. [8], but we also
establish the existence of subleading and finite terms, some
of which are universal, i.e. independent of the regulator
scheme.
In order to give a statistical interpretation to the contact

term, we consider regulating the conical singularity by
introducing a “brick wall” [43] at a short distance ϵ from
the entangling surface. When standard boundary conditions
are fixed at the brick wall, the geometric entropy formula
has a statistical interpretation as the entropy of a thermal
ensemble with fixed boundary conditions. However, the
brick wall does not capture the correct physics of the
entangling surface, which does not obey any boundary
conditions. In Sec. IV, we discuss how the partition
function changes under the introduction of a brick wall.
For magnetic conductor boundary conditions, the partition
function is the same as if there was no brick wall, except for
a small correction coming from exchanging Dirichlet with
Neumann boundary conditions on some of the scalar fields
(calculated in Sec. V) and an edge mode contribution.
In Sec. VI we explain more carefully the origin of

the edge modes and calculate their partition function.
This allows us to confirm that the geometric entropy agrees
with the statistical entropy. In particular, the contact term
captures the entanglement entropy of the edge modes.
In Sec. VII we consider the case of four-dimensional

spacetime. Four dimensions is special because Maxwell
theory is conformal, and so the logarithmic divergence of
the entanglement entropy is universal and should be related
to the trace anomaly [44,45]. But the trace anomaly result
was found to be in conflict with the entanglement entropy
calculated by thermodynamic methods [27,41,46]. We
resolve this puzzle by showing that when the edge modes
are included, the entanglement entropy agrees with the
trace anomaly. We comment on the implications for
the holographic entanglement entropy at strong coupling,
which we argue must already contain an edge mode
contribution from the strongly coupled Yang-Mills theory.
In the discussion, we explain why the leading-order

contribution found in Ref. [8] is negative and explain how
the sign of the leading-order term depends on the choice of

cutoff. We also discuss possible extensions of our work to
non-Abelian gauge fields and gravitons or to entangling
surfaces without Killing symmetry. Finally we discuss the
implications for black hole physics and the renormalization
of Newton’s constant.

II. MAXWELL THEORY

To prepare for Kaluza-Klein reduction, we first consider
the partition function of Maxwell theory with gauge group
Uð1Þ on a compact Euclidean manifold M.
Locally the electromagnetic field can be represented as a

1-form A up to local gauge transformations Aa→Aaþ∇aα
where α is a scalar. The Euclidean action I is
expressed in terms of the electromagnetic field tensor
Fab ¼ ∇aAb −∇bAa as

I½F� ¼
Z

d4x
ffiffiffi
g

p 1

4
FabFab: ð5Þ

The partition function is then given formally by the
Euclidean path integral

Z ¼ 1

VolðGÞ
Z

DAe−I½dA�: ð6Þ

There are global issues that arise from the Uð1Þ nature of
the gauge field:
First, we must identify any two 1-forms A and A0 such

that around every closed curve γI
γ
A −

I
γ
A0 ∈

2π

q
Z: ð7Þ

This requirement ensures that a particle whose charge
is a multiple of q cannot distinguish A from A0 when
transported around a noncontractible curve. Equivalently,
one can allow for the parameter α of the gauge trans-
formation to be identified under α → αþ 2π=qwhen going
around a noncontractible curve. These are the large gauge
transformations.
Second, we must include field strength tensors F that can

be expressed as F ¼ dA locally but globally require gluing
multiple A fields together with the requirement that

H
A

agrees up to a multiple of 2π=q where the patches overlap.
This leads to the Dirac quantization condition,

H
ΩF∈ 2π=q

for every closed 2-surface Ω. The set of such field
configurations is discrete, so they are summed over in
the path integral.
Though for many purposes one does not need to

distinguish between the gauge groups Uð1Þ and R, here
the distinction is fundamentally important. The reason is
that while the nonzero modes of a gauge field act like
harmonic oscillators, the zero modes of the R gauge theory
act like free particles and do not have a normalizable
ground state. Since we are calculating the ground state
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entanglement entropy, a noncompact gauge group would
lead to an infrared divergence in the entanglement entropy.
Attempting to cure this divergence by the introduction of a
mass breaks gauge invariance and leads to further prob-
lems. This problem is naturally cured in the Uð1Þ gauge
theory, since the zero modes are quantum mechanical free
particles on a circle, which again have normalizable ground
states.
In Ref. [42], the partition function of Maxwell theory was

calculated in the Euclidean path integral by covariant gauge
fixing. The result can be expressed as a product of terms.
First, there are functional determinants that arise from

the Gaussian path integral over the nonzero modes of the
vector potential and the Faddeev-Popov ghosts. In the
covariant formalism these consist of modes of the trans-
verse vector Laplacian ΔT

1 and of the scalar Laplacian Δ0.
The longitudinal modes depend on the ‘t Hooft parameter ξ
and on a mass scale μ appearing in the path integral
measure, which we have allowed to take different values for
the vector field (μA) and ghosts (μα). The nonzero modes
contribute to the partition function a factor

Znonzero modes ¼ det0
�

ΔT
1

2πμ2A

�−1=2
det0
�

Δ0

2πμ2Aξ

�
−1=2

× det0
�
Δ0

μ2α

�
: ð8Þ

The prime denotes that det0 is the product only over
nonzero eigenvalues.
Second, there is a factor coming from the flat connec-

tions. Since the action vanishes for these configurations,
they contribute a factor of the volume of their moduli space.
This volume is made finite by the quotient by large gauge
transformations. Let wI ¼ wIadxa, I ¼ 1;…; b1 be a topo-
logical basis of 1-forms in H1ðM;ZÞ, whose dimension is
the Betti number b1. Any harmonic 1-form whose integrals
around all closed curves are integers can be written
uniquely as an integer linear combination of the wI .
In this basis, the space of flat connections modulo large
gauge transformations is the torus obtained by identifying
opposite edges of the cube ½0; 1�b1 . The standard norm on
vector fields pulled back to this space defines the metric on
moduli space as

ΓIJ ¼
Z
M

ffiffiffi
g

p
gabwIawJb: ð9Þ

The contribution of flat connections to the path integral is
simply the volume of moduli space in the functional
measure and is given by

Zflat connections ¼ det

��
2πμA
q

�
2

Γ
�

1=2
: ð10Þ

Third, there is a factor associated with the constant gauge
transformations. Since these gauge transformations do not

modify A they must be treated specially; we still must
divide by the volume of the gauge group, but the zero mode
cannot be gauge fixed as is conventionally done for the
higher modes. The result is a global factor that depends on
the volume V of the spacetime manifold:

Zconstant gauge transformation ¼
q
μ2α

ffiffiffiffiffiffiffiffiffi
ξ

2πV

r
: ð11Þ

We note that this term is often absent from discussions of
the path integral of gauge theories, but its presence is
essential for agreement with the canonical formalism as
shown in [42].
Finally, there is a factor associated to the nontrivial

bundles. These are classified by the (discrete) second
homology group H2ðM;ZÞ, which consists of harmonic
2-forms whose integrals over all closed 2-surfaces are
integers. Their contribution to the partition function is

Znontrivial bundles ¼
X

F∈2π
q H

2ðM;ZÞ
e−I½F�: ð12Þ

Putting all of these factors (8), (10), (11), and (12) together,
the result is

Z ¼ q
μ2α

ffiffiffiffiffiffiffiffiffi
ξ

2πV

r
det

��
2πμA
q

�
2

Γ
�

1=2
det

�
ΔT

1

2πμ2A

�−1=2

× det

�
Δ0

2πμ2Aξ

�
−1=2

det

�
Δ0

μ2α

� X
F∈2π

q H
2ðM;ZÞ

e−S½F�: ð13Þ

We can simplify this formula by rescaling the functional
determinants using zeta function regularization:

det0ðΔÞ ≔ e−ζ
0ðΔ;0Þ; ð14Þ

where ζðΔ; sÞ is the zeta function of the operator Δ,
ζðΔ; sÞ ≔ tr0ðΔ−sÞ, and tr0 denotes omitting the zero
modes of Δ. This formula defines the zeta function for
ReðsÞ > D=2; it is then defined for other values of s by
analytic continuation. We can see directly from the defi-
nition that the functional determinant scales as

det0ðaΔÞ ¼ aζðΔ;0Þdet0ðΔÞ ð15Þ

so that ζðΔ; 0Þ can be thought of as a regularized number of
nonzero modes. We can then apply the following result,
that for any elliptic differential operator,

ζðΔ; 0Þ ¼ − dim kerΔþ A; ð16Þ

where A is an anomaly that appears only when D is even
and takes the form of the integral of a local geometric
quantity. The anomaly can be canceled by a local counter-
term; we can therefore ignore a finite shift in this term.
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The factors of μA, μα and ξ from scaling the determinants
cancel with the other terms in Eq. (13).
Thus upon rescaling the functional determinants, we see

that the partition function does not depend on the measure
factors μ or the gauge parameter ξ (as should be the case on
physical grounds):

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2

2πVolðMÞ

s
det
�
2πΓ
q2

�
1=2 det0ðΔ0Þ

det0ðΔ1Þ1=2

×
X

F∈2π
q H

2ðM;ZÞ
e−I½F�: ð17Þ

By scaling out the factor of ξ from the longitudinal
determinant we have effectively chosen Feynman gauge
(ξ ¼ 1), and this has allowed us to combine the longitudinal
and transverse components of the vector field into a single
determinant.

III. KALUZA-KLEIN REDUCTION

We now consider Kaluza-Klein reduction of Maxwell
theory on a manifold of the product form M ¼ B × F .
Here B is a two-dimensional base manifold and F is a
(D − 2)-dimensional compact fiber: B will contain the
directions normal to the entangling surface, and F the
directions along the entangling surface. We will carry out
the reduction at the level of the partition function in order to
keep off-shell effects to which the entanglement entropy is
sensitive. The purpose is to divide the Maxwell partition
function into a factor for which the geometric entropy
formula (1) agrees with the entanglement entropy of the
on-shell degrees of freedom and another portion that we
identify as the contact term.
We will show that the Maxwell partition function can be

written as a product of partition functions

Z ¼ ZscalarsZEZBZχ ; ð18Þ

where Zscalars is a tower of scalar fields on B; ZE and ZB are
two-dimensional Maxwell fields on the base corresponding
to electric and magnetic fluxes, respectively. For these
first three contributions, the geometric entropy is equal to
the entanglement entropy. The remaining factor Zχ is the
contact term, whose interpretation will be the subject
of Sec. VI.

A. Unpacking the partition function

We first consider the functional determinant piece of the
partition function (8). On a product manifold B × F we can
split the vector determinant into a contribution from vectors
polarized along the base B and a contribution from vectors
polarized along the fiberF. This is expressed in the identity

det0ðΔ1Þ ¼ det0ðΔB
1 ⊕ ΔF

0 Þdet0ðΔB
0 ⊕ ΔF

1 Þ: ð19Þ

Viewed from the base manifold, the vector field breaks into
a Kaluza-Klein tower of vector fields whose masses are
given by the spectrum of the scalar Laplacian on the fiber,
m2 ∈ specðΔF

0 Þ, and a tower of scalar fields whose masses
are given by the spectrum of the vector Laplacian on the
fiber, m2 ∈ specðΔF

1 Þ. This functional determinant,
together with the scalar functional determinant of the
ghosts, encodes all the (D − 2) local bosonic degrees of
freedom of the D-dimensional Maxwell field. We now turn
to the remaining parts of the partition function that describe
the topological sector.
We can also decompose the moduli space of flat

connections into fiber and base polarizations. Letting
ΓðMÞ denote the metric on the space of flat connections
on M, we see that the metric on the product splits as
ΓðMÞ ¼ VolðF ÞΓðBÞ ⊕ VolðBÞΓðF Þ, so that

det

�
2πΓðMÞ

q2

�
1=2

¼ det

�
2πΓðBÞ

q2B

�
1=2

× det

�
2πVolðBÞΓðF Þ

q2

�
1=2

: ð20Þ

Here we have defined qB ¼ q=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VolðF Þp

, the fundamental
charge of the two-dimensional Maxwell theory on B.
We can now express the prefactor from the gauge zero

modes (17) in terms of qB as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

2πVolðMÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2B

2πVolðBÞ

s
; ð21Þ

which we recognize as the gauge zero mode term for two-
dimensional Maxwell theory on B, with fundamental
charge qB.
Since the bundles correspond to harmonic 2-forms, they

can be divided into three types depending on which two
directions the 2-forms point: along the base, along the fiber,
or both. The harmonic 2-forms on the two-dimensional
base B can be expressed as Fab ¼ fϵab, where f is constant
and ϵab is the volume form on B. They are quantized so thatR
B F ¼ VolðBÞf ∈ 2π

q Z. Their contribution to the partition
function is

X
F∈2π

q H
2ðB;ZÞ

e−
1
4

R
M

F2 ¼
X

F0∈2π
qB
H2ðB;ZÞ

e−
1
4

R
B
ðF0Þ2 ; ð22Þ

where we have defined the rescaled field tensor
F0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VolðF Þp
F. In this form, we see that it is equal to

the sum over the nontrivial bundles of Maxwell theory on B
with fundamental charge qB.
The bundles pointing along the fiber can be expressed

similarly as
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X
F∈2π

q H
2ðF ;ZÞ

e−
1
4
VolðBÞ

R
F
F2

: ð23Þ

These correspond to magnetic fields in the fiber directions
that are constant along the base.
The mixed bundles that point in both base and fiber

directions can be expressed in terms of a basis wB
I of

H1ðB;ZÞ and a basis wF
J of H1ðF ;ZÞ. A general mixed

element of H2ðM;ZÞ then takes the form

F ¼
�
2π

q

�
mIJwB

I ∧ wF
J ; ð24Þ

where mIJ is a matrix of integers. The contribution of these
mixed bundles to the partition function is

X
mIJ

exp

�
−
1

2

�
2π

q

�
2X
IJKL

mIJmKLΓ
ðBÞ
IK ΓðFÞ

JL

�
: ð25Þ

Using these identities, we can express the original
partition function of Maxwell theory (17) as a product
of field theories defined on B. However Eq. (19) contains a
tower of vector fields, each of which has a contact term. In
order to isolate this contact term, we will first trade these
vector degrees of freedom for scalars.

B. Proca-scalar duality

The Kaluza-Klein description of Maxwell theory
includes a tower of vector fields on the base manifold
B. Since the vector Laplacian contains an effective non-
minimal coupling to background curvature, the vector
fields will include a contact term in addition to the
contribution from their on-shell degrees of freedom. In
order to disentangle these two contributions we make use
of massive p-form duality to relate the massive vector
fields to dual scalar fields ϕdual.
We perform a Hodge decomposition of the operator ΔB

1 ,
expressing the vector field Aa as an orthogonal sum of
exact, coexact and harmonic vector fields. In two dimen-
sions this takes the form Aa ¼ ∇aϕþ ϵab∇bψ þ Ba, where
ϕ and ψ are scalars and Ba is a harmonic vector field. In
terms of spectra, this says that the spectrum of the vector
Laplacian ΔB

1 is two copies of the spectrum of the scalar
Laplacian ΔB

0 , up to zero modes. This leads to the func-
tional determinant identity for m > 0:

detðΔB
1 þm2Þ ¼ detðΔB

0 þm2Þ2m−2χðBÞ: ð26Þ
The Euler characteristic χðBÞ comes from the difference
between the number of zero modes of a vector and two
scalars: a vector has b1 zero modes, while a scalar has b0
zero modes, and 2b0 − b1 ¼ χ. In the massless sector, we
do not include the zero modes in the functional determi-
nant, so there is no Euler number correction and we have
simply

det0ðΔB
1 Þ ¼ detðΔB

0 Þ2: ð27Þ

When we take the product of Eq. (26) over the spectrum
of Kaluza-Klein masses, we obtain the identity

det0ðΔB
1 ⊕ ΔF

0 Þ ¼ det0ðΔB
0 ⊕ ΔF

0 Þ2det0ðΔF
0 Þ−χðBÞ: ð28Þ

The first factor describes two scalar fields on B × F ; when
we apply this identity to the Maxwell partition function it
will cancel with the two Faddeev-Popov ghosts. The
remaining term takes the form of −χðBÞ scalar fields on
F . We will see that this gives the contribution of the
nonzero modes to the contact term.
This relation between functional determinants can be

understood in more physical terms via the 2D duality
between the massive vector (Proca) field and a massive
scalar field. Recall that the Proca action for a massive
vector field is

I ¼
Z

1

4
FabFab þ 1

2
m2AaAa; ð29Þ

where the mass term breaks the gauge symmetry
δAa ¼ ∇aα of the massless vector field. However, it is
possible to restore the gauge symmetry by adding an
additional scalar field g which transforms as δg ¼ mα,
so that the combination ∇ag −mAa is gauge invariant. One
can then write the action in the equivalent Stueckelberg
form:

I ¼
Z

1

4
F2
ab þ

1

2
ð∇ag −mAaÞ2; ð30Þ

where the equivalence to the Proca form can be shown to
hold (even off-shell) by gauge fixing so that g ¼ 0.
When we Kaluza-Klein (KK) reduce the Maxwell field,

the tower of massive vector fields naturally appears in this
Stueckelberg form. Aa is proportional to the vector field
polarized on the base, while the Stueckelberg mode g is
proportional to the corresponding longitudinal mode on the
fiber. These two modes are related by a gauge symmetry,
which comes from reducing the higher dimensional gauge
symmetry. In Feynman gauge, Aa, g, and the ghosts all
propagate independently, so each massive vector field has
+1 degree of freedom, just like a scalar field.
On shell, the Proca field is dual to a scalar field ϕ via the

duality

Fabϵ
ab=2 ¼ mϕ: ð31Þ

Although this duality does not make sense as a substitution
into the action, it preserves the Hamiltonian and the
equations of motion.
This on-shell duality explains why the partition function

of these modes is equivalent to a massive scalar, up to the
contact term
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det0ðΔF
0 ÞχB=2: ð32Þ

This term is an off-shell effect, so the duality does not know
about it. Each Proca field contributes a factor ofmχ , coming
from the difference in the number of zero modes between
the Proca and scalar field.

C. The contact term

Using the decomposition of the partition function III A
and the Proca-scalar duality III B we will now rewrite the
Maxwell partition function in a way that isolates the
contact term.
After applying the Proca-scalar duality all the local

degrees of freedom of Maxwell theory are expressed in
terms of vector fields polarized along the fiber directions:

det0ðΔB
0 ⊕ ΔF

1 Þ−1=2: ð33Þ

The factor (33) includes both massive and massless scalar
fields on the base. Some of the massive scalar fields, ϕdual,
came from dualizing Proca fields—these correspond to the
modes of ΔF

1 which come from differentiating ΔF
0 modes.

The rest of the scalar modes (which we shall call ϕKK)
come from direct KK reduction. For each positive eigen-
value of ΔF

1 , Eq. (33) gives the partition function of a
massive scalar field on B.
Among the ϕKK fields, there is one massless scalar field

on the base for every vector zero mode on the fiber; for
these Eq. (33) gives only the contribution from the nonzero
modes. These massless modes are in fact periodic scalars;
their full partition function consists of the zero modes of
the scalar determinant (33), the right factor of (20), and the
bundle sum (25). Combining these factors we find the
partition function of a linear σ-model:

det0ðΔB
0 Þb1ðF Þ det

�
2πVolðBÞΓðF Þ

q2

�
1=2

×
X

fmIJg∈Z
exp

�
−
1

2

�
2π

q

�
2 X
I;J;K;L

mIJmKLΓ
ðBÞ
IK ΓðFÞ

JL

�
:

ð34Þ

The target space is, up to a prefactor, the metric on the
space of flat connections on F :�

2π

q

�
2

ΓF : ð35Þ

The functional determinant in (34) comes from the nonzero
modes, the second factor is the integral over the (compact)
zero mode, and the sum is over winding sectors.
Next we consider the massless vector modes on B.

Combining the moduli space of the base (20), the volume of
the gauge zero mode (21) and the bundles wrapping the

base (22), we obtain two-dimensional Maxwell theory on B
times a contact term. After Poisson summation, the
partition function of the constant electric field on B is

ZE ¼
X

E∈qBZ
e−

1
2
VolðBÞE2

; ð36Þ

while the two-dimensional contact term is given by�
qBffiffiffiffiffiffi
2π

p
�

χðBÞ
: ð37Þ

When we vary the conical angle β, the volume of B is
proportional to β, and so the first factor (36) takes the form
of a canonical partition function. The energy levels are
precisely those of the quantized electric field E on the base,
for which the geometric entropy (1) gives the entanglement
entropy [25].
The bundles polarized along the fiber (23) describe

quantized magnetic fields wrapping the fiber directions.
This contribution is already expressed as a canonical
partition function, similar to (36) except that their values
are quantized on the lattice 2π

q H2ðF ;ZÞ. Therefore there
is no contact term coming from these “magnetic” two-
dimensional Maxwell fields.
With all the local and topological degrees of freedom

accounted for, we are left with the contact term that is the
product of (32) and (37):

Zχ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffi

2πVF
p

q
det0ðΔF

0 Þ−1=2
�−χðBÞ

: ð38Þ

The geometry of the entangling surface consists of χðBÞ
copies of F , so that Zχ is the partition function of a scalar
field localized on the entangling surface. However, the sign
in the exponent is opposite that of an ordinary bosonic
scalar field. The leading-order divergence in the contact
term agrees with the expression found in [8], which leads to
negative entropy when regulated by heat kernel methods.

IV. INTERPRETING THE CONTACT TERM

Given the Kaluza-Klein reduction of Maxwell theory it is
now straightforward to calculate the geometric entropy via
the conical variation (1). Since the partition function is
expressed as a product, it is sufficient to calculate the
entropy associated to each set of modes separately. We can
then ask whether each individual factor can be given a
statistical interpretation. The local degrees of freedom of
Maxwell theory appear after Kaluza-Klein reduction as a
tower of free minimally coupled scalar fields. Because the
scalars are minimally coupled, the geometric entropy yields
exactly the entanglement entropy, which is well known for
free scalar theories (see e.g. [47]).
Since the contact term is independent of β, its

contribution to the entanglement entropy is just
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Sχ ¼ lnZχ . The leading-order area law contribution is like
the cosmological constant induced by −1 scalar fields
living on the entangling surface. In a heat kernel regulator,
the negative entropy in fact overwhelms the positive
sources of entropy in dimensions D < 8. Thus the ghost
scalar fields in the contact term Zχ [8] render the total
entropy negative and have no obvious statistical interpre-
tation in terms of the actual positive degrees of freedom.
One might think that this negativity is of little conse-

quence since (in D > 2) the area law divergence is a power
law divergence, and the coefficient of power law diver-
gences are nonuniversal. However, the KK reduction makes
it clear that lnZχ also contributes to the logarithmic
divergence (in even dimensions) and to the nonlocal finite
piece of the geometric entropy S. This is clear from the
fact that it is proportional to the effective action of a
(D − 2)-dimensional scalar field. Thus the problem is not
an artifact of the renormalization scheme and cannot
be safely removed from the partition function without
consequence.3

While subleading terms of divergent quantities can be
negative, the negativity of the Kabat term was only a
symptom of a deeper concern: is there a statistical
mechanical interpretation for these extra terms? Using
the same methods as in [40], we will show that the answer
is yes.
In Sec. VI we will calculate the partition function in a

new way, which makes the statistical origin of this contact
term clear. It turns out to be related to the phenomenon of
“edge modes,” new degrees of freedom that appear when
restricting a gauge theory to a region with boundary. The
contribution of the electric and magnetic 2DMaxwell fields
have a state-counting interpretation related to edge modes,
as elucidated in [25,37,48]. We wish to show that the
contact term Zχ can also be given a statistical interpretation
in terms of these edge modes.
To do this, we will regulate the theory using an ’t Hooft

brick wall at a proper distance ϵ just outside the entangling
surface. To do so we have to choose boundary conditions at
the brick wall, and the key criterion is that they must not
affect the physics far from the wall. However, neither of
the standard boundary conditions for Maxwell fields have
this property. If we were to impose electric conducting
boundary conditions,4

α ¼ 0; Ai ¼ 0; ∇rAr − KAr ¼ 0 ðr ¼ ϵÞ
ð39Þ

(where i points along the brick wall and r is the proper
radial distance coordinate, and K ¼ Kijgij is the trace of

the extrinsic curvature), we would find that there can be no
magnetic flux Fij through the entangling surface. On the
other hand, if we imposed magnetic conducting boundary
conditions5:

∇rα ¼ 0; Ar ¼ 0; ∇rAi − KijAj ¼ 0 ðr ¼ ϵÞ;
ð40Þ

then the field strength satisfies

Fir ¼ 0; ∂rFij ¼ 0 ðr ¼ ϵÞ; ð41Þ

and so we would find that there is no electric flux E⊥ ¼ Frτ̂
(where τ̂ is the unit angular direction around the brick wall
in an orthonormal coordinate system). But in reality the
entangling surface is not a physical barrier, so both kinds of
flux are allowed. Thus neither of these boundary conditions
are acceptable.
Our solution will be to impose the magnetic boundary

conditions with an arbitrary choice of E⊥, by replacing the
last equation of (40) with

∇rAi − KijAj ¼ τ̂iE⊥ðF Þ ðr ¼ ϵÞ: ð42Þ

Then we will compensate by doing an explicit path integral
over all possible choices of E⊥. This allows for both electric
and magnetic fluxes through the entangling surface. We
will define Zbulk as the partition function of the bulk region
outside the magnetically conducting brick wall (with
E⊥ ¼ 0) and Zedge as the correction coming from the path
integral over the edge modes; thus the total partition
function with the wall is

Z ¼ ZbulkZedge: ð43Þ

Below, we will prove that (43) agrees with the partition
function with no brick wall, even though χðBÞ ¼ 0 for the
brick wall system [since χðS1Þ ¼ 0] so that the contact
contribution of (38) does not contribute. Nevertheless the
contact term still arises in a different way, from the edge
mode contribution.
It is almost (but not quite) true that the edge modes Zedge

give rise to the contact term Zχ (38) together with the sum
over the constant mode of the electric flux ZE (36). There is
also an additional term ZD=N coming from the difference
between Neumann and Dirichlet boundary conditions for
scalars on the brick wall.
In the case of a scalar field it is best to impose Neumann

boundary conditions, because this changes the field as little
as possible far from the entangling surface. In the limit
ϵ → 0, there is no effect on the partition function of a scalar3Among other things, this would make Z no longer invariant

under exchanging the roles of B and a 2D factor manifold of F .
4Also known as “relative” boundary conditions. 5Also known as “absolute” boundary conditions.
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field other than through local power law divergences,
which are not universal [49].
On the other hand, for massive scalar fields the Dirichlet

boundary conditions have some additional subtleties, includ-
ing UV divergences of the form ln ln ϵ−1 in the entanglement
entropy [49]. This means that the entanglement entropy
of the Dirichlet scalar does not quite correspond to the
geometric entropy without any brick wall.
In the case of the Maxwell field coupled to a magneti-

cally conducting brick wall, the tower of scalar fields
obtained by KK reduction has Neumann boundary con-
ditions, as can be seen from Eq. (41) and the fact that ϕKK is
proportional to the magnetic field Fij (or to Ai in the
massless case.)
But the tower of scalar fields dual to the Proca fields

has Dirichlet boundary conditions. This can be seen by
substituting the Proca-scalar duality relation 2Fabϵ

ab=2 ¼
mϕdual (31) into Eq. (41), where 2Fab is the KK reduced
two-dimensional field strength, which is proportional to
the D-dimensional field strength Fab polarized along the
base B.
If all of the scalars had Neumann boundary conditions,

then because they form a complete set of modes of ΔF
1 , the

effects of imposing the brick wall would add up to a
contribution which is local along the fiber F. This means
that they could be absorbed into nonuniversal local counter-
terms on the brick wall. But in fact, some of the scalar fields
have Dirichlet boundary conditions, and we must take this
into account.
Let us define ZD=N as the ratio of the partition function

for the ϕdual modes with Dirichlet boundary conditions,
compared to the partition function of these same ϕdual
modes but with Neumann boundary conditions. Then
the partition function in the presence of a magnetically
conducting brick wall is

Zbulk ¼ ZBZscalarsZD=N; ð44Þ

where the Zscalars term refers to the full tower of all scalar
fields ϕKK;ϕdual with Neumann boundary conditions,
which is equivalent to no brick wall.
In Sec. VI we will show that

ZedgeZD=N ¼ ZχZE; ð45Þ

which implies that

Z ¼ ZscalarsZEZBZχ ¼ ZbulkZedge; ð46Þ

where the first expression for Z is the geometric partition
function with no brick wall and the second is the brick wall
plus edge modes. Thus we will find an exact agreement
between the two partition functions. Since the corresponding
entropies Sbulk and Sedge both have a statistical interpretation,
the entire entropy has a statistical explanation.

Thus we have explained Kabat’s contact term in terms of
the statistical mechanics of edge modes, without needing
to appeal to the negative entropy ghosts. The reason why
Kabat obtained a negative leading contribution to the
entropy will be discussed in Sec. VIII.

V. DIRICHLET VERSUS NEUMANN

In this section we calculate ZD=N , which is the ratio of
the Dirichlet and Neumann partition functions for the dual
scalar modes, which are massive fields on the base B.
Recall that there is one dual scalar mode for every nonzero
scalar mode on the fiber F.
Let us consider the partition function Z for the manifold

Bβ, where Bβ is the conical manifold with angle β going
around the entangling surface, used to calculate the geo-
metric entropy for some particular field of mass m in (1).
As we zoom in on the entangling surface in the base B, it is
approximated by a cone with a small disk of radius ϵ cut out
of the tip, on which we put either Dirichlet or Neumann
boundary conditions.
Consider radial evolution outward from the brick wall in

the coordinate ρ ¼ ln r. We can most easily analyze this
problem by doing an exponential conformal transformation
with Weyl scaling Ω ¼ 1=r ¼ e−ρ in order to transform the
plane into the ðτ; ρÞ coordinate system, with the Cartesian
metric ds2 ¼ dρ2 þ dβ2. The angular coordinate τ ∈ ½0; βÞ
remains periodic, while ρ ∈ ½ln ϵ; lnRÞ, where R is the
characteristic length scale of the manifold B at which the
flat approximation is no longer valid; for example, if B is a
sphere R ∼ rsphere. In two dimensions, the propagator of a
minimally coupled scalar field is conformally invariant,
while the mass term is not. Therefore the mass term
becomes position dependent:

I½ϕ� ¼
Z

dτdρ
1

2
½ð∇aϕÞ2 þ e2ρm2ϕ2�; ð47Þ

and we can ignore the mass term as ρ → −∞.
The mass and/or the curved geometry provides a

somewhat fuzzy cutoff on one side of the cylinder, but
the precise details will turn out not to matter, so long as we
take the order of limits so that the conformally transformed
“distance” to the brick wall ϵ is larger than any other scale
in the problem. This is valid if we take the brick wall radius
ϵ to be parametrically small compared to the UV cutoff of
the theory which cuts off the contributions from large
transverse momentum m. Hence we wish to analyze the
theory on a cylinder of length lnðR=ϵÞ and periodicity β. If
we abuse dimensional analysis by assuming lnR; lnm ∼ 1,
we may write the length as lnðϵ−1Þ.
The important thing to notice is that the theory on the

cylinder is massless but not periodic. Hence there is an IR
divergence in the theory, which manifests as the absence of
a mass gap on the cylinder when evolving along the ρ
direction.
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The modes with nonzero τ momentum are gapped, since
they correspond to harmonic oscillators. Any excitations of
these modes due to the boundary condition decay rapidly
away from the entangling surface, so that their contribution
is purely local. This simply shifts the nonuniversal power
law contributions to the entropy.
But the zero modes ϕ ¼ ϕ0ðρÞ, which are constant in the

τ direction, are not gapped. This system corresponds to a
free particle whose “position” x ¼ ϕ0=

ffiffiffi
β

p
is the canoni-

cally normalized zero mode of the field. Under ρ evolution,
the wave function of the particle spreads out as a Gaussian.
If we Fourier transform to the momentum p (which is
continuous since ϕ0 of the scalar field is not periodic), the
wave function evolves from one end of the cylinder to the
other like

ΨðρfinalÞ ¼ e−
1
2
ηp2

ΨðρinitialÞ; ð48Þ

where η ¼ lnðϵ−1Þ=β is the length of the cylinder measured
in units of its width.
For Neumann boundary conditions, the wave function is

initially a p ¼ 0 eigenstate ψNðpÞ ¼ δðpÞ, and so it is
invariant under the radial evolution. On the other hand, the
Dirichlet wave function is initially an x ¼ 0 eigenstate
ψDðpÞ ¼ ð2πÞ−1=2 and under radial evolution evolves to

ðe−1
2
ηp2

ψDÞðpÞ ¼ ð2πÞ−1=2e−1
2
ηp2

→
ϵ→0

η−1=2δðpÞ: ð49Þ

After radial evolution, the Dirichlet wave function
approaches the Neumann one times an extra factor of
η−1=2 (irrespective of the mass m of the field, which makes
no difference in the limit ϵ → 0).
It is interesting to note that because the log which

appears in the geometric entropy formula (1) stacks onto
the log inside η coming from the conformal transformation
to the cylinder, the entropy of the 2D Dirichlet massive
scalar on an interval with two end points ends up having a
surprising divergence structure:

S ¼ 1

3
ln ϵ−1 − ln ln ϵ−1 þ finite; ð50Þ

where the first term is the normal log divergence, which in
this calculation comes from the Casmir energy of the
cylinder vacuum, and the second term is a log of a log. We
plan to address the significance of this term for scalar fields
in another paper [49]. For Maxwell fields with our choice
of boundary conditions, this peculiar term will end up
canceling with another term coming from edge modes
(Sec. VI).
We conclude that imposing Dirichlet boundary condi-

tions leads to an extra factor of η−1=2 for each of the modes
of F , except the zero mode. Since there are χ points on the
entangling surface of B, this factor comes in χ times
and thus we may write

ZD=N ¼
�
det0
�
lnðϵ−1Þ

β
ΔF

0

��
det0ðΔF

0 Þ
�−χ=2

: ð51Þ

Note that, because zeta function regularization is not
invariant under multiplying functional determinants term
by term, we may not cancel the factors of ΔF

0 in the
determinants in the naïve way. We may however rescale the
determinants by shifting each term (including the zero
mode of ΔF

0 ) by a constant. Up to an unimportant local
anomaly term (which only affects scheme-dependent
quantities), we obtain

ZD=N ¼
�
lnðϵ−1Þ

β

�
χ=2

: ð52Þ

This correction will be important for establishing the
equivalence (45) between the entropy calculations with
and without the brick wall.

VI. ENTANGLEMENT ENTROPY
AND EDGE MODES

To interpret the contact term as an entanglement entropy,
we return to the question of how to define entanglement
entropy in a gauge theory. We first recall the definition of
entanglement entropy for Hamiltonian lattice gauge theo-
ries used in Ref. [34] and then take its continuum limit.
In the Hamiltonian formulation of Uð1Þ lattice gauge

theory, a convenient basis for the Hilbert space is the
electric field basis. Each vector in this basis is labeled by a
quantized electric flux Evw ∈ qZ assigned to each oriented
link ðv; wÞ of the lattice. These must obey Gauss’ law, that
the electric flux at each vertex is zero,

P
vEvw ¼ 0. The

Hilbert space is spanned by superpositions of these electric
states.
To define the entanglement entropy on this lattice, we

partition the vertices into two sets A and B. The entangling
surface then intersects the lattice in some set of edges. We
define the Hilbert space HA of region A to be spanned by
the electric field states that include all edges that intersect
the region, including the boundary. The physical states,
those satisfying Gauss’ law, can be identified as states in
HA ⊗ HB, but they do not span the full tensor product. The
Hilbert space HA ⊗ HB includes states for which the
electric flux on the boundary of A does not match with
the electric flux on the boundary of B. Although the full
Hilbert spaceH does not admit a local factorization, we can
embed the physics states into the tensor product HA ⊗ HB
and then define entanglement entropy normally.
For gauge-invariant states, the reduced density matrix of

a region commutes with the operator measuring electric
flux through any link on the boundary. As a result, the
density matrix can be split into a direct sum of super-
selection sectors, each labeled by the configuration of E⊥
on the entangling surface:

WILLIAM DONNELLY and ARON C. WALL PHYSICAL REVIEW D 94, 104053 (2016)

104053-10



ρ ¼
X
E⊥

pðE⊥ÞρðE⊥Þ: ð53Þ

The resulting entropy is given by

S ¼ −
X
E⊥

pðE⊥Þ lnpðE⊥Þ þ
X
E⊥

pðE⊥ÞSðρðE⊥ÞÞ: ð54Þ

We will now define the entanglement entropy as the
continuum limit of this expression.
For each distribution of surface charges E⊥, we define

the edge mode to be the unique static classical solution of
the form E ¼ ∇φ with the boundary condition ∇⊥φ ¼ E⊥.
Any field configuration can be expressed as a sum of an
edge mode and a fluctuation satisfying the magnetic
conducting boundary condition E⊥ ¼ 0. Since Maxwell
theory is linear, the action for such a configuration is the
sum of the on-shell action of the edge mode and the action
of the fluctuation. The term SðρðE⊥ÞÞ in (54) is therefore
independent of E⊥, so it is simply the entropy of the theory
with magnetic conducting boundary conditions given
by (41).
The first term in (54) is the entanglement entropy of the

edge modes, and the second is the bulk entropy, so we have

S ¼ Sedge þ Sbulk: ð55Þ

To calculate Sedge we define an edge mode partition
function by integrating over the edge modes weighted by
their on-shell action:

Zedge ¼
Z

DE⊥e−IðE⊥Þ: ð56Þ

The measure in this expression is taken to be the continuum
limit of the sum in (54). We can obtain the entropy
of the edge modes Sedge from the geometric entropy
formula (1).
In order to make sense of the formal expression (56) we

will need to introduce a short-distance cutoff near the
entangling surface. We will do this by introducing a
boundary at r ¼ ϵ, similar to the brick wall model of
Ref. [43], except that rather than fixing boundary con-
ditions we sum over all values of the perpendicular electric
field E⊥.
In order to compare the entanglement entropy defined in

(54) with the geometric entropy, it is sufficient to compare
the partition functions at arbitrary β. Previously we saw that
the geometric partition function (with no brick wall) can be
reexpressed in the form

Z ¼ ZbulkZedge ð57Þ

so long as the following identity is true:

ZedgeZD=N ¼ ZχZE: ð58Þ

We now show that these two partition functions are in fact
equal, so that the contact term does indeed have a statistical
interpretation, as it contributes to the entropy of the
edge modes.
In Sec. VI A we calculate the Euclidean action for each

edge mode appearing in Eq. (56) and show that the partition
function is that of a negative scalar field on the entangling
surface. In Sec. VI B we compute the measure appearing in
Eq. (56) by taking the continuum limit of a lattice regulator.
This gives the appropriate factors of q and VolðF Þ that
appear in the contact term (38), as well as the term ZD=N

in (58).

A. Short-distance expansion

In our product geometry M ¼ B × F, the entangling
surface consists of some number of points in B each with a
conical singularity of angle β. Let us begin by choosing one
of these points around which we will fix polar Riemann
normal coordinates with the point at the origin r ¼ 0.
In these coordinates the metric takes the form

ds2 ¼ dr2 þ NðrÞ2dτ2; ð59Þ

where τ is β-periodic and the lapse function is NðrÞ ¼
rþOðr2Þ. We place a brick wall at r ¼ ϵ, and solve for the
classical solution with fixed E⊥ on the brick wall.
The solutions have qualitatively different behavior for

the mode of E⊥ constant alongF and for the higher modes.
For the constant mode the solutions have a constant electric
field throughout B whose value is quantized in multiples of
the fundamental charge qB. This is precisely the contribu-
tion to the partition function ZE (36) coming from the
constant electric fields. We will separate out this contri-
bution and focus on the nonzero modes in what follows.
For the nonzero modes the classical solutions decay

rapidly away from the entangling surface. This is because
configurations with electric field lines extending far from
the surface have a large boost energy. Because these
solutions closely hug the entangling surface they have a
small action associated with them—and they make a large
contribution to the partition function that is local to the
entangling surface. Since the solutions contributing to the
sum over edge modes do not extend far from the entangling
surface, it will be sufficient to treat each connected
component of the entangling surface independently.
For each distribution of surface charge E⊥ðxÞ, we have

to find the action of the corresponding classical solution.
Let us expand the vector potential in modes ψnðxÞ of the
fiber F as

A ¼
X
n

AnφnðrÞψnðxÞdτ: ð60Þ

We will take ψn to be eigenfunctions of the scalar
Laplacian on the fiber ΔF

0 ψn ¼ λnψn, normalized so
that

R
F

ffiffiffiffiffiffi
gF

p
ψ2
n ¼ 1.
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In order for A to describe a classical solution, we must
have d ⋆ F ¼ 0:

F ¼ ð∂rφnÞψndr ∧ dτ þ φndψn ∧ dτ; ð61Þ

⋆F ¼ N−1½ð∂rφnÞψnVolF þ φn⋆Fdψn ∧ dr�; ð62Þ

d ⋆ F¼ð∂rN−1∂rφnÞψndr∧VolF þN−1φnðd⋆FdψnÞ∧dr

ð63Þ

¼ ð∂rN−1∂rφn − N−1λnφnÞψndr ∧ VolF : ð64Þ

Thus the classical equation of motion reduces to

N∂rN−1∂rφn ¼ λnφn: ð65Þ

The on-shell action of this solution can be obtained by
using the equation of motion to integrate by parts. This is
analogous to the way in which the electrostatic energy of a
system of charges can be expressed in terms of the potential
evaluated at the charges. The on-shell action is given by

S ¼ 1

2

Z
F ∧ ⋆F ¼ 1

2

Z
dA ∧ ⋆F ¼ 1

2

I
A ∧ ⋆F: ð66Þ

This depends only on the field values at the brick wall, so
we need only find the asymptotic expansion of the solution
to (65) for r → 0.
For small r, the solutions of (65) have the leading-order

asymptotic behavior

φnðrÞ ¼ aþ br2 ln rþOðr2Þ: ð67Þ

For such a solution, the equation of motion (65) relates the
coefficients of the asymptotic expansion as

2b ¼ λna: ð68Þ

This allows us to relate the potential at the brick wall to the
normal electric field. Let us expand the perpendicular
electric field on the boundary as E⊥ðxÞ ¼

P
nEnψnðxÞ.

The electric field at the brick wall is

En ¼ −N−1∂rφn ¼ 2b lnðϵ−1Þ; ð69Þ

and the value of the potential at the surface is determined up
to terms of order ϵ2 by En as

φnjr¼0 ¼ a ¼ 2b
λn

¼ En

λn lnðϵ−1Þ
: ð70Þ

Inserting the mode expansion into the on-shell action (66)
we find that

IðE⊥Þ ¼
1

2

X
n

I
∂B×F

φnN−1ð∂rφnÞdτ ∧ ψ2
nVolF

¼ 1

2

X
n

I
∂B

φnN−1ð∂rφnÞdτ

¼ 1

2

X
n

Z
φnEndτ: ð71Þ

From the asymptotic expansion (67), we find that, to
leading order in ϵ,

IðE⊥Þ ¼
X
n

βE2
n

2λn lnðϵ−1Þ
: ð72Þ

The eigenvalue λn appears in the denominator; thus the
integral over E⊥ will lead to a functional determinant
detðΔÞþ1=2, like the partition function of a negative scalar.
Note that the argument ϵ−1 of the logarithm in (72) is

dimensionful and needs to be compensated by another
dimensionful factor. This dimensionful factor is determined
either by λn, which is related to the transverse wave number
of the perturbation, or by the length scale R associated to
the background. This is the same behavior as in the
calculation of ZD=N in Sec. V. In the case where R is
large we can appeal to the Rindler limit in which NðrÞ ¼ r.
Then the solution to Eq. (65) is

φnðrÞ ¼ rK1ð
ffiffiffiffiffi
λn

p
rÞ ∼ 1þ λnr2

2
lnð

ffiffiffiffiffi
λn

p
rÞ þOðr2Þ: ð73Þ

In this case the dimensionful factor of ϵ in the action is
compensated by λn. In de Sitter space of radius R, one can
show that

φn ∼ 1þ λnr2

2
lnðr=RÞ þOðr2Þ; ð74Þ

where the exact solution can be written in terms of
hypergeometric functions. Which dimensionful constant
compensates for the dimensions of ϵ depends on whether
the given mode is larger or smaller than the length scale of
B. These logarithms appearing in the action lead to ln lnR
terms in the entanglement entropy, similar to those that
appeared for massive scalars in Ref. [47]. These types of
terms will be analyzed in more detail in a future work [49].

B. Functional measure

We have established that the edge modes take the form of
a negative scalar determinant on the entangling surface,
which agrees with the contact term up to a constant
prefactor. In order to match this prefactor, we have to
carefully define the path integral measure DE⊥. We do this
by taking the continuum limit of the discrete measure on
the lattice. Consider a discrete set of N boundary points
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fxig in F , representing the points at which the links of the
lattice pierce the entangling surface. We imagine the
surface is tesselated so that each of these points is assigned
a volume VolðF Þ=N. In the lattice theory, the integrated
electric flux through each point is quantized in units of q.
The sum over these discrete values defines the lattice
measure

Z
DE⊥ ≡Y

i

X
E⊥ðxiÞ∈ qN

VolðF ÞZ

δ

�X
i

E⊥ðxiÞ; 0
�
: ð75Þ

The Kronecker δ ensures that we sum only over configu-
rations such that the total flux through the entangling
surface vanishes; this is because we have already accounted
for solutions for which the flux through the entangling
surface is constant as part of ZE.
In order to carry out the integration, we can change

variables from E⊥ðxiÞ to the coefficients En of a mode
expansion via

E⊥ðxÞ ¼
X
n

EnψnðxÞ: ð76Þ

To take the continuum limit we make the replacement

X
E⊥ðxÞ∈ qN

VolðF ÞZ

→
VolðF Þ
qN

Z
dE⊥ðxÞ: ð77Þ

Expressed in terms of the mode expansion, the measure
(75) (without the delta function) is

DE⊥ ¼
Y
n

1

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VolðF Þ

N

r
dEn: ð78Þ

This can be seen by comparing the calculation ofR
DE⊥ exp ð−RF ffiffiffiffiffiffi

gF
p

E2⊥ðxÞÞ in the mode expansion and
in the continuum limit of (75).
We now have to restrict to those field configurations such

that the total electric flux through the surface vanishes. This
can be obtained by inserting the δ function:

δ

�
VolðF Þ
qN

X
i

E⊥ðxiÞ
�

¼ δ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VolðF Þp
q

E0

�
; ð79Þ

where E0 is the coefficient of the constant zero mode.
Performing the zero mode integral with the help of Eq. (79)
we are left with the path integral measure

DE⊥ ¼ 1ffiffiffiffi
N

p
Y
n>0

1

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VolðF Þ

N

r
dEn: ð80Þ

Nowwe can carry out the path integral using the measure
(80) and the action (72), with the result

Zedge ¼
ZEffiffiffiffi
N

p
Y
n>0

1

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VolðF Þ

N

r �
2π lnðϵ−1Þλ

β

�
1=2

¼ ZEffiffiffiffi
N

p det0
�
2πVolðF Þ lnðϵ−1Þ

q2Nβ
ΔF

0

�
1=2

; ð81Þ

including the factor ZE coming from the quantized constant
edge mode. We can now rescale this formula using
the zeta function identity (15): det0ðaΔÞ ¼ aζðΔ;0Þdet0ðΔÞ.
Up to an anomaly term, ζðΔF

0 ;0Þ¼−dimkerðΔF
0 Þ¼−1.

After rescaling, and taking into account that the entangling
surface consists of χðBÞ components, the edge mode
partition function is

Zedge ¼ ZE

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðϵ−1Þ

β

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πVolðF Þp

q
detðΔF

0 Þ−1=2
!−χðBÞ

:

ð82Þ

We see that the partition function of the edge states agrees
with the result from the contact term (38), up to the factorsZE

(36) and ZD=N ¼ ðlnðϵ−1Þ=βÞχ=2 (52), which appear exactly
as needed (58) to make the geometric and entanglement
entropies agree. Thus we have provided the geometric
entropy with a manifestly statistical interpretation.

VII. LOGARITHMIC DIVERGENCE
IN FOUR DIMENSIONS

The case of four dimensions is special, because four-
dimensional Maxwell theory is conformal. In a conformal
field theory, the entanglement entropy of a spherical region
has a universal logarithmic divergence, whose coefficient is
related to the trace anomaly [44,45].
Four dimensions is also interesting because of the

connection to AdS/CFT. In a conformal theory with a
holographic dual described by Einstein gravity, the
Ryu-Takayanagi (RT) formula relates the entanglement
entropy to the area of a minimal surface that extends into
the bulk [6]. The logarithmic term in this entropy is related
to the holographic trace anomaly [50], which is protected
by supersymmetry [51]. Thus, although the RT formula
becomes tractable only at strong coupling, there is a universal
part that should agree at strong and weak coupling. Thus the
entanglement entropy gives us a possible check on the
RT formula that can be carried out at weak coupling.
While the RT formula has passed many nontrivial checks

[7], given the subtlety of entanglement entropy in gauge
theories, there is still the question of which entropy RT
calculates, given that there are multiple possible candidates
for the role of “entanglement entropy” [35]. The derivations
of the RT formula [45,52,53] involve the geometric entropy
(or the related replica trick [54]) and therefore one expects
that RT calculates the geometric entropy. We shall show
below that at weak coupling, for Maxwell fields, this
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geometric entropy includes a contribution from edge
modes, as needed to agree with the trace anomaly. Since
RT also agrees with the trace anomaly, we expect that the
RT entanglement entropy of strongly coupled Yang-Mills
theory already includes an edge mode contribution, but we
will only perform the edge mode calculation at weak
coupling.
Consider the entanglement entropy of a ball of radius r

in 3þ 1 dimensions. Using conformal symmetry, the
entanglement entropy can be equivalently expressed as
the thermal entropy in hyperbolic space R ×H3 or as de
Sitter entropy of the static patch of de Sitter space.
The logarithmic divergence in the entanglement entropy
is related to the a-type trace anomaly [45]

hTa
ai ¼ −

a
16π2

E4 þ
c

16π2
CabcdCabcd; ð83Þ

where E4 ¼ RabcdRabcd − 4RabRab þ R2 is the four-
dimensional Euler density, whose integral is

R ffiffiffi
g

p
E4 ¼

32π2χ, and Cabcd is the Weyl tensor. The logarithmic
divergence in the entropy is given by

Sanom ∼ 4a lnðϵ=rÞ; ð84Þ

where ∼ denotes agreement of logarithmic divergences and
ϵ is an ultraviolet cutoff length. For a theory of n0 scalars,
n1=2 Dirac fermions and n1 gauge fields the trace anomaly
predicts a geometric entropy [55]

Sanom ∼
1

90

�
n0 þ

11

2
n1=2 þ 62n1

�
lnðϵ=rÞ: ð85Þ

Reference [46] calculated the entanglement entropy of a
free theory of n0 scalars, n1=2 Dirac fermions and n1 gauge
fields. The logarithmic divergence in the entropy was found
to be

Sthermal ∼
1

90

�
n0 þ

11

2
n1=2 þ 32n1

�
lnðϵ=rÞ: ð86Þ

This result was obtained by making a conformal trans-
formation to de Sitter space, calculating the thermal entropy
as a function of temperature, and then integrating the first
law of thermodynamics. Comparing (85) with (86), we see
that the thermal entropy of the scalar and spinor fields agree
with the corresponding trace anomalies, but for the gauge
fields the two differ. Since the coefficients of log diver-
gences are expected to be universal (i.e. independent of the
regulator scheme), this discrepancy cannot be attributed
simply to the choice of regulator.
However, the discrepancy can be resolved by including

the entanglement of edge modes. When integrating the first
law, Ref. [46] assumed that the entropy vanishes in the zero
temperature limit. That would have been the case if we had

kept the finite lattice spacing (introduced temporarily in
Sec. VI), but it is not true for the edge modes in the
continuum, even at finite brick wall radius, because there
are a continuum of edge modes at any nonzero temperature.
There is a contribution which is independent of β and
therefore does not vanish in the β → þ∞ limit. This
divergent contribution to the entropy is missed by the
thermodynamic calculation of Ref. [46].
The result (86) can also be found following [27,41] by

calculating the thermal entropy density on H3 and multi-
plying by the regularized volume. However such a pro-
cedure misses any nonextensive contributions coming from
boundary effects, such as the edge mode contribution
of Sec. VI.
We now calculate the entropy of the edge modes on

hyperbolic space and show that, when added to the thermal
result (86), the result is in agreement with the trace anomaly
(85). The argument proceeds almost identically to Sec. VI,
except that the manifold is no longer a product manifold.
Instead we use conformal symmetry to map the entangle-
ment entropy of a sphere to the thermal entropy on the static
universe S1 ×H3, for which the metric is

ds2 ¼ dτ2 þ du2 þ sinhðuÞ2dΩ2
2: ð87Þ

Under this transformation the entangling surface is mapped
to u ¼ ∞, so that the brick wall at r ¼ ϵ is mapped to

umax ¼ − ln
ϵ

2r
: ð88Þ

To find the edge modes we fix the electric flux E⊥ at
u ¼ umax and solve for the potential φ in the interior:

∇2φ ¼ 0; ∂uφju¼umax
¼ E⊥: ð89Þ

We can expand E⊥ and φ in spherical harmonics:

E⊥ðθ;ϕÞ ¼
X
l>0;m

ElmYlmðθ;ϕÞ; ð90Þ

φðu; θ;ϕÞ ¼
X
l>0;m

φl;mðuÞYlmðθ;ϕÞ: ð91Þ

Equation (89) then becomes

∂2
uφl;mðuÞ þ 2 tanhðuÞ∂uφl;mðuÞ
− sinhðuÞ−2lðlþ 1Þφl;mðuÞ ¼ 0; ð92Þ

whose solution is
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φl;mðuÞ ∝ tanhðuÞl2F1

�
l
2
;
lþ 1

2
;
2lþ 3

2
; tanhðuÞ2

�
;

ð93Þ

where 2F1ða; b; c; zÞ is the hypergeometric function.
To find the action, we can use the asymptotic expansion

of φ, given by

φl;m ∝ 1 − 2lðlþ 1Þue−2u þOðe−uÞ: ð94Þ

This gives the value of φ at u ¼ umax to leading order in ϵ:

φlm ¼ ϵ2 ln ϵ−1

lðlþ 1Þr2 Elm: ð95Þ

The Euclidean action is then given by

IðE⊥Þ ¼
I

E⊥ðθ;ϕÞφðθ;ϕÞ ¼
X
l;m

β
ϵ2 ln ϵ−1

lðlþ 1Þr2 E
2
lm:

ð96Þ

Since we are interested in the logarithmic divergence, we
can ignore the l-independent factors in the action and the
measure.
We recognize the factor lðlþ 1Þ in (96) as the spectrum

of the Laplacian on the sphere. Since it appears in the
denominator, it leads to an edge mode partition function
equal to that of a wrong-sign scalar field, exactly as in
Sec. VI. The logarithmic divergence of this partition
function is given by the well-known trace anomaly of a
two-dimensional scalar field:

hTa
ai ¼ −

R
24π

: ð97Þ

This determines the logarithmic divergence in the partition
function of the edge modes, and hence the entropy

Sedge ∼ lnZedge ∼
1

3
lnðϵÞ: ð98Þ

Thus the thermal entropy (86) should be supplemented by
an edge mode contribution for each of the n1 gauge fields.
This result agrees with the result of the trace anomaly (85).

VIII. DISCUSSION

We have shown that, in Maxwell theory, the geometric
entropy calculated by Euclidean path integral methods
agrees with the entanglement entropy using a brick wall
regulator plus edge modes. Since the latter system man-
ifestly has a statistical interpretation, the former does as
well. The contact interaction, which in the Euclidean path
integral comes from nonminimal coupling to curvature, is
equivalent to the entanglement entropy of the edge modes

(up to the correction described in Sec. V). This resolves a
long-standing puzzle about the interpretation of the
contact term.
To leading order, the contact term takes the form of a

negative scalar field confined to the entangling surface.
The contact term affects the universal subleading diver-
gences in the entanglement entropy, which are the coef-
ficient of the logarithmic divergence in even dimensions
and the constant in odd dimensions. Since the entangling
surface has codimension two, the edge modes have sub-
leading divergences of the same order and hence contribute
to these universal terms. In Sec. VII we examined these
divergences in the case of 3þ 1 dimensions, resolving an
apparent discrepancy first noted in Ref. [46] between the
entanglement entropy and the trace anomaly.
In Secs. III–V we have assumed a special class of

geometries of the form B × F . The main role of this
assumption was to be able to isolate the contact term
contribution to the partition function by expressing all the
local degrees of freedom as scalar fields. In more general
geometries, it is not clear whether such a division is
possible. However, the division of the entropy into an
edge mode contribution and a bulk contribution (54) is
more general and does not depend on the background
geometry. It is straightforward to generalize the edge mode
calculation to geometries with a rotational symmetry
around the entangling surface, as was done in Sec. VII
in the special case of hyperbolic space. This symmetry
allowed us to use the geometric entropy formula (1).
To calculate entanglement entropy for more general regions
by Euclidean methods one should instead use the replica
trick [54]. In this more general setting, the entangling
surface may have nonzero extrinsic curvature that must be
taken into account in the short-distance expansion near the
entangling surface (59). This would allow us to determine
the dependence of the entanglement entropy on the
extrinsic geometry of the entangling surface, to compare
to [44,56].
We used a lattice regulator to define the measure of the

path integral over edge modes, and we expect that we
would obtain similar results if we had calculated the
entropy entirely on the lattice (perhaps using the replica
trick). The leading-order area law divergence of the von
Neumann entropy on the lattice should be manifestly
positive, but we expect that the log divergences should
agree with the continuum result.
In this article we have only considered the case of

Abelian gauge fields; it would be interesting to extend the
results to the non-Abelian case. For some purposes SUðNÞ
gauge fields can be treated in the weakly coupled limit as if
it were N2 − 1 decoupled copies of the Uð1Þ Abelian
theory, modulo zero mode issues related to the different
shape and topology of the gauge group. Thus one would
expect at weak coupling the entropy should grow like N2.
If, following Ref. [35], we allow only entanglement
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between gauge-invariant operators this seems unlikely to be
the case, since the number of gauge-invariant operators
grows more slowly than the number of local degrees of
freedom. In the definition of entanglement entropy pro-
posed for lattice gauge theories in Ref. [34] there is an
additional term in the entropy that grows with the dimen-
sion of the gauge group and which might correct for this
deficiency. It remains to be seen whether either of these
definitions of the entropy has the anticipated quadratic
scaling with N.
A comment is warranted about the negative sign in the

exponent of the contact term in the heat kernel; this is the
phenomenon that led to the conclusion in Ref. [8] that
the Maxwell field has negative entropy. It seems surprising
that one could arrive at a negative entropy starting from a
manifestly positive lattice expression. The negative result
arises in taking the continuum limit of this discrete
expression. To see how such a term arises, consider taking
the continuum limit of the entropy S ¼ −

P
p lnp over

a discrete set of values with spacing a. Now consider
the limit a → 0, with the probability density ρ ¼ p=a
held fixed, so that S ¼ −

P
p lnp → −

R
ρ ln ρ − ln a.

The former expression is the continuous entropy, which
becomes negative for tightly spaced distributions, but this
negative term is always compensated by the positive
divergent piece − ln a. However when we sum over modes
the continuous entropy becomes increasingly negative for
higher modes as the action increases with the value of the
electric field. The− ln a term, on the other hand, is the same
for each mode and can be absorbed into a rescaling of the
fields or as a local counterterm. Thus one arrives in the
continuum at an expression that appears formally negative.
Zeta function regularization eliminates all power law

divergences, but one can retain the power law divergences
by instead inserting a UV cutoff ϵ directly into the heat
kernel expression for the partition function of a scalar field,
as done by Kabat [8]:

lnZ ¼ 1

2

Z
∞

ϵ2

tre−sΔ

s
ds ¼ � � � − 1

2
ln detΔ; ð99Þ

where the “� � �” represent power law divergences [57]
(including a constant in even dimensions). Note that even
a single mode produces a ln ϵ−1 divergence when inserted
into this expression. This occurs because the path integral
measure for each scalar mode requires a dimensionful
factor μ to be inserted for it to be well defined. In the heat
kernel regulator, the convention is that we choose μ ¼ ϵ−1,
but as a consequence even a single mode appears to be UV
divergent. Because of this convention, one finds that the
leading-order cosmological constant divergence of the
scalar field is positive. If we had instead imposed a hard
momentum cutoff Λ, while leaving μ fixed in the Λ → ∞
limit, the leading-order cosmological constant becomes
negative. Since the edge mode contribution is like minus

one scalar field, a hard cutoff on the edge modes would
produce a positive leading contribution to the entropy. This
illustrates the dangers in assigning too much significance to
the divergent terms generated by the heat kernel method.
Thus we see that the negativity of the Kabat contact term

is an artifact of the particular regulator scheme he used.
However, the ambiguity of sign is only possible in the first
place because the edge modes are continuous and need a
path integral measure DE⊥ to be well defined.
Accordingly, in our formula for the total entropy (55), we

add the negative edge mode term Sedge to the usual bulk
piece Sbulk in order to get the total entropy S. These terms
must be added in order to obtain the correct black hole
entropy as calculated by replica trick methods. Although
the leading-order divergence in Sedge is negative, this is
an artifact of the regulator scheme, due to the continuum
of states associated with the nonzero modes of E⊥. In a
scheme such as the lattice regulator where Sedge is literally a
von Neumann entropy of some discrete set of choices,
both Sbulk and Sedge will be positive and have an ordinary
statistical interpretation.
A similar negative contact term appears in the heat kernel

for gravitons [4,9]. Presumably the graviton contact term
can also be understood in terms of edge modes due to
gravitational constraints. However, there aremany additional
conceptual problems involved in defining the entanglement
entropy of graviton fields (reviewed in Appendix A of [58]).
The entanglement entropy of quantum fields on a black

hole background provides an additive contribution to the
total entropy (references in [58]) and may conceivably
explain it all, when integrated up to the Planck scale
[59,60]. In the limit of a large black hole, we may write
the entropy as

SBH ¼ A
4G

¼ A
4GðΛÞ þ Smatter; ð100Þ

where GðΛÞ is the effective value of the Newton’s constant
at the energy scale Λ. If Smatter has a positive divergence,
this leads to screening of G.
On the other hand, if gravitons and gauge fields provide a

negative divergence in Smatter, this leads to antiscreening
of Newton’s constant G. This suggests that G may flow
to a UV fixed point at positive values of G. This is the
asymptotic safety scenario proposed in [61,62] (see [63,64]
for reviews). However, the renormalization group flow
of G, being a power law divergence in D > 2, is a scheme-
dependent quantity, raising questions about whether this
provides meaningful evidence about the consistency of
the theory in the deep UV [65]. In a different scheme where
the entropy is inherently positive, such as the lattice
regulator, any UV fixed point would need to be at negative
values of G.
Moreover, a negative Smatter would be in some tension

with the expected positivity of entropy from the statistical
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mechanics of black holes. It is expected that the black hole
entropy A=4G has a microscopic state counting interpre-
tation in terms of a true von Neumann entropy−trðρ ln ρÞ of
a discrete number of states. For this to be true, the theory of
quantum gravity must somehow discretize the continuous
E⊥ degrees of freedom, much as the lattice regulator does.
If this is the right way to think about black hole entropy, it
would seem to follow that Sedge should be positive in the
fundamental theory of quantum gravity.
The contact terms also appear to play a role in making

the perturbative one-loop string contribution to the entan-
glement finite, cutting it off at the string length scale
[8,59,66]. Here the negative and positive divergences
exactly cancel. But since a negative divergent contribution
to the black hole entropy makes little sense for the reasons
described above, presumably this description is valid only
at distances larger than the Planck scale. We expect that in a

nonperturbative definition of string theory, the black hole
entropy will be manifestly positive.

ACKNOWLEDGMENTS

We are grateful for conversations with Ted Jacobson,
Don Marolf, Mark Srednicki, Dan Kabat, Sergey
Solodukhin, Joe Polchinski, Chris Eling, Ben Michel,
Ed Witten, Josh Cooperman, Markus Luty, Xi Dong,
Juan Maldacena, Debajyoti Sarkar, Horacio Casini and
Ariel Zhitnitsky. We also acknowledge the hospitality of
Perimeter Institute and the KITP while parts of this work
were being completed. W. D. is supported by funds from the
University ofCalifornia.A.W.was supported by the Institute
for Advanced Study, the Simons Foundation, the Martin A.
and Helen Chooljin Membership Fund, the Raymond and
Beverly Sackler Foundation, and NSF Grants No. PHY-
1205500, No. PHY11-25915, and No. PHY-1314311.

[1] R. D. Sorkin, On the entropy of the vacuum outside a
horizon, in Proceedings of the Tenth International
Conference on General Relativity and Gravitation, Padova,
1983, Contributed Papers (Consiglio Nazionale Delle
Ricerche, Rome, 1983), Vol. 2, pp. 734–736.

[2] L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, Quantum
source of entropy for black holes, Phys. Rev. D 34, 373
(1986).

[3] M. Srednicki, Entropy and Area, Phys. Rev. Lett. 71, 666
(1993).

[4] S. N. Solodukhin, Entanglement entropy of black holes,
Living Rev. Relativ. 14, 8 (2011).

[5] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entangle-
ment in many-body systems, Rev. Mod. Phys. 80, 517
(2008).

[6] S. Ryu and T. Takayanagi, Holographic Derivation of
Entanglement Entropy from the anti-de Sitter Space/
Conformal Field Theory Correspondence, Phys. Rev. Lett.
96, 181602 (2006).

[7] T. Nishioka, S. Ryu, and T. Takayanagi, Holographic
entanglement entropy: An overview, J. Phys. A 42, 504008
(2009).

[8] D. N. Kabat, Black hole entropy and entropy of entangle-
ment, Nucl. Phys. B453, 281 (1995).

[9] D. V. Fursaev and G. Miele, Cones, spins and heat kernels,
Nucl. Phys. B484, 697 (1997).

[10] S. N. Solodukhin, Newton constant, contact terms and
entropy, Phys. Rev. D 91, 084028 (2015).

[11] C. G. Callan and F. Wilczek, On geometric entropy, Phys.
Lett. B 333, 55 (1994).

[12] F. Larsen and F. Wilczek, Renormalization of black hole
entropy and of the gravitational coupling constant, Nucl.
Phys. B458, 249 (1996).

[13] S. N. Solodukhin, One loop renormalization of black hole
entropy due to nonminimally coupled matter, Phys. Rev. D
52, 7046 (1995).

[14] D. N. Kabat, S. Shenker, and M. Strassler, Black hole
entropy in the O(N) model, Phys. Rev. D 52, 7027 (1995).

[15] V. P. Frolov, D. Fursaev, and A. Zelnikov, Statistical origin
of black hole entropy in induced gravity, Nucl. Phys. B486,
339 (1997).

[16] R. M. Wald, Black hole entropy is the Noether charge, Phys.
Rev. D 48, R3427 (1993).

[17] V. Iyer and R. M. Wald, Some properties of Noether charge
and a proposal for dynamical black hole entropy, Phys. Rev.
D 50, 846 (1994).

[18] V. Iyer and R. M. Wald, A comparison of Noether charge
and Euclidean methods for computing the entropy of
stationary black holes, Phys. Rev. D 52, 4430 (1995).

[19] L. Ford and T. A. Roman, Classical scalar fields and the
generalized second law, Phys. Rev. D 64, 024023 (2001).

[20] V. P. Frolov and D. V. Fursaev, Mechanism of generation of
black hole entropy in Sakharov’s induced gravity, Phys.
Rev. D 56, 2212 (1997).

[21] A. Barvinsky and S. Solodukhin, Nonminimal coupling,
boundary terms and renormalization of the Einstein-Hilbert
action and black hole entropy, Nucl. Phys. B479, 305
(1996).

[22] D. Iellici and V. Moretti, Kabat’s surface terms in the zeta
function approach, arXiv:hep-th/9703088.

[23] G. Cognola and P. Lecca, Electromagnetic fields in
Schwarzschild and Reissner-Nordström geometry: Quan-
tum corrections to the black hole entropy, Phys. Rev. D 57,
1108 (1998).

[24] D. Kabat and D. Sarkar, Cosmic string interactions induced
by gauge and scalar fields, Phys. Rev. D 86, 084021 (2012).

GEOMETRIC ENTROPY AND EDGE MODES OF THE … PHYSICAL REVIEW D 94, 104053 (2016)

104053-17

http://dx.doi.org/10.1103/PhysRevD.34.373
http://dx.doi.org/10.1103/PhysRevD.34.373
http://dx.doi.org/10.1103/PhysRevLett.71.666
http://dx.doi.org/10.1103/PhysRevLett.71.666
http://dx.doi.org/10.12942/lrr-2011-8
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1088/1751-8113/42/50/504008
http://dx.doi.org/10.1088/1751-8113/42/50/504008
http://dx.doi.org/10.1016/0550-3213(95)00443-V
http://dx.doi.org/10.1016/S0550-3213(96)00631-1
http://dx.doi.org/10.1103/PhysRevD.91.084028
http://dx.doi.org/10.1016/0370-2693(94)91007-3
http://dx.doi.org/10.1016/0370-2693(94)91007-3
http://dx.doi.org/10.1016/0550-3213(95)00548-X
http://dx.doi.org/10.1016/0550-3213(95)00548-X
http://dx.doi.org/10.1103/PhysRevD.52.7046
http://dx.doi.org/10.1103/PhysRevD.52.7046
http://dx.doi.org/10.1103/PhysRevD.52.7027
http://dx.doi.org/10.1016/S0550-3213(96)00678-5
http://dx.doi.org/10.1016/S0550-3213(96)00678-5
http://dx.doi.org/10.1103/PhysRevD.48.R3427
http://dx.doi.org/10.1103/PhysRevD.48.R3427
http://dx.doi.org/10.1103/PhysRevD.50.846
http://dx.doi.org/10.1103/PhysRevD.50.846
http://dx.doi.org/10.1103/PhysRevD.52.4430
http://dx.doi.org/10.1103/PhysRevD.64.024023
http://dx.doi.org/10.1103/PhysRevD.56.2212
http://dx.doi.org/10.1103/PhysRevD.56.2212
http://dx.doi.org/10.1016/0550-3213(96)00438-5
http://dx.doi.org/10.1016/0550-3213(96)00438-5
http://arXiv.org/abs/hep-th/9703088
http://dx.doi.org/10.1103/PhysRevD.57.1108
http://dx.doi.org/10.1103/PhysRevD.57.1108
http://dx.doi.org/10.1103/PhysRevD.86.084021


[25] W. Donnelly and A. C. Wall, Do gauge fields really
contribute negatively to black hole entropy?, Phys. Rev.
D 86, 064042 (2012).

[26] S. N. Solodukhin, Remarks on effective action and entan-
glement entropy of Maxwell field in generic gauge, J. High
Energy Phys. 12 (2012) 036.

[27] C. Eling, Y. Oz, and S. Theisen, Entanglement and thermal
entropy of gauge fields, J. High Energy Phys. 11 (2013) 019.

[28] W.-H. Huang, Generalized gravitational entropy of interact-
ing scalar field and Maxwell field, Phys. Lett. B 739, 365
(2014).

[29] T. Jacobson, G. Kang, and R. C. Myers, On black hole
entropy, Phys. Rev. D 49, 6587 (1994).

[30] X. Dong, Holographic entanglement entropy for general
higher derivative gravity, J. High Energy Phys. 01 (2014)
044.

[31] J. Camps, Generalized entropy and higher derivative gravity,
J. High Energy Phys. 03 (2014) 070.

[32] X. Dong (personal communication).
[33] P. V. Buividovich and M. I. Polikarpov, Entanglement

entropy in gauge theories and the holographic principle
for electric strings, Phys. Lett. B 670, 141 (2008).

[34] W. Donnelly, Decomposition of entanglement entropy in
lattice gauge theory, Phys. Rev. D 85, 085004 (2012).

[35] H. Casini, M. Huerta, and J. A. Rosabal, Remarks on
entanglement entropy for gauge fields, Phys. Rev. D 89,
085012 (2014).

[36] H. Casini and M. Huerta, Entanglement entropy for a
Maxwell field: Numerical calculation on a two dimensional
lattice, Phys. Rev. D 90, 105013 (2014).

[37] W. Donnelly, Entanglement entropy and nonabelian gauge
symmetry, Classical Quantum Gravity 31, 214003 (2014).

[38] A. Kitaev and J. Preskill, Topological Entanglement
Entropy, Phys. Rev. Lett. 96, 110404 (2006).

[39] M. Levin and X.-G. Wen, Detecting Topological Order in a
Ground State Wave Function, Phys. Rev. Lett. 96, 110405
(2006).

[40] W. Donnelly and A. C. Wall, Entanglement Entropy of
Electromagnetic Edge Modes, Phys. Rev. Lett. 114, 111603
(2015).

[41] K.-W. Huang, Central charge and entangled gauge fields,
Phys. Rev. D 92, 025010 (2015).

[42] W. Donnelly and A. C. Wall, Unitarity of Maxwell theory on
curved spacetimes in the covariant formalism, Phys. Rev. D
87, 125033 (2013).

[43] G. ’t Hooft, On the quantum structure of a black hole, Nucl.
Phys. B256, 727 (1985).

[44] S. N. Solodukhin, Entanglement entropy, conformal invari-
ance and extrinsic geometry, Phys. Lett. B 665, 305 (2008).

[45] H. Casini, M. Huerta, and R. C. Myers, Towards a derivation
of holographic entanglement entropy, J. High Energy Phys.
05 (2011) 036.

[46] J. Dowker, Entanglement entropy for even spheres, arXiv:
1009.3854.

[47] H. Casini and M. Huerta, Entanglement entropy in free
quantum field theory, J. Phys. A 42, 504007 (2009).

[48] A. Gromov and R. A. Santos, Entanglement entropy in 2D
non-Abelian pure gauge theory, Phys. Lett. B 737, 60
(2014).

[49] W. Donnelly and A. C. Wall (to be published).
[50] M. Henningson and K. Skenderis, The holographic Weyl

anomaly, J. High Energy Phys. 07 (1998) 023.
[51] A. Petkou and K. Skenderis, A nonrenormalization

theorem for conformal anomalies, Nucl. Phys. B561, 100
(1999).

[52] D. V. Fursaev, Proof of the holographic formula for entan-
glement entropy, J. High Energy Phys. 09 (2006) 018.

[53] A. Lewkowycz and J. Maldacena, Generalized gravitational
entropy, J. High Energy Phys. 08 (2013) 090.

[54] P. Calabrese and J. Cardy, Entanglement entropy and
conformal field theory, J. Phys. A 42, 504005 (2009).

[55] N. D. Birrell and P. C. W. Davies, Quantum Field Theory in
Curved Space (Cambridge University Press, Cambridge,
England, 1982).

[56] D. V. Fursaev, A. Patrushev, and S. N. Solodukhin,
Distributional geometry of squashed cones, Phys. Rev. D
88, 044054 (2013).

[57] S. Hawking, Zeta function regularization of path integrals
in curved space-time, Commun. Math. Phys. 55, 133
(1977).

[58] R. Bousso, Z. Fisher, S. Leichenauer, and A. C. Wall,
Quantum focusing conjecture, Phys. Rev. D 93, 064044
(2016).

[59] L. Susskind and J. Uglum, Black hole entropy in canonical
quantum gravity and superstring theory, Phys. Rev. D 50,
2700 (1994).

[60] T. Jacobson, Black hole entropy and induced gravity, arXiv:
gr-qc/9404039.

[61] S. Weinberg, Ultraviolet divergences in quantum theories of
gravitation, in General Relativity: An Einstein Centenary
Survey, edited by S. W. Hawking and W. Israel (Cambridge
University Press, Cambridge, England, 1979), pp. 790–831.

[62] L. Smolin, Towards a theory of space-time structure at very
short distances, Nucl. Phys. B160, 253 (1979).

[63] M. Niedermaier and M. Reuter, The asymptotic safety
scenario in quantum gravity, Living Rev. Relativ. 9, 5
(2006).

[64] M. Reuter and F. Saueressig, Quantum Einstein gravity,
New J. Phys. 14, 055022 (2012).

[65] M.M. Anber and J. F. Donoghue, Running of the gravita-
tional constant, Phys. Rev. D 85, 104016 (2012).

[66] S. He, T. Numasawa, T. Takayanagi, and K. Watanabe,
Notes on entanglement entropy in string theory, J. High
Energy Phys. 05 (2015) 106.

WILLIAM DONNELLY and ARON C. WALL PHYSICAL REVIEW D 94, 104053 (2016)

104053-18

http://dx.doi.org/10.1103/PhysRevD.86.064042
http://dx.doi.org/10.1103/PhysRevD.86.064042
http://dx.doi.org/10.1007/JHEP12(2012)036
http://dx.doi.org/10.1007/JHEP12(2012)036
http://dx.doi.org/10.1007/JHEP11(2013)019
http://dx.doi.org/10.1016/j.physletb.2014.11.012
http://dx.doi.org/10.1016/j.physletb.2014.11.012
http://dx.doi.org/10.1103/PhysRevD.49.6587
http://dx.doi.org/10.1007/JHEP01(2014)044
http://dx.doi.org/10.1007/JHEP01(2014)044
http://dx.doi.org/10.1007/JHEP03(2014)070
http://dx.doi.org/10.1016/j.physletb.2008.10.032
http://dx.doi.org/10.1103/PhysRevD.85.085004
http://dx.doi.org/10.1103/PhysRevD.89.085012
http://dx.doi.org/10.1103/PhysRevD.89.085012
http://dx.doi.org/10.1103/PhysRevD.90.105013
http://dx.doi.org/10.1088/0264-9381/31/21/214003
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1103/PhysRevLett.114.111603
http://dx.doi.org/10.1103/PhysRevLett.114.111603
http://dx.doi.org/10.1103/PhysRevD.92.025010
http://dx.doi.org/10.1103/PhysRevD.87.125033
http://dx.doi.org/10.1103/PhysRevD.87.125033
http://dx.doi.org/10.1016/0550-3213(85)90418-3
http://dx.doi.org/10.1016/0550-3213(85)90418-3
http://dx.doi.org/10.1016/j.physletb.2008.05.071
http://dx.doi.org/10.1007/JHEP05(2011)036
http://dx.doi.org/10.1007/JHEP05(2011)036
http://arXiv.org/abs/1009.3854
http://arXiv.org/abs/1009.3854
http://dx.doi.org/10.1088/1751-8113/42/50/504007
http://dx.doi.org/10.1016/j.physletb.2014.08.023
http://dx.doi.org/10.1016/j.physletb.2014.08.023
http://dx.doi.org/10.1088/1126-6708/1998/07/023
http://dx.doi.org/10.1016/S0550-3213(99)00514-3
http://dx.doi.org/10.1016/S0550-3213(99)00514-3
http://dx.doi.org/10.1088/1126-6708/2006/09/018
http://dx.doi.org/10.1007/JHEP08(2013)090
http://dx.doi.org/10.1088/1751-8113/42/50/504005
http://dx.doi.org/10.1103/PhysRevD.88.044054
http://dx.doi.org/10.1103/PhysRevD.88.044054
http://dx.doi.org/10.1007/BF01626516
http://dx.doi.org/10.1007/BF01626516
http://dx.doi.org/10.1103/PhysRevD.93.064044
http://dx.doi.org/10.1103/PhysRevD.93.064044
http://dx.doi.org/10.1103/PhysRevD.50.2700
http://dx.doi.org/10.1103/PhysRevD.50.2700
http://arXiv.org/abs/gr-qc/9404039
http://arXiv.org/abs/gr-qc/9404039
http://dx.doi.org/10.1016/0550-3213(79)90059-2
http://dx.doi.org/10.12942/lrr-2006-5
http://dx.doi.org/10.12942/lrr-2006-5
http://dx.doi.org/10.1088/1367-2630/14/5/055022
http://dx.doi.org/10.1103/PhysRevD.85.104016
http://dx.doi.org/10.1007/JHEP05(2015)106
http://dx.doi.org/10.1007/JHEP05(2015)106

