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The Hamiltonian formulation of the teleparallel equivalent of general relativity is developed from an
ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy
of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix
entering the (linear) relation between canonical velocities and momenta to obtain the set of primary
constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudoinverse of that matrix.
The set of constraints, including the subsequent secondary constraints, completes a first-class algebra. This
means that all of them generate gauge transformations. The gauge freedoms are basically the diffeo-
morphisms and the (local) Lorentz transformations of the vielbein. In particular, the Arnowitt, Deser, and
Misner algebra of general relativity is recovered as a subalgebra.
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I. INTRODUCTION

The determination of the independent dynamical degrees
of freedom is of the utmost importance in any field theory,
since it allows us to exhibit the internal consistency of the
theory and tackle the issue of the well-posedness of the
Cauchy problem. It also puts the theory into a different
perspective, because it helps us to find the minimal number
of variables specifying the state of the system, is thus vital
for the quantization of the theory. According to Dirac’s
procedure [1], the number of genuine degrees of freedom
can be determined from the algebra of the constraints
among the canonical variables of the theory. The constraints
first appear when the canonical momenta are computed.
These primary constraints have to be consistent with the
Hamiltonian evolution of the system, which leads to
secondary constraints, and so on. Finally, the set of all
the constraints is reclassified as first-class and second-class
constraints, depending whether their Poisson brackets are or
are not zero on the constraint surface in the phase space.
First-class constraints generate gauge transformations; thus,
each of them is related to a spurious degree of freedom. On
the other hand, second-class constraints can be reorganized
as pairs of spurious conjugated variables. Thus, the number
of genuine degrees of freedom can be computed as

Numberof d:o:f:¼Numberof pairs of canonical variables

−Numberof first class constraints

−
1

2
Numberof second class constraints:

ð1Þ

A nice example is the Maxwell potential, described by four
dynamical variables Aμ that are governed by the Lagrangian
L½Aμ� ∝ FλρFλρ (the field tensorFλρ isFλρ ¼ ∂λAρ − ∂ρAλ).
Since Fλρ is antisymmetric, ∂0A0 is not present in the
Lagrangian. Thus the canonical momentum π0 ¼
∂L=∂ð∂0A0Þ identically vanishes; it is a primary constraint.
The consistency of the constraint π0 ¼ 0 with the evolution
requires the vanishing of the Poisson bracket between π0 and
the Hamiltonian; this leads to the secondary constraint
∇iπ

i ∝ ∇iF0i ¼ 0 (Gauss’s law). Both constraints are first
class, since the Poisson brackets between canonical
momenta are identically zero. Therefore, according to
Eq. (1), one realizes that the electromagnetic field does
not have four degrees of freedom Aμ at each event, but only
two (electromagnetic waves are transversal). At the level of
the initial data, the existence of constraints imply a restric-
tion on the spectrum of allowed initial configurations.
Besides, the absence of kinetic term for A0 in the
Lagrangian implies that the evolution of this dynamical
variable, conjugate to the first-class constraint π0, remains
completely undetermined. The same happens to the evolu-
tion of the longitudinal component of the potentialA∥, which
also remains undetermined as a consequence of the exist-
ence of the first-class constraint ∇iπ

i. Thus, A0 and A∥ are
gauge freedoms. The former conclusions can also be derived
from a slightly modified Lagrangian. The integration by
parts of one of the terms containing ∂iA0 leads to a surface
term, which can be eliminated, plus the term A0∇iF0i. In
such a way, the spurious degree of freedom A0 becomes a
Lagrangemultiplierwhosevariation leads to theGauss’s law
constraint (any other presence of A0 is captured in the
canonical momenta πi) [2].
The canonical formulation of general relativity (GR)
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and Misner (ADM) [3], in which the spacetime is foliated
into a family of spacelike hypersurfaces that induces a
proper decomposition of the metric tensor gμν. The
Einstein-Hilbert Lagrangian can be integrated by parts to
realize that the temporal sector of the metric (the lapse N
and the shift vector Ni) is thrown into the role of Lagrange
multipliers associated to four first-class constraints
(the super-Hamiltonian and supermomenta constraints).
So written, the Lagrangian gives dynamics only to the
six components of the three-dimensional metric gij on
the spacelike hypersurfaces of the foliation; however, the
canonical variables ðgij; πijÞ are still constrained by the four
first-class constraints. Thus the gravitational field contains
only two genuine degrees of freedom. In fact, apart from
the undetermined evolutions of the four Lagrange multi-
pliers ðN;NiÞ, there are also four gauge freedoms among
the six components of gij (gravitational waves are trans-
versal and traceless). As a feature that distinguishes GR
from electromagnetism, the GR Hamiltonian vanishes
because of the constraints. This feature is typical of systems
having the time hidden among their canonical variables [4].
In 1918, Weyl’s unsuccessful attempt to unify gravitation

and electromagnetism introduced for the first time the notion
of gauge theories [5]. Einstein tried the same unification idea
ten years later, taking advantage of the sixteen components
of the tetrad field in order to include the electromagnetic
field [6]. Later he realized that the arbitrariness in the choice
of the tetrad comes from the set of local Lorentz trans-
formations that leave the metric unchanged; therefore, the
extra degrees of freedom could not account for the electro-
magnetism. However, he introduced the concept of tele-
parallelism that remains important today, presenting for the
first time the teleparallel equivalent of general relativity
(TEGR), an equivalent formulation of general relativity. In
fact, although both theories have different Lagrangian
formulations, they are equivalent at the level of the equations
of motion. Nonetheless, they are based on completely
different Lagrangian constructions. This is so because
TEGR describes gravity as the effect of torsion in the
curvatureless Weitzenböck geometry; the dynamical varia-
bles are not the components of the metric gμν but those of
the field of orthonormal frames—tetrads or vierbeins—eaμ
[a and μ are SOð3; 1Þ and coordinate indices, respectively]
[6,7]. As a consequence, the Hamiltonian formalisms of GR
and TEGR are different too. Among the works treating the
Hamiltonian formulation of TEGR we specially mention
Ref. [8], which introduces a set of auxiliary variables in a
first-order approach that lowers the order of the Euler-
Lagrange equations (cf. [9–12]), and Ref. [13], which deals
with an enlarged set of variables and constraints to enforce
the vanishing of the curvature. The canonical formulation of
TEGR has been also stated in the geometric language of
differential forms [14,15].
In this work we will put forward the Hamiltonian

formalism for TEGR in a way as close as possible to

the second-order formalism of electrodynamics that was
sketched above. This work is organized as follows: in
Sec. II we introduce the standard TEGR dynamics, which is
governed by a Lagrangian quadratic in the torsion. In
Sec. III we show that the TEGR Lagrangian can be
reformulated as the quadratic inner product of the anholon-
omy coefficients with respect to a supermetric that is
defined in the tangent space. In Sec. IV we obtain the
set of primary and secondary constraints that are equivalent
to those of electrodynamics and GR geometrodynamics.
In Sec. V we study the gauge transformations generated by
these constraints (they will prove to be first class).
Compared with geometrodynamics, TEGR has an addi-
tional gauge symmetry associated to local Lorentz trans-
formations of frames, which is the source of the constraints
analyzed in Sec. VI. In Sec. VII the (constrained) linear
relations between canonical momenta and velocities is
inverted to build the canonical TEGR Hamiltonian H;
the procedure implies a careful analysis of the eigenvector
structure involved in these linear relations in order to build
the respective pseudoinverse matrix. The entire set of
nðnþ 3Þ=2 constraints (n is the spacetime dimension) is
consistent with the evolution governed by H; they are first
class as proven by the algebra of constraints computed in
Sec. VIII. In Sec. IX we summarize the main steps and the
achievements of the paper. The Appendix shows some
useful computations that are needed throughout the work.

II. TEGR AND STANDARD LAGRANGIAN
FORMULATION

TEGR is a theory of gravity where the field of ortho-
normal frames plays the role of dynamical variable. Let M
be a manifold, feag a basis in the tangent space TpðMÞ, and
fEag its dual basis in the cotangent space T�

pðMÞ [i.e., if
the 1-forms Ea are applied to the vectors eb one obtains
EaðebÞ ¼ δab]. They can be expanded in a coordinate basis
as ea ¼ eμa∂μ and Ea ¼ Ea

μdxμ; thus, duality means that

Ea
μe

μ
b ¼ δab; eμaEa

ν ¼ δμν : ð2Þ

Here and from now on, we will use Greek letters μ; ν;… ¼
0;…; n − 1 for spacetime coordinate indices and Latin
letters a; b;…; g; h ¼ 0;…; n − 1 for Lorentzian tangent
space indices. A vielbein (vierbein or tetrad in n ¼ 4
dimensions) is a basis encoding the metric structure of
the spacetime,

g ¼ ηabEa ⊗ Eb; ð3Þ

therefore,

Ea ·Eb ¼ gðEa;EbÞ ¼ ηab; ð4Þ

which means that the vielbein is an orthonormal basis. In
component notation, the former expressions look like
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gμν ¼ ηabEa
μEb

ν ; ηab ¼ gμνe
μ
aeνb; ð5Þ

which implies that the relation between the metric volume
and the determinant of the matrix Ea

μ is

ffiffiffiffiffi
jgj

p
¼ det½Ea

μ� ≐ E: ð6Þ

Since the vielbein encodes the metric structure of the
spacetime, one can formulate a dynamical theory of
the spacetime geometry by defining a Lagrangian for the
vielbein field. In particular, there is a Lagrangian which
leads to dynamical equations for the vielbeins that
are equivalent to Einstein equations for the metric [16].
The so-called teleparallel equivalent of general relativity is
governed by the Lagrangian density

L ¼ ET; ð7Þ

where T is the torsion scalar

T ≐ Tρ
μνSρμν; ð8Þ

which is made up of

Tμ
νρ ≐ eaμð∂νEa

ρ − ∂ρEa
νÞ; ð9Þ

and

Sρμν ≐ 1

2
ðKμν

ρ þ Tλ
λμδνρ − Tλ

λνδμρÞ; ð10Þ

where

Kμν
ρ ≐ 1

2
ðTρ

μν − Tμν
ρ þ Tνμ

ρÞ: ð11Þ

In Lagrangian (7), the strength field Tμ
νρ is the torsion

associated with the Weitzenböck connection Γμ
νρ ≐

eaμ∂νEa
ρ , and Kμν

ρ is the contorsion [17,18]. In geometric
language, torsion is the 2-form Ta ≐ dEa þ ωa

b∧Eb,
where the 1-form ωa

b is the spin connection. The
Weitzenböck connection is the choice ωa

b ¼ 0, because
it leads to ðTaÞνρ ¼ ðdEaÞνρ ¼ ∂νEa

ρ − ∂ρEa
ν ¼ Ea

μT
μ
νρ.

The Weitzenböck connection is metric compatible, since
∇νEa

μ ¼ ∂νEa
μ − Γλ

νμEa
λ ¼ 0. Besides, from Eq. (2) we

also get that ∇νe
μ
a ¼ 0. This means that the vielbein is

automatically parallel transported along any curve.
Furthermore, the parallel transport of any vector does
not depend on the path (it is absolute), since
Weitzenböck connection has the remarkable feature that
the curvature Ra

b ≐ dωa
b þ ωa

c∧ωc
b is identically zero.

The (Weitzenböck) covariant derivative of a vector is
∇νU ¼ ∇νðUaeaÞ ¼ ea∂νUa; thus, vector U will be paral-
lel transported if and only if its components Ua are
constant.

Although TEGR Lagrangian can be understood in terms
of the Weitzenböck connection and its respective torsion, it
should be emphasized that the TEGR Lagrangian fixes
neither the connection nor the vielbein; it only determines
the metric, as is well known. Furthermore, whenever matter
couples minimally to the metric, as usual, the free particles
will follow geodesics of the (torsionless) Levi-Civita
connection Γ̄μ

νρ.
1 Setting aside this point, we used to say

that TEGR is a theory where the gravitational effects are
fully encoded in the torsion. On the contrary, GR associates
gravity to curvature; it assumes that the spacetime is
endowed with the torsionless Levi-Civita connection,
whose curvature enters the Einstein-Hilbert Lagrangian
L ¼ ER̄. The reason why TEGR is indeed equivalent to GR
is traced to the fact that their respective Lagrangian
densities differ in a surface term,

−ER̄ ¼ ET − 2∂ρðETμ
μρÞ: ð12Þ

Even so, the vielbein field contains n2 components,
while the metric tensor has only nðnþ 1Þ=2. However,
TEGR dynamical equations are invariant under local
Lorentz transformations of the vielbein, which involve
ðn
2
Þ generators. Such a gauge invariance means that ðn

2
Þ ¼

nðn − 1Þ=2 degrees of freedom cancels out, which allows
for the theories to turn out to be equivalent at the level of the
equations of motion.

III. TEGR LAGRANGIAN IN TERMS
OF THE VIELBEIN FIELD

With the aim of preparing the TEGR Lagrangian for the
study of its canonical structure, we will rewrite it com-
pletely in terms of eμa, Ea

ν and the derivatives ∂μEa
ν . This

imply the removing of any presence of the metric field,
since such contributions hide a dependence on the vielbein.
We transform the scalar torsion into

T ¼ 1

4
Tρ

μνTρ
μν −

1

2
Tρ

μνTμν
ρ − Tρ

μρTνμ
ν: ð13Þ

We note that all terms in T are quadratic in the antisymme-
trized derivatives of the vielbein; writing term by term
one gets

1

4
Tρ

μνTρ
μν ¼

1

4
gραgβμgγνTα

βγT
ρ
μν: ð14Þ

Then, one substitutes the expression for the torsion tensor
[Eq. (9)] and the metric in terms of the vielbein field and its
inverse [Eq. (5)],

1However, Levi-Civita and Weitzenböck connections are
related through the contorsion Γ̄μ

νρ ¼ Γμ
νρ − Kμ

νρ.
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1

4
Tρ

μνTρ
μν ¼ ηabη

c½dηf�eE∂μEa
ν∂ρEb

λe
μ
ceνee

ρ
de

λ
f: ð15Þ

After this procedure has been performed in all the terms,
the TEGR Lagrangian becomes

L ¼ ET ¼ 1

2
E∂μEa

ν∂ρEb
λeμceνee

ρ
de

λ
fMab

cedf; ð16Þ

where we call supermetric Mab
cedf the emerging Lorentz

invariant tensor given by

Mab
cedf ≐ 2ηabη

c½dηf�e − 4δ½da ηf�½cδ
e�
b þ 8δ½ca ηe�½dδ

f�
b : ð17Þ

The supermetric is antisymmetric in the pairs of indices
c − e and d − f, which implies that only the antisymmetric
parts of ∂μEα

ν and ∂λEb
ρ take part in the Lagrangian (16).

Other properties of the supermetric are summarized in the
Appendix.
We remark that the index structure of the supermetric is

natural when we recognize in Eq. (16) the anholonomy
coefficients fcab, which are defined by the commutator
½ea; eb� ¼ fcabec. In fact, by using Eqs. (2) the coefficients
fabc can be rewritten as

fabc ¼ −eμbeνcð∂μEa
ν − ∂νEa

μÞ ¼ −2eμbeνc∂ ½μEa
ν�; ð18Þ

which can be related to other geometrical magnitudes, such
as the Weitzenböck torsion and the Lie derivative of the
vielbein,

fabc ¼ Taðec; ebÞ ¼ ðLecE
aÞðebÞ: ð19Þ

In terms of these coefficients, the Lagrangian density looks
in a very elegant form,

L ¼ 1

8
EfacefbdfMab

cedf: ð20Þ

A similar expression for the Lagrangian can be found in
Ref. [19], where the anholonomy coefficients are identified
with a Yang-Mills-like field strength; however, that
Lagrangian still mixed tangent space and coordinate indices.
Instead, Lagrangian (20) does not involve coordinate indi-
ces; it shows that supermetric Mab

cedf is a relevant geo-
metric object in the (co)tangent space structure of the
spacetime. We intend to analyze the Hamiltonian structure
of TEGR by starting from Lagrangians (16) and (20), and
then following a canonical second-order procedure.

IV. SUPER-HAMILTONIAN AND
SUPERMOMENTA CONSTRAINTS

We compute the canonical momenta by differentiating
the Lagrangian (16) with respect to the time derivative of
the canonical variable Ea

μ,

Πμ
a ¼ ∂L

∂ð∂0Ea
μÞ

¼ E∂ρEb
λe0ce

μ
ee

ρ
de

λ
fMab

cedf

¼ −
1

2
Ee0ce

μ
efbdfMab

cedf: ð21Þ

Thus, the Poisson brackets in TEGR are defined as

fAðt;xÞ; Bðt; yÞg

≐
Z

dz

�
δAðt;xÞ
δEa

λðzÞ
δBðt; yÞ
δΠλ

aðzÞ
−
δAðt;xÞ
δΠλ

aðzÞ
δBðt; yÞ
δEa

λðzÞ
�
: ð22Þ

The brackets between fundamental canonical variables are

fEa
μðt;xÞ;Πν

bðt; yÞg ¼ δabδ
ν
μδðx − yÞ: ð23Þ

Additional fundamental Poisson brackets, including E, eμa,
etc., are summarized in the Appendix.
From Eq. (21) we immediately get n trivial primary

constraints

Gð1Þ
a ≐ Π0

a ≡ 0; ð24Þ

which are derived by noticing that e0ce0e is symmetric in
c − e but Mab

cedf is antisymmetric. Although we cannot
prove yet that they are first class (i.e., we do not know yet
whether they generate gauge transformations), the electro-
magnetic analogue tells us that they mean the Ea

0’s are
spurious gauge-dependent variables, that would become
Lagrange multipliers if an integration by parts were
performed in the action. This is in line with the spurious
character of the temporal sector of the metric tensor we
have commented on in Sec. I.
The primary constraints must be satisfied at any time. In

other words, if the system is on the constraint surface at the
initial time, it must remain there along the evolution. If this
consistency requirement were not fulfilled, then it could be
enforced by resorting to new (secondary) constraints [20].
From a Hamiltonian perspective, the consistency of the
primary constraints is controlled by means of the primary
Hamiltonian [2]

Hp ¼ H þ
Z

dxuaðt;xÞϕð1Þ
a ðt;xÞ; ð25Þ

whereH is the canonical Hamiltonian, uaðt;xÞ are arbitrary
functions, and ϕð1Þ

a are all the primary constraints. The
consistency will be fulfilled if the Poisson brackets

fϕð1Þ
a ; Hpg are zero on the constraint surface. This require-

ment could be satisfied by properly choosing the functions
uaðt;xÞ; if not, new (secondary) constraints will be needed
to enforce it, and so on. Actually, in TEGR we will find that
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all the Poisson brackets between constraints are zero on the
constraint surface. This means that primary and secondary
constraints are all first class; they generate gauge trans-
formations. Thus the constraints will be consistent with the
evolution if their Poisson brackets with H vanish on the
constraint surface (i.e., if H is gauge invariant, as it should
be expected).
Though the entire set of primary constraints has not been

obtained yet, the evolution of constraints (24) can be
analyzed at the level of the Euler-Lagrange evolution
equations,

∂μ
∂L

∂ð∂μEa
νÞ

−
∂L
∂Ea

ν
¼ 0: ð26Þ

By splitting the first term, one gets

∂0Πν
a þ ∂i

∂L
∂ð∂iEa

νÞ
−

∂L
∂Ea

ν
¼ 0: ð27Þ

Therefore, if the constraints (24) must be fulfilled at any
time, we obtain n equations—those having ν ¼ 0—which
do not contain second-order temporal derivatives,

∂i
∂L

∂ð∂iEa
0Þ

−
∂L
∂Ea

0

¼ 0: ð28Þ

Like the Gauss’s law in electromagnetism these equations
do not contain dynamics, but they constrain the dynamics.
Since the derivatives of the vielbein enter the Lagrangian
only in antisymmetric combinations, then it is

∂i
∂L

∂ð∂iEa
0Þ

¼ −∂i
∂L

∂ð∂0Ea
i Þ

¼ −∂iΠi
a: ð29Þ

Thus, we have found n secondary constraints,

∂iΠi
a þ

∂L
∂Ea

0

¼ 0: ð30Þ

We will prove that these constraints are consistent with the
evolution; thus, they do not generate new constraints. For
this, we will apply the derivative ∂0 to the constraints (30),
and use Eq. (27) to substitute ∂0Πi

a,

∂0

�
∂iΠi

a þ
∂L
∂Ea

0

�
¼ −∂i∂j

∂L
∂ð∂jEa

i Þ
þ ∂μ

∂L
∂Ea

μ

¼ −∂i∂j
∂L

∂ð∂jEa
i Þ

þ ∂ν∂μ
∂L

∂ð∂μEa
νÞ

≡ 0

ð31Þ

[we also use Eq. (26) in the last step]. The zero result comes
from the fact that ∂μEa

ν enters the Lagrangian in

antisymmetric combinations but the operators ∂i∂j and
∂ν∂μ are symmetric.
So far, we have obtained a set of constraints which is

consistent with the evolution. To write them in a fully
canonical way, we have to compute the derivative ∂L=∂Ea

0

and express it as a function of the momenta, the vielbein
and its spatial derivatives. This computation is made in the
Appendix, where we obtain that the canonical Hamiltonian
densityH (i.e.,H ¼ R

dxH) takes part in the results. These
results are better understood when projected on Ea

0 and E
a
k .

Thus, we get the secondary constraints written in canonical
form,

Gð2Þ
0 ≐ H − ∂iðEc

0Πi
cÞ ≈ 0; ð32Þ

Gð2Þ
k ≐ ∂kEc

iΠi
c − ∂iðEc

kΠi
cÞ ≈ 0 ð33Þ

(the symbol ≈ stands for equalities that are valid on the
constraint surface). The constraints (32) and (33) are
equivalent to the super-Hamiltonian and supermomenta
constraints of the ADM formalism. While the ADM
Hamiltonian vanishes on the constraint surface, the
TEGR Hamiltonian does not. The reason can be traced
to the surface term in Eq. (12); in fact, according to
Eq. (32), H is not zero but a divergence [which became
a spatial divergence thanks to the constraints (24)].

V. GAUGE TRANSFORMATIONS

We have already anticipated—although have not yet
proven—that all the constraints will be first class. Let us

now consider the gauge transformations generated by Gð1Þ
a

and Gð2Þ
μ . In general, the infinitesimal gauge transformation

generated by a first-class constraint G is [2]

δEa
μðt;xÞ ¼

Z
dyϵðt; yÞfEa

μðt;xÞ; Gðt; yÞg: ð34Þ

Any transformation of the vielbein has to be accompanied
by a transformation of the basis feag, in order to respect the
duality relations EaðebÞ ¼ δab of Eq. (2). Therefore

EaðδebÞ þ δEaðebÞ ¼ 0; ð35Þ

or

δeνb ¼ −eνae
μ
bδE

a
μ: ð36Þ

According to Eq. (34), any linear combination of primary

constraints ϵbðt;xÞGð1Þ
b generates a transformation that only

affects the temporal component of the 1-forms Ea

δEa
0ðt;xÞ ¼ ϵaðt;xÞ; ð37Þ
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(or δEa ¼ ϵadt), which also implies2

δeνb ¼ −ϵaeνae0b: ð38Þ

Instead, the transformations generated by Gð2Þ
0 , Gð2Þ

k only
affect the spatial components of the forms Ea (the canoni-
cal Hamiltonian density H does not contain Π0

a). Then, the

infinitesimal gauge transformations generated by Gð2Þ
0 and

any arbitrary combination ξkGð2Þ
k are respectively

δEa
i ðt;xÞ ¼ ξ _Ea

i ðt;xÞ þ Ea
0∂iξ

¼ ∂iðEa
0ξÞ þ ξ2∂ ½0Ea

i�; ð39Þ

δEa
i ðt;xÞ ¼ ξk∂kEa

i þ Ea
k∂iξ

k

¼ ∂iðEa
kξ

kÞ þ ξk2∂ ½kEa
i�: ð40Þ

In these results there is a term resembling the gauge
transformation of the electromagnetic potential. How-
ever, they come together with a term related to the
Weitzenböck torsion Ta ¼ dEa. Both terms are needed
because, differing from the electromagnetic Lagrangian,
TEGR Lagrangian depends not only on the exterior
derivative of the field Ea but on the field itself. Even so,
the whole result exhibits a clear geometric content, which
can be evidenced by means of the Lie derivative of a p-
form α along a vector ξ,

Lξα ¼ d½αðξÞ� þ dαðξÞ: ð41Þ

In fact, the rhs of Eqs. (39) and (40) constitute the spatial
components of LξEa, where ξ is the arbitrary vector field
formed by the infinitesimal parameters ξðt;xÞ, ξkðt;xÞ. We
notice that Eqs. (39) and (40) can be extended to the
temporal component of the 1-forms Ea, since any change
of Ea

0 is a gauge transformation. Therefore, we have
obtained that TEGR is insensitive to 2n independent gauge
transformations of the vielbein on the constraint surface,
which are given by Eq. (37) and

δEa ¼ LξEa: ð42Þ

The derivative character of transformation (42) together
with Eq. (35) imply that

δeb ¼ Lξeb ¼ ½ξ; eb�: ð43Þ

In turn, this last transformation leads to a change of the
anholonomy coefficients,

δfcab ¼ Lξfcab ¼ ξðfcabÞ; ð44Þ

as can be easily verified by using the Jacobi identity to
compute δ½ea; eb� ¼ ½δea; eb� þ ½ea; δeb�.
We remark that the Lie derivative of any Lagrangian—

understood as the n-form L ¼ Ldx0∧…∧dxn−1, where L
is the Lagrangian density—is always a boundary term. In
fact, if α is a n-form in Eq. (41), then its Lie derivative Lξα
is the exact form d½αðξÞ�. But in a theory of gravity, like
TEGR, this kind of (quasi-)invariance of the Lagrangian
comes from a symmetry of its dynamical variables gen-
erated by a proper combination of the trivial primary
constraints and the secondary ones. In fact, the change
of the TEGR Lagrangian n-form,

L ¼ 1

8
EfacefbdfMab

cedfdx0∧…∧dxn−1

¼ 1

8
facefbdfMab

cedfE0∧…∧En−1; ð45Þ

(we used that the vielbein is orthonormal to rewrite the
volume) under the gauge transformation (42) is equal to its
Lie derivative by virtue of Eqs. (42) and (44),

δL ¼ 1

4
δfacefbdfMab

cedfE0∧…∧En−1

þ 1

8
facefbdfMab

cedfδE0∧…∧En−1 þ � � �
¼ LξL ¼ d½LðξÞ�: ð46Þ

VI. MORE PRIMARY CONSTRAINTS:
THE LORENTZ GAUGE GROUP

So far we have found the 2n constraints that reflect the
constraint structure of the ADM formulation of general
relativity. However, TEGR describes the nðnþ 1Þ compo-
nents of the metric tensor through a n × n matrix Ea

μ. The
relation between both sets of dynamical variables is given
by the Eq. (5), which is invariant under local Lorentz
transformations of the vielbein. Since we know that TEGR
has dynamics only for the metric, as is clear from the
equivalence between TEGR and Einstein-Hilbert
Lagrangians expressed in Eq. (12), the local Lorentz
symmetry has to be a property not only of the relation
(5) but also the set of dynamical equations. Then, we
should find that Lorentz transformations in the tangent
space constitute a gauge group in TEGR. Therefore, we
will search for more primary constraints in Eq. (21).
Equation (21) is a system of n2 equations that are not

linearly independent. In the previous section we have
already shown that they contain a set of n constraints that
trivially emerge for μ ¼ 0. The existence of constraints
associated to the temporal coordinate index is a conse-
quence of the privileged role the temporal coordinate plays
in the canonical formalism. We expect that the rest of the

2Since E ¼ εab…gEa
0E

b
1…Eg

n−1, where εab…g is the Levi-
Civita symbol, we also obtain e0hδE¼e0hϵ

aεab…gEb
1…Eg

n−1¼
−Ea

νδeνhεab…gEb
1…Eg

n−1¼−Eδe0h. Therefore e0hE is invariant
under the transformation (37).
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primary constraints are exclusively related to tangent space
indices. Therefore, we will look for constraints among the
coordinate invariant combinations Πμ

aEe
μ; according to

Eq. (21) they are

Πμ
aEe

μ ¼ ECab
efeλf∂0Eb

λ þ E∂iEb
λe

0
ceide

λ
fMab

cedf; ð47Þ

where Cab
ef is defined as

Cab
ef ≐ e0ce0dMab

cedf: ð48Þ

To find constraints (relations among the canonical varia-
bles) in Eq. (47), we should find (vielbein-depending)
coefficients vae such that vaeΠ

μ
aEe

μ does not contain canonical
velocities. In other words, since the square matrix eλf is not
singular, it should be

vaeCab
ef ¼ 0: ð49Þ

Notice that even the n trivial primary constraintsGð1Þ
g ≐ Π0

g

can be recovered in this way. In fact Gð1Þ
g requires

coefficients vajgje ≐ e0eδag (the index between vertical bars

is a label for each independent set of coefficients), since
e0eδagΠ

μ
aEe

μ ¼ Π0
g. On the other hand, these coefficients

satisfy Eq. (49), becauseMgb
cedf is antisymmetric in c − e,

vajgjeCab
ef ¼ e0ee0ce0dMgb

cedf ≡ 0: ð50Þ

We will introduce an independent set of coefficients vae
leading to the primary constraints associated with the
Lorentz group. Let the following be the set of coefficients
vae labeled by gh

vjghjea ≐ 2δa½gηh�e: ð51Þ

Taking into account the form (17) of the supermetric, we
obtain

vjghjeaCab
ef ¼ 2e0ce0dηe½hMg�bcedf ¼ 4e0ce0dδ

cdf
hgb ≡ 0; ð52Þ

since δcdfhgb is completely antisymmetric [see Eq. (A5) for
details of the calculation]. The antisymmetric labels gh
classify nðn − 1Þ=2 new constraints. By combining
Eqs. (47), (52) and (A5), one gets

0≡ vjghjeaðΠμ
aEe

μ − E∂iEb
λe

0
ceide

λ
fMab

cedfÞ
¼ 2ηe½hΠ

μ
g�E

e
μ þ 4E∂iEb

λe
0
½he

i
geλb�: ð53Þ

In the last line, λ can be substituted with j due to the
antisymmetrization of the pair h − b. Besides, on the
constraint surface it is Π0

g ¼ 0. So, we define the primary
constraints

Gð1Þ
gh ≐ 2ηe½hΠi

g�E
e
i þ 4E∂iEb

j e
0
½he

i
ge

j
b� ≈ 0: ð54Þ

In Sec. VIII we will prove that these nðn − 1Þ=2 constraints
fulfill the Lorentz algebra. In addition, they will be
consistent with the evolution. The entire set of constraints
will prove to be first class. According to Eq. (34), the gauge
transformation of the vielbein generated by a combination

ϵghGð1Þ
gh is

δEa
j ðt;xÞ ¼

Z
dyϵghðt; yÞfEa

j ðt;xÞ; 2ηe½hΠi
g�ðt; yÞEe

i g;

ð55Þ

which can be extended to the component Ea
0 by virtue of the

gauge transformation (37), thus leading to the local Lorentz
transformation

δEa ¼ ϵghðt;xÞðηehδag − ηegδ
a
hÞEe: ð56Þ

At this point, one could ask whether we have exhausted
the solutions to Eq. (49). We remark that Cab

ef can be
rephrased as a symmetric n2 × n2 matrix by using a
notation that take pairs of flat indices a; b;… to define a
multi-index A ¼ ðÞae such that the Eq. (49) becomes

vACAB ¼ 0. ð57Þ

For this, we use the indexation formulas for A ¼ ðÞae,
B ¼ ðÞbf as follows3:

A ¼ ða − 1Þnþ e; B ¼ ðb − 1Þnþ f; ð58Þ

so, A;B;… ¼ 1;…; n2. Equation (A1) implies the sym-
metry of CAB,

CAB ¼ CBA: ð59Þ

Equation (57) means that there are as many linear con-
straints as there are zero eigenvalues in the symmetric
n2 × n2 matrix CAB. The coefficients vA ¼ vae of the
constrained combinations vaeΠ

μ
aEe

μ are the components of
the respective eigenvectors. So far we have found
nþ nðn − 1Þ=2 ¼ nðnþ 1Þ=2 zero eigenvalues. As we
will see in the forthcoming sections, the other nðn − 1Þ=2
eigenvalues are different from zero.

VII. TEGR CANONICAL HAMILTONIAN

We will fully exploit the multi-index notation introduced
at the end of the previous section. For this, we define a set
of objects of n2 components,

3The formula can be inverted by taking a ¼ ½A=n�, so
e ¼ A − n½A=n� − 1, where ½� means the integer part.
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_EB ≐ eλf _E
b
λ ; EB

0 ≐ eif∂iEb
0;

ΠA ≐ Πμ
aEe

μ; PA ≐ E∂iEb
ke

0
ceide

k
fMab

cedf: ð60Þ

Thus the Lagrangian density (16) reads

L ¼ 1

2
ðΠA þ PAÞð _EA − EA

0 Þ −U; ð61Þ

where

U ≐ −
1

2
E∂iEa

j∂kEb
l e

i
ce

j
eekde

l
fMab

cedf: ð62Þ

Therefore, the canonical Hamiltonian density turns out to
be

H ≐ Πμ
a _Ea

μ − L ¼ ΠA
_EA − L

¼ 1

2
ðΠA − PAÞ _EA þ 1

2
ðΠA þ PAÞEA

0 þ U: ð63Þ

To write H in a canonical way, the velocities _EB must be
solved in terms of the momenta. Equation (47) displays the
linear relation among velocities and momenta; this equation
now reads

ΠA − PA ¼ ECABð _EB − EB
0 Þ: ð64Þ

In Eq. (64) _EB cannot be straightforwardly solved because
the matrix CAB is singular. Matrix CAB has nðnþ 1Þ=2 zero
eigenvalues, since there are nðnþ 1Þ=2 primary constraints
linear in the momenta. Despite the fact that CAB is not
invertible, we can still solve the subspace of velocities that
is orthogonal to the subspace of zero eigenvalues. In fact,
by using a proper basis for splitting the subspace of zero
eigenvalues, CAB would look like

C0
AB ¼

�
0 0

0 ~C

�
: ð65Þ

In such a basis we would find nðnþ 1Þ=2 constraints
ΠA − PA ¼ 0; in addition, we would trivially solve
nðn − 1Þ=2 relevant velocities,

_EA − EA
0 ¼ E−1D0ABðΠB − PBÞ; ð66Þ

where the matrix D0 is

D0 ¼
�
0 0

0 ~D

�
; ð67Þ

and satisfies

D0C0 ¼ C0D0 ¼
�
0 0

0 1

�
: ð68Þ

Equation (66) declares zero the nðnþ 1Þ=2 first velocities.
This causes no harm, since these velocities enter the
Hamiltonian (63) as the coefficients of the primary con-
straints ΠA − PA ¼ 0. So, the values of the nðnþ 1Þ=2 first
velocities are irrelevant, because different choices modify
the Hamiltonian by terms proportional to the constraints.
Anyway this kind of terms are reintroduced in the primary
Hamiltonian (25).
Let us use the matrixN of change of basis to return to the

original basis: C0 ¼ NCN−1. Then, the previous equation
becomes

N−1D0NC ¼ CN−1D0N ¼ N−1
�
0 0

0 1

�
N: ð69Þ

The rhs is not the identity, but is a symmetric matrix. The
matrix

D ≐ N−1D0N ð70Þ

satisfies that CDC ¼ C and DCD ¼ D. Therefore D is the
Moore-Penrose pseudoinverse of C. We will use the
Eq. (66) in the original basis, so we must substitute D0
with D. Thus, we substitute Eq. (66) in Eq. (63) to obtain
the canonical form of the Hamiltonian density,

H ¼ 1

2
eðΠA − PAÞDABðΠB − PBÞ þ ΠAEA

0 þ U; ð71Þ

where e ¼ E−1 ¼ detðeμaÞ. The canonical Hamiltonian is
the integral of H. We can remind the form (32) of the

constraint Gð2Þ
0 to write

H ¼
Z

dxH ¼
Z

dxGð2Þ
0 þ

Z
Ec
0Πi

cdSi: ð72Þ

Then, the canonical Hamiltonian is a constraint plus a
boundary term. As a consequence, the set of first-class
constraints will be automatically consistent with the
evolution.

A. Dimension n= 3

Let us work with the matrix CA
B,

CA
B ¼ Ca

eb
f ¼ e0ce0dM

a
b
g
e
hf; ð73Þ

where Ma
b
g
e
hf ¼ ηacηdeMcb

gdhf. CAB and CA
B share the

eigenvectors of zero eigenvalue (see the Appendix for the
forms of these matrices). The nonzero eigenvalues of CA

B
are

λ1 ¼ λ2 ¼ 2½ðe00Þ2 − ðe01Þ2 − ðe02Þ2� ¼ 2g00 ≐ λ;

λ3 ¼ −λ: ð74Þ
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The case n ¼ 3 is very simple because the matrix CA
B

satisfies

CA
BCB

CCC
D ¼ λ2CA

D: ð75Þ

This is a consequence of the fact that the nonzero
eigenvalues have the same absolute value. This means that
the pseudoinverse of CA

B is DA
B ¼ λ−2CA

B. Therefore, the
matrix DAB in Eq. (71) is

DAB ¼ λ−2CAB ¼ λ−2e0ge0hM
abg

e
h
f: ð76Þ

B. Dimension n > 3

In n ¼ 4 dimensions, the matrix CA
B has six nonzero

eigenvalues; they are

λ1 ¼ λ2 ¼ λ3 ¼ λ4 ¼ λ5

¼ 2½ðe00Þ2 − ðe01Þ2 − ðe02Þ2 − ðe03Þ2� ¼ 2g00 ≐ λ;

λ6 ¼ −2λ: ð77Þ

Since their absolute values are not equal, the pseudoinverse
matrix DAB cannot be inferred in a straightforward way as
we did in n ¼ 3 dimensions. In fact, the matrix CA

B does
not satisfy Eq. (75) when n > 3. The eigenvector related to
the odd eigenvalue is

wB ¼ wb
f ¼ −

λ

2
δbf þ e0fη

bhe0h: ð78Þ

In fact, in any dimension n, vector wB satisfies the
eigenvalue equation

CA
BwB ¼ e0ge0hM

a
b
g
e
hfwb

f

¼ −ðn − 2Þλwa
e ¼ −ðn − 2ÞλwA: ð79Þ

We will show that the pseudoinverse of CA
B can be

formulated as the matrix

DA
B ¼ λ−2ðCA

B þ αwAwBÞ; ð80Þ

where α is a factor to be determined. The idea is to use the
projector associated to the odd eigenvalue to “improve” the
matrixCA

B and get the desired result. In order forDA
B to be

the pseudoinverse of CA
B, the rhs of the equation

CA
CDC

DCD
B ¼ λ−2CA

CCD
CCD

B þ αðn − 2Þ2wAwB ð81Þ

should be CA
B. To find α, we will introduce the auxiliary

matrix

~CA
B ¼ CA

B þ 4λ−1wAwB; ð82Þ

which satisfies

~CA
BwB ¼ CA

BwB þ 4λ−1wAwBwB

¼ −ðn − 2ÞλwA þ ðn − 1ÞλwA ¼ λwA: ð83Þ

Besides, for any vector lB orthogonal to wB it is
~CA

BlB ¼ CA
BlB ¼ λlA. Then, ~CA

B is isotropic in the
subspace of nonzero eigenvalues.4 Since all the nonzero
eigenvalues of ~CA

B are equal to λ, then ~CA
B fulfills

Eq. (75). Therefore

λ2ðCA
B þ 4λ−1wAwBÞ ¼ λ2 ~CA

B ¼ ~CA
C
~CC

D
~CD

B

¼ CA
CCD

CCD
B þ 4λðn2 − 5nþ 7ÞwAwB; ð84Þ

i.e.,

λ−2CA
CCD

CCD
B ¼ CA

B − 4λ−1ðn − 3Þðn − 2ÞwAwB: ð85Þ

Substituting this result in Eq. (81), we obtain thatDA
B is the

pseudoinverse of CA
B if α has the value

α ¼ λ−1
4ðn − 3Þ
ðn − 2Þ : ð86Þ

In n ¼ 4 dimensions, α is equal to 2λ−1. Thus the contra-
variant pseudoinverse matrixDAB ¼ λ−2ðCAB þ αwAwBÞ in
four dimensions is

DAB ¼ Dab
ef ¼ λ−1

�
δ½af δ

b�
e þ 1

2
ηabηef

�

− λ−2ðe0ee0fηab þ 4e0ge0½eδ
½a
f�η

b�g

þ e0ge0hη
agηbhηefÞ

þ 2λ−3ηagηbhe0ge0he
0
ee0f: ð87Þ

VIII. ALGEBRA OF CONSTRAINTS

The Hamiltonian formalism for TEGR is not complete
without checking that the set of constraints is first class. For
this, we have to compute the entire set of Poisson brackets
between the constraints. The pseudoinverse matrix DAB

will enter the algebra of those Poisson brackets involving

the constraint Gð2Þ
0 . It is worth mentioning that Eq. (78) can

be substituted in the lhs of Eq. (79) to obtain

1

2ðn − 2ÞC
a
be

b ¼ wa
e ¼ wA: ð88Þ

Therefore, matrix D in Eq. (80) can be written entirely in
terms of the matrix C as

4This is true not only for n ¼ 4; it has also been checked for
arbitrary n through the computer algebra program CADABRA [21].
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Dab
ef ¼ λ−2Cab

ef þ
λ−3ðn − 3Þ
ðn − 2Þ3 Ca

ce
cCb

df
d; ð89Þ

which will be useful to compute those brackets involv-

ing Gð2Þ
0 .

The simplest brackets are those related to Gð1Þ
a ,

fGð1Þ
a ðt;xÞ; Gð1Þ

b ðt; yÞg ¼ 0; ð90Þ

fGð2Þ
i ðt;xÞ; Gð1Þ

a ðt; yÞg ¼ 0; ð91Þ

fGð1Þ
ab ðt;xÞ; Gð1Þ

c ðt; yÞg ¼ 0; ð92Þ

fGð2Þ
0 ðt;xÞ; Gð1Þ

a ðt; yÞg
¼ ðe0aGð2Þ

0 þ eiaG
ð2Þ
i Þδðx − yÞ: ð93Þ

However, the last one requires the knowledge of the
brackets between the momenta Π0

a and the matrix DAB.
In the Appendix we summarize useful hints in order to
simplify this calculation.
The Poisson brackets between secondary constraints

Gð2Þ
μ reproduce the algebra of constraints of the ADM

formulation of general relativity,

fGð2Þ
i ðt;xÞ; Gð2Þ

j ðt; yÞg
¼ −Gð2Þ

i ðxÞ∂y
jδðx − yÞ þGð2Þ

j ðyÞ∂x
i δðx − yÞ; ð94Þ

fGð2Þ
0 ðt;xÞ; Gð2Þ

0 ðt; yÞg ¼ gijðxÞGð2Þ
i ðxÞ∂y

jδðx − yÞ
− gijðyÞGð2Þ

i ðyÞ∂x
j δðx − yÞ;

ð95Þ

fGð2Þ
0 ðt;xÞ; Gð2Þ

i ðt; yÞg ¼ Gð2Þ
0 ðxÞ∂y

i δðx − yÞ: ð96Þ

We have also verified that the Poisson brackets for the

constraints Gð1Þ
ab reproduces the Lorentz algebra,

fGð1Þ
ac ðt;xÞ; Gð1Þ

fe ðt; yÞg
¼ ðηecGð1Þ

af þ ηafG
ð1Þ
ce − ηcfG

ð1Þ
ae − ηaeG

ð1Þ
cf Þδðx − yÞ:

ð97Þ

It is

fGð1Þ
ab ðt;xÞ; Gð2Þ

i ðt; yÞg ¼ 0: ð98Þ

Finally the most intricate calculation is required by the
bracket

fGð2Þ
0 ðt;xÞ; Gð1Þ

ab ðt; yÞg ¼ Ec
0ηc½ae

0
b�G

ð2Þ
0 δðx − yÞ: ð99Þ

In order to alleviate some difficult parts of it, some useful
computations are summarized in the Appendix.
As a result we have obtained n trivial primary constraints

Gð1Þ
a , together with nðn − 1Þ=2 primary constraints that

come from the Lorentz algebra. We have also obtained n

secondary constraints Gð2Þ
μ that are equivalent to the super-

Hamiltonian and supermomenta constraints of the ADM
formalism. Since we just proved that all constraints are first
class, then the counting of degrees of freedom goes as

Number of d:o:f: ¼ Number of ðp; qÞ − Number of fcc

¼ n2 −
nðnþ 3Þ

2
¼ nðn − 3Þ

2
ð100Þ

which is the number of degrees of freedom of general
relativity in n dimensions.

IX. SUMMARY

The essence of a Hamiltonian constrained system lies in
the impossibility of solving all the canonical velocities in
terms of canonical momenta. This is because the momenta
are not independent, but satisfy constraint equations, which
in turn means that some dynamical variables are spurious
degrees of freedom. In the case of the teleparallel equivalent
of general relativity (TEGR), such obstruction is expressed
in Eq. (47), since Cab

ef cannot be inverted. Cab
ef is an

object intimately linked to the Lorentz invariant super-
metric Mab

cedf entering the TEGR Lagrangian (20). In
order to analyze how many constraints are involved in the
Eq. (47), and how many canonical velocities can be solved,
we have arranged the components of Cab

ef in a n2 × n2

symmetric matrix CAB [the relation between the superindex
A and the tangent space indices is given in Eq. (58)].
We have shown that the eigenvalues of CA

B follow a
very simple pattern: nðnþ 1Þ=2 eigenvalues are zero,
nðn − 1Þ=2 − 1 of them are equal to 2g00 ≐ λ, and the
remaining one is equal to ð2 − nÞλ. The primary constraints
result from the contraction of the Eq. (64) with each
eigenvector of zero eigenvalue; they include the n trivial

constraints Gð1Þ
a [see Eq. (24)] and the nðn − 1Þ=2 Lorentz

constraints Gð1Þ
ab [see Eq. (54)]. To build the canonical

Hamiltonian we must identify the subset of canonical
velocities that can be still solved in terms of the momenta.
For this, we employed the Moore-Penrose pseudoinverse of
matrix C, which can be sought in the form proposed in
Eq. (80) thanks to the simple pattern of eigenvalues
exhibited by the matrix C. The so obtained matrix DAB

is the piece we need to write the canonical Hamiltonian
density H [see Eq. (71)]. Those terms associated with the
unsolved velocities are absorbed into the terms added to
the primary Hamiltonian Hp (25). Besides the primary

constraints Gð1Þ
a , Gð1Þ

ab , we have also obtained n secondary
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constraints Gð2Þ
μ —the diffeomorphism constraints—that

guarantee that the primary constraints remain valid along
the evolution dictated byHp (we have examined this require-
ment at the level of the Euler-Lagrange equations). The
consistency under the evolution of the system must be
checked for the secondary constraints too. Not surprisingly,

the canonical Hamiltonian density H is equal to Gð2Þ
0 except

for a boundary term. Thus, the consistency of the entire set
of constraints is guaranteed by the first-class constraint
algebra [Eqs. (90)–(99)]. Since the constraints are first class,
they generate gauge transformations. Therefore, there are
nðnþ 3Þ=2 spurious variables, which reduces the number of
degrees of freedom to nðn − 3Þ=2. The independent gauge
transformations are those displayed in Eqs. (37), (42),
and (56).
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APPENDIX

1. Properties of the supermetric

There are many properties of the supermetric that were
used throughout this work, and that can be deduced from its
definition. Some of them are

Mab
cedf ¼ Mba

dfce ¼ −Mab
ecdf ¼ −Mab

cedf: ðA1Þ
We can calculate “traces” of the supermetric, which depend
on the dimension n. Some of them are

Mab
aedf ¼ Mba

dfae ¼ 4ðn − 2Þηe½dδf�b ; ðA2Þ

Mab
dfae ¼ Mba

aedf ¼ 2ðn − 2Þηe½fδd�b ; ðA3Þ

Mab
aebf ¼ −2ðn − 1Þðn − 2Þηef: ðA4Þ

The totally antisymmetric Kronecker delta δghfcab appears in
the antisymmetrized product

ηe½cMa�bgehf ¼ 2ðδh½aδfc�δgb þ δg½aδ
h
c�δ

f
b þ δf½aδ

g
c�δ

h
bÞ

¼ −2δghfcab: ðA5Þ
We also obtain

Mabg
e
h
fηa½qδ

e
p� ¼ ηbgηf½qδhq� þ ηbhηf½qδ

g
p� þ δbfδ

g
½qδ

h
p�; ðA6Þ

ηe½cCd�b
ef ¼ 4e0fe

0½cηd�b: ðA7Þ

Some other combinations quadratic in M appear in the
calculations, and it is useful to have them on hand,

Cac
ecMag

cedf ¼ 4ðn − 3Þðn − 2Þg00ηc½dδf�g
þ 8ðn − 2Þe0ge0½fηd�c þ e0ce0½dδf�g ; ðA8Þ

Cab
efMabc d

e f ¼ 6ðn − 3Þðn − 2Þηcdg00
þ 12ðn − 2Þe0ce0d: ðA9Þ

2. Calculation of ∂L=∂Ea
0

For computing ∂L=∂Ea
0 , it is important to notice that, in

contrast to electromagnetism, Ea
0 appears in the Lagrangian

not just in the spatial derivatives ∂iEa
0 but also as a part of

eμa and E. First of all we need the quotient ∂eμc=∂Ea
λ , which

is obtained from the duality relation,

δμν ¼ eμbE
b
ν → 0 ¼ ∂eμb

∂Ea
λ

Eb
ν þ eμaδλν: ðA10Þ

This implies that

∂eμc
∂Ea

λ

¼ −eμaeλc: ðA11Þ

We will need also the expression ∂E=∂Ea
0 , which is

obtained from the explicit formula for the determinant,

E ¼ ϵabcd…gEa
0E

b
1E

c
2E

d
3…Eg

n: ðA12Þ
Then we obtain

Ea
λ

∂E
∂Ea

0

¼ δ0λE →
∂E
∂Ea

0

¼ Ee0a: ðA13Þ

In this way,

∂L
∂Ea

0

¼ 1

2
Eðe0aeμgeνeeρheλf − eμae0geνee

ρ
he

λ
f − eνae

μ
ge0ee

ρ
he

λ
f

− eρae
μ
geνee0he

λ
f − eλae

μ
geνee

ρ
he

0
fÞ∂μEc

ν∂ρEd
λMcd

gehf:

ðA14Þ
In the last expression we identify the Lagrangian in the first
term, and different index combinations of the momenta. We
rewrite it and continue with the algebraic manipulation

∂L
∂Ea

0

¼ e0aL −
1

2
eμa∂μEc

νΠν
c þ

1

2
eνa∂μEc

νΠ
μ
c

−
1

2
eρa∂ρEd

λΠλ
d þ

1

2
eλa∂ρEd

λΠ
ρ
d

¼ e0aLþ 2eνa∂ ½μEc
ν�Π

μ
c

¼ e0aLþ 2e0a∂ ½iEc
0�Π

i
c þ 2eja∂ ½iEc

j�Π
i
c: ðA15Þ

The Hamiltonian density can be extracted from the first
terms, to obtain
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∂L
∂Ea

0

¼ −e0aHþ e0a∂iEc
0Πi

c þ 2eja∂ ½iEc
j�Π

i
c

¼ e0að∂iðEc
0Πi

cÞ −HÞ − Ec
0e

0
a∂iΠi

c þ 2eja∂ ½iEc
j�Π

i
c:

ðA16Þ

This result is substituted in Eq. (30) to obtain n secondary
constraints,

Ec
je

j
a∂iΠi

c þ e0að∂iðEc
0Πi

cÞ −HÞ þ 2eja∂ ½iEc
j�Π

i
c ≈ 0: ðA17Þ

We note that only spatial derivatives are present, and the
canonical Hamiltonian takes part in the secondary

constraints. We can isolate the contribution of the
Hamiltonian by doing the contraction with Ea

0; thus, we get

Gð2Þ
0 ¼ H − ∂iðEc

0Πi
cÞ ≈ 0: ðA18Þ

We also perform the contraction with Ea
k , yielding

Gð2Þ
k ¼ ∂kEc

iΠi
c − ∂iðEc

kΠi
cÞ ≈ 0: ðA19Þ

3. Matrix CA
B

We present the full expression for the matrix CA
B in

n ¼ 4, which appears in the definition of the canonical
momenta. It is

CA
B¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 2c23 −2d12 −2d13 0 −2d12 2c13 −2d23 0 −2d13 −2d23 2c12
0 −c23 d12 d13 c23 0 −d02 −d03 −d12 −d02 2d01 0 −d13 −d03 0 2d01
0 d12 −c13 d23 −d12 2d02 −d01 0 c13 −d01 0 −d03 −d23 0 −d03 2d02
0 d13 d23 −c12 −d13 2d03 0 −d01 −d23 0 2d03 −d02 c12 −d01 −d02 0

0 c23 −d12 −d13 −c23 0 d02 d03 d12 d02 −2d01 0 d13 d03 0 −2d01
2c23 0 −2d02 −2d03 0 0 0 0 2d02 0 −2c03 −2d23 2d03 0 −2d23 −2c02
−2d12 d02 d01 0 −d02 0 c03 d23 −d01 c03 0 d13 0 d23 d13 −2d12
−2d13 d03 0 d01 −d03 0 d23 c02 0 d23 −2d13 d12 −d01 c02 d12 0

0 −d12 c13 −d23 d12 −2d02 d01 0 −c13 d01 0 d03 d23 0 d03 −2d02
−2d12 d02 d01 0 −d02 0 c03 d23 −d01 c02 0 d13 0 d23 d13 −2d12
2c13 −2d01 0 −2d03 2d01 −2c03 0 −2d13 0 0 0 0 2d03 −2d13 0 −2c01
−2d23 0 d03 d02 0 −2d23 d13 d12 −d03 d13 0 c01 −d02 d12 c01 0

0 −d13 −d23 c12 d13 −2d03 0 d01 d23 0 −2d03 d02 −c12 d01 d02 0

−2d13 d03 0 d01 −d03 0 d23 c02 0 d23 −2d13 d12 −d01 c02 d12 0

−2d23 0 d03 d02 0 −2d23 d13 d12 −d03 d13 0 c01 −d02 d12 c01 0

2c12 −2d01 −2d02 0 2d01 −2c02 −2d12 0 2d02 −2d12 −2c01 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ðA20Þ

where

c01 ¼ ðe00Þ2 − ðe01Þ2; c02 ¼ ðe00Þ2 − ðe02Þ2;
c03 ¼ ðe00Þ2 − ðe03Þ2; c12 ¼ ðe01Þ2 þ ðe02Þ2;
c13 ¼ ðe01Þ2 þ ðe03Þ2; c23 ¼ ðe02Þ2 þ ðe03Þ2;
d01 ¼ e00e

0
1; d02 ¼ e00e

0
2; d03 ¼ e00e

0
3;

d12 ¼ e01e
0
2; d13 ¼ e01e

0
3; d23 ¼ e02e

0
3: ðA21Þ

The matrices CAB and CAB are obtained by raising and
lowering indices with the corresponding η tensors. The
matrix DA

B is obtained starting from (80).

4. Poisson brackets

Some useful fundamental Poisson brackets between the
canonical variables and their derivatives are given below,

fEðt;xÞ;Πμ
aðt; yÞg ¼ Eeμaδðx − yÞ; ðA22Þ

feðt;xÞ;Πμ
aðt; yÞg ¼ −eeμaδðx − yÞ; ðA23Þ

feμaðt;xÞ;Πν
bðt; yÞg ¼ −eμbeνaδðx − yÞ; ðA24Þ

f∂λEa
μðt;xÞ;Πν

bðt; yÞg ¼ −fEa
μðt;xÞ; ∂λΠν

bðt; yÞg
¼ δabδ

ν
μ∂x

λ δðx − yÞ; ðA25Þ
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f∂μEb
νðt;xÞ; ∂λΠλ

cðt; yÞg ¼
Z

dzδbc∂x
μδðx − zÞ∂y

νδðy − zÞ:

ðA26Þ

These expressions are enough (together with patience and a
lot of calculations) to calculate those Poisson brackets that

do not involveGð2Þ
0 . For the remaining Poisson brackets, we

provide some easy-to-derive expressions

fGð2Þ
0 ðt;xÞ; Ec

i ðt; yÞg
¼ ðeDABðΠB − PBÞEe

i δ
c
a þ ∂iEc

0Þδðx − yÞ; ðA27Þ

fGð2Þ
0 ðt;xÞ; ∂λEc

μðt; yÞg
¼ ðeDABðΠB − PBÞEe

μδ
c
a þ ∂x

μEc
0ðxÞÞ∂y

λδðx − yÞ:
ðA28Þ

Other combinations of brackets between canonical
momenta and some basic building blocks of the secondary

constraint Gð2Þ
0 that recurrently appear in the calculations

are the following:

fλ−γ;Π0
cg ¼ 2γλ−γe0c; ðA29Þ

fλ−γ;Πi
cg ¼ 4γλ−ðγþ1Þe0cg0i; ðA30Þ

fwA;Π0
cg ¼ −2e0cwA; ðA31Þ

fwA;Πi
cg ¼ −

1

2ðn − 2Þ e
0
cðeige0h þ eihe

0
gÞMa

d
g
e
hd: ðA32Þ

Finally, we give some help to calculate the brackets of the
momenta and the matrix DAB. It is very simple to get the
brackets

fDAB;Π0
cg ¼ 2e0cDAB: ðA33Þ

However, for the spatial part of the momenta Πi
a, the

brackets with the matrix D do not simplify so easily. After
using all the developed tools, we get

fDAB;Πi
cg

¼8e0cg0iλ−3ðCABþαwAwBÞ−λ−2e0cðeige0hþeihe
0
gÞMabg

e
h
f

−
αλ−2e0c
2ðn−2Þðe

i
ge0hþeihe

0
gÞðMa

d
g
e
hdwBþMb

d
g
f
hdwAÞ

þ4αλ−3e0cg0iwAwB: ðA34Þ

In Eqs. (A29)–(A34) a factor δðx − yÞ is understood. As
general advice, the raising and lowering of indices in the
supermetric Mab

cedf must be carefully done, in order to
keep the original order of the indices and protect the
symmetries of the object.
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