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The Hamiltonian formulation of the teleparallel equivalent of general relativity is developed from an
ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy
of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix
entering the (linear) relation between canonical velocities and momenta to obtain the set of primary
constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudoinverse of that matrix.
The set of constraints, including the subsequent secondary constraints, completes a first-class algebra. This
means that all of them generate gauge transformations. The gauge freedoms are basically the diffeo-
morphisms and the (local) Lorentz transformations of the vielbein. In particular, the Arnowitt, Deser, and
Misner algebra of general relativity is recovered as a subalgebra.
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I. INTRODUCTION

The determination of the independent dynamical degrees
of freedom is of the utmost importance in any field theory,
since it allows us to exhibit the internal consistency of the
theory and tackle the issue of the well-posedness of the
Cauchy problem. It also puts the theory into a different
perspective, because it helps us to find the minimal number
of variables specifying the state of the system, is thus vital
for the quantization of the theory. According to Dirac’s
procedure [1], the number of genuine degrees of freedom
can be determined from the algebra of the constraints
among the canonical variables of the theory. The constraints
first appear when the canonical momenta are computed.
These primary constraints have to be consistent with the
Hamiltonian evolution of the system, which leads to
secondary constraints, and so on. Finally, the set of all
the constraints is reclassified as first-class and second-class
constraints, depending whether their Poisson brackets are or
are not zero on the constraint surface in the phase space.
First-class constraints generate gauge transformations; thus,
each of them is related to a spurious degree of freedom. On
the other hand, second-class constraints can be reorganized
as pairs of spurious conjugated variables. Thus, the number
of genuine degrees of freedom can be computed as

Number of d.o.f. = Number of pairs of canonical variables

— Number of first class constraints

1 .
- ENumber of second class constraints.

(1)
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A nice example is the Maxwell potential, described by four
dynamical variables A, that are governed by the Lagrangian
L[A,] « F;,F* (thefield tensor F,,is F,, = 9;A, — 0,A,).
Since F,, is antisymmetric, JyA, is not present in the
Lagrangian. Thus the canonical momentum 7° =
OL/0(0yAo) identically vanishes; it is a primary constraint.
The consistency of the constraint z7° = 0 with the evolution
requires the vanishing of the Poisson bracket between z° and
the Hamiltonian; this leads to the secondary constraint
V.n' « V,F% = 0 (Gauss’s law). Both constraints are first
class, since the Poisson brackets between canonical
momenta are identically zero. Therefore, according to
Eq. (1), one realizes that the electromagnetic field does
not have four degrees of freedom A, at each event, but only
two (electromagnetic waves are transversal). At the level of
the initial data, the existence of constraints imply a restric-
tion on the spectrum of allowed initial configurations.
Besides, the absence of kinetic term for A, in the
Lagrangian implies that the evolution of this dynamical
variable, conjugate to the first-class constraint z°, remains
completely undetermined. The same happens to the evolu-
tion of the longitudinal component of the potential A, which
also remains undetermined as a consequence of the exist-
ence of the first-class constraint V,z'. Thus, A, and A are
gauge freedoms. The former conclusions can also be derived
from a slightly modified Lagrangian. The integration by
parts of one of the terms containing 0;A leads to a surface
term, which can be eliminated, plus the term A,V,F%. In
such a way, the spurious degree of freedom A, becomes a
Lagrange multiplier whose variation leads to the Gauss’s law
constraint (any other presence of A, is captured in the
canonical momenta ') [2].

The canonical formulation of general relativity (GR)
relies on the widely spread formalism by Arnowitt, Deser,
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and Misner (ADM) [3], in which the spacetime is foliated
into a family of spacelike hypersurfaces that induces a
proper decomposition of the metric tensor g,. The
Einstein-Hilbert Lagrangian can be integrated by parts to
realize that the temporal sector of the metric (the lapse N
and the shift vector N;) is thrown into the role of Lagrange
multipliers associated to four first-class constraints
(the super-Hamiltonian and supermomenta constraints).
So written, the Lagrangian gives dynamics only to the
six components of the three-dimensional metric g;; on
the spacelike hypersurfaces of the foliation; however, the
canonical variables (g;;. 7'/) are still constrained by the four
first-class constraints. Thus the gravitational field contains
only two genuine degrees of freedom. In fact, apart from
the undetermined evolutions of the four Lagrange multi-
pliers (N, N;), there are also four gauge freedoms among
the six components of g;; (gravitational waves are trans-
versal and traceless). As a feature that distinguishes GR
from electromagnetism, the GR Hamiltonian vanishes
because of the constraints. This feature is typical of systems
having the time hidden among their canonical variables [4].

In 1918, Weyl’s unsuccessful attempt to unify gravitation
and electromagnetism introduced for the first time the notion
of gauge theories [5]. Einstein tried the same unification idea
ten years later, taking advantage of the sixteen components
of the tetrad field in order to include the electromagnetic
field [6]. Later he realized that the arbitrariness in the choice
of the tetrad comes from the set of local Lorentz trans-
formations that leave the metric unchanged; therefore, the
extra degrees of freedom could not account for the electro-
magnetism. However, he introduced the concept of tele-
parallelism that remains important today, presenting for the
first time the teleparallel equivalent of general relativity
(TEGR), an equivalent formulation of general relativity. In
fact, although both theories have different Lagrangian
formulations, they are equivalent at the level of the equations
of motion. Nonetheless, they are based on completely
different Lagrangian constructions. This is so because
TEGR describes gravity as the effect of torsion in the
curvatureless Weitzenbock geometry; the dynamical varia-
bles are not the components of the metric g,, but those of
the field of orthonormal frames—tetrads or vierbeins—ej;
[a and p are SO(3, 1) and coordinate indices, respectively]
[6,7]. As a consequence, the Hamiltonian formalisms of GR
and TEGR are different too. Among the works treating the
Hamiltonian formulation of TEGR we specially mention
Ref. [8], which introduces a set of auxiliary variables in a
first-order approach that lowers the order of the Euler-
Lagrange equations (cf. [9—12]), and Ref. [13], which deals
with an enlarged set of variables and constraints to enforce
the vanishing of the curvature. The canonical formulation of
TEGR has been also stated in the geometric language of
differential forms [14,15].

In this work we will put forward the Hamiltonian
formalism for TEGR in a way as close as possible to
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the second-order formalism of electrodynamics that was
sketched above. This work is organized as follows: in
Sec. II we introduce the standard TEGR dynamics, which is
governed by a Lagrangian quadratic in the torsion. In
Sec. I we show that the TEGR Lagrangian can be
reformulated as the quadratic inner product of the anholon-
omy coefficients with respect to a supermetric that is
defined in the tangent space. In Sec. IV we obtain the
set of primary and secondary constraints that are equivalent
to those of electrodynamics and GR geometrodynamics.
In Sec. V we study the gauge transformations generated by
these constraints (they will prove to be first class).
Compared with geometrodynamics, TEGR has an addi-
tional gauge symmetry associated to local Lorentz trans-
formations of frames, which is the source of the constraints
analyzed in Sec. VI. In Sec. VII the (constrained) linear
relations between canonical momenta and velocities is
inverted to build the canonical TEGR Hamiltonian H;
the procedure implies a careful analysis of the eigenvector
structure involved in these linear relations in order to build
the respective pseudoinverse matrix. The entire set of
n(n + 3)/2 constraints (n is the spacetime dimension) is
consistent with the evolution governed by H; they are first
class as proven by the algebra of constraints computed in
Sec. VIIL In Sec. IX we summarize the main steps and the
achievements of the paper. The Appendix shows some
useful computations that are needed throughout the work.

II. TEGR AND STANDARD LAGRANGIAN
FORMULATION

TEGR is a theory of gravity where the field of ortho-
normal frames plays the role of dynamical variable. Let M
be a manifold, {e,} a basis in the tangent space T', (M), and
{E“} its dual basis in the cotangent space T,(M) [i.e., if
the 1-forms E“ are applied to the vectors e, one obtains
E“(e,) = 6%]. They can be expanded in a coordinate basis
as e, = e’éé‘ﬂ and E = Ejdx"; thus, duality means that

E4el, = 5, ehE = &), (2)
Here and from now on, we will use Greek letters y, v, ... =
0,...,n—1 for spacetime coordinate indices and Latin
letters a,b,...,g,h =0,...,n—1 for Lorentzian tangent
space indices. A vielbein (vierbein or tetrad in n =4
dimensions) is a basis encoding the metric structure of
the spacetime,

g= nabEu ® Ehv (3)
therefore,
E?-E" = g(E* E”) = 1, (4)

which means that the vielbein is an orthonormal basis. In
component notation, the former expressions look like
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G = nabEﬁEzl/]v Nab = gﬂ,,e’f,e’[,, (5)
which implies that the relation between the metric volume
and the determinant of the matrix Ej is

Vgl = det[EY] = E. (6)

Since the vielbein encodes the metric structure of the
spacetime, one can formulate a dynamical theory of
the spacetime geometry by defining a Lagrangian for the
vielbein field. In particular, there is a Lagrangian which
leads to dynamical equations for the vielbeins that
are equivalent to Einstein equations for the metric [16].
The so-called teleparallel equivalent of general relativity is
governed by the Lagrangian density

L =ET, (7)
where T is the torsion scalar
r=1",58,;", (8)

which is made up of

Tﬂup = ea”(ayE;JZ - apE;f)? (9)
and
1
S = 5 (K", + T8, —T,*&)). (10)
where
K* = ! T Hr —TH T 11
P 5( T pt+ p)' ( )

In Lagrangian (7), the strength field 7%, is the torsion
associated with the Weitzenbock connection F’y‘,, =
e '0,E;, and K* , is the contorsion [17,18]. In geometric
language, torsion is the 2-form T¢ = dE¢ + %, AE?,
where the 1-form w?, is the spin connection. The
Weitzenbock connection is the choice %, = 0, because
it leads to (T),, = (dE?),, = 0,E; — 0,E} = E;T",.
The Weitzenbock connection is metric compatible, since
V,ES = 0,E4 —T4,E$ = 0. Besides, from Eq. (2) we
also get that V, e, = 0. This means that the vielbein is
automatically parallel transported along any curve.
Furthermore, the parallel transport of any vector does
not depend on the path (it is absolute), since
Weitzenbock connection has the remarkable feature that
the curvature R¢, = dw“, + o A, is identically zero.
The (Weitzenbock) covariant derivative of a vector is
V,U=V,(U%,) = e,0,U% thus, vector U will be paral-
lel transported if and only if its components U“ are
constant.
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Although TEGR Lagrangian can be understood in terms
of the Weitzenbdck connection and its respective torsion, it
should be emphasized that the TEGR Lagrangian fixes
neither the connection nor the vielbein; it only determines
the metric, as is well known. Furthermore, whenever matter
couples minimally to the metric, as usual, the free particles
will follow geodesics of the (torsionless) Levi-Civita
connection f’,f,,.l Setting aside this point, we used to say
that TEGR is a theory where the gravitational effects are
fully encoded in the torsion. On the contrary, GR associates
gravity to curvature; it assumes that the spacetime is
endowed with the torsionless Levi-Civita connection,
whose curvature enters the FEinstein-Hilbert Lagrangian
L = ER. The reason why TEGR is indeed equivalent to GR
is traced to the fact that their respective Lagrangian
densities differ in a surface term,

—ER = ET —20,(ET/*). (12)
Even so, the vielbein field contains n?> components,
while the metric tensor has only n(n+ 1)/2. However,
TEGR dynamical equations are invariant under local
Lorentz transformations of the vielbein, which involve
(5) generators. Such a gauge invariance means that (}) =
n(n —1)/2 degrees of freedom cancels out, which allows
for the theories to turn out to be equivalent at the level of the
equations of motion.

III. TEGR LAGRANGIAN IN TERMS
OF THE VIELBEIN FIELD

With the aim of preparing the TEGR Lagrangian for the
study of its canonical structure, we will rewrite it com-
pletely in terms of ¢, E¢ and the derivatives 0,E;. This
imply the removing of any presence of the metric field,
since such contributions hide a dependence on the vielbein.
We transform the scalar torsion into

1 1
T =TT =5 10T, = T, T, (13)

We note that all terms in 7" are quadratic in the antisymme-
trized derivatives of the vielbein; writing term by term
one gets

1

1
Z Tplep/w = ngagﬁugnyaﬁyTﬂmx' (14)

Then, one substitutes the expression for the torsion tensor
[Eq. (9)] and the metric in terms of the vielbein field and its
inverse [Eq. (5)],

1However, Levi-Civita and_ Weitzenbock connections are
related through the contorsion I7, = I, — K%,
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1 ,
ZT,,””T/’W = nahn‘["nf]eEaﬂE“l,a,,E”ie’je’;e‘[}e}. (15)
After this procedure has been performed in all the terms,
the TEGR Lagrangian becomes

1
L=ET= EEaﬂana,,Ifb s cebeher My, Y, (16)

where we call supermetric M,,“¥ the emerging Lorentz
invariant tensor given by

My = 2yl — 45n/ 5] + 855nelds]). (17)

The supermetric is antisymmetric in the pairs of indices
¢ — e and d — f, which implies that only the antisymmetric
parts of 9,E%, and 0,Eb , take part in the Lagrangian (16).
Other properties of the supermetric are summarized in the
Appendix.

We remark that the index structure of the supermetric is
natural when we recognize in Eq. (16) the anholonomy
coefficients f¢,, which are defined by the commutator
le,.e,] = f¢, e.. In fact, by using Egs. (2) the coefficients
fi. can be rewritten as

fi = —ehet(OFL - D,E)) = —245e0, By, (18)

which can be related to other geometrical magnitudes, such
as the Weitzenbock torsion and the Lie derivative of the
vielbein,

fre =T(ec,e) = (Le E)(ep). (19)

In terms of these coefficients, the Lagrangian density looks
in a very elegant form,

1
L= gEfgefoMabcedf' (20)

A similar expression for the Lagrangian can be found in
Ref. [19], where the anholonomy coefficients are identified
with a Yang-Mills-like field strength; however, that
Lagrangian still mixed tangent space and coordinate indices.
Instead, Lagrangian (20) does not involve coordinate indi-
ces; it shows that supermetric M,,“% is a relevant geo-
metric object in the (co)tangent space structure of the
spacetime. We intend to analyze the Hamiltonian structure
of TEGR by starting from Lagrangians (16) and (20), and
then following a canonical second-order procedure.

IV. SUPER-HAMILTONIAN AND
SUPERMOMENTA CONSTRAINTS

We compute the canonical momenta by differentiating
the Lagrangian (16) with respect to the time derivative of
the canonical variable E;j
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I = —8(80E,‘1) = EO,E";edeielei M, !
1 .
= —EEeBe’éfoMab“df. (21)

Thus, the Poisson brackets in TEGR are defined as

{A(r.x), B(,y)}

N SA(t,x)6B(1,y) 6A(t,x)SB(t,y)
=/ dz(aEﬂz) STI3(z)  oT13(2) 5E;<z>>‘ 22)

The brackets between fundamental canonical variables are
{E;(1,x), I} (1,y) } = 8;6,8(x —y). (23)

Additional fundamental Poisson brackets, including E, e,
etc., are summarized in the Appendix.

From Eq. (21) we immediately get n trivial primary
constraints

Gy =T =0, (24)

which are derived by noticing that €% is symmetric in
¢ — e but M, is antisymmetric. Although we cannot
prove yet that they are first class (i.e., we do not know yet
whether they generate gauge transformations), the electro-
magnetic analogue tells us that they mean the Ef’s are
spurious gauge-dependent variables, that would become
Lagrange multipliers if an integration by parts were
performed in the action. This is in line with the spurious
character of the temporal sector of the metric tensor we
have commented on in Sec. [.

The primary constraints must be satisfied at any time. In
other words, if the system is on the constraint surface at the
initial time, it must remain there along the evolution. If this
consistency requirement were not fulfilled, then it could be
enforced by resorting to new (secondary) constraints [20].
From a Hamiltonian perspective, the consistency of the
primary constraints is controlled by means of the primary
Hamiltonian [2]

H,=H+ / axu(t )V x),  (25)

where H is the canonical Hamiltonian, (¢, x) are arbitrary

functions, and ¢£}> are all the primary constraints. The
consistency will be fulfilled if the Poisson brackets

{¢£,1), H ,} are zero on the constraint surface. This require-
ment could be satisfied by properly choosing the functions
u“(t,x); if not, new (secondary) constraints will be needed
to enforce it, and so on. Actually, in TEGR we will find that
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all the Poisson brackets between constraints are zero on the
constraint surface. This means that primary and secondary
constraints are all first class; they generate gauge trans-
formations. Thus the constraints will be consistent with the
evolution if their Poisson brackets with H vanish on the
constraint surface (i.e., if H is gauge invariant, as it should
be expected).

Though the entire set of primary constraints has not been
obtained yet, the evolution of constraints (24) can be
analyzed at the level of the Euler-Lagrange evolution
equations,

oL oL

0y m7—~—7-=0. 26
"O0(0,E!) OEL (26)
By splitting the first term, one gets
L L
0ol + 0 0 0 =0. (27)

"O(0,E¢)  OEL

Therefore, if the constraints (24) must be fulfilled at any
time, we obtain n equations—those having v = O—which
do not contain second-order temporal derivatives,

oL OL _
O0(0,ES) OES

0 (28)

Like the Gauss’s law in electromagnetism these equations
do not contain dynamics, but they constrain the dynamics.
Since the derivatives of the vielbein enter the Lagrangian
only in antisymmetric combinations, then it is

dL oL i
e 2 TN R S

Thus, we have found n secondary constraints,

oL
OES

AT, + —— = 0. (30)

We will prove that these constraints are consistent with the
evolution; thus, they do not generate new constraints. For
this, we will apply the derivative 0, to the constraints (30),
and use Eq. (27) to substitute 9,11,

AN oL L
Qe
oL oL
= =00, 5wy + 00 gy =

(31)

[we also use Eq. (26) in the last step]. The zero result comes
from the fact that O,E] enters the Lagrangian in
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antisymmetric combinations but the operators 9;0; and
0,0, are symmetric.

So far, we have obtained a set of constraints which is
consistent with the evolution. To write them in a fully
canonical way, we have to compute the derivative 0L /JE]
and express it as a function of the momenta, the vielbein
and its spatial derivatives. This computation is made in the
Appendix, where we obtain that the canonical Hamiltonian
density H (i.e., H = [ dx’H) takes part in the results. These
results are better understood when projected on Ej and EY.
Thus, we get the secondary constraints written in canonical
form,

Gy =M - 0,(EgIT) ~ 0, (32)
G = 9 ESTI — 9,(ESTT) ~ 0 (33)

(the symbol =~ stands for equalities that are valid on the
constraint surface). The constraints (32) and (33) are
equivalent to the super-Hamiltonian and supermomenta
constraints of the ADM formalism. While the ADM
Hamiltonian vanishes on the constraint surface, the
TEGR Hamiltonian does not. The reason can be traced
to the surface term in Eq. (12); in fact, according to
Eq. (32), 'H is not zero but a divergence [which became
a spatial divergence thanks to the constraints (24)].

V. GAUGE TRANSFORMATIONS

We have already anticipated—although have not yet

proven—that all the constraints will be first class. Let us

now consider the gauge transformations generated by Ggl)

and G,(,z). In general, the infinitesimal gauge transformation
generated by a first-class constraint G is [2]

éEﬁ(t,x) :/dye(t,y){E;;(t,X),G(t,y)}. (34)

Any transformation of the vielbein has to be accompanied
by a transformation of the basis {e, }, in order to respect the
duality relations E“(e;,) = &} of Eq. (2). Therefore

E“(Se,) + 5E“(e,) = 0, (35)
or
et = —el e}, SES. (36)

According to Eq. (34), any linear combination of primary

constraints €’ (1, X)GE,U generates a transformation that only
affects the temporal component of the 1-forms E¢

SE}(1,x) = €(1,X), (37)
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(or SE® = ¢“dt), which also implies2
Set = —e“elel. (38)

Instead, the transformations generated by GE)Z), G,(f) only
affect the spatial components of the forms E¢ (the canoni-
cal Hamiltonian density H does not contain I19). Then, the

infinitesimal gauge transformations generated by GE)Z) and

any arbitrary combination kaf) are respectively

SES(1,x) = EEY(t,x) + EL0,&
= 0,(Ej¢) + £20Ey), (39)

SE(1,x) = EOLES + ELO,&k
= 0,(E{&") + 204 Ey. (40)

In these results there is a term resembling the gauge
transformation of the electromagnetic potential. How-
ever, they come together with a term related to the
Weitzenbock torsion T = dE“. Both terms are needed
because, differing from the electromagnetic Lagrangian,
TEGR Lagrangian depends not only on the exterior
derivative of the field E¢ but on the field itself. Even so,
the whole result exhibits a clear geometric content, which
can be evidenced by means of the Lie derivative of a p-
form a along a vector ¢,

Loo = dla(&)] + da(@). (41)

In fact, the rhs of Egs. (39) and (40) constitute the spatial
components of £:E¢, where ¢ is the arbitrary vector field
formed by the infinitesimal parameters £(t, x), & (t, x). We
notice that Egs. (39) and (40) can be extended to the
temporal component of the 1-forms E¢, since any change
of Ef is a gauge transformation. Therefore, we have
obtained that TEGR is insensitive to 2n independent gauge
transformations of the vielbein on the constraint surface,
which are given by Eq. (37) and

B¢ = LB, (42)

The derivative character of transformation (42) together
with Eq. (35) imply that

5eb = L:g:eb = [é, eb]. (43)

In turn, this last transformation leads to a change of the
anholonomy coefficients,

2q; _ a b g : :
Since E =¢,,  EGEY...E,_;, where g, , is the Levi-

Civita symbol, we also obtain €)SE=ede%e,, ,EV..ES | =
as,v b 9 _ 0 0F iq 3 ;
—Ejoeseq. gET ... E,_ =—Ede,. Therefore e E is invariant

under the transformation (37).
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5ffzb = ‘C’-’ffzczb - ‘f(be)v (44)

as can be easily verified by using the Jacobi identity to
compute S[e,, e,] = [5e,, e,] + [e,,5e,).

We remark that the Lie derivative of any Lagrangian—
understood as the n-form L = Ldx°A...Adx"!, where L
is the Lagrangian density—is always a boundary term. In
fact, if @ is a n-form in Eq. (41), then its Lie derivative L:a
is the exact form d[a(&)]. But in a theory of gravity, like
TEGR, this kind of (quasi-)invariance of the Lagrangian
comes from a symmetry of its dynamical variables gen-
erated by a proper combination of the trivial primary
constraints and the secondary ones. In fact, the change
of the TEGR Lagrangian n-form,

1
L = CEfé.fiMay, Y dxA.. .ndx"!

8
1
- g ?efoMabcedeO/\. . ./\En_l, (45)

(we used that the vielbein is orthonormal to rewrite the
volume) under the gauge transformation (42) is equal to its
Lie derivative by virtue of Eqs. (42) and (44),

1 .
OL = 2 8ftuf iyMap /BN .. AE"!

1
+ gfgeff,fMabCedf5E°A.../\E"—l +--

= L = dL(¢)] (46)

VI. MORE PRIMARY CONSTRAINTS:
THE LORENTZ GAUGE GROUP

So far we have found the 2n constraints that reflect the
constraint structure of the ADM formulation of general
relativity. However, TEGR describes the n(n + 1) compo-
nents of the metric tensor through a n x n matrix Ej. The
relation between both sets of dynamical variables is given
by the Eq. (5), which is invariant under local Lorentz
transformations of the vielbein. Since we know that TEGR
has dynamics only for the metric, as is clear from the
equivalence between TEGR and Einstein-Hilbert
Lagrangians expressed in Eq. (12), the local Lorentz
symmetry has to be a property not only of the relation
(5) but also the set of dynamical equations. Then, we
should find that Lorentz transformations in the tangent
space constitute a gauge group in TEGR. Therefore, we
will search for more primary constraints in Eq. (21).

Equation (21) is a system of n” equations that are not
linearly independent. In the previous section we have
already shown that they contain a set of n constraints that
trivially emerge for y = 0. The existence of constraints
associated to the temporal coordinate index is a conse-
quence of the privileged role the temporal coordinate plays
in the canonical formalism. We expect that the rest of the
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primary constraints are exclusively related to tangent space
indices. Therefore, we will look for constraints among the
coordinate invariant combinations HZE;; according to
Eq. (21) they are

LE;, = EC,,*  ejOoE} + EDE}edelyeiM . (47)

where C,,¢/ is defined as
Cabef = €, EOM bcedf (48)

To find constraints (relations among the canonical varia-
bles) in Eq. (47), we should find (vielbein-depending)
coefficients v¢ such that vZHZEﬁ does not contain canonical
velocities. In other words, since the square matrix e}l is not
singular, it should be

29C ¢ = 0. (49)

Notice that even the » trivial primary constraints Ggl) = Hg
can be recovered in this way. In fact Gél) requires

coefficients UI e = 605" (the index between vertical bars
is a label for each independent set of coefficients), since
eSATIGES =TI0. On the other hand, these coefficients
satisfy Eq. (49), because M ;,““%/ is antisymmetric in ¢ — e,

vﬁq‘ecabef = ebeleIM e = 0. (50)
We will introduce an independent set of coefficients v,
leading to the primary constraints associated with the

Lorentz group. Let the following be the set of coefficients
v4, labeled by gh

U\gh\ea = 25?gnh]e' (51)

Taking into account the form (17) of the supermetric, we
obtain

v‘ghk“Cabef = Zegegne[hMl] cedf — 460 6915;3; =0, (52)

since 52% is completely antisymmetric [see Eq. (AS) for
details of the calculation]. The antisymmetric labels gh

classify n(n—1)/2 new constraints. By combining
Egs. (47), (52) and (AS), one gets

0 = vy " (MLE; — EO,ELe? edefM )

= 2,1, E;, + 4E0; Ebel (53)

€y b]
In the last line, A can be substituted with j due to the
antisymmetrization of the pair /& — b. Besides, on the
constraint surface it is l'[0 0. So, we define the primary
constraints

PHYSICAL REVIEW D 94, 104045 (2016)

o =

o = 20T ES + 4EO,E) € ege;;] ~0. (54

J [h

In Sec. VIII we will prove that these n(n — 1) /2 constraints
fulfill the Lorentz algebra. In addition, they will be
consistent with the evolution. The entire set of constraints
will prove to be first class. According to Eq. (34), the gauge
transformation of the vielbein generated by a combination

eghG(gL) is

oE5(1.x) = [ dyer (1.9){E}(1. ). 200011, (19 E ).
(55)

which can be extended to the component Ej by virtue of the

gauge transformation (37), thus leading to the local Lorentz
transformation

SE = e (1, X)(ns — negS)ES.  (56)

At this point, one could ask whether we have exhausted

the solutions to Eq. (49). We remark that C,,¢ can be

rephrased as a symmetric n? x n> matrix by using a

notation that take pairs of flat indices a, b, ... to define a
multi-index A = ()¢, such that the Eq. (49) becomes

UACAB =0. (57)

For this, we use the indexation formulas for A = ()¢,
B = ()bf as follows":
A=(a-1)n+e, B=({b-1)n+f, (58)

so, A,B,...=1,...,
metry of C,p,

n®. Equation (A1) implies the sym-

Cap = Cpa. (59)

Equation (57) means that there are as many linear con-
straints as there are zero eigenvalues in the symmetric
n* x n> matrix C,p. The coefficients v = v¢ of the
constrained combinations U‘QHZE; are the components of
the respective eigenvectors. So far we have found
n+nn—1)/2=n(n+1)/2 zero eigenvalues. As we
will see in the forthcoming sections, the other n(n —1)/2
eigenvalues are different from zero.

VII. TEGR CANONICAL HAMILTONIAN

We will fully exploit the multi-index notation introduced
at the end of the previous section. For this, we define a set
of objects of n> components,

The formula can be inverted by taking a = [A/n], so
e = A —n[A/n] — 1, where || means the integer part.
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Eg = e}aiEg,
Py = EQ;E}eleleiM Y. (60)

EB = e}Eﬁ’,
I, = HZE;,

Thus the Lagrangian density (16) reads

[

L= (I + Py)(E* — E}) - U, (61)

2
where
1 . . 3
U = —EEaiE?akE?elceée];{e.lfMabcedf' (62)

Therefore, the canonical Hamiltonian density turns out to
be

H=I4LE: — L =T,E* - L

1 |
= E(HA —Py)E* + E(HA +PyEY+U. (63)

To write H in a canonical way, the velocities E® must be
solved in terms of the momenta. Equation (47) displays the
linear relation among velocities and momenta; this equation
now reads

I, — Py = ECup(E® — EB). (64)

In Eq. (64) EP cannot be straightforwardly solved because
the matrix Cp is singular. Matrix C 4 has n(n + 1)/2 zero
eigenvalues, since there are n(n + 1)/2 primary constraints
linear in the momenta. Despite the fact that C,p is not
invertible, we can still solve the subspace of velocities that
is orthogonal to the subspace of zero eigenvalues. In fact,
by using a proper basis for splitting the subspace of zero
eigenvalues, C4z would look like

o=y 2) (65)

In such a basis we would find n(n+ 1)/2 constraints

I, — P, = 0; in addition, we would trivially solve
n(n — 1)/2 relevant velocities,

E* — E} = E"'D"B(II, — Pp), (66)

where the matrix D’ is

0 0
D’_< ) (67)
0 D
and satisfies
0 0
DC =D = ( ) (68)
0 1

PHYSICAL REVIEW D 94, 104045 (2016)

Equation (66) declares zero the n(n + 1)/2 first velocities.
This causes no harm, since these velocities enter the
Hamiltonian (63) as the coefficients of the primary con-
straints [Ty — P, = 0. So, the values of the n(n + 1)/2 first
velocities are irrelevant, because different choices modify
the Hamiltonian by terms proportional to the constraints.
Anyway this kind of terms are reintroduced in the primary
Hamiltonian (25).

Let us use the matrix N of change of basis to return to the
original basis: C' = NCN~'. Then, the previous equation
becomes

00
N"D’NC:CN“D/N:N"<0 I)N. (69)

The rhs is not the identity, but is a symmetric matrix. The
matrix

D =N-'D'N (70)

satisfies that CDC = C and DCD = D. Therefore D is the
Moore-Penrose pseudoinverse of C. We will use the
Eq. (60) in the original basis, so we must substitute D’
with D. Thus, we substitute Eq. (66) in Eq. (63) to obtain
the canonical form of the Hamiltonian density,

1
H= 5e(HA — Py)DAB(Ily — Py) + ILE} + U, (71)

where e = E~! = det(e};). The canonical Hamiltonian is
the integral of H. We can remind the form (32) of the

2)

constraint G;~ to write

H= / dxH = / dxGY + / ESTidS,.  (72)

Then, the canonical Hamiltonian is a constraint plus a
boundary term. As a consequence, the set of first-class
constraints will be automatically consistent with the
evolution.

A. Dimension n=3

Let us work with the matrix C*p,
CAp =4,/ = eSeSM“bge"f, (73)

where M%,9," = y*n,,M_,9%"f. C,p and CAy share the
eigenvectors of zero eigenvalue (see the Appendix for the
forms of these matrices). The nonzero eigenvalues of C*p
are

A =y =2[(e5)* = (e9)* = (¢9)?] = 26" = 4,
A3 = -/ (74)
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The case n =3 is very simple because the matrix C4,
satisfies

CABCBCcCD - /IZCAD. (75)

This is a consequence of the fact that the nonzero
eigenvalues have the same absolute value. This means that
the pseudoinverse of CA is DA = A72C4 . Therefore, the
matrix DA in Eq. (71) is

DAB = )72CAP = 20N MePs ! . (76)

B. Dimension n > 3

In n = 4 dimensions, the matrix C4z has six nonzero
eigenvalues; they are
/11 :/12 :/13 :/14 :ﬂs

=2[(e5)* = (e1)* = (€2)* = (€8)%] = 29" = A,
Ae = —2A. (77)
Since their absolute values are not equal, the pseudoinverse
matrix D48 cannot be inferred in a straightforward way as
we did in n = 3 dimensions. In fact, the matrix C*5 does

not satisfy Eq. (75) when n > 3. The eigenvector related to
the odd eigenvalue is

A
wh =wh, = —55? + e, (78)

B

In fact, in any dimension n, vector w” satisfies the

eigenvalue equation
CApw® = M9 1w,
=—(n=2)n% = —(n—=2)awt.  (79)

We will show that the pseudoinverse of C4z can be
formulated as the matrix

DAB = A_Z(CAB +(ZWAWB), (80)

where a is a factor to be determined. The idea is to use the
projector associated to the odd eigenvalue to “improve” the
matrix C*; and get the desired result. In order for D* to be
the pseudoinverse of C*j, the ths of the equation

CAcDCDCDB = ﬂ_ZCACCDCCDB + (X(Vl - 2)2WAWB (81)

should be C# g- To find a, we will introduce the auxiliary
matrix

Chy = CAp + 42 'whwy, (82)

which satisfies

PHYSICAL REVIEW D 94, 104045 (2016)
ChewB = CApwPB + 42 WA wpwh

=—(n=2)wA+ (n— 1) =t (83)
Besides, for any vector #? orthogonal to w? it is
CApt® = CAp¢B = ). Then, C*; is isotropic in the
subspace of nonzero eigenvalues.4 Since all the nonzero

eigenvalues of C%; are equal to A, then C*j fulfills
Eq. (75). Therefore

iZ(CAB + 4/1_1WAWB) = lzéAB = 6AcécDéDB
= CACCDCCDB + 42(7[2 —5n + 7)WAWB, (84)

ie.,
A2CALCPCPp = CA5 =427 (n = 3)(n = 2)whwg. (85)

Substituting this result in Eq. (81), we obtain that D4 is the
pseudoinverse of C4p if a has the value

4(n-3)

a=21" m

(36)

In n = 4 dimensions, a is equal to 247!, Thus the contra-
variant pseudoinverse matrix D48 = 172(CAB + aw?w?) in
four dimensions is

2

- l_z(ege?n“b + 4626?85%7717]”

a - achb 1 a
DA% =D bef =4 1<6£”56] +=-n b”/ef

+ e9edn " n.)
+ 20739 pbh egegegeg. (87)

VIII. ALGEBRA OF CONSTRAINTS

The Hamiltonian formalism for TEGR is not complete
without checking that the set of constraints is first class. For
this, we have to compute the entire set of Poisson brackets
between the constraints. The pseudoinverse matrix DAZ
will enter the algebra of those Poisson brackets involving
the constraint G(()Z). It is worth mentioning that Eq. (78) can
be substituted in the lhs of Eq. (79) to obtain

1

a b _ ,a _—
2(n—2)c”" — W, = wh, (88)

Therefore, matrix D in Eq. (80) can be written entirely in
terms of the matrix C as

*This is true not only for n = 4; it has also been checked for
arbitrary n through the computer algebra program CADABRA [21].
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13 n=-3
D, = j2C,, +%ngcbdf . (89)
which will be useful to compute those brackets involv-
ing G(()z).
The simplest brackets are those related to Ggll),

{6 (1.%).6, (1.y)} =0, (90)

2 1
{GP(1.x).6(1.y)} =0. (91)

1 1
(G4 (1.x).G(1.y)} =0, (92)

2 1
{65 (1.%). G (1.y))
= (G +eiGNo(x~y).  (93)
However, the last one requires the knowledge of the
brackets between the momenta I10 and the matrix DAZ.
In the Appendix we summarize useful hints in order to

simplify this calculation.
The Poisson brackets between secondary constraints

G,(f) reproduce the algebra of constraints of the ADM
formulation of general relativity,

(G (1.%). G (1.y)}
GP (x)3V5(x —y) + GV (y)5(x —y),  (94)

{G(1,%). G5 (1Y)} = ¢/ (x)GP (x)5(x — )
~ g1 (¥)G? (y)d36(x —y).

(95)

(G (1,%), GV (1.y)} = G (x)8Vs(x —y). (96)

We have also verified that the Poisson brackets for the
(1)

constraints G, reproduces the Lorentz algebra,

1 1
(Gl (1.%). G (1.y))
= ( G(1)+ G(l)_ G(l)_ G(l))é(x— )
Nee af ’7af ce ”cf ae Nae cf y).
(97)
It is

{GY)(1.%), G (1.y)} = 0. (98)

Finally the most intricate calculation is required by the
bracket

(G (1.%), G (1.Y)} = Egneael, Gy 'o(x —y).  (99)

PHYSICAL REVIEW D 94, 104045 (2016)

In order to alleviate some difficult parts of it, some useful
computations are summarized in the Appendix.
As aresult we have obtained 7 trivial primary constraints

G,(ll), together with n(n —1)/2 primary constraints that
come from the Lorentz algebra. We have also obtained n
secondary constraints Gf,z) that are equivalent to the super-
Hamiltonian and supermomenta constraints of the ADM
formalism. Since we just proved that all constraints are first

class, then the counting of degrees of freedom goes as

Number of d.o.f. = Number of (p,q) — Number of fcc

5, n(n+3) n(n-23)
— RS (100)

which is the number of degrees of freedom of general
relativity in n dimensions.

IX. SUMMARY

The essence of a Hamiltonian constrained system lies in
the impossibility of solving all the canonical velocities in
terms of canonical momenta. This is because the momenta
are not independent, but satisfy constraint equations, which
in turn means that some dynamical variables are spurious
degrees of freedom. In the case of the teleparallel equivalent
of general relativity (TEGR), such obstruction is expressed
in Eq. (47), since C,,¢/ cannot be inverted. C,,* is an
object intimately linked to the Lorentz invariant super-
metric M,/ entering the TEGR Lagrangian (20). In
order to analyze how many constraints are involved in the
Eq. (47), and how many canonical velocities can be solved,
we have arranged the components of C,,% in a n? x n?
symmetric matrix C4p [the relation between the superindex
A and the tangent space indices is given in Eq. (58)].
We have shown that the eigenvalues of C*; follow a
very simple pattern: n(n + 1)/2 eigenvalues are zero,
n(n—1)/2—1 of them are equal to 2¢° = 1, and the
remaining one is equal to (2 — n)A. The primary constraints
result from the contraction of the Eq. (64) with each
eigenvector of zero eigenvalue; they include the n trivial

[see Eq. (24)] and the n(n — 1)/2 Lorentz

constraints G [see Eq. (54)]. To build the canonical
Hamiltonian we must identify the subset of canonical
velocities that can be still solved in terms of the momenta.
For this, we employed the Moore-Penrose pseudoinverse of
matrix C, which can be sought in the form proposed in
Eq. (80) thanks to the simple pattern of eigenvalues
exhibited by the matrix C. The so obtained matrix DA%
is the piece we need to write the canonical Hamiltonian
density H [see Eq. (71)]. Those terms associated with the
unsolved velocities are absorbed into the terms added to
the primary Hamiltonian H, (25). Besides the primary

constraints Ggl), G((llb) we have also obtained n secondary

constraints G

104045-10



HAMILTONIAN FORMULATION OF TELEPARALLEL GRAVITY

constraints Gf,z)—the diffeomorphism constraints—that
guarantee that the primary constraints remain valid along
the evolution dictated by H , (we have examined this require-
ment at the level of the Euler-Lagrange equations). The
consistency under the evolution of the system must be
checked for the secondary constraints too. Not surprisingly,
the canonical Hamiltonian density H is equal to G(()z) except
for a boundary term. Thus, the consistency of the entire set
of constraints is guaranteed by the first-class constraint
algebra [Eqs. (90)-(99)]. Since the constraints are first class,
they generate gauge transformations. Therefore, there are
n(n + 3)/2 spurious variables, which reduces the number of
degrees of freedom to n(n — 3)/2. The independent gauge
transformations are those displayed in Egs. (37), (42),
and (56).
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APPENDIX

1. Properties of the supermetric

There are many properties of the supermetric that were
used throughout this work, and that can be deduced from its

definition. Some of them are
Mabcedf — Mbadfce — _Mabecdf — _Mabcedf‘ (Al)

We can calculate “traces” of the supermetric, which depend
on the dimension n. Some of them are

Myl = My, % = 4(n =205}, (A2)
M = My, el = 2(n =25, (A3)
M, " = =2(n—1)(n = 2)n¢. (A4)
The totally antisymmetric Kronecker delta 5‘2% appears in
the antisymmetrized product
ehf _ n(sh s hsl | sl s9 sh
NeleM %" = 2(5[a6615,g, + 5fa5c]5b + 5[0590’]5,])
r
= ~28%) (AS)
We also obtain
a h e b
M9 086 = 0P g8l + 8% + 8457 8% (A6)
ne[ccd]bef — 482.60[c,7d]b_ (A7)
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Some other combinations quadratic in M appear in the
calculations, and it is useful to have them on hand,

CacecMagcedf —_ 4(1’1 _ 3)(71 _ Z)QOOﬂC[d5§]

+8(n —2)eYe W ydlc + e0elldsll (AS)
CabefMabcedf — 6(1’[ _ 3)(1’1 _ 2)1,]cd900
+12(n = 2)e% e, (A9)

2. Calculation of OL/OEj

For computing L /JEg, it is important to notice that, in
contrast to electromagnetism, Efj appears in the Lagrangian
not just in the spatial derivatives 0, E{ but also as a part of
el and E. First of all we need the quotient de /OE¢, which
is obtained from the duality relation,

oé'!
S =elEb - 0= 8EZ Eb + elist. (A10)
A
This implies that
et
a; S (A1)
A

We will need also the expression OE/OE{, which is
obtained from the explicit formula for the determinant,

E = €upea.. JESEVESES.. ES,. (A12)
Then we obtain
OE OE
E¢— =8FE 5 — =Eé Al3
A 8E8 A - 8E8 € ( )
In this way,
oL 1 0 M v P i H 0 y) H 0,0 A

= —E(egehetel el — eye

a a€g€e€ €y — €a

OEj 2

P H v, 0,4 LA LR v P L0 c d gehf
eaegecenes — egegece, e )0, EL0,ESM 9" .

(Al14)

v P _ LU
geeehef eaeyeeehef

In the last expression we identify the Lagrangian in the first
term, and different index combinations of the momenta. We
rewrite it and continue with the algebraic manipulation

IL 1 : !
T €L — 5 €0, BT, + - 40, E{IN:

1 1
- E eﬁapEfHﬁ{ + E eﬁapEf{H/;
= egL + 2e4,0, EG T

= 0L + 2600, EGTLL + 2e{,a[,.E;]H§.. (A15)

The Hamiltonian density can be extracted from the first
terms, to obtain
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oL
OES

= —eOH + €00, ESITL + 2e£a[iE;:]n§.

€0(9;(ESTLL) — H) — E5el0, 1T + zeaga[,.E;]n;.
(A16)

This result is substituted in Eq. (30) to obtain n secondary
constraints,

ESel oI + €9(0;(EGIL) — H) + 2e{;a[iE§]H§. ~0. (A17)
We note that only spatial derivatives are present, and the

canonical Hamiltonian takes part in the secondary
|
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constraints. We can isolate the contribution of the
Hamiltonian by doing the contraction with EJ; thus, we get

GY =H - 0,(ESTL) 0. (A18)
We also perform the contraction with E¢, yielding
G®) = 9, ECTI. — 0,(ESTTL) ~ 0. (A19)

3. Matrix C4,

We present the full expression for the matrix C45 in
n =4, which appears in the definition of the canonical
momenta. It is

0 0 0 0 0  2cy3 —2dyp =2d13 0 =2di5 2c;3 —2dy; 0 =2di3 =2d»3 2cpp
0 —cp dp diz ¢ 0 —dp —doz —dip —doy 2dyy 0 —diz —dpz 0 2dy
0 dip —ci3 dyy —dpp 2dy —dy 0 ci3 —dy 0  —dyz —dyz 0 —dpz 2dpy
0 diz dy  —cip —diz 2dp 0  —dyy —dyz 0 2dyz —dpp cip —dyy —dpp 0O
0 €3 —dip —diz —c3 0 dp doz dip doy —2dy; O diz  dp 0 —2dy
2¢93 0 —2dy —2dy; O 0 0 0 2dypp 0 —=2c¢p3 —2dyr3 2dyz 0 =2dr3 —2¢(,
—2dyy dy do 0 —-dp O €o3 dy; —do  co3 0 dis 0 da; diz —2dy,
Chy— —2dy3  dos 0 doy —do3 O da; Co2 0 dyy —2di3 dyy —dy  cop dpp 0
0 —=dpp ci3 —dy dp —2dy dy 0 —ci3 dy 0 do; dy 0 dos —2dp
=2dyy, dyy  do 0 —dyp O c3  dy —do cp 0 dis 0 dyy dyz —2dp
2c¢13 —2dy; 0 2dy; 2dy; —2c3 0 -2d;3 O 0 0 0 2dys —2diz 0 —2cyn
—2dy; 0 doz  dyp 0 -2dy di3 dip —dyy diz 0 co —dpy din ¢t O
0 —diz —dyy cip diz “2dz 0 doy dyz 0 —2dyy dyp —cia dyy  dpp O
—2dy3  dos 0 doy —doz O dy  co 0 dy —-2dy3 dip —dyy cp dip 0
—2dy; 0 dos do 0 -2dy; dj3 dip —dp dis 0 cor —dp dp Co1 0
2¢1, —2dg; —2dy, 0 2dy —2cpp —=2d1;, 0 2dy, —2dy, 2¢O 0 0 0 0
(A20)
where 4. Poisson brackets
Some useful fundamental Poisson brackets between the
cor — (e8)2 3 (e?)z’ cor — (68)2 3 (eg)z, canonical variables and their derivatives are given below,
cos = (€9)* = (€9)% e =(e)* +(e9)%, {E(t.x).TI:(t.y)} = Ee“5(x —y),  (A22)
i3 = (€]) + (€9)7, c3 = (€9)* + (€9)%,
doy = 3, dyp = eQed  dos = €3¢, {e(r.x).Ma(r.y)} = —eead(x —y),  (A23)
dip = e, diz = efel, dy; = €9e. (A21) (A(6.X).TE(1y)} = —ebs(x —y).  (A24)
e i Cus 0 €1 ar sbaned by s (0,509} = ~{B4(.%). 84T 0.3}
matrix D%y is obtained starting from (80). = 6;0,076(x —y), (A25)
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(0,E2(1,x). O,T1A(1.y)} = / d280%5(x — 1)S(y — ).
(A26)

These expressions are enough (together with patience and a
lot of calculations) to calculate those Poisson brackets that

. 2 .. .
do not involve G(() ) For the remaining Poisson brackets, we
provide some easy-to-derive expressions

(GP(1,%), E¢(t,y)}
= (eDB(Ily — Pp)ESS, + O,ES)0(x —y),  (A27)
{GP(1,x), 0,E5(1,y)}
= (eD"B(Ily — Py)EL5, + OSE((x))P6(x —y).
(A28)

Other combinations of brackets between canonical
momenta and some basic building blocks of the secondary
constraint G((Jz) that recurrently appear in the calculations
are the following:

{277, 1%} = 2y477¢Y, (A29)

{27, ML} = dpa-rtDedg™, (A30)

PHYSICAL REVIEW D 94, 104045 (2016)

{WA T2} = =260, (A31)

{WA T} = — el + el )M g, (A32)

1
2(n— 2)

Finally, we give some help to calculate the brackets of the
momenta and the matrix DA2. It is very simple to get the
brackets

{DAB 119} = 22D"B. (A33)
However, for the spatial part of the momenta IT,, the

brackets with the matrix D do not simplify so easily. After
using all the developed tools, we get

{D*".11;}
:8€0g0i/1_3(CAB—|-(IWAW ) — )12 O(e eh+ez O)Mabg h
A 2
_;ﬂ( EZC) (6162 )(Ma g deB+Mb g hde)
n_

+dar3 g% wAwB, (A34)

In Egs. (A29)—-(A34) a factor §(x —y) is understood. As
general advice, the raising and lowering of indices in the
supermetric M ,,°*“/ must be carefully done, in order to
keep the original order of the indices and protect the
symmetries of the object.
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