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We extend a recently derived higher-dimensional Cardy formula to include angular momenta, which we
use to obtain the Bekensten-Hawking entropy of anti-de Sitter black branes, compactified rotating branes,
and large Schwarzschild/Kerr black holes. This is the natural generalization of Strominger’s microscopic
derivation of the Banados-Teitelboim-Zanelli black hole entropy to higher dimensions. We propose an
extension to include Uð1Þ charge, which agrees with the Bekenstein-Hawking entropy of large Reissner-
Nordstrom/Kerr-Newman black holes at high temperature. We extend the results to an arbitrary
hyperscaling-violation exponent (this captures the case of black Dp-branes as a subclass) and reproduce
logarithmic corrections.
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I. INTRODUCTION

In a recent paper [1], a formula was presented which
relates the entropy of a conformal field theory (CFT) at
high temperature to the vacuum energy on the spatial
background S1 ×Rd−1:

S ¼ ðdþ 1ÞTdVdεvac: ð1Þ
The number εvac is defined as Evac ¼ −εvacVd=Ldþ1 where
L is the circumference of the S1. The periodicity conditions
along the S1 match the thermal periodicity conditions. In
particular, fermions will be antiperiodic along the spatial
S1. The entropy calculated admits a microscopic interpre-
tation as a degeneracy of states at asymptotically large
energy:

log ρðEÞ ¼ dþ 1

d
d

dþ1

ðεvacVdÞ 1
dþ1E

d
dþ1: ð2Þ

For d ¼ 1, these formulas reduce to the famous Cardy
formula of two-dimensional CFTs [2]. Picking the spatial
background to be S1 ×Rd−1 allows the cleanest derivation
of these results in terms of the approximate modular
invariance on this background:

logZðβÞ ≈
�
L
β

�
d−1

logZ

�
L2

β

�
: ð3Þ

To deal with finite expressions, we will always assume
that Rd−1 is regulated into Td−1 with large spatial cycles of
size L∞.
There is also a generalized entropy formula in Ref. [1]

which incorporates a hyperscaling-violation exponent θ,

S ¼ −ðdeff þ 1ÞLdeffþ1TdeffEvac; ð4Þ

where deff ¼ d − θ. This can also be understood as a
microcanonical degeneracy of states:

log ρðEÞ ¼ deff þ 1

deff
deff

deffþ1

ð−EvacÞ
1

deffþ1E
deff

deffþ1L: ð5Þ

We will use these formulas to account for the
Bekenstein-Hawking entropy of the following black brane
solutions:

ds2dþ2 ¼ l2r−2θ=d
�
−r2ð1 − ðrh=rÞdþ1−θÞdt2

þ dr2

r2ð1 − ðrh=rÞdþ1−θÞ þ r2dx2i

�
; ð6Þ

S ¼ A
4G

¼ Vdldrd−θh

4G
;

β ¼ 4π

rhðdþ 1 − θÞ : ð7Þ

The parameter Vd represents the (infinite) area of the black
brane horizon. The case d ¼ 1 is discussed in Refs. [3,4].
The vacuum energy necessary to apply the formula is
postulated to be given by the gravitational soliton obtained
by a double Wick rotation of the black brane. This soliton
gives the strongly coupled vacuum energy, which is
necessary to produce the strongly coupled entropy. The
energy of the gravitational soliton is straightforwardly
computed by the Balasubramanian-Kraus procedure of
holographically renormalizing the Brown-York stress-
energy tensor [5].
We will begin with θ ¼ 0 and d > 1, which corresponds

to anti-de Sitter (AdS) black branes in an arbitrary
dimension. This contains as a subcase black D3-branes.
The gravitational soliton used will be none other than the
AdS soliton. An argument that this configuration locally
minimizes the energy was provided in Ref. [6], while
evidence that the soliton provides a global ground state for
the given boundary conditions was provided in Ref. [7].
After treating this case, we will connect our formalism to
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that of Euclidean gravity in Sec. III to illustrate why it is
guaranteed to work.
In Sec. IV, we will derive field-theoretic extensions to the

higher-dimensional Cardy formulas that include angular
momentum on a torus and on a sphere. We will show that
the resulting formulas reproduce the entropy of compacti-
fied boosted black branes and large/hot AdS-Kerr black
holes, respectively. We will also present a new derivation of
the Cardy formula at finite angular momentum for two-
dimensional CFTs and connect it to the Hartman-Keller-
Stoica conjecture for the universality of the free energy in
the range ELER > ðc=24Þ2 [8].
Another natural extension is to include a global Uð1Þ

charge. In this case, we propose a modular behavior of the
grand canonical partition which mimics what happens in
two dimensions. With this modular behavior, we are able to
derive a formula for the entropy as an expansion in small
charge for three and four spacetime dimensions, which
agrees with the entropy of large AdS-Reissner-Nordstrom
black holes in four and five bulk spacetime dimensions.
The case of both the Uð1Þ charge and angular momentum
(either on the torus or the sphere) immediately follows
from the techniques of Sec. IV. These field theory formulas
are then shown to agree with compactified boosted
AdS-Reissner-Nordstrom black branes and large/hot
AdS-Kerr-Newman black holes. Finally, we will outline
the matching in the case θ ≠ 0 (which contains as a
subclass black Dp-branes for p ≠ 3) by appealing to the
methods of Sec. III.
Let us clarify a few points of potential confusion. Notice

that for any dual field theory with fermions we will be
picking antiperiodic boundary conditions for the fermions
in the spatial and thermal directions. ConsiderN ¼ 4 SYM
for concreteness, and imagine the “plane” Rd−1 as a very
large torus so our partition function does not diverge.
Antiperiodic boundary conditions break supersymmetry
and give masses to the fermions at tree level and masses to
the scalars at one loop. This regularizes what would have
been an infinite partition function due to zero modes. But
notice, since we are not summing over spin structures, our
partition function will not be fully modular invariant; it will
only be S invariant, i.e. invariant under exchange of the
thermal and spatial cycles. This is okay, since this is the
only invariance we will ever use. The formal breaking of
scale invariance by giving masses to the fermions does not
mean our partition function is no longer invariant under
scale transformations. The masses are set by the length
scale of the compactification (m ∼ 1=L), so the energies
that appear in Tr e−βH are set by some combination of the
length scales of the cycles, which by virtue of energy being
an inverse length must transform as Ei → λ−1Ei under a
scale transformation by λ. Altogether, under a scale trans-
formation βEi is invariant for any energy level Ei, making
our partition function invariant and the formulas of the
previous section applicable.

II. ADS BLACK BRANES AND LARGE
ADS-SCHWARZSCHILD BLACK HOLES

Although we can immediately perform the analysis in
general dimension, we will for clarity consider a few
individual cases before giving the general answer. There
are two ways one can interpret the application of the
formulas of the previous section. The first is to consider an
asymptotically locally AdS spacetime where one of the
spatial coordinates is compactified and the fields have
thermal periodicity conditions along this spatial coordinate.
This is the more canonical setup since the ground state
soliton and the black brane are in the same asymptotic class
of data. In other words, both configurations are describing
the field theory on the same background with the same
periodicity conditions. There is also a Hawking-Page
transition between the thermal soliton and the black brane
at β ¼ L, where L is the periodicity of the spatial circle.
This is the self-dual point of the modular transformation
(3), just as in 1þ 1 dimensions. The second way to
interpret the application of the formula is to consider
asymptotically AdS spacetime with all coordinates non-
compact. The entropy of the black brane in this setup is
then related to the ground state soliton, which is in a
different class of asymptotic data. From the field theory
point of view, the entropy of the field theory on the plane
Rd is related to the ground state energy on S1 × Rd−1 where
the fields have thermal periodicity conditions along the S1.
Both interpretations are consistent with the calculations
below, and the difference enters only into the volume
factor Vd.

A. AdSdþ2

We will start with three dimensions and move up to the
case of general dimension. In all cases, the vacuum energy
at strong coupling is assumed to be given by the energy of
the AdS soliton:

ds2 ¼ l2

�
−r2dt2 þ r2dx2i þ r2ð1 − ð~rh=rÞdþ1Þdϕ2

þ dr2

r2ð1 − ð~rh=rÞdþ1Þ
�
: ð8Þ

This geometry is produced by a double analytic continu-
ation from the AdS black brane. Assuming that the ϕ cycle
is of length L fixes ~rh ¼ ðdþ 1ÞL=4π. The energy of this
spacetime can be calculated by the usual Balasubramanian-
Kraus procedure of regularizing the Brown-York stress-
energy tensor and gives

εvac ¼
ld

16πG

�
4π

dþ 1

�
dþ1

: ð9Þ
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1. AdS3

This is simply the case of a Banados-Teitelboim-Zanelli
(BTZ) black hole in the bulk, and our formula reduces to the
usual Cardy formula of (1þ 1)-dimensional CFT. The
gravitational soliton obtained by swapping thermal and
angular cycles is global AdS3. The entropy is correctly
reproduced as shown in Ref. [9].

2. AdS4

The vacuum energy and the black brane energy are
given by

εvac ¼
4π2l2

27G
; E ¼ l2V2r3h

8πG
: ð10Þ

Notice that εvac is independent of L, the periodicity of ϕ.
Thus, as a practical matter, the periodicity is irrelevant as
long as there are no conical defects. A simple choice is to
pick periodicity β, in which case the soliton is most simply
related to the black brane. The more canonical setup is to
begin with a black brane on a spatial background with ϕ
of a given periodicity and ensure that ϕ has the same
periodicity for the soliton. This keeps the analysis within a
fixed set of asymptotic data.
Plugging the above energies into the microcanonical

degeneracy (2) gives

S ¼ V2l2r2h
4G

: ð11Þ

This is precisely the Bekenstein-Hawking entropy (7) of
the black brane. We could have equivalently plugged the
temperature of the black brane and εvac into (1) to achieve
the same result.

3. AdS5 and D3-branes

The same renormalization procedure gives

εvac ¼
π3l3

16G
; E ¼ 3l3V3r4h

16πG
: ð12Þ

Plugging into (2) gives the correct Bekenstein-Hawking
entropy. In this example, we can translate into gauge
theory parameters corresponding to the example of a stack
of D3-branes. In that case, we have

εvac ¼
π2N2

8
; ð13Þ

as first shown in Ref. [6]. Formula (1) relates this to the
entropy of the gauge theory by

S ¼ 4V3T3εvac: ð14Þ

Since this equation is true at strong and weak coupling, we
see explicitly that the factor of 3=4 between the strongly

coupled and weakly coupled thermal entropies must
manifest itself in the Casimir energies, as first explained
from the gravity point of view by Ref. [6].

4. AdSdþ2

The energy of the AdS soliton and black brane is given in
general dimension as

εvac ¼
ld

16πG

�
4π

dþ 1

�
dþ1

;

E ¼ dldVdr
dþ1
h

16πG
: ð15Þ

Using these expressions gives the correct entropy.

B. AdS-Schwarzschild black hole
and local operators

At large temperature, the entropy of the AdS-
Schwarzschild black hole becomes that of the AdS
black brane. In this limit, as discussed in Ref. [1], the
formula (2) with Vd ¼ VolðSdÞ ¼ 2πðdþ1Þ=2=Γ½ðdþ 1Þ=2�
can be understood as a degeneracy of local operators. This
then reproduces the entropy of the AdS-Schwarzschild
black hole in terms of a count of the local operators of the
dual CFT.

C. Additional compactifications

A natural question, first explored in Ref. [10], regards
representing the supergravity backgrounds dual to the
ground state of the CFT under additional spatial compacti-
fications. For this discussion, we will assume all spatial
directions are compactified onto a torus. The derivation of
our entropy formula in Ref. [1] sheds some light on this
issue. Recall that in that derivation one begins with the
partition function of the field theory at finite temperature.
If there is a spatial direction much larger than the rest, then
we choose it as the thermal direction, and an equivalent
representation of the partition function can be presented.
This is approximately the zero temperature partition func-
tion on a new torus where the original large spatial cycle
was swapped for a cycle of length β. In this representation,
it is clear that the vacuum state makes the dominant
contribution to the partition function. When β is very
small, the bulk representation is the black brane. The
ground state energy is for the theory on a manifold which
is effectively S1 ×Rd−1, since the β cycle is much smaller
than the rest. The AdS soliton gives the correct energy for
the field theory on such a background [correct in the sense
that it is connected to the entropy of the black brane by (1)].
Now, let us assume that β is smaller but comparable to

the cycles of the spatial torus and there exists a spatial cycle
much larger than the rest. If the black brane remains the
dominant configuration to this ensemble, then by the same
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argument of swapping cycles, one can be sure that the AdS
soliton with additional compactifications represents the
ground state. The formula for the entropy in terms of the
ground state energy will continue to be satisfied simply
because it was satisfied for the situation of asymptotically
small β. A similar perspective was presented in Ref. [10].

III. COMPARISON TO EUCLIDEAN GRAVITY

Obtaining the entropy from a Euclidean gravity calcu-
lation and obtaining it from the method of the previous
section share a common feature: both methods localize the
partition function on a single contribution. We will now
show that they both localize to essentially the same piece,
so our derivation can be understood as providing a micro-
scopic understanding of the methods of Euclidean gravity
in the regime where both methods are applicable.
Recall that the method of Euclidean gravity begins with a

path integral which localizes on a classical saddle:

ZðβÞ ¼
Z

½Dg�e−IE ≈ e−I
black hole
E : ð16Þ

We assume that β ≪ L for some spatial cycle ϕ of size L.
Now, consider the soliton obtained by the double Wick
rotation ft;ϕg → fiϕ; itg. For the Euclidean geometry to
be free of deficits, we need ϕ ∼ ϕþ β. This is the same
Euclidean geometry as the black hole, so we have

ZðβÞ ≈ e−I
soliton
E ¼ e−LF: ð17Þ

Since the soliton has zero classical entropy, its free energy
equals its ordinary energy, and we have

ZðβÞ ≈ e−LEsoliton : ð18Þ

This is precisely the expression we get by swapping cycles
in our field theory derivation:

ZðβÞ ¼
X

e−βEL×Td−1

¼
X

e−LEβ×Td−1 ≈ e−LEvac;β×Td−1 : ð19Þ

The subscript on the energy denotes the spatial manifold
of the field theory. We now see that identifying Evac;β×Td−1

with the energy of the bulk soliton is guaranteed to work
since the Euclidean gravity method gives the correct
entropy.
When we actually apply our formula in the context of

holography, we may want to ensure that the soliton is in
the same class of asymptotic data as the black brane. In
that case, the field theory argument of Ref. [1] requires
performing a scale transformation to restore the size of the
spatial circle. In the argument above, that would mean
performing a scale transformation such that ϕ rescales
by L=β. For simplicity, consider the case θ ¼ 0. In that

case, the bulk scale transformation simply changes
rh→ ðL=βÞrh. This uniquely fixes rh given a fixed perio-
dicity of ϕ (i.e. rh is independent of the temperature of the
black brane one began with). This rescaling is what gives
the ordinary AdS soliton. It has a different Euclidean action
than (and participates in a Hawking-Page transition with)
the black brane.
These arguments explain the successful use of solitons in

accounting for black hole entropy in the literature.

IV. ANGULAR MOMENTUM

We can also consider the degeneracy of states at finite
energy and finite angular momentum. We will begin by
deriving the field theory formula with angular momentum
on a torus background in two different ways in Secs. IVA
and IV B. The appropriate gravity background to compare
to is a compactified black brane with rotation along the
compact direction. These backgrounds can be constructed
by first boosting the noncompact, nonrotating branes and
then compactifying them. (In three spacetime dimensions,
this boosting procedure produces the rotating BTZ black
hole from the nonrotating case [11,12].) In Sec. IV C, we
will find that the Bekenstein-Hawking entropy of these
boosted branes is precisely reproduced by the logarithm of
the microcanonical degeneracy of states at finite energy and
angular momenta of the dual field theory.
The case of a conformal field theory on S1 × Sd with

⌊ðdþ 1Þ=2⌋ independent rotation parameters along the Sd

is treated in Sec. IV D. Working in the fluid-dynamical
regime, the partition function of the theory with angular
momentum is simply related to the partition function of the
theory without angular momentum. Assuming as usual that
the theory on the sphere at high temperature can be replaced
by the theory on the plane (i.e. the curvature of the Sd

becomes irrelevant for small S1), we can then relate the case
with angular momenta on the sphere to the case with
vanishing momentum on a plane or torus. The appropriate
gravity background to compare to is a large Kerr-AdS black
hole. In Sec. IV E, we will find that the Bekenstein-
Hawking entropy of the Kerr-AdS black hole in any
number of dimensions with any number of independent
rotation parameters is precisely reproduced by the loga-
rithm of the microcanonical degeneracy of states at finite
energy and angular momenta of the dual field theory.

A. Angular momentum on the torus:
Old-school derivation

We need to generalize the field theory derivation of the
degeneracy of states with energy E in Ref. [1] to include
angular momentum. The partition function for this ensem-
ble is given as Zðβ; θÞ ¼ Tre−βEþiθJ for inverse temper-
ature β and angular potential θ. We will restrict the angular
momentum to be in one direction. The general case can be
accommodated by the methods below.
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We proceed by using the modular properties of Ref. [1]
on T2 × Td−1, where the Td−1 is taken to be large. The
modular parameter of the torus T 2 is taken to be 2πiτ ¼
2πireiϕ ¼ −β þ iθ and 2πiτ̄¼2πiτ� ¼2πire−iϕ¼−β− iθ.
Notice this means we are not taking τ and τ̄ to be
independent coordinates. We can write the partition
function as

Zðτ; τ̄Þ ¼ Trðe2πiτERe−2πiτ̄ELÞ
¼ Zð−1=τ;−1=τ̄Þr1−d ; ð20Þ

ER þ EL ¼ E; ER − EL ¼ J: ð21Þ

The microcanonical degeneracy of states is obtained by an
inverse Laplace transform,

ρðE; JÞ ¼
Z

drdϕZðr;ϕÞ exp ½−2πireiϕER þ 2πire−iϕEL�:

ð22Þ

Defining

~Zðr;ϕÞ ¼ Tr½expð2πireiϕðER − Evac=2Þ
− 2πire−iϕðEL − Evac=2ÞÞ� ð23Þ

and using the modular transformation of Z gives

ρðE;JÞ¼
Z

drdϕ ~Z

�
−
1

r
;−ϕ

�
r1−d

exp

×

�
−πiEvac

rdeiϕ
þπiEvac

rde−iϕ
−2πireiϕERþ2πire−iϕEL

�
:

ð24Þ

This can be evaluated by saddle-point approximations for r
and ϕ, where we treat ~Z as a slowly varying prefactor. In the
limit ER;L ≫ jEvacj, the saddle-point values are

rs ¼
�
−Evacðd − 1ÞðER þ EL þ hER;EL

Þ
8EREL

� 1
dþ1

; ð25Þ

ϕs ¼
π

2
þ i log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d − 1

2ðdþ 1ÞEL
ðER − EL þ hER;EL

Þ
s

; ð26Þ

with hER;EL
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
R þ 2ðd2 þ 6dþ 1Þ

ðd − 1Þ2 EREL þ E2
L

s
:

ð27Þ

Notice that the saddle-point value ϕs is independent of Evac,
which indicates a theory-independent universality in part
of the answer. We have tan ϕ ¼ Im½τ�=Re½τ� ¼ Ω−1 for

angular velocity Ω. This means that, as we vary the angular
velocity but keep fixed r ¼ jτj, the change in the entropy is
theory independent. Our simpler derivation in the next
subsection, which uses only Lorentz invariance to get the
entropy with angular velocity from the entropy without
angular velocity, makes this universality clear.
Plugging these saddles into the integrand gives us the

following expression for the entropy:

logρðE;JÞ

¼ π
ffiffiffiffiffiffiffiffiffiffi
dþ1

p �
2

dd

� 1
dþ1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdþ1Þ2E2−4dJ2
q

− ðd−1ÞE
� d−1

2ðdþ1Þ

×
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdþ1Þ2E2−4dJ2
q

þðdþ1ÞE
�1=2ð−EvacÞ 1

dþ1:

ð28Þ

For a gapped spectrum with vacuum satisfying ER ¼ EL ¼
Evac=2, we have ~Zð−r−1s ;−ϕsÞr1−d ≈ 1, as required for
consistency of the saddle-point approximation.
As expected, the degeneracy of states does not factorize

into left-moving and right-moving pieces unless d ¼ 1.
Even the first correction in d ¼ 1þ ε does not factorize:

logρðER;ELÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Evac=2

p �
4π
� ffiffiffiffiffiffi

ER

p
þ

ffiffiffiffiffiffi
EL

p �

þ ε
π

2

� ffiffiffiffiffiffi
ER

p
þ

ffiffiffiffiffiffi
EL

p �
log
�
EREL

−Evac

�
þ� � �

�
:

ð29Þ

Related to this is the fact that for d > 1 the entropy
vanishes as J → E with E finite, i.e. EL → 0 and ER
finite. To maintain a finite, nonzero entropy as J → E, it is
necessary to scale both J and E to infinity in a particular
way, which we will explain in the next subsection.

B. Angular momentum on the torus:
New-school derivation

The previous derivation was presented only to show
that techniques familiar from two dimensions can be
utilized. In the thermodynamic limit, the degeneracy of
states with angular momentum can more easily be obtained
from the case without angular momentum by a Lorentz
transformation.
Since the entropy is invariant under boosting, our

answer should not change. However, we are not taking
into account the length contraction factor when comparing
the boosted case to the unboosted case, since the finite-size
spatial cycle is the same in both cases. This means the two
entropy results should differ by a length contraction factor
γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
. This is of course true for a boost in an

arbitrary direction, where in that case a2 ¼P a2i . Thus, in
the regime S ∝ Vd and the thermodynamic limit where
S ¼ log ρ, we have
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log ρðE; JÞ ¼ log ρðEnr; J ¼ 0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p : ð30Þ

This is a formula for the degeneracy of states in terms of
the nonrotating energy Enr ¼ Eða ¼ 0Þ and velocity a. To
obtain the degeneracy in terms of the rotating energy and
angular momentum, we can solve for a and Enr in terms of
E and J using the Lorentz transformation law of the stress-
energy tensor Tμν ¼ Λμ

αΛν
βT

αβ
nr :

E ¼ Enr

�
1þ a2=d
1 − a2

�
;

J ¼ Enra

�
1þ 1=d
1 − a2

�
: ð31Þ

We have kept the size of the spatial circle the same in
both the rotating and nonrotating cases when integrating
the densities T00 and T01 to get the energy and angular
momentum. Plugging the solutions for a and Enr into the
right-hand-side of (30) results in the expression for ρðE; JÞ
given in (28). This provides a new derivation of the Cardy
formula at finite angular momentum for (1þ 1)-dimen-
sional CFTs.
We can now explain more clearly the vanishing of the

entropy for J ¼ E ¼ finite for d > 1. In particular, notice
that this extremal limit corresponds to taking a → 1, in
which case the entropy, energy, and angular momentum all
naively diverge. To keep the entropy finite and nonzero,
one needs to scale Enr ∼ ð1 − a2Þðdþ1Þ=ð2dÞ, in which case
the energy and angular momentum diverge as a → 1
unless d ¼ 1.

1. Hartman-Keller-Stoica conjecture

In the case of (1þ 1)-dimensional CFTs, Hartman,
Keller, and Stoica (HKS) showed that the Cardy degen-
eracy is universal for all states with Enr > c=12 as long as
the degeneracy of states with Enr < 0 is bounded as
ρðEnrÞ≲ expð2πðEnr þ c=12Þ.1 For the rotating ensemble,
they conjectured that the Cardy degeneracy is universal
for ELER > ðc=24Þ2 as long as (in addition to the
previous bound) the degeneracy of light states (i.e. states
with either EL or ER negative) is bounded as ρðEL; ERÞ≲
exp½4π ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEL þ c=24ÞðER þ c=24Þp �. Notice that we can
produce any state in the range ELER > ðc=24Þ2 simply by
boosting a static state EL ¼ ER > c=24. By consistency
with local Lorentz invariance, we therefore conclude that
states in this range are universal without any assumptions
beyond the ones needed in the static ensemble. Let us be a
bit more explicit.
We begin by using the result of HKS that at zero angular

potential the Cardy degeneracy ρðEnrÞ¼ expð2π ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cEnr=3

p Þ

for central charge c is universal in the range Enr > c=12, as
long as the degeneracy of states with Enr < 0 satisfies
ρðEnrÞ≲ exp ð2πðEnr þ c=12ÞÞ. The ingredients we will
use are that the entropy and stress tensor arising from the
analysis of Ref. [8] transform covariantly under Lorentz
transformations and that the states with universal degen-
eracies can be smoothed into a density of states which
satisfies log ρðEL; ERÞ ¼ SðβL; βRÞ. In particular, the
stress tensor transforms as T 0

μν ¼ TαβΛα
μΛ

β
ν , and the entropy

in the universal range is invariant under boosts. These are
our assumptions, which can be violated for otherwise
healthy CFTs.
Since Lorentz invariance is broken globally, there is a

preferred observer. Physics which probes the global top-
ology will not be relativistically invariant. Alice can wind
around the circle in a fixed inertial frame but still return
younger than her twin Bob, who is idly waiting in the
preferred rest frame. For our purposes, the effect of this
global breaking of Lorentz invariance will be that the size
of the universe changes under boosts, which is the source of
the factor of γ in Eq. (30).
Using (30) and (31), we can translate results from the

static ensemble to the rotating ensemble. For a spectrum
with the constraint

log ρðE < 0; J ¼ 0Þ≲ 2πðEþ c=12Þ; ð32Þ

we have

log ρðEL; ERÞ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cEL=6

p
þ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cER=6

p
;

Enr ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ELER

p
> c=24: ð33Þ

Notice that in the entropy formula (33) we have
EL ¼ L0 − c=24, ER ¼ L̄0 − c=24. In particular, the addi-
tive factors of −c=24 are correctly obtained, even though
one might expect that this boosting procedure should only
work for L0, L̄0 ≫ c, where the size of the compact circle
can be neglected.
Boosting states from the static ensemble is not a panacea;

the ordering (i.e. whether E < J or E > J) is maintained
under boosts. In particular, one cannot obtain states with
ER < 0 and EL > 0 (or vice versa) from boosting states
with EL ¼ ER. Also, it is crucial that we are boosting in a
region of the spectrum for which ρðEL; ERÞ ∼ eSðβL;βRÞ; i.e.
we can average to produce a smooth approximation to the
density of states. For example, we cannot boost the vacuum
state and use the above technology.
Notice that our assumptions imply a sparseness condition

on the light states with ELER < ðc=24Þ2 with EL and ER
the same sign. (States with EL and ER of opposite sign have
jJj > E, and it is not clear how our formalism applies to
these states. Naively, they require boosts with a > 1 to
reach, and our formula (30) goes haywire in this faster-
than-light regime.) In particular, if there are many states in1Thanks to Tom Hartman for discussions about HKS.
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this range, allowing a smoothed approximation that we
could then boost, we would run into a contradiction by
boosting to a state with E < 0 and J ¼ 0, the degeneracy of
which is constrained by the assumptions above. We can get
an estimate for this sparseness condition by assuming we
have a density of states we can boost and finding the bound
in the boosted frame:

ρðE < c=12; J ¼ 0Þ≲ 2πðEþ c=12Þ ð34Þ

→ ρðEL; ER;ELER < ðc=24Þ2Þ

≲ πð ffiffiffiffiffiffi
EL

p þ ffiffiffiffiffiffi
ER

p Þðcþ 12ðEL þ ERÞÞ
12ðELERÞ1=4

: ð35Þ

When trying to boost a state with angular momentum to
another state with higher or lower angular momentum, one
cannot do the procedure exactly as above. Since the zero
angular momentum state is in the preferred rest frame of
the circle, one should first boost to this state (this time
picking up a factor of 1=γ instead of γ in the entropy; this
asymmetry is due to breaking global Lorentz invariance)
and then boost to the state with higher or lower angular
momentum.

C. Boosted black branes

The boosted black brane can be written as [13]

ds2 ¼ l2

�
−fðrÞuμuνdxμdxν

þ r2ðuμuν þ ημνÞdxμdxν þ
dr2

fðrÞ
�
; ð36Þ

uμ ¼
�

−1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p ;
affiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2
p ; ~0

�
;

fðrÞ ¼ r2
�
1 −

�
rh
r

�
dþ1
�
: ð37Þ

We have chosen the velocity to be in a single direction,
although this can be generalized.
We can now compactify one of the directions onto a

finite-size circle. The mass and angular momentum can be
obtained from the renormalized Brown-York stress tensor,
and the entropy is given as usual by a quarter of the horizon
area in Planck units:

E ¼ ðdþ a2ÞVdldrdþ1
h

16πGð1 − a2Þ ;

J ¼ ðdþ 1ÞVdldrdþ1
h a

16πGð1 − a2Þ ;

SBH ¼ A
4G

¼ Vdldrdh
4G

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p : ð38Þ

Vd represents the volume of the spatial torus of the field
theory. These can also be obtained as in the previous
subsection by the Lorentz transformation law on the
stress-energy tensor of the unboosted black brane
Tμν
boosted ¼ Λμ

αΛν
βT

αβ
static. Just as in the end of Sec. IV B,

we can see from (38) that to keep the entropy finite in an
extremal limit we need to take rh ∼ ð1 − a2Þ1=ð2dÞ as a → 1.
For any d > 1, the energy and angular momentum in such a
limit diverge: E ∼ J ∼ ð1 − a2Þð1−dÞ=ð2dÞ → ∞. For d ¼ 1, it
is precisely this scaling limit that produces the extremal
rotating BTZ black hole with finite energy, angular
momentum, and entropy.
Plugging in this energy, angular momentum, and the

vacuum energy from the AdS soliton (15) into (28) gives
precisely the Bekenstein-Hawking entropy calculated
above:

SBH ¼ log ρðE; JÞ: ð39Þ

D. Angular momentum on a sphere

When a fluid dynamical regime is valid, the partition
function of a CFTdþ1 on the sphere at finite temperature
and angular potential can be obtained from the nonrotating
case as [14]

logZrotating ¼
logZnrQ
kð1 −Ω2

kÞ
: ð40Þ

The fluid regime is applicable because we are working in
the thermodynamic limit in the Cardy regime, i.e. at large
energy density/temperature, and at strong coupling.
In this case, we have picked the most general rotation

possible, i.e. we have ⌊ðdþ 1Þ=2⌋ independent rotation
parameters. The universal rotation-dependent factor carries
through to the thermodynamic entropy and the micro-
canonical degeneracy of states. To see it in the thermody-
namic entropy, notice that

�
−β∂β −

X
j

θj∂θj

�
1Q

kð1 −Ω2
kÞ

¼ 0;

since θj ¼ iβΩj ð41Þ

⇒ S ¼
�
1 − β∂β −

X
j

θj∂θj

�
logZ ¼ ð1 − β∂βÞ logZnrQ

kð1 −Ω2
kÞ

¼ SnrQ
kð1 −Ω2

kÞ
: ð42Þ

To see the prefactor carry through into the microcanonical
degeneracy of states, we consider the inverse Laplace
transform which takes us from the partition function to
the microcanonical degeneracy of states:
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ρðE; J1; J2;…; JnÞ

¼
Z

dβ

�Y
k

dΩk

�
Zðβ;Ω1;Ω2;…;ΩnÞeβðE−ΩiJiÞ:

ð43Þ

Using the expression for the partition function (40), we can
write this as

ρðE; J1; J2;…; JnÞ

¼
Z

dβ

�Y
k

dΩk

�
ZðβÞ

1Q
a
ð1−Ω2aÞeβðE−ΩiJiÞ: ð44Þ

The most elegant way to proceed is to replace the partition
function on the sphere with the partition function on the
torus T 2 × Rd−1, which enjoys the modular properties
previously discussed:

ZðβÞ ¼ Z

�
L2

β

�ðL=βÞd−1
: ð45Þ

Plugging the modularly transformed partition function into
(44) and evaluating the integral by saddle-point approxi-
mation for large E yields saddles for β ¼ T−1 and Ωi
implicitly defined by

E ¼ VdTdþ1εvacQ
kð1 −Ω2

kÞ
�X

a

2Ω2
a

1 −Ω2
a
þ d

�
; ð46Þ

Ji ¼
VdTdþ1εvacQ

kð1 −Ω2
kÞ
�

2Ωi

1 − Ω2
i

�
: ð47Þ

These saddle-point values are in agreement with the
thermodynamic energy and angular momenta given in
Ref. [14]. We now see that the constant h in Ref. [14]
equals εvac ¼ −EvacLdþ1=Vd, where Vd ¼ VolðSdÞ ¼
2πðdþ1Þ=2=Γ½ðdþ 1Þ=2�.
The microcanonical degeneracy of states at energy E and

angular momenta Ji can be given implicitly in any number
of dimensions as

log ρðE; J1; J2;…; JnÞ ¼
ðdþ 1ÞTdVdεvacQ

kð1 −Ω2
kÞ

: ð48Þ

There can be at most N ¼ ⌊ðdþ 1Þ=2⌋ independent
rotation parameters. The expression in terms of the energy
E and angular momenta Ji can be written explicitly by
solving (46) and (47) for T and Ωi in terms of E and Ji and
plugging into (48). By the state-operator correspondence of
CFTs on the sphere, this degeneracy can be understood as
the degeneracy of local operators with scaling dimension E
and spins Ji.

The explicit expression for the degeneracy in terms of the
energy and angular momenta is generally messy, although
there are some cases where it simplifies. With a single
rotation parameter, in any number of dimensions, we have

log ρðE; JÞ

¼ ðdþ 1ÞðεvacVdÞ 1
dþ1

2
1

dþ1d
d

dþ1ðd − 2Þd−2dþ1

×

 
−J2ððd − 1ÞE −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 2ÞdJ2 þ E2

p
Þd

ðd − 2ÞJ2 þ E2 − E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 2ÞdJ2 þ E2

p
! 1

dþ1

:

ð49Þ

The expression is particularly simple in d ¼ 2:

log ρðE; JÞ ¼ 3

22=3
ðεvacV2Þ1=3ðE2 − J2Þ1=3: ð50Þ

We also state the result for even d with all rotation
parameters turned on and equal. We have d=2 directions
of rotation, and we find

log ρðE; JÞ ¼ dþ 1

dd=ðdþ1Þ ðεvacVdÞ 1
dþ1

�
E2 −

d2

4
J2
� d

2ðdþ1Þ ð51Þ

⇒ log log ρðE; JÞ ∼ logEþ þ logE−: ð52Þ

We have defined E� ¼ E� dJ=2 to exhibit a fascinating
factorization into “left-moving” and “right-moving” con-
tributions. This factorization is in the logarithm of the
logarithm of the degeneracy, as opposed to the case of
d ¼ 1 where the logarithm of the degeneracy factorizes.
The regime of applicability of the formula is E� → ∞. It is
not clear what physical property this factorization is
indicating.
Notice that we cannot freely pick both the energy and

the angular momentum in these expressions. For example,
picking E ¼ dJ=2 in (51) would indicate a vanishing
entropy, but this is not an acceptable limit of our formula,
since to keep either E, J finite or S ¼ log ρ finite we need to
scale T → 0. T4his makes us leave the high-temperature
limit. The easiest way to understand the regime of appli-
cability of the formula is in terms of the implicit for-
mula (48), for which the temperature is large and
0 < Ω < 1. To take an “extremal” limit in our special case
of equal angular momenta, we need to take
E ∼ dJ=2 → ∞, similar to what we saw in the rotating
black brane case in Sec. IV C. Unlike that case, however,
the entropy also diverges in this limit. This is necessitated
by keeping the temperature large so our manipulations
apply.
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1. Universal quantities

The ratio of the log of the number of local operators at
large and fixed E and spins Ji with the log of the number of
local operators at E and spins ~Ji is theory independent
(within the class of theories we are considering):

log ρðE; J1;…; JnÞ
log ρðE; ~J1;…; ~JnÞ

¼
Q

kð1 − ~Ω2
kÞQ

kð1 −Ω2
kÞ
: ð53Þ

In 1þ 1 dimensions, we have log ρðE; JÞ ¼ ðεvacV1Þ1=2
ð ffiffiffiffiffiffiffiffiffiffiffiffi

Eþ J
p þ ffiffiffiffiffiffiffiffiffiffiffiffi

E − J
p Þ, which we rewrite in the form of (48)

to obtain

log ρðE; JÞ
log ρðE; ~JÞ ¼

1 − ~Ω2

1 −Ω2
: ð54Þ

In this case, we have J ¼ 2ΩE=ð1þ Ω2Þ. We see again that
as J → E the ratio diverges. But notice that we are at T > 0,
and this cannot be interpreted as an ordinary extremal limit.

E. Kerr-AdSdþ2 black hole

The general Kerr-AdSdþ2 metric, with up to n ¼
⌊ðdþ 1Þ=2⌋ independent rotation parameters, was first
presented in Ref. [15]. The energy and angular momenta
can be computed relative to a frame that is nonrotating
at infinity [16], and for large horizon radius, one finds
precisely our saddle-point values (46) and (47). The
entropy of the hole with large horizon radius is given as

SBH;Kerr ¼
SBH;SchwarzschildQ

kð1 −Ω2
kÞ

; k ¼ 1; 2;…; n: ð55Þ

This precisely mirrors our implicit formula for the micro-
canonical degeneracy of states,

log ρðE; J1; J2;…; JnÞ ¼
log ρðEðΩi ¼ 0ÞÞQ

kð1 −Ω2
kÞ

: ð56Þ

This establishes that the Bekenstein-Hawking entropy of a
large Kerr-AdS black hole with arbitrary angular momenta
is given as the microcanonical degeneracy of states (or
local operators, by the state-operator correspondence) of
the dual field theory. The numerical coefficient of the
entropy is controlled by the vacuum energy of the theory on
S1 ×Rd−1 with supersymmetry-breaking boundary condi-
tions along the S1.

V. GENERALIZATIONS

A. Uð1Þ charge
It is well known that for two-dimensional CFTs extend-

ing the partition function to include states charged under a
global Uð1Þ symmetry modifies the modular properties.
The partition function for this ensemble, defined as

Zðτ; τ̄; z; z̄Þ ¼ Trðe2πiτðL0−ĉ=24Þe−2πiτ̄ðL̄0− ˆ̄c=24Þe2πizQe−2πiz̄ Q̄Þ;
ð57Þ

becomes a Jacobi form of weight zero and index k:

Zðτ; τ̄; z; z̄Þ

¼ e−2πik
cz2
cτþee2πik

cz̄2
cτ̄þeZ

�
aτ þ b
cτ þ e

;
aτ̄ þ b
cτ̄ þ e

;
z

cτ þ e
;

z̄
cτ̄ þ e

�
:

ð58Þ

The central charges are denoted ĉ; ˆ̄c. The level k is
meaningful in cases where theUð1Þ symmetry is embedded
into a larger symmetry group, like an SUð2Þ algebra or the
N ¼ 2 superconformal algebra.
One way to derive this transformation law is to refer to

the free boson and perform the Legendre transform which
takes you from the path integral to the trace over the Hilbert
space. The path-integral representation is modular invariant
but picks up a term quadratic in the potential z when
performing the Legendre transform. This term transforms
under a modular transformation, and to cancel it requires
the prefactor written above. In two dimensions, Uð1Þ
symmetries can always be represented in terms of free
bosons, so this argument is general (see Ref. [17] for
details). One could also derive this transformation from the
path integral by carefully dealing with the singular operator
product expansion of the current J with itself.
Although we do not have a general derivation, we

conjecture that in higher dimensions the partition function
on T 2 ×Rd−1 picks up the same sort of anomalous
prefactor quadratic in the potential, in addition to a spatial
volume factor which rescales by ðL=βÞd−1. This indeed
happens for a free boson in higher dimensions, though this
theory is not a CFT. Schematically, we have

Z ∼ e−ðz2=βÞðL=βÞd−1ðVd−1=Ld−2ÞZ0; ð59Þ

where Z0 is the modularly transformed partition function
and z ∼ βΦ for chemical potentialΦ. The factor of Ld−2 has
been put in the exponent to make it dimensionless and has
no obvious source, a point which we will return to later.
With this proposed modular property, we can perform

the inverse Laplace transform explicitly for d ¼ 2 and
d ¼ 3. In an expansion for small charge Q, we find that the
entropy picks up the following contribution:

log ρðE;QÞ ∼ E
d

dþ1V
1

dþ1

d − E
d

dþ1V
1

dþ1

d

X∞
n¼1

cn

�
Q

E
d

dþ1V
1

dþ1

d

�
2n
;

d ¼ 2; 3: ð60Þ

In the above expression, we have assumed the ground state
has vanishing charge (so we are fixing the chemical
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potential and summing over the charges). This functional
dependence on the charge agrees with Reissner-Nordstrom-
AdS black branes in the bulk, although the coefficients cn
do not agree.
By the technology in Sec. IV B, we can obtain the

entropy at finite angular momentum on the torus and match
to boosted Reissner-Nordstrom-AdS black branes. We can
also consider angular momentum and charge on the sphere
by utilizing the following result for conformal fluids on a
sphere [14]:

logZðβ;Φ;ΩiÞ ¼
logZðβ;ΦÞQ

kð1 −Ω2
kÞ
: ð61Þ

The universal angular-velocity factors carry through to the
degeneracy of states as we saw in Sec. IV D. This agrees
with the entropy of the Kerr-Newman black hole at high
temperature, which equals the entropy of the Reissner-
Nordstrom black hole with the same universal angular-
velocity factors.
It would be interesting to derive from first principles the

modular properties for a higher-dimensional CFT with a
Uð1Þ charge to check the statements above. One potentially
confusing point about the proposal above arises from
dimensional analysis. For the free boson in higher dimen-
sions, the current ∂μϕ has dimension ðdþ 1Þ=2, which
means the coupled source Aμ has dimension ðdþ 1Þ=2.
The factor

R
ddþ1xA2

0 is therefore dimensionless and is a
natural object to appear in the exponent. This is in fact what
appears when performing the transform. The problem
arises when considering a CFT. In that case, a spin-1
current Jμ has dimension d, meaning the coupled source Aμ

has dimension 1. This means something has to make up
the dimensions in the type of term we have postulated,

e
R

A2
0 . (We have simply put in additional factors of L to

make up the dimensions.) Notice that for d ¼ 1 we have
ðdþ 1Þ=2 ¼ d, so this issue does not arise. This is because
the free boson in this case is a CFT. To see the Legendre
transform in action, we can take the complex, conformally
coupled scalar in higher dimensions as our representative
example. It has Uð1Þ current Jμ ¼ iðϕ∂μϕ

† − ϕ†∂μϕÞ. If
we source J0 in the path integral with A0J0, then the
canonical momenta are πϕ ¼ ∂tϕ

† − iA0ϕ† and its complex

conjugate. This leads to a quadratic term e
R

A2
0
jϕj2 in the

relation between the path integral and trace formula. So, the
dimensions are made up by jϕj2. Although this looks like a
mass term which breaks scale invariance, the “mass” A0 is
spurionic and transforms under a scale transformation.
Together with the piece A0J0, these terms have the effect
of shifting the Matsubara frequencies by a constant
imaginary term. In particular, the free energy remains
extensive, which justifies our additional factor of
ðL=βÞd−1. Notice that the piece R A2

0jϕj2 cannot be factored
out as an anomalous prefactor as in (59). Instead, it enters

into the Hamiltonian. Nevertheless, we know in two
dimensions that the end result is the behavior (59). This
emphasizes the necessity of proving the correct anomalous
dependence in higher dimensions in a more general way.
One may suspect that the procedure of regularizing contact
terms in the conserved current operator product expansion,
as can be done in two dimensions, will lead to a general
answer. However, in the case of e.g. a Dirac fermion in
2þ 1 dimensions, there does not seem to exist such an
anomaly [18].2

B. Hyperscaling-violation and Dp-branes

In Sec. III, we showed that the localization of the field
theory partition function on the ground state can be
understood from the bulk as a localization of the
Euclidean gravity partition function on the black brane
configuration. This is general and remains true in any
context where (a) the field theory partition function projects
to the ground state and (b) the ground state configuration in
the bulk is given by a soliton obtained by double Wick
rotation from the black brane. As shown in Ref. [1], this
projection remains true once we add a hyperscaling-
violation exponent θ into the mix as long as the specific
heat of the black brane remains positive (θ < d). Thus,
since Euclidean gravity methods give the correct entropy,
formula (5) will also reproduce the correct entropy. This
has been worked out explicitly for d ¼ 1 in Ref. [3]. We
omit the details of the higher-dimensional calculation, but it
straightforwardly follows the approach of the previous
sections and shows SBH ¼ log ρðEÞ. Boosted branes can
also be constructed, with their entropy given most simply as
in Sec. IV B.
Black Dp-branes, when dimensionally reduced over the

sphere, give rise to hyperscaling-violating black brane
solutions with particular values of θ [19]. These are special
cases of our derivation for general θ.

1. D5-branes

One of the more remarkable examples of holographic
duality is derived from considering a stack of NS5-branes
(or the S-dual D5-branes). The world volume theory is
exotic and dubbed “little string theory” for its similarity
to string theory. More precisely, in the decoupling limit
necessary to derive the duality, α0 is kept finite on the
brane while GN → 0. Thus, there is no gravity on the
background, but there are still strings. When compacti-
fied on tori, the theory enjoys T-duality as a symmetry,
and the density of states can be shown to be of
Hagedorn type.

2Thanks to Shinsei Ryu for explaining this case to me and to
Gabor Sarosi for discussions about a general derivation.
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The gravitational background is given as

ds2 ¼ l2r2
�
−ð1 − r2h=r

2Þdt2 þ dr2

r2ð1 − r2h=r
2Þ þ dx2i

�
i ¼ 1;…; 5; ð62Þ

which can be obtained by sending θ → −∞ [20]. This
makes the effective dimensionality diverge, an indication of
the stringiness of the dual. The inverse temperature of this
black brane is β ¼ 2π, independent of the location of the
horizon. This allows us to integrate dE ¼ TdS to get
S ¼ 2πE. The entropy formula (5) in the limit θ → −∞
becomes

S ¼ 2πE; ð63Þ

where we fixed the length of the spatial cycle to 2π and
E is the energy of the black brane. We have also made the
strong assumption that logEvac ∼ dneff for n < 1 so that
limdeff→∞ð−EvacÞ1=ðdeffþ1Þ ¼ 1. This is not a sensible limit
since we do not have a family of theories indexed by deff,
and even in (irrelevant) cases for which we do have a family
of theories—-like a massless scalar field—it is violated.
Nevertheless, the final formula matches the bulk thermo-
dynamics, and it can be obtained by more honest means.
Proceeding as in Ref. [3], we can do a fresh analysis of the
partition function. We assume that the symmetry of this
spacetime r → λr, l → λl is inherited by the gravitational
sector of the dual theory as E → λE. Then, we see

ZðβÞ ¼
Z

dEe−βEρðEÞ ¼
Z

ðλdEÞe−λβEρðλEÞ

⇒ ρðEÞ ¼ eβEðδðEÞ þ 1=EÞ: ð64Þ

VI. LOGARITHMIC CORRECTIONS

A. Gravity

In Ref. [21], it was argued that there are three possible
sources of logarithmic corrections to the entropies of black
holes. Two of these sources are zero modes and nonzero
modes, which enter into the partition function directly:

Z ¼ Znz þ Zzm: ð65Þ

These corrections are from zero modes and nonzero modes
and can be calculated as a one-loop determinant in the
Euclidean gravity path integral which defines the partition
function.
The final source of logarithmic corrections arises from

transforming the partition function into the microcanonical
density of states. For the general hyperscaling-violating
black brane, we find

SBH ¼ A
4G

−
2þ deff
2deff

log
A
4G

: ð66Þ

B. Field theory

Just as in the bulk, the field theory has logarithmic
corrections which come from the inverse Laplace transform
from the partition function to the microcanonical density of
states. The transform can be calculated by a saddle-point
approximation as before, but this time we keep the first
correction to the leading saddle. We have

ρðEÞ ¼
Z

dβZðβÞeβE ⇒ log ρðEÞ ≈ S0 −
2þ deff
2deff

log S0:

ð67Þ

The logarithmic correction is determined entirely by the
specific heat and reproduces (66). To illustrate this deri-
vation in a bit more detail, we restrict to a scale-invariant
theory and use the modular invariance on T2 ×Rd−1,

ρðEÞ ¼
Z

dβZðβÞeβE

¼
Z

dβð ~ZðL2=βÞÞðL=βÞd−1ðeL2Evac=βÞðL=βÞd−1eβE;

ð68Þ

where we defined ~ZðβÞ ≔ e−βEvacZðβÞ and shifted the
definition of the energies to mimic the usual two-
dimensional derivation. This integral is evaluated by saddle
point on the part of the integrand independent of ~Z, and it
can be checked that ~ZðL2=β�Þ ¼ 1 on the saddle β�. We
find

log ρðEÞ ≈ S0 −
2þ d
2d

log S0: ð69Þ

This derivation can be generalized to incorporate hyper-
scaling violation and reproduces (67).
Notice that, since the field theory and bulk partition

functions localize to the same contribution at high temper-
ature as argued in Sec. III, they are forced to give the
same logarithmic corrections. Projecting the partition
function at high temperature before inverse Laplace trans-
forming is sensible if one assumes the dominant saddle is at
high temperature. Of course, as we showed above, this
assumption is not necessary, and the modular properties can
be used to provide a more rigorous treatment.
What about logarithmic corrections which are analogous

to the zero modes and nonzero modes in the bulk? In our
formalism, such corrections enter into the vacuum energy.
This is clear from the bulk, since the vacuum energy is
calculated by a Euclidean gravity partition function.
Since the Euclidean geometries of the black brane and
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the vacuum state match (up to rescalings), any logarithmic
corrections will trivially match between the two.

VII. DISCUSSION

By using the Casimir energy implied by the AdS soliton
and its hyperscaling-violating cousins, we have been able
to use formula (5) to give a microscopic count of the states
of various black holes and black branes. This is the natural
generalization of Strominger’s calculation of the BTZ black
hole entropy to higher dimensions and to violations of
hyperscaling.
The entropy formulas (and other thermodynamic for-

mulas) derived above exhibit a universal appearance of the
vacuum charge εvac. In the case of N ¼ 4 SYM, this
number differs by a factor of 3=4 between the weak and
strong coupling results. This of course feeds into the
famous 3=4 difference between the thermal entropy at
weak and strong coupling. The appearance of a factor of
3=4 was also observed in various thermodynamic formulas
in extended ensembles by Refs. [22–24] but was left
unexplained. We see that the universal appearance of the
vacuum charge in the various formulas above explains the
universal appearance of this factor.
The torus partition function in higher dimensions does

not have a direct relationship with the spectrum of local
operators. In theories like pure Chern-Simons theory,
it is instead related to the spectrum of line operators.3

Modular invariance in this case is not interesting, since
the theory is topological and therefore independent of cycle
lengths. However, it would be interesting to investigate
conformal Chern-Simons-matter theories, which play a key
role in condensed matter physics and holography for four-
dimensional spacetimes.

We have only used our various modular properties for
asymptotically small β, and it would be interesting to
explore the constraints it provides at intermediate β. For
example, one could utilize the modular bootstrap invented
in Ref. [25] and applied to quantum gravity in Ref. [26]. This
would give information about states on the background
T2 ×Rd−1. The Chern-Simons-matter theories mentioned
above are very sensitive to topology. In particular, new states
are introduced on nontrivial backgrounds, including T 2 ×R.
This higher-dimensional modular bootstrap may therefore
elucidate the role of topology in four-dimensional quantum
gravity and cosmology [27,28].
Another fascinating application of this formalismwould be

to nonunitary theories. The derivation of the Cardy formula
uses unitarity by considering a spectrum of real energies
bounded below. For CFTs in two dimensions, considering
nonunitary theories may connect to the entropy of the
cosmological horizon in dS3 [29–31]. Using bulk-inspired
assumptions to constrain the dual field theory, one may hope
to derive a Cardy formula for these special theories [32].
This approach has many interesting subtleties. However, for
four-dimensional de Sitter space (dS4), there exist concrete
proposals for nonunitary CFT duals [33–36]. The nonunitary
nature of these theories is much milder, since the weights of
local operators are real and non-negative, and our formalism
should apply. One could then investigate whether the
degeneracies of states in these theories have any relation
to the entropy of the cosmological horizon in the bulk.
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