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In this paper, we study rotating boson stars in the large coupling limit as well as in the Newtonian
limit. We investigate the equilibrium solutions in four and five dimensions by adopting some analytical
approximations. We show that the relations among the radius, angular momentum, Newtonian energy, and
quadrupole moment (for the four-dimensional solution) of the boson star can be qualitatively realized for
the minimal number of boson-star parameters.
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I. INTRODUCTION

Along with the development of observational cosmol-
ogy, including the recent gravity-wave detection, the
theoretical study of compact objects is actively advancing
apace. Thus far, remarkable progress has been made in
the study of universal relations between physical quantities
of compact objects, such as the angular momentum,
quadrupole moment, mass, and radius.
The study of self-gravitating systems is very interesting

because the characteristics of general relativity or the
modified gravity appear in the physical quantities of the
system. For example, Brihaye, Hartmann, and collaborators
argued about a boson star solution in a higher-dimensional
spacetime [1–3].
From the perspective of particle cosmology, the boson

star [4–6] is one of the candidates for dark matter [7–11].
The (1þ 3)-dimensional boson star was studied as the
simplest model of a self-gravitating system and the
Newtonian treatment of gravitating bosons has been often
discussed [4]. Although the difference between the
Newtonian treatment and the general relativistic model is
significant, the Newtonian treatment is known to enable
the evaluation of the mass of the boson star qualitatively.
It is necessary to examine the Newtonian approximation in
higher-dimensional boson systems, since a substantial
understanding is important to check whether a universal
property of compact objects exists even in the modified
gravity theory.
We discuss the qualitative behavior of models such

as a four-dimensional rotating boson star (which has
been studied in the general relativistic model [12–16]), a
boson star in dimensions with compactified space, and

five-dimensional boson stars using Newtonian approxima-
tion. We study the system of a scalar field with large self-
interaction [17] in this paper. A deep understanding of the
basic aspects of self-gravitating systems, which is inde-
pendent of a possible correction in the gravity theory, is
expected from this study.
The present paper is organized as follows. In Sec. II, we

obtain the action, the Hamiltonian, and field equations for a
model of a self-interacting, gravitating boson field in the
Newtonian limit. The large coupling limit of the model is
defined in Sec. III and we obtain the spherical solution for a
boson star and discuss its mass. In Sec. IV, approximated
solutions for rotatingboson stars are obtained, and the relation
among their physical quantities is studied. The boson star in
the Kaluza-Klein background is considered in Sec. V, and
the stability against a small variation along with an extra
dimension is discussed. In Sec. VI, five-dimensional boson
stars in the Newtonian limit are investigated. The last section
is devoted to a summary and future prospects.

II. THE NEWTONIAN LIMIT

We consider a system of self-interacting, gravitating
scalar bosons of mass m governed by the following field-
theoretical action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
R − j∂ϕj2 −m2jϕj2 − 1

2
~λjϕj4

�
;

ð2:1Þ

where d4x ¼ dtd3x, G is the Newton constant, R is the
Ricci scalar, ~λ is the dimensionless scalar self-coupling
constant, and j∂ϕj2 ≡ gμνð∂μϕÞ�ð∂νϕÞ.
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By the variational principle, we derive the Einstein
equation from the action as

Rμ
ν −

1

2
δμνR ¼ 8πGTμ

ν ; ð2:2Þ

where the energy-momentum tensor in the system is
given by

Tμν ¼ ½∂μϕ
�∂νϕþ ∂νϕ

�∂μϕ − gμνj∂ϕj2 − gμνm2jϕj2�

− gμν
1

2
~λjϕj4: ð2:3Þ

The equation of motion for the complex scalar field ϕ is
given by

□ϕ −m2ϕ − ~λjϕj2ϕ ¼ 0; ð2:4Þ

where □ϕ≡ 1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp
gμν∂νϕÞ is the covariant

d’Alembertian.
The Newtonian limit can be attained by assuming that

the spacetime metric in the weak field approximation can
be written as

g00 ≈ −ð1þ 2ΦÞ; ffiffiffiffiffiffi
−g

p
≈ 1; ð2:5Þ

where Φ is the Newtonian gravitational potential.
Assuming further that a complex scalar field has a nearly

harmonic time dependence expressed by1

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ψðr; tÞe−iωt

≈
1ffiffiffiffiffiffiffi
2m

p ψðr; tÞe−imt; ð2:6Þ

we obtain the (nonlinear) Schrödinger equation

i _ψ ¼ −
1

2m
∇2ψ þmΦψ þ

~λ

4m2
jψ j2ψ ð2:7Þ

as the Newtonian limit of Eq. (2.4), where ∇2 is the
Laplacian in the flat space and the dot indicates the time
derivative. In the present limit, the Einstein equations
reduce to the Poisson equation

∇2Φ ¼ 4πGmjψ j2: ð2:8Þ

The Newtonian treatment of the Lagrangian and
Hamiltonian is as follows. We find the following
Newtonian action in the limit:

S ≅
Z

dtd3r

�
−

1

8πG
ð∇ΦÞ2 þ iψ� _ψ −

1

2m
j∇ψ j2

−mΦjψ j2 − 1

8

~λ

m2
jψ j4

�
; ð2:9Þ

where ð∇ΦÞ2 ≡ ∇Φ · ∇Φ and the symbol ≅ indicates that
some surface terms have been omitted. Therefore, the
Hamiltonian of the system is derived as

Ĥðψ ;ΦÞ ¼
Z

d3rH

¼
Z

d3r

�
1

8πG
ð∇ΦÞ2 þ 1

2m
j∇ψ j2

þmΦjψ j2 þ 1

8

~λ

m2
jψ j4

�
: ð2:10Þ

On the other hand, the Newtonian number of particles is
expressed as

N̂ ≡
Z

d3rjψ j2: ð2:11Þ

In addition, we require the condition N̂ ¼ N, i.e., the
condition that the system contains N scalar bosons. Then,
we consider δfĤ − μðN̂ − NÞg ¼ 0 as an equation for the
scalar matter field in the mean field approximation, where μ
is a Lagrange multiplier.
Now, we obtain two coupled equations for the stationary

gravitational field and the matter field as follows:

∇2Φ ¼ 4πGmjψ j2; ð2:12Þ

−
1

2m
∇2ψ þmΦψ þ

~λ

4m2
jψ j2ψ ¼ μψ : ð2:13Þ

Therefore, the system is reduced in the Newtonian limit to
the (nonlinear) Schrödinger-Poisson system.
In the subsequent sections of this paper, we will con-

centrate on the large coupling limit to extract analytic
results for compact objects.

III. LARGE COUPLING LIMIT AND THE
SPHERICAL SOLUTION

Here, we consider the large coupling limit [17]. We
assume the case of Λ ≫ 1, where

Λ ¼
~λ

8πGm2
: ð3:1Þ

In addition, if we introduce the following quantities
1Since we consider the Newtonian limit, the frequency ω is

close to the scalar field mass m.
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r� ¼
mffiffiffiffi
Λ

p r; Ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4πGΛ
m

r
ψ ; μ� ¼

μ

m
; ð3:2Þ

the set of equations reduces to the simple form

∇2�Φ ¼ jΨj2; ð3:3Þ

−
1

2Λ
∇2�Ψþ ΦΨþ 1

2
jΨj2Ψ ¼ μ�Ψ; ð3:4Þ

where ∇2� is the rescaled Laplacian expressed in terms of
the coordinate r�.
In the limit of Λ → ∞, Eq. (3.4) further reduces to

ΦΨþ 1

2
jΨj2Ψ ¼ μ�Ψ: ð3:5Þ

We can interpret the solutions of (3.5) as follows. In the
region outside the boson star, the solution is Ψ≡ 0. In the
region inside the boson star, i.e., in the region of jΨj > 0,
the solution is expressed by

Φ ¼ μ� −
1

2
ρ; ð3:6Þ

where the normalized density function is defined as

ρ≡ jΨj2: ð3:7Þ

Note that μ� indicates the value of the gravitational
potential at the surface of the boson star, where ρ ¼ 0.
If the relation (3.6) is substituted in the Poisson equa-
tion (3.3), we obtain the linear differential equation

∇2�ρþ 2ρ ¼ 0; ð3:8Þ

which is valid in the region inside the boson star, while
ρ ¼ 0 outside the star.2 Because of Eq. (2.11), the solution
of the linear equation (3.8) should be normalized as

N ¼
ffiffiffiffi
Λ

p

4πGm2

Z
d3r�ρðr�Þ: ð3:9Þ

Now, we consider the spherically symmetric solution of
the system. Then, Eq. (3.8) can be rewritten as

1

r�

d2

dr2�
ðr�ρÞ þ 2ρ ¼ 0; ð3:10Þ

where r� ¼ ffiffiffiffiffiffiffiffiffiffiffi
r� · r�

p
. The normalized solution for ρðr�Þ is

analytically expressed as

ρðr�Þ ¼
(

4πGm2ffiffiffi
Λ

p Nffiffi
2

p
π2

sin
ffiffi
2

p
r�ffiffi

2
p

r�
ðr� < π=

ffiffiffi
2

p Þ
0 ðr� > π=

ffiffiffi
2

p Þ
: ð3:11Þ

The solution for the gravitational potential Φðr�Þ can be
found by Eq. (3.6) for r� ≤ π=

ffiffiffi
2

p
. We should choose the

value of μ� so that Φðr�Þ matches the Newton potential at
r� ¼ π=

ffiffiffi
2

p
. Hence, we find

Φðr�Þ ¼
8<
:

−
ffiffi
2

p
π

Gm2Nffiffiffi
Λ

p − 2πGm2ffiffiffi
Λ

p Nffiffi
2

p
π2

sin
ffiffi
2

p
r�ffiffi

2
p

r�
ðr� < πffiffi

2
p Þ

− Gm2Nffiffiffi
Λ

p
r�

ðr� > πffiffi
2

p Þ
:

ð3:12Þ

Note that μ� takes a negative value for bound states.
The Newtonian energy E of the system in the large

coupling limit can be expressed from Eq. (2.10) as

E ¼
ffiffiffiffi
Λ

p

4πGm

Z
d3r�

�
1

2
ð∇�ΦÞ2 þ ΦjΨj2 þ 1

4
jΨj4

�
: ð3:13Þ

Substituting the solution of Eqs. (3.3), (3.6), and (3.7) into
this equation, we obtain

E ≅
ffiffiffiffi
Λ

p

4πGm

Z
d3r�

�
−
1

2
Φ∇2�Φþ Φρþ 1

4
ρ2
�

¼
ffiffiffiffi
Λ

p

4πGm

Z
d3r�

�
1

2
Φρþ 1

4
ρ2
�

¼
ffiffiffiffi
Λ

p

4πGm

Z
d3r�

�
1

2
μ�ρ

�
¼ 1

2
Nmμ� ¼

1

2
Nμ: ð3:14Þ

The mass of the boson star is given in the present
Newtonian scheme by

M ¼ Nmþ E: ð3:15Þ

After substituting the solution (3.12) into (3.14), we find
that the mass of the spherical boson star becomes

MðNÞ ¼ mN −
Gm3ffiffiffi
2

p
π

ffiffiffiffi
Λ

p N2: ð3:16Þ

Incidentally, if we can vary the value of N, the maximum
of M occurs for

N ¼ πffiffiffi
2

p
ffiffiffiffi
Λ

p

Gm2
: ð3:17Þ

The maximum value of M is

Mmax ¼
π

2
ffiffiffi
2

p
ffiffiffiffi
Λ

p

Gm
; ð3:18Þ2Note that, in the large coupling limit, the boson star has no

asymptotic tail outside the star [15,17].
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which is supposed to be a typical mass of the boson star in
the large coupling limit. This value for the mass of the
boson star is several times greater than the general
relativistic result [17]. This is very similar to the known
case for the Newtonian and relativistic boson stars with no
self-interaction [4]. We need not consider the boson star
with the maximum mass, especially for explaining the
galaxy rotation caused by a single huge boson star located
at the center of the galaxy [9–11].
In D-dimensional spacetime, we take the same forms of

the Lagrangian density L and the Hamiltonian density H
as the four-dimensional ones. Then, the shape of the
equation of motion for ρ is unchanged; the rescaled
Laplacian in the spherical system of (D − 1)-dimensional
space is replaced by

∇2� ¼
1

rD−2�

d
dr�

rD−2�
d
dr�

: ð3:19Þ

For a D-dimensional boson star, the particle number N is
expressed as

N ¼ ð ffiffiffiffi
Λ

p ÞD−3

4πGmD−2

Z
dD−1r�ρðr�Þ: ð3:20Þ

By solving the higher-dimensional equation, we find the
solution

ρðr�Þ ¼
8<
:

4πGmD−2

AD−1ð
ffiffiffi
Λ

p ÞD−3
2
D−1
2 N

q
D−1
2 JD−1

2
ðqÞ

JD−3
2
ð ffiffi

2
p

r�Þ

ð ffiffi
2

p
r�Þ

D−3
2

ðr� < qffiffi
2

p Þ

0 ðr� > qffiffi
2

p Þ
;

ð3:21Þ

and

Φðr�Þ ¼

8>><
>>:

− 4πGmD−2N
AD−1ð

ffiffiffi
Λ

p
ÞD−3

2
D−3
2

ðD−3ÞqD−3 − 2πGmD−2

AD−1ð
ffiffiffi
Λ

p
ÞD−3

2
D−1
2 N

q
D−1
2 JD−1

2
ðqÞ

JD−3
2
ð ffiffi

2
p

r�Þ

ð ffiffi
2

p
r�Þ

D−3
2

ðr� < qffiffi
2

p Þ

− 4πGmD−2N
AD−1ð

ffiffiffi
Λ

p
ÞD−3

1
ðD−3ÞrD−3�

ðr� > qffiffi
2

p Þ
; ð3:22Þ

where AD−1 ≡ 2π
D−1
2

ΓðD−1
2
Þ, JnðzÞ is the Bessel function of the first

kind, and q is the first nontrivial zero of JD−3
2
ðxÞ, i.e.,

JD−3
2
ðqÞ ¼ 0. As in the case of D ¼ 4, we have chosen the

value of μ� so that Φðr�Þmatches the gravitational potential
in vacuum outside the star.
The Newtonian energy is the same as that in four

dimensions:

E ¼ 1

2
Nmμ� ¼

1

2
Nμ: ð3:23Þ

Thus, the mass of the spherical boson star is given by

MðNÞ ¼ Nm −
4πGmD−1

2AD−1ð
ffiffiffiffi
Λ

p ÞD−3

2
D−3
2

ðD − 3ÞqD−3N
2: ð3:24Þ

The maximum of M occurs when

N ¼ AD−1ð
ffiffiffiffi
Λ

p ÞD−3

4πGmD−2
ðD − 3ÞqD−3

2
D−3
2

; ð3:25Þ

and the maximum mass is

Mmax ¼
AD−1ð

ffiffiffiffi
Λ

p ÞD−3

4πGmD−3
ðD − 3ÞqD−3

2
D−1
2

: ð3:26Þ

IV. ROTATING NEWTONIAN BOSON STARS
WITH LARGE SELF-INTERACTION

Now we turn to the case of D ¼ 4 again and consider
rotating boson stars. We assume their axial symmetry and
equatorial symmetry. The coordinates are assumed to be

ds2 ¼ −dt2 þ dr2 þ r2ðdθ2 þ sin2θdφ2Þ; ð4:1Þ

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π. The line element can
also be read as

ds2 ¼ −dt2 þ Λ
m2

fdr2� þ r2�ðdθ2 þ sin2θdφ2Þg

¼ −dt2 þ Λ
m2

ðdx2 þ x2dφ2 þ dz2Þ; ð4:2Þ

where x ¼ r� sin θ, and z ¼ r� cos θ.
For a stationary rotating boson star, we set [12–16]

Ψ → Ψðr�; θÞeisφ; ð4:3Þ

where φ indicates the polar angle and an integer s
corresponds to the angular momentum. Substituting this
ansatz, Eq. (3.4) reads
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−
1

2Λ

�
1

r�

∂2

∂r2� r�Ψþ 1

r2� sin θ
∂
∂θ sin θ

∂
∂θΨ −

s2

r2�sin2θ
Ψ

�

þ ΦΨþ 1

2
jΨj2Ψ ¼ μ�Ψ: ð4:4Þ

We assume the large coupling limit Λ → ∞ as well as
the rapid rotation of the phase of the scalar field such that
s2� ≡ s2=Λ takes a finite value. Then, the equation becomes

�
Φþ 1

2

�
jΨj2 þ s2�

r2�sin2θ

�
− μ�

�
Ψ ¼ 0: ð4:5Þ

If the relation for Ψ ≠ 0 is substituted into the Poisson
equation, we obtain the following inhomogeneous differ-
ential equation:

∇2�f þ 2f ¼ 2s2�
r2�sin2θ

; ð4:6Þ

where

fðr�; θÞ≡ ρþ s2�
r2�sin2θ

; ð4:7Þ

with ρ≡ jΨj2.
The particular solution of (4.6) is given by [18]

s2�fpðxÞ≡ −
s2�π
2

Y0ð
ffiffiffi
2

p
xÞG20

13

�
x2

2

���� 1

0; 0; 0

�
; ð4:8Þ

where x≡ r� sin θ, YnðzÞ is the Bessel function of the
second kind and Gmn

pq is the Meijer G function.
The general solution to Eq. (4.6) with axial and

equatorial symmetries [ρðr�; θÞ ¼ ρðr�; π − θÞ] is
expressed by the particular solution s2�fpðxÞ plus the linear
combination

X∞
n¼0

j2nð
ffiffiffi
2

p
r�ÞP2nðcos θÞ; ð4:9Þ

where jlðzÞ is the spherical Bessel function3 and PnðxÞ is
the Legendre polynomial of the nth order, orZ

dk½αðkÞJ0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − k2

p
xÞ þ βðkÞY0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − k2

p
xÞ� cos kz;

ð4:10Þ

where z≡ r� cos θ.
To simplify our analysis, we wish to use the minimal

number of parameters throughout the present paper. The
radius of the boson star is thought to be an important

physical parameter. Hence, we first consider a simple
ansatz that ρ is given by

A
sin

ffiffiffi
2

p ðr� − hÞffiffiffi
2

p
r�

þ s2�

�
fpðxÞ −

1

x2

�

− s2�

�
fpðR�Þ −

1

R2�

�
Y0ð

ffiffiffi
2

p
xÞ

Y0ð
ffiffiffi
2

p
R�Þ

; ð4:11Þ

where the scale factor A is a dimensionless constant if its
numerical value is positive; otherwise, ρ ¼ 0. Here, the
equatorial radius of the boson star is given by R� ¼ πffiffi

2
p þ h.

As a bolder approximation, we will omit fp in the
previous ansatz. The special solution fpðxÞ behaves log-
arithmic in the vicinity of the origin. The term proportional
to 1=x2 makes ρ vanish more rapidly near the origin
(Fig. 1). We can therefore omit fpðxÞ to make numerical
integration efficient, and we finally adopt the following
approximation for ρ:

A
sin

ffiffiffi
2

p ðr� − hÞffiffiffi
2

p
r�

− s2�

�
1

x2
−

1

R2�

Y0ð
ffiffiffi
2

p
xÞ

Y0ð
ffiffiffi
2

p
R�Þ

�
; ð4:12Þ

if its value is positive.
The total particle number is still given by (3.9), as in the

nonrotating case, while the Newtonian energy of the
rotating boson star becomes

E ¼
ffiffiffiffi
Λ

p

4πGm

Z
d3r�

�
1

2
ρ

�
μ� þ

s2�
2x2

��

¼ 1

2
Nmμ� þ

ffiffiffiffi
Λ

p

16πGm

Z
d3r�

ρs2�
x2

; ð4:13Þ

which is deduced from (2.10) and field equations.
Now we solve the Poisson equation (3.8) with the ρ

found above in order to evaluate the value of μ�. The
solution for the Poisson equation can be expressed as
follows:

Φðr�Þ ¼
Z

Gðr� − r�0Þρðr�0Þd3r�0; ð4:14Þ

FIG. 1. fpðxÞ (dotted line) and 1=x2 (solid line).

3Note that j0ðzÞ ¼
ffiffiffiffi
π
2z

p
J1=2ðzÞ ¼ sin z

z .

ANALYTICAL APPROXIMATION FOR NEWTONIAN BOSON … PHYSICAL REVIEW D 94, 104042 (2016)

104042-5



where the Green function G satisfies

∇2�Gðr� − r�0Þ ¼ δ3ðr� − r�0Þ: ð4:15Þ

The Green function satisfying the condition G → 0 at the
spatial infinity is well known and is given by

Gðr� − r�0Þ ¼ −
1

4πjr� − r�0j
; ð4:16Þ

or

−
1

4πjr� − r�0j
¼ −

X∞
l¼0

Xl

m¼−l

1

2lþ 1

rl<
rlþ1
>

Y�
lmðθ0;φ0ÞYlmðθ;φÞ;

ð4:17Þ

where r< ¼ minðr�; r�0Þ, r> ¼ maxðr�; r�0Þ, and Ylmðθ;φÞ
is the spherical harmonic function.
Because the density distribution has been assumed to be

axially and equatorially symmetric, the gravitational poten-
tial Φ outside the boson star can be obtained as

Φðx; zÞ ¼ −
Z

∞

0

Z
∞

0

ρðx0; z0Þ
2K

�
− 4xx0

ðx−x0Þ2þðz−z0Þ2
	

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðz − z0Þ2

p
× x0dx0dz0; ð4:18Þ

where KðmÞ is the complete elliptic integral of the first
kind. By numerically integrating (4.18), we can obtain the
value of μ� as

μ� ¼ ΦðR�; 0Þ: ð4:19Þ

Now, we can numerically calculate the Newtonian
energy E and the other quantities of the boson star. The
shape of the boson star is determined by h and s2�=A in the
form (4.12).4

First, we list the values of ð ffiffiffiffi
Λ

p
=ð8πGm2ÞÞμ�=N, which

is apparently independent of the scale factor A, in Table I.
We can find that the value for μ� is always negative.
Then, we evaluate the normalized Newtonian binding

energy

ffiffiffiffi
Λ

p

4πGm3

E
N2

; ð4:20Þ

which is apparently independent of the scale factor A.
Table II lists the values of ð ffiffiffiffi

Λ
p

=ð4πGm3ÞÞE=N2 for the
four-dimensional boson star as a function of h and s2�=A. If
E is negative, the solution is considered to be energetically
stable. There are positive values for E in Table II, because
of the positive term proportional to s2� in (4.13). The
solutions of E > 0 are unstable.
Figure 2 shows this normalized Newtonian binding

energy ð ffiffiffiffi
Λ

p
=ð4πGm3ÞÞE=N2 in a contour plot. The hori-

zontal axis indicates s2�=A ¼ f0.1; 1.3g, while the vertical
axis indicates h ¼ f0.0; 0.4g. A darker region corresponds
to a lower energy. Each solid line shows the line on which

the value
ffiffiffi
Λ

p
4πGm2

s2�
N ¼ s2

4πGm2
ffiffiffi
Λ

p
N
is constant.

For a small angular momentum or a small s2=N, a lower
h yields a lower E=N2. Thus, the equatorial radius of the
boson star is R� ¼ π=

ffiffiffi
2

p
for a small s2=N. For a large

s2=N, the binding energy E becomes lower at a finite h.
Under the condition that the conserved quantities, the
particle number and angular momentum of the boson star,
are fixed, the configuration with lower energy is considered
to be realized. Therefore, for a fixed N, the equatorial
radius of the rapidly rotating boson star increases with a
higher angular momentum. This qualitative behavior cor-
responds to the result in the relativistic system studied by
Ryan [15] in the large-coupling limit.
We show a typical profile of the rotating boson star in

Fig. 3, where the scale of the vertical axis is taken
arbitrarily since the shape is independent of the scale
factor A.

TABLE I. The values of ð ffiffiffiffi
Λ

p
=ð8πGm2ÞÞμ�=N for the four-dimensional boson star.

s2�=A

0.1 0.3 0.5 0.7 0.9 1.1 1.3

0.40 −0.0154575 −0.0155328 −0.0154203 −0.0152666 −0.0151309 −0.0150177 −0.0149258
0.35 −0.0157916 −0.0159749 −0.015983 −0.0159038 −0.0157878 −0.0156723 −0.0155675
0.30 −0.016127 −0.0163875 −0.0164783 −0.0164866 −0.0164427 −0.0163614 −0.0162665
0.25 −0.0164716 −0.0167923 −0.016947 −0.01702 −0.0170398 −0.0170254 −0.0169846

h 0.20 −0.0168265 −0.0171972 −0.0174086 −0.0175356 −0.0176087 −0.0176448 −0.0176537
0.15 −0.0171945 −0.0176109 −0.0178718 −0.0180489 −0.0181709 −0.0182527 −0.0183046
0.10 −0.0175769 −0.0180362 −0.0183441 −0.01857 −0.0187379 −0.0188644 −0.0189587
0.05 −0.0179756 −0.0184763 −0.0188301 −0.0191031 −0.0193191 −0.019491 −0.0196291
0.00 −0.0183919 −0.0189334 −0.0193337 −0.0196555 −0.0199208 −0.0201418 −0.0203245

4Note that the unit of h is
ffiffiffiffi
Λ

p
=m [see Eq. (3.2)].
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Next, we list the values of 4πG
ffiffiffiffi
Λ

p
mjQj=s2, the ratio of

the quadrupole moment to s2 of the boson star, in Table III.
The quadrupole moment Q is given by

Q ¼
ffiffiffiffi
Λ

p

4πGm

Z
d3r�ρðr�Þð3z2 − jr�j2Þ: ð4:21Þ

The ratio of the quadrupole moment to s2 of the boson star
is shown in Fig. 4 as a contour plot.
The parameter region is the same as in Fig. 2. From this

plot, we find the following. For a small s2=N, the ratio is
small; when the radius of the boson star increases, the ratio
increases. This qualitative behavior coincides with the
relativistic result obtained by Ryan [15] in the large-
coupling limit. Because the quadrupole moment is sensitive
to the detail of the shape, it is difficult to study on the
qualitative correspondence to the previous result in the
present analysis with the minimal number of parameters.

V. INTERLUDE: ON BOSON STARS IN THE
KALUZA-KLEIN BACKGROUND

In this section, we consider a boson-star solution in the
Kaluza-Klein background, i.e., a boson star in spacetime
with a compact extra dimension.
We denote the coordinate of the extra space as y. This

dimension is assumed to be a circle, the circumference of
which is set as L. Thus, the coordinate can be considered
periodic by identifying yþ L ∼ y.
As in previous sections, we rescale the length scale as

y� ¼
mffiffiffiffi
Λ

p y; L� ¼
mffiffiffiffi
Λ

p L: ð5:1Þ

The Lagrangian density is assumed to be of the same
form as in the previous case. Accordingly, a nonzero ρ
satisfies the differential equation

�
1

r2�

∂
∂r� r

2�
∂
∂r� þ

∂2

∂y2� þ 2

�
ρðr�; y�Þ ¼ 0; ð5:2Þ

if the spherical symmetry in three-dimensional space is
assured. For a sufficiently small L�, a solution for a boson
star can be described by

TABLE II. The values of ð ffiffiffiffi
Λ

p
=ð4πGm3ÞÞE=N2 for the four-dimensional boson star.

s2�=A

0.1 0.3 0.5 0.7 0.9 1.1 1.3

0.40 −0.0145493 −0.0136709 −0.0130539 −0.0126215 −0.0123162 −0.0120917 −0.0119222
0.35 −0.0147352 −0.0136173 −0.0127593 −0.0121104 −0.0116216 −0.0112503 −0.0109625
0.30 −0.0149176 −0.0135201 −0.0123334 −0.0113593 −0.0105769 −0.00995592 −0.00946259
0.25 −0.015097 −0.0133802 −0.0117865 −0.0103671 −0.00913752 −0.00809426 −0.0072192

h 0.20 −0.0152694 −0.0131877 −0.0111047 −0.00910385 −0.00724985 −0.00557194 −0.00407807
0.15 −0.0154328 −0.0129336 −0.0102595 −0.00751525 −0.00480722 −0.00221123 0.000229342
0.10 −0.0155833 −0.0126021 −0.0092137 −0.00551656 −0.00165121 0.00226248 0.00613015
0.05 −0.0157169 −0.0121735 −0.00791623 −0.00358682 0.00244601 0.00825089 0.0142766
0.00 −0.0158283 −0.0116258 −0.00630139 −0.000286516 0.00780719 0.0163551 0.0256774

FIG. 2. The normalized Newtonian energy E=N2 for the boson
star in four dimensions shown by gray shades. On the thick line,
the energy vanishes (E ¼ 0). The dotted lines indicate contours of
equal radii while the solid lines indicate contours of equal s2�=N.
For the parameter region, please see the text.

FIG. 3. A profile of the Newtonian rotating boson star with the
parameters h ¼ 0.25 and s2�=A ¼ 0.8.
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ρ ¼ max

�
A
sin

ffiffiffi
2

p
r�ffiffiffi

2
p

r�
; 0

�
; ð5:3Þ

where the scale factor A is a positive constant. This solution
is the same as the four-dimensional solution; this
configuration may appear like a “boson string” in four-
dimensional space.
On the other hand, for a finite length L, we conjecture the

following solution for ρ:

ρ ¼ max

2
64A

0
B@sin

ffiffiffi
2

p
r�ffiffiffi

2
p

r�
þ δ

sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 4π2

L2�

q
r�ffiffiffi

2
p

r�
cos

2π

L�
y�

1
CA; 0

3
75;

ð5:4Þ

if
ffiffiffi
2

p
π < L� < 2

ffiffiffi
2

p
π. Here, δ is a constant. Note that at the

special location y� ¼ L�=4, the surface of the boson star is
located at r� ¼ R� ¼ π=

ffiffiffi
2

p
.

Because of the periodicity in the extra coordinate y�, the
Green function for the Poisson equation defined in the
Kaluza-Klein background is given by

GðΔr�;Δy�Þ

¼−
1

4π2
X∞
n¼−∞

1

jΔr�j2þðΔy�þnL�Þ2

¼−
sinhð2πjΔr�j=L�Þ

2L2�ð2πjΔr�j=L�Þ½coshð2πjΔr�j=L�Þ−cosð2πy�=L�Þ�
;

ð5:5Þ

where jΔr�j ¼ jr� − r0�j and Δy� ¼ y� − y0�.
Using the assumption that ρ depends on r� and y�,

and has the symmetry y� ↔ −y�, we obtain the gravita-
tional potential, with an approximation of taking only the
longest-wave mode, which is equivalent to neglecting the
Oððe−ð2πr�=L�ÞÞ2Þ terms, as

Φðr�; y�Þ ¼
Z

L�

0

dy0�

Z
d3r0�GðΔr�;Δy�Þρðr�; y�Þ

≈ −
1

L�r�

Z
L�

0

dy0�

Z
∞

0

r02� dr0�ρðr0�; y0�Þ

− 2
e−ð2πr�=L�Þ

L�r�
cos

2πy�
L�

Z
L�

0

dy0�

×
Z

∞

0

r02� dr0� cos
2πy0�
L�

·
sinhð2πr0�=L�Þ

2πr0�=L�
ρðr0�; y0�Þ: ð5:6Þ

Thus, at the lowest order, we find

Φðr�; L�=4Þ ≈ −
Gm3

ΛL�r�
N; ð5:7Þ

where

TABLE III. The value of 4πG
ffiffiffiffi
Λ

p
mjQj=s2 for the four-dimensional boson star.

s2�=A

0.1 0.3 0.5 0.7 0.9 1.1 1.3

0.40 117.032 59.4375 37.0806 24.1276 16.0474 10.5961 6.67022
0.35 109.702 56.997 39.5987 29.6371 22.7876 18.0043 14.5134
0.30 101.936 52.2142 36.3944 28.3421 23.2303 19.4039 16.4532
0.25 94.3121 47.208 32.4701 24.9027 20.5056 17.5532 15.3778

h 0.20 87.0118 42.4584 28.2936 21.3601 17.3033 14.667 12.8201
0.15 80.0819 38.0562 24.6637 18.1383 14.3593 11.9336 10.2657
0.10 73.5307 34.0246 21.426 15.3135 11.8044 9.5755 8.05857
0.05 67.3542 30.3416 18.5505 12.867 9.63173 7.60095 6.23663
0.00 61.5431 26.9759 15.9985 10.7511 7.79774 5.96767 4.75667

FIG. 4. The ratio of the quadrupole moment to s2,
4πG

ffiffiffiffi
Λ

p
mjQj=s2 [see (4.21)], of the boson star shown by gray

shades.
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N ¼ Λ
4πGm3

Z
L�

0

dy�

Z
d3r�ρðr�; y�Þ: ð5:8Þ

Thus, the Newtonian energy of the boson star becomes

E ¼ 1

2
μ�N ¼ 1

2
ΦðR�; L�=4ÞN ≈ −

Gm3ffiffiffi
2

p
πΛL�

N2; ð5:9Þ

up to Oðe−4πR�=L� Þ.
We conclude that the change in energy caused by the

variation of the highest wavelength in the direction of
the extra dimension is very small and is independent of the
magnitude of its amplitude δ, when only the longest-wave
mode in the gravitational potential is taken into
consideration.
Although further independent analysis is needed for

clarifying the instability in this boson string, the instability
in the Kaluza-Klein background qualitatively found here
reminds us of the Gregory–Laflamme instability in black
strings [19].

VI. NEWTONIAN BOSON STARS WITH LARGE
SELF-COUPLING IN FIVE DIMENSIONS

In this section, we consider a rotating boson star in five
dimensions. We consider a system governed by the same
form of the Lagrangian density as in the previous sections.
The coordinates in the five-dimensional spacetime are
assumed to be

ds2 ¼ −dt2 þ dr2 þ r2ðdθ2 þ sin2θdφ2
1 þ cos2θdφ2

2Þ;
ð6:1Þ

where 0 ≤ θ ≤ π=2, 0 ≤ φ1 < 2π and 0 ≤ φ2 < 2π. After
rescaling and redefining the coordinates, the line element
becomes

ds2 ¼ −dt2 þ Λ
m2

fdr2� þ r2�ðdθ2 þ sin2θdφ2
1 þ cos2θdφ2

2Þg

¼ −dt2 þ Λ
m2

ðdx2 þ dy2 þ x2dφ2
1 þ y2dφ2

2Þ; ð6:2Þ

where x ¼ r� sin θ and y ¼ r� cos θ.
Here, we assume

Ψ → Ψðr�; θÞeis1φ1þis2φ2 ; ð6:3Þ

and define s1� ≡ s1=
ffiffiffiffi
Λ

p
and s2� ≡ s2=

ffiffiffiffi
Λ

p
. As in Sec. IV,

the large coupling limit yields the following relation in this
case:

Φþ 1

2

�
ρþ s21�

x2
þ s22�

y2

�
− μ� ¼ 0; ð6:4Þ

for the region of ρ ¼ jΨj2 > 0. The differential equation in
this case reads

∇2�f þ 2f ¼ 2s21�
r2�sin2θ

þ 2s22�
r2�cos2θ

; ð6:5Þ

where

fðr�; θÞ≡ ρþ s21�
r2�sin2θ

þ s22�
r2�cos2θ

; ð6:6Þ

in the region of ρ > 0. For simplicity, we will consider only
the simplest case with s1 ¼ s2 in this paper.
We conjecture that the boson star is spherical in the limit

of no rotation. Since the Laplacian for the spherical body
reads

∇2� ¼
1

r3�

∂
∂r� r

3�
∂
∂r� ; ð6:7Þ

the spherical solution of Eq. (6.5) with s1� ¼ s2� ¼ 0 can
be written by

Affiffiffi
2

p
r�

8<
:J1ð

ffiffiffi
2

p
r�Þ −

J1
� ffiffiffi

2
p �

qffiffi
2

p þ h
		

Y1

� ffiffiffi
2

p �
qffiffi
2

p þ h
		Y1ð

ffiffiffi
2

p
r�Þ

9=
;;

ð6:8Þ

where A and h are constants. q ≈ 3.83171 is the first zero
of J1ðxÞ.
Because the Laplacian can also be expressed as

∇2� ¼
1

x
∂
∂x x

∂
∂xþ

1

y
∂
∂y y

∂
∂yþ

1

x2
∂2

∂φ2
1

þ 1

y2
∂2

∂φ2
2

; ð6:9Þ

the special solution of (6.5) is determined to be
s21�fpðxÞ þ s22�fpðyÞ, where fpðxÞ is defined by (4.8).
We neglect the contribution of fp to the solution, as in
Sec. IV. In Sec. IV, we parametrize the equatorial radius,
but in the present case, because there are “holes” in the
direction of the x and y axes, we abandon the tuning of the
radius as an input parameter.
For simplicity, we consider the case with s1� ¼ s2� ≡ s�.

Hence, the boson star has spherical symmetry in the limit of
no rotation, and we take an approximated solution:

Affiffiffi
2

p
r�



J1ð

ffiffiffi
2

p
r�Þ−

J1ð
ffiffiffi
2

p
R�Þ

Y1ð
ffiffiffi
2

p
R�Þ

Y1ð
ffiffiffi
2

p
r�Þ

�
− s2�

�
1

x2
þ 1

y2

�
;

ð6:10Þ

where R� ≡ q=
ffiffiffi
2

p þ h, provided that the value of (6.10)
takes a positive value. Note that R� is not the radius of the
boson star.
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The physical quantities of the boson star can be derived
as in the four-dimensional case. The particle number of the
boson star is expressed by

N ¼ Λ
4πGm3

Z
d4r�ρðr�Þ; ð6:11Þ

while the Newtonian binding energy is given by

E ¼ Λ
4πGm2

Z
d4r�

�
1

2
ρ

�
μ� þ

s21�
2x2

þ s22�
2y2

��
; ð6:12Þ

for arbitrary values of s1� and s2�.
The value of the gravitational potential at the boson star

surface, μ�, should be obtained using the Green function in
the flat four-dimensional space. The Green function, which
asymptotically vanishes, is expressed as

Gðr�; r0�Þ ¼ −
1

4π2
1

jr� − r0�j2
¼ −

1

4π2
1

x2 þ x02 − 2xx0 cosðφ1 − φ0
1Þ þ y2 þ y02 − 2yy0 cosðφ2 − φ0

2Þ
: ð6:13Þ

Owing to the two axial symmetries of the boson star
configuration, we wish to integrate the Green function over
two polar coordinates. There is, however, no known
compact expression for the integration, contrary to the
case of the three spatial dimensions in Sec. IV. Thus, we
take a further approximation.

For r0� ≪ r�, the integration over the polar coordinates
yields

1

ð2πÞ2
Z

2π

0

dφ0
1

Z
2π

0

dφ0
2Gðr�; r0�Þ

¼ −
1

4π2
1

r2�
−

1

4π2
2ðx2x02 þ y2y02Þ=r2� − r02�

r4�
þOðr04� =r�6Þ:

ð6:14Þ

Hence, if θ ¼ tan−1x=y ¼ π=4,

1

ð2πÞ2
Z

2π

0

dφ0
1

Z
2π

0

dφ0
2Gðr�; r0�Þ

����
θ¼π=4

¼ −
1

4π2
1

r2�
þOðr04� =r�6Þ: ð6:15Þ

Therefore, under the assumption that the higher multipole
moments are relatively small, we take an approximation

μ� ≈ −
1

4π2
1

R̄2�

Z
d4r�ρðr�Þ

¼ −
1

4π2
1

R̄2�

4πGm3N
Λ

< 0; ð6:16Þ

TABLE IV. The values of ðΛ=ð4πGm4ÞÞE=N2 for the five-dimensional boson star.

s2�=A

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.7 −0.00105065 −0.00101573 −0.000977242 −0.000933241 −0.000882255 −0.00082267 −0.000752846 −0.000670658
0.6 −0.0011025 −0.00105179 −0.000993517 −0.000924326 −0.00084106 −0.000740175 −0.000617337 −0.000466712
0.5 −0.0011569 −0.00108564 −0.00100074 −0.000896475 −0.000766664 −0.000603806 −0.00039788 −0.000134626

h 0.4 −0.0012138 −0.001116 −0.000996233 −0.000844575 −0.00064993 −0.000398235 −0.0000668219 0.000374118
0.3 −0.00127291 −0.00114182 −0.000976895 −0.000763081 −0.000481243 −0.000105183 0.000407864 0.0011074
0.2 −0.00133381 −0.00116085 −0.000939441 −0.000646538 −0.000251982 0.000288229 0.00104247 0.00211638
0.1 −0.00139555 −0.00117091 −0.000879967 −0.00048938 0.0000448016 0.000796971 0.00185744 0.00342503

FIG. 5. The normalized Newtonian energy E=N2 for the five-
dimensional boson star shown by gray shades. On the thick line,
the energy vanishes (E ¼ 0). The dotted lines indicate contours of
equal radii, while the solid lines indicate contours of equal s2�=N.
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where R̄� denotes the distance between the origin and the
boson star surface in the direction of θ ¼ π=4.5

Table IV lists the values of ðΛ=ð4πGm4ÞÞE=N2 for
the five-dimensional boson star as a function of h and
s2�=A. If E is positive, the solution is considered to be
unstable.
Figure 5 shows the normalized binding energy.

The horizontal axis represents s2�=A ¼ f0.01; 0.08g,
while the vertical axis represents h ¼ f0.1; 0.7g. A
darker region indicates a lower energy. Each contour

shows the line on which the value Λ
4πGm3

s2�
N ¼ s2

4πGm3N is
constant.
For a small s2=N, a lower h yields a lower E=N2. Thus

the radius R̄� of the boson star is not significantly changed
from the spherical case for a small s2=N. For a large s2=N,
the Newtonian binding energy becomes lower at a finite h.
This qualitative behavior is much similar to the case for the
boson star in four dimensions.
Figure 6 shows a typical profile of the five-dimensional

rotating boson star.
Brihaye and Hartmann reported [1] that the minimal

boson star (in the case with no self-coupling of the
scalar field) in five dimensions is energetically unstable.
Although they attributed this instability to the power of
the long-range tail of the gravitational potential, it is
obvious that the stability depends on the balance
between the self-interaction of the scalar field and
the gravity. Therefore, the Newtonian approach in the
higher dimensions will be a useful as well as significant
method to study boson stars in models with general
scalar potentials.

VII. SUMMARY AND PROSPECTS

In this paper, boson stars in the large coupling limit have
been studied by means of various approximation methods.
In summary, we found the qualitative behavior of the boson
star parameters: (1) The Newtonian binding energy is
determined by the particle number and the value of the
gravitational potential, in addition to the energy from the
rotation. (2) With a certain rapid rotation, the radius of
the boson star becomes larger than that of the spherical
boson star, if the particle number is fixed. (3) For a slowly
rotating boson star, the radius is not significantly changed
from that of the spherical one. (4) For a rotating four-
dimensional boson star, the ratio of the quadrupole moment
to the square of the angular momentum decreases when the
angular momentum increases if its radius is unchanged
from that of the spherical one. (5) The ratio of the
quadrupole moment to the square of the angular momen-
tum increases when the radius of the boson star increases.
We used Mathematica 4.2 [18] on a personal computer

for numerical calculations. Of course, elaborate calculation
on a large system would yield better results in terms of
quality as well as quantity. In the present paper, since we
used the minimal number of parameters to describe the
deformation of the rotating boson star, we limit ourselves to
a qualitative conclusion. The most important subject to be
examined is the introduction of more parameters which
determine the shape of the boson star in detail. This also
depends on the computational environment.
The boson stars with finite self-coupling can also be

approximated analytically by connecting the exponential tail
in the asymptotic region of the boson star [20]. It is interesting
to study the stability of the boson star in higher dimensions
with analytical approximations in the Newtonian limit.
We wish to solve the configuration of the binary of the

boson stars in a similar methods shown in this paper. The
Newtonian treatment of the system would shed light on a
possible relation among the physical quantities of the
binary boson stars and provide an initial state for the
dynamical calculation with general relativity or other
theories of gravity. We also suppose that a rotating boson
star with a point mass at its center resembles a rotating
black hole with scalar hair [16,21,22]. The study of such
systems with the Newtonian approximation is interesting
and may reveal an essential nature of gravity.
Finally, we anticipate that the Newtonian approach to the

boson star would be valid for a multiscalar system with
many Uð1Þ charges, such as the “multistate boson star”
[23], and the boson-fermion system [24–27], in order to
extract its inherent characteristics in an efficient manner.
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FIG. 6. A profile of the Newtonian rotating boson star with the
parameters h ¼ 0.4 and s2�=A ¼ 0.06.

5For four-dimensional boson stars, the value of μ� obtained
through the surface potential at cos θ ¼ 1=

ffiffiffi
3

p
agrees with the

value obtained by integration within a deviation of at most ten
percent in the region shown in Fig. 2.
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