
Equivalence principle and QFT: Can a particle detector tell if we live inside
a hollow shell?

Keith K. Ng,1 Robert B. Mann,1,2,3 and Eduardo Martín-Martínez4,2,3
1Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

2Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
3Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

4Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
(Received 26 July 2016; published 15 November 2016)

We show that a particle detector can distinguish the interior of a hollow shell from flat space for
switching times much shorter than the light-crossing time of the shell, even though the local metrics
are indistinguishable. This shows that a particle detector can read out information about the nonlocal
structure of spacetime even when switched on for scales much shorter than the characteristic scale of
the nonlocality.
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I. INTRODUCTION

It is well known that the vacuum state of a quantum
field contains information about the structure of spacetime.
For example, this is seen in the phenomenon of vacuum
entanglement harvesting [1–6]. But can local measure-
ments provide nonlocal information about spacetime?
Suggestive evidence along these lines was recently
obtained when it was shown that the transition rate of
particle detectors can be sensitive to the topology of
spacetime, even when this topology is hidden behind an
event horizon [7]. Furthermore, if a preferred direction is
induced by spatial topology, this direction may be inferred
from the dependence of correlations between the two
detectors on their orientation [8]. Even in the simple case
of the Einstein cylinder, the dynamics of the detectors
exhibits beating behavior with no steady state established at
late times, which distinguishes it from the results in
noncompact flat spacetimes [9].
In this paper we address the following problem: Are

data from a pointlike switchable antenna (that we take to
be an Unruh-DeWitt detector) placed at the center of a
massive hollow shell (not containing any matter) suffi-
cient to distinguish the spacetime background from
globally flat spacetime? Since the inside of the shell is
locally flat, this task can only be accomplished in classical
terms by sending a signal from an antenna to the shell
(which could consist, for example, of the perturbation
caused in the classical electromagnetic field due to
switching on the antenna) and waiting for the emitted
signal to bounce off the shell (or off the spacetime
curvature generated by it outside of the shell if it is
transparent to the emitted radiation) and return to the
antenna. The echo carries information about the shell.
Consequently, before at least the light crossing time of
the shell has passed, it is impossible to use any observable
of the antenna to tell whether it is located inside a
hollow shell.

In quantum theory, however, the vacuum has information
about “boundary conditions”; even a transparent shell, if
massive, will curve spacetime. So, at least in principle, the
vacuum state of the field does have information about the
global structure of spacetime. It is not clear, however, if a
local detector would be able to read out that information if it
is only allowed to interact with the field on time scales
much smaller than the light-crossing time of the shell. One
would expect that, to extract nonlocal information about the
spacetime background, it would have to be “switched on”
at least for time scales comparable to the light-crossing time
of the shell.
We show here that, perhaps unexpectedly, an antenna

interacting quasilocally with the vacuum state of a quantum
field inside a hollow massive transparent shell is able to
distinguish its location from that of a globally flat
Minkowski spacetime for time scales much smaller than
the light-crossing time of the shell. More technically,
suppose that an observer is placed in one of two possible
spacetimes, M1 and M2. If the metric near the observer
(i.e., within a neighborhood U) is identical in both space-
times, the Einstein equivalence principle states that the two
spacetimes should be indistinguishable with respect to any
nongravitational local (classical) experiment [10]. The term
local here indicates that we should not allow any interaction
with an external field. One natural way to relax the
assumptions is to permit interaction with an external field,
but have the field in U in both cases in the vacuum state.
As discussed above, classically, this still does not permit us
to distinguish the two cases since the ground state of a
classical theory (zero field amplitude) contains no nonlocal
information about the structure of spacetime: as long as we
are limited to local measurements, i.e., one whose causal
diamond lies inside U, any experiment will still produce the
same result, since the local background is the same. In other
words, classical measurements cannot distinguish the two
spacetimes “faster than light.”

PHYSICAL REVIEW D 94, 104041 (2016)

2470-0010=2016=94(10)=104041(10) 104041-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.104041
http://dx.doi.org/10.1103/PhysRevD.94.104041
http://dx.doi.org/10.1103/PhysRevD.94.104041
http://dx.doi.org/10.1103/PhysRevD.94.104041


The situation drastically changes once we consider
quantum fields. It is well known that, as opposed to the
classical ground state, the vacuum state can carry nonlocal
information about the boundary conditions: one of the
most famous examples is the Casimir effect [11], in which
two parallel uncharged conductive plates in a vacuum are
attracted to each other. In that case, it might be said that
even if there is no real photon exchange between the
plates, the field carries information of the presence of one
conductive plate to another. For example, the fact that
there is no need to exchange real photons to signal has
been used to propose novel communication setups where
information can be sent without energy being exchanged
between sender and receiver [12–14]. It has also previ-
ously been demonstrated that the detector can distinguish
being uniformly accelerated in flat space with being static
above a black hole, both in asymptotically flat [15] and
anti–de Sitter (AdS) space [16]; conversely, it has been
demonstrated that the detector can distinguish being in
freefall around a black hole in either case with being
uniformly accelerated in Minkowski space [15,16], and
that AdS and Schwarzschild-AdS space can be distin-
guished [17]. These also represent an apparent violation of
the Einstein equivalence principle. (In those cases, how-
ever, the use of the term vacuum must be carefully
qualified.)
In this paper we demonstrate that—even with a non-

interacting (i.e., transparent) shell with no net effect on
the local gravitational field around an Unruh-DeWitt
detector—the detector can still determine the presence of
the shell through the nonlocal effects of gravity on the field
vacuum. This fact can be used to distinguish local flatness
from global flatness. Thus, we show not only that the
vacuum state of an external field carries nonlocal informa-
tion about the gravitational field, but also that a detector
can read out that information locally.

II. BASIC SETUP

Consider an Unruh-DeWitt detector [18] in curved space
that can be switched on and off. Although simple, this
model captures the fundamental features of the light-matter
interaction [6,19,20]. We can represent the detector inter-
action of the detector with a scalar field in space using the
following interaction Hamiltonian:

ĤIðτÞ ¼ λχðτÞμ̂ðτÞϕ̂ðxðτÞÞ: ð1Þ

In the above, χðτÞ is the switching function, μ̂ðτÞ ¼
eiĤ0;dτμ̂ð0Þe−iĤ0;dτ ¼ e−iΩτσ̂þ þ eiΩτσ̂− is the interaction
picture monopole operator of the detector with Ĥ0;d being
the Hamiltonian of the free detector, and ϕ̂ðxÞ is the field
operator. We may then calculate the response of the
detector to the ambient scalar field; since the curvature
of space affects the scalar field modes, the response of the

detector is sensitive to the shape of spacetime. However, it
is a priori unclear how the detector’s behavior depends on
faraway features. In particular, inspired by the Casimir-
Polder effect [20–22] and the quantum-collect calling
results [12], we ask the following question: If the detector
is located in a flat region, can we determine whether we are
within a shell of matter (as opposed to empty space) by
measuring its response? To find a signature of the detector’s
response of the presence of the shell, we explore how the
transition probability of the antenna depends on the
presence of the matter shell.
Let us be more concrete. Suppose that we begin

with the detector in its ground state and the field in
the vacuum. We then modulate the switching function
χðτÞ from 0 to a finite value from some time τ ¼ τi to
τf; this finite-time interaction results in a nonzero
probability of detector excitation, as demonstrated in,
e.g., [23]. The excitation probability of the detector can
be represented as the expected value of the state
projector P1 ¼ j1idh1j after the switching is complete
at time τf, when χðτfÞ ¼ 0.
Using ρ̂ to indicate the state of the total system, and P̂1 to

represent the (projector to the) excited state of the detector,
we can write the transition probability as

P ¼ TrðP̂1ρ̂ðτfÞÞ: ð2Þ

We can then ask, for a detector placed at the center of a shell
of matter, whether this probability differs from that
obtained in the absence of the shell and, if any, how
precisely this difference can be computed. The transition
probability, to leading order, is well known [24],

P ≈ TrðP̂1ðτfÞÛ1ρ̂ð0ÞÛ†
1Þ

¼
Z

∞

−∞
dτ1

Z
∞

−∞
dτ2TrðP̂1ðτfÞĤIðτ1Þρ̂ð0ÞĤIðτ2ÞÞ

¼ λ2jdhΩjμ̂ð0Þj0idj2F ðΩÞ; ð3Þ

where Ω is the energy gap of the detector. We write this
separation of F ðΩÞ from the detector part in order to
emphasize that this part is independent of the properties of
the detector; this “response function” depends only on the
properties of the field. It can be expressed as

F ðΩÞ ¼
Z

∞

−∞
dτ1

Z
∞

−∞
dτ2e−iΩðτ2−τ1Þχðτ1Þχðτ2Þ

× fh0jϕ̂ðxðτ2ÞÞϕ̂ðxðτ1ÞÞj0if: ð4Þ

Note that here and afterwards, Ω is the detector gap proper
frequency, i.e., at the detector location. This allows us to
compare different spacetimes, and is the quantity an
experimenter at the detector would control.
At this point, let us consider a static spherically

symmetric spacetime, whose line element is
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ds2 ¼ −α2dt2 þ a2dr2 þ r2dΩ2 ð5Þ

where dΩ2
2 is the usual line element of the 2-sphere. Let us

then consider the specific case of the massless scalar field
obeying the Klein-Gordon equation

□Ψ≡∇μ∇μΨ ¼ 0: ð6Þ

To simplify further, let us write these operators in the
fixed frequency mode basis with respect to some quantiza-
tion time t. Recall that we can write the field operators as

ϕ̂ðxðτÞÞ ¼
X
l;m

Z
∞

0

dΩðâωlmΨωlmðxðτÞÞ

þ â†ωlmΨ
†
ωlmðxðτÞÞÞ; ð7Þ

whereΨωlmðxÞ is the solution to the Klein-Gordon equation
with energy ω and angular momentum numbers l, m and
aωlm is the corresponding mode annihilator, with the usual
commutation relations,

½âω0l0m0 ; â†ωlm� ¼ δðω0 − ωÞδl0lδm0m:

In this basis, we can rewrite the response function as

F ðΩÞ ¼
Z

∞

−∞
dτ1

Z
∞

−∞
dτ2e−iΩðτ2−τ1Þχðτ1Þχðτ2Þ

×
X
lm

Z
∞

0

dΩΨωlmðxðτ2ÞÞΨ†
ωlmðxðτ1ÞÞ: ð8Þ

Note that while the detector gap Ω is a proper frequency
at the detector, the basis modes Ψωlm are labeled by their
frequency with respect to t instead, as this ω is the quantity
that appears in the Klein-Gordon equation.

III. SOLVING THE KLEIN-GORDON EQUATION

Rewriting the action of the d’Alembertian (□) on the
scalar gives

□Ψ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΨÞ; ð9Þ

where g ¼ −α2a2r4sin2θ is the determinant of the
metric (5). The Klein-Gordon equation becomes

0 ¼ −
1

α2
∂2
tΨþ 1

αar2
∂r

�
α

a
r2∂rΨ

�

þ 1

r2 sin θ
∂θðsin θ∂θΨÞ þ 1

r2sin2θ
∂2
ϕΨ ð10Þ

assuming the metric is static, i.e., ∂tα ¼ ∂ta ¼ 0. Noting
that the angular coordinates and the time coordinate are
separate, we write

Ψ ¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωtψωlðrÞYlmðθ;ϕÞ; ð11Þ

and obtain the suggestive form

0 ¼ ω2ψ þ α

ar2
∂r

�
α

a
r2∂rψ

�
− α2

lðlþ 1Þ
r2

ψ ð12Þ

upon suppressing the subscripts and the r dependence
of ψ for brevity. Further defining r� such that ∂r� ¼ α

a ∂r

and setting ψ ¼ ρ=r yields

0 ¼ ω2ρþ 1

r
∂r�

�
r2∂r�

�
ρ

r

��
− α2

lðlþ 1Þ
r2

ρ ð13Þ

or

0 ¼ ∂2
r�ρþ ðω2 − VlðrÞÞρ ð14Þ

where the effective potential is

VlðrÞ ¼ α2
lðlþ 1Þ

r2
þ 1

r
α

a
∂r

α

a
ð15Þ

and we note that the effective potential is a function of the
original radial coordinate r ¼ rðr�Þ.
Let us now consider the shell spacetime. Suppose the

shell’s radius is R, and the ADM mass is M. We can then
write the line element as

ds2 ¼
�−fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2; r > R

−fðRÞdt2 þ dr2 þ r2dΩ2; r < R;
ð16Þ

where fðrÞ ¼ 1 − 2M=r. (Strictly speaking, one should use
different variables for r inside and outside the shell, and
then smoothly match the radial metrics; however, our
treatment of the differential equation handles this later.)
Notice first that the time component of the metric, gtt, is
continuous; this is in accordance with the first Darmois
condition [25,26], that the induced metric on the shell
should be continuous. If we assume our shell is made of a
perfect fluid, we can then apply the Lanczos equation [26]
to find that the surface density and surface pressure of our
shell are

σ ¼ 1

4πR

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
R

r �
; ð17Þ

p ¼ 1 −M=R −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=R

p
8πR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=R

p : ð18Þ

As expected, the pressure is positive, and the quantities are
defined only for R > 2M. Note that σ is not equal to
M=4πR2; the difference is due to binding energy.

EQUIVALENCE PRINCIPLE AND QFT: CAN A PARTICLE … PHYSICAL REVIEW D 94, 104041 (2016)

104041-3



This metric is quite familiar on either side of the shell:
inside, it is just Minkowski spacetime with a constant
scaling factor on the time coordinate, while outside it is the
Schwarzschild metric. As a result, the effective potential
becomes

VlðrÞ ¼
8<
:

fðrÞ
�
lðlþ1Þ
r2 þ 2M

r3

�
; r > R

fðRÞ
�
lðlþ1Þ
r2

�
; r < R:

ð19Þ

To complete the description of the scalar field, we need to
determine what the Klein-Gordon equation looks like on
the shell. This is troublesome, since a is discontinuous,
and therefore α=a is discontinuous. This implies that the
effective potential (15) is discontinuous, and so we must
proceed with caution.
We now solve the differential equation weakly. In order

to find weak solutions, let us integrate Eq. (13) with respect
to r� on an infinitesimal interval near the shell. Clearly, the
only singular term of that equation is the term involving
∂r� . Employing the common notation

½X� ¼ lim
r→Rþ

X − lim
r→R−

X; ð20Þ

we quickly find 0 ¼ ½r2∂r�ðψÞ�, or more succinctly,

0 ¼ ½∂r�ψ � ¼
�
α

a
∂rψ

	
ð21Þ

showing that in r� coordinates, any weak solution ψ to the
Klein-Gordon equation has a continuous derivative across
the shell. However, the derivative of ρ ¼ rψ is discontinu-
ous, so this must be kept in mind. Furthermore, while the
derivative with respect to the original coordinates is
discontinuous, the nature of the discontinuity is indepen-
dent of the energy and other quantum numbers of the mode.

IV. INSIDE AND OUTSIDE

In any case, Eq. (21), along with the continuity of ρ
across the shell, allows us to connect Minkowski-space
modes inside the shell to Schwarzschild-space modes
outside. Notably, since α ¼ ffiffiffiffiffiffiffiffiffiffi

fðRÞp
and a are constant

inside the shell, it is simplest to have r ¼ r� ¼ 0 at the
center; we then have r ¼ αr�=a ¼ αr� (as a ¼ 1). We can
quickly simplify Eq. (13) to

0 ¼ ~r2ψ þ 2~r∂ ~rψ þ ~r2∂2
~rψ − lðlþ 1Þψ : ð22Þ

which is just the spherical Bessel equation, with ~r ¼ ωr�,
and thus the inner solutions are (up to normalization) ψωl ∼
jlðωr�Þ ¼ jlð ~ωrÞ where ~ω ¼ ω=

ffiffiffiffiffiffiffiffiffiffi
fðRÞp

.
While at first glance this appears to imply that the inside

solution is independent from the outside, this is not the

case: if we wish to preserve normalization of the modes, we
must have

Z
∞

0

dr�ρω1l1ðrÞρω2l2ðrÞ ¼ 2πδðω1 − ω2Þδl1;l2 ð23Þ

where ρωlðrÞ ¼ rψωl. In order for this to occur, since r� → r
as r → ∞, the asymptotic behavior of the modes must be
ρωlðrÞ → 2 sinðωrþ θÞ as r → ∞ for some phase θ.
Therefore, the position and mass of the shell affects the
“transmission” of the mode through the shell, and therefore
the normalization of themode inside the shell. In the absence
of such a shell, since the asymptotic behavior of the spherical
Bessel functions is jlðωrÞ → sinðωrþ θÞ=ðωrÞ, we must
multiply the spherical Bessel function by 2ω; thus ψ ¼
2ωjlð ~ωrÞ under this normalization scheme.
We can combine the inner solution with the discontinuity

equation (21) in order to find the normalization factor Aωl.
To do this, we begin with the un-normalized inner solution
~ψ ¼ jlð ~ωrÞ, and find its derivative across the shell with
respect to r�. Since ∂r� ¼ α

a ∂r, that means the derivative is

∂r� ~ψ jr¼R ¼ α
a j

0
lð ~ωRÞ ¼ ~ω

ffiffiffiffiffiffiffiffiffiffi
fðRÞp

j0lð ~ωRÞ. We can then
input the value of ~ψ and its derivative into the outer
differential equation and integrate outwards; then, as we
approach infinity, Eq. (14) implies ~ψ → 2A−1

ωl sinð ~ωr�Þ=r�,
and so ψ ¼ Aωl ~ψ . In particular, for r ¼ 0, ψ ¼ δl;0Aωl.
As a side note, if we wish to represent the mode in terms

of ρ rather than ψ , this result shows that as r → 0, we must
have ρ=r → δl;0Aωl; we only have a singularity because our
transformation misbehaves there. If we wish to interpret the
radial equation as a scattering problem, this leads to
unusual consequences—as energy goes to infinity, the
effect of the discontinuity does not diminish even though
the scattering due to the potential vanishes; it is thus the
largest difference from the flat case. Specifically, while ρ is
continuous across the shell, its derivative with respect to the
tortoise coordinate experiences a jump of

½∂r�ρ� ¼ ½∂r�ðrÞ�ρ
¼ ðfðRÞ −

ffiffiffiffiffiffiffiffiffiffi
fðRÞ

p
Þρ: ð24Þ

In other words, the value of ∂r�ρ just outside the shell is
ðfðRÞ − ffiffiffiffiffiffiffiffiffiffi

fðRÞp Þρ greater than the value immediately
inside. Notably, since this contribution is proportional to
ρðRÞ, a resonant effect is present. We emphasize that the
discrete nature of the shell is not essential for this
phenomenon: while a shell of finite thickness would not
exhibit a discontinuity per se, a similar relation between ρ
and ∂r�ρ would exist on the shell, as it can be derived from
integration of the Klein-Gordon equation.

V. STATIC DETECTOR

In the special case of the static detector, Eq. (8) is
tremendously simplified. In that case, we can assume
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(by spherical symmetry) that θ ¼ 0, ϕ ¼ 0, and so we can
write

F ðΩÞ ¼
Z

∞

−∞
dτ1

Z
∞

−∞
dτ2e−iΩðτ2−τ1Þχðτ1Þχðτ2Þ

×
X
l

Z
∞

0

dΩe−i ~ωðτ2−τ1Þ






ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

16π2ω

r
ρωlðrÞ

r






2

ð25Þ

since t ¼ τ=α. Given a sufficiently smooth switching
function, we can swap the order of integration, and
combine the exponentials. The resulting integrals simply
describe the Fourier transforms of the switching function.
Using the unitary definition of the Fourier transform,

χ̂ðΩÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dτe−iΩτχðτÞ;

we end up with

F ðΩÞ ¼
X
l

Z
∞

0

dω χ̂ð−Ω − ~ωÞχ̂ðΩþ ~ωÞ

×
2lþ 1

8πωr2
jρωlðrÞj2: ð26Þ

Finally, χ̂ðΩÞ ¼ χ̂ð−ΩÞ since the switching function is real.
Rewriting the integral in terms of ~ω, we get the simple
expression

F ðΩÞ ¼
X
l

Z
∞

0

d ~ωjχ̂ðΩþ ~ωÞj2 2lþ 1

8π ~ωr2
jρωlðrÞj2 ð27Þ

and we note that since the factor dω=ω appears in the
integral, the change in variables does not directly introduce
αðrÞ into the expression. The only actual dependence is
through the mode function, which depends on ω ¼ αðrÞ ~ω;
in fact, if we choose to express the mode in terms of the
proper time at the detector (rather than the coordinate time),
the “local energy” becomes ~ω, and thus the expression can
be written without direct reference to ω.
The appearance of the Fourier transform of the switching

function in this expression has a number of unexpected
consequences. The most important is that by suitably
varying the switching function, we can “focus” on a single
mode energy ω. This is especially relevant in the special
case where r ¼ 0, since we can then eliminate all modes
with l ≠ 0. We then find

F ðΩÞ ¼
Z

∞

0

d ~ω
1

8π ~ω
jχ̂ðΩþ ~ωÞj2jAω0j2 ð28Þ

in this limit.
Equation (28) is the pivotal equation for our paper. We

note that it holds even when the spacetime is Minkowski,
with the substitution AM

ω0 ¼ 2ω ¼ 2 ~ω [since in that case

fðRÞ ¼ 1]. Consequently we can use this final expression
to determine whether or not the detector is in a shell, even if
the shell is far from the detector. In particular, if for any
frequency jAω0j ≠ 2 ~ω, we can conclude that a suitably
selected switching function can distinguish the two pos-
sibilities. It is easy to show that the adiabatic switching
case corresponds to ~χðωÞ ∝ δðωÞ, and thus represents the
“ideal” case; we can then simply tune the gap to the desired
frequency.
Perhaps more surprisingly, Eq. (28) shows that a detector

is, in principle, capable of distinguishing the two different
backgrounds, even if it remains turned on for a very short
time. To study how a detector can so discriminate, we need
to assess how much frequency resolution is necessary to
perform this task. The higher the frequency resolution
required, the more time the measurement requires. If this
time is less than the light-crossing time of the shell, we can
say a local measurement is sensitive to the presence of the
shell, since signals from the detector do not have time to
reach the shell and return. Conversely, if the required
frequency resolution is too fine, then no local measurement
can detect the shell.
In the particular case of the transparent spherical shell, we

found that the primary difference between Aω0 and 2 ~ω was
the resonant effect of the shell, as governed byEq. (24). Since
the corresponding term appearing in (28) is jAω0j2, it is fairly
simple to show that the shell resonance has a “period” of
approximately π=R in ω, which corresponds via the energy-
time uncertainty relation to a (coordinate) temporal width of
R=2π, on the order of the shell-crossing time. However, even
if the frequency resolution of our switching function is lower,
i.e., its temporalwidth is smaller thanR=2π, it is still possible
to observe a (smaller) signal.
We therefore have a means of quantum-mechanically

distinguishing the gravitational field inside an empty shell
or cavity from that of flat spacetime, a feat that is classically
impossible. Furthermore, Eqs. (27) and (28) are extremely
general; we can consider almost any spherically symmetric
spacetime and get a similar result. The idea of varying the
switching function to focus on a single energy means that,
in general, the detector can extract from the vacuum the
properties of spacetime far from its location, given suffi-
cient time.

VI. THE SWITCHING FUNCTION

In order to demonstrate that local determination of
curvature is possible, we evaluate the expression (28) for
Minkowski and shell spacetimes with a Gaussian switching
function, with temporal width much shorter than the light-
crossing time of the shell. Specifically, we use

χðτÞ ¼ e−τ
2=2σ2 : ð29Þ

Classically, we would expect that the minimum time to
distinguish the two scenarios is the time for a signal to
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travel from the detector to the shell and back; thus, for a
local measurement, we require that σ ≪ 2R. While one
might argue that the “tails” of the Gaussian still allow for
classical communication, the value of the switching func-
tion far into the tails is extremely small; we discuss this
point below.
At this point we emphasize that the Gaussian nature of the

switching function is not essential.While the rapid decay of a
Gaussian in Fourier space is ideal, in principle, we could
apply formula (28) to any switching function, including
strictly compactly supported functions whose support is
much shorter than the light-crossing time of the shell.
A switching function can be implemented, for instance,

by preparing a particle detector in its ground state at τ ¼ τ0,
waiting, then measuring in the energy eigenbasis at a time
τ ¼ τf. This would correspond to the “box function,”
χðτÞ ¼ Θðτ − τ0ÞΘðτf − τÞ. However, it is well known that
an idealized sudden switching results in infinite energies.
These problems disappear once one considers a more
physical model of preparation and measurement, e.g.,
regularizing via the finite size of the detector [8,27]. An
explicit example of a finite (3þ 1)-dimensional response of
a particle detector with sudden switching once regularized
by a spatial profile can be found, e.g., in [5,6]. More refined
models could include considering the joint evolution of a
time-dependent Hamiltonian describing the impact of the
measuring device plus the contribution from the interaction
with the radiation field, or quantum degrees of freedom
playing the role of actuators [28].
There are a few other ways to implement a less sudden

switching function. For instance, if we were interested in
the vacuum state of an optical cavity, we could measure an
atom in its free energy basis just outside the cavity,
postselecting on the ground state, then allow it to travel
transversely through the cavity. Since the ground state of a
cavity is Gaussian in the transverse direction, the switching
function is effectively Gaussian.
Conversely, if we were interested in the vacuum state of a

much larger space, we might be able to trap an atom in a
much smaller optical cavity. If the first cavity mode were of
higher energy than the atom’s transition energy, the atom
would be off resonance, and the cavity would effectively
act as a Faraday cage, insulating it from the global ground
state. We could then switch the atom by moving it in and
out of the small cavity.
Lastly, on the laboratory scale, a superconducting qubit

may be coupled to a microwave cavity. This coupling is
controllable, and so any switching function may be
implemented in this manner [29]. This would allow for
“analogue” experiments in superconducting circuits of the
quantum vacuum. See for instance [30].

VII. NUMERICAL COMPUTATION AND RESULTS

For purposes of demonstration, we compute all quan-
tities in units where ℏ ¼ c ¼ RSch ¼ 1. RSch is the

(hypothetical) Schwarzschild radius of the shell. This sets
the mass of the shell, and we vary its radius; we initially
take it to be R ¼ 3RSch, equal to the innermost stable
circular orbit. We use the local Hawking energy of an equal
mass black hole, i.e., kBTHloc, to measure energies. We
select σ ¼ 0.5, which is well below the crossing time of the
shell. In order to save computational time, we first compute
the values of the radial modes at the center for a mesh of
values and interpolate. We then compute the response
function (28) (where a negative gap indicates that the
detector is initialized in its excited state), and compare the
results for a detector in a shell (in blue) to a detector in flat
space (in red). The results are shown in Fig. 1.
While the curves in Fig. 1 are very similar, they are not

identical and in fact can be distinguished. We plot the
difference between responses, F shellðΩÞ − F flatðΩÞ, in
Fig. 2 below. As we can see, the largest absolute difference
is visible at the smallest values of the gap. It is also
interesting to see that the absolute difference is somewhat
symmetric in the gap, since the expressions for F ðΩÞ given
in (28) are manifestly asymmetric.
However, the absolute difference in response functions

may not be a good measure of how distinguishable they are.

FIG. 1. Response function for a detector in a shell (blue) vs flat
space (red) for varying detector gaps.

FIG. 2. Absolute difference in response function between a
detector in a shell vs in flat space, for varying detector gaps.
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Operationally, a better measure of distinguishability is
the relative difference between the two responses, i.e.,
ðF shellðΩÞ − F flatðΩÞÞ=F flatðΩÞ, shown in Fig. 3. In this
case, we see that while the absolute difference in response
is approximately symmetric, the decay in the background
response causes a larger relative difference when the gap is
positive. The difference is within a single order of magni-
tude, however; while the positive gap detector is more
sensitive to the difference in response, it is not excessively
so. A local maximum may also be observed at around
Ω ¼ 90kBTHloc. In other words, while the upper energy
scale of the graph is larger than is usually considered in the
black hole case, it is still quite small compared to the mass
energy of the shell.
We see that the strongest relative differences between

geometries can be observed at large positive gaps, even
though the absolute value of the switching probability is
very small there. This may be explained as follows: since
the tails of the Gaussian switching function decay super-
exponentially (in both the time and frequency domains), a
large (positive) energy gap corresponds to an extremely
quickly decaying integrand; it can be shown that the
modes differ significantly at low energy, as shown in

Fig. 4. These factors are a result of our integration over
positive frequencies only; they would not come into play if
we had to integrate over negative ω, i.e., if the vacuum state
had nonzero particle content. In addition, it is not clear
whether this phenomenon is specific to this order of
perturbation: it is possible that inclusion of higher order
terms would eliminate this anomaly. In fact, we have also
found that a more slowly decaying Fourier-transformed
switching function does remove this effect, since it appears
to depend on the superexponential decay of the Gaussian.
For instance, the switching function χ2ðτÞ¼ð1þðτ=σÞ2Þ−1
Fourier transforms into a Lorentzian, and thus the relative
response is constant for any positive gap.
In any case, it is quite likely that the relevance of this

unusual phenomenon is limited: since the absolute tran-
sition rate is very small at the relevant values of the gap
[e.g., F ðΩ ¼ 20Þ < 10−45], and because of all the pre-
viously mentioned caveats, it is likely that any experi-
menter would find this “high-signal” regime inaccessible in
practice. A better strategy would be to use a detector with a
small positive gap, which balances the need for a detectable
absolute difference in response with the need for a small
background response.
As a secondary check on our calculation, we now plot in

Fig. 5 the switching energy as a function of the shell radius,
for fixed switching parameters σ ¼ 0.2, Ω ¼ 0. Note that
with this choice of parameters, the switching time scale 0.2
is much less than the shell-crossing time R > 1, so we are
comfortably within the local regime. These parameters
correspond to a single switching energy in the flat case,
which is shown on the graph below in red. As expected, the
larger the radius of the shell, the weaker the ability of the
detector to distinguish the cavity interior from pure
Minkowski spacetime.
We now comment on the “classically communicating

tails.”While a priori the presence of these tails would seem
to weaken our arguments, we chose a Gaussian with width
an order of magnitude smaller than the crossing time of the
shell. This implies that the part of the response function
contributed by these tails is exceedingly small, certainly

FIG. 3. Relative difference in response function between a
detector in a shell vs in flat space, for varying detector gaps.

FIG. 4. Value of modes in shell (blue) vs flat space (red) at
origin.

FIG. 5. Response function vs shell radius. Value for flat case in
red.
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orders of magnitude smaller than the order 10−4 differences
observed in Fig. 3. Indeed, we have also conducted
calculations where the switching function is modified to
have finite support, i.e., removing the tails, with no
observable difference in the results. However, we note
here that while using a sudden switch to remove the tails is
tempting, it introduces large tails in the frequency domain of
the switching function, which makes numerical integration
very troublesome; of course, sudden switching requires an
infinite amount of energy, and this is its manifestation.While
using the methods of Louko and Satz [31] to subtract out the
singularities is possible,we feel that smooth switching allows
for better interpretation; using smoothly varying switching
functions of compact support yields no observable differ-
ence. However, care is needed: the phenomenon of greater
relative difference in responses at large Ω depends on the
high-frequency behavior of the tails,which becomes unphys-
ical for sudden switching, and is generally sensitive to the
precise way the detector is switched.

VIII. CONCLUSION

We have shown that it is possible to distinguish a flat
spacetime from the interior of a transparent (but massive)
shell with local particle detector measurements, i.e., mea-
surements where the particle detectors are allowed to
interact with the field only for time scales much shorter
than the shell light-crossing time, when the state is the
vacuum.
Concretely, the difference between the vacuum states

of a shell and a flat space can be observed locally, even
from inside. We demonstrated this numerically for a very
compact shell with radius R ¼ 3RS, and a detector with an
interaction time scale much smaller than the shell’s light-
crossing time. We discussed the conditions under which the
strongest effects may be observable. We also evaluated the
switching energy for various shell radii, confirming that
the effect vanishes as the shell radius goes to infinity.
Counterintuitively, a large positive energy gap appears to
yield the best relative results. However, the main question of
this paper has been answered: it is indeed possible to
quantum-mechanically distinguish the inside of a shell from
flat space in a time much smaller than the classical commu-
nication time from the detector to the shell, i.e., locally.
We emphasize that our key result, as given in for-

mula (28), is that the transition rate of the detector is
sensitive to the existence of a boundary even if the
switching function is compactly supported and only sup-
ported for a time shorter than the light-crossing time of the
shell. This is independent of how the detector is switched
on, and contrary to expectations: one might have antici-
pated that the detector should at least have witnessed the
existence of the shell by waiting long enough for the shell
to be in lightlike contact with it. A priori, this is a surprising
result, indicating that local measurements can provide
relevant nonlocal information about spacetime.

One possible next step would be to determine whether
more spatial information can be extracted: for instance,
whether one could recover the density profile of a general
shell, or perhaps nonradially symmetric objects. Another
possibility would be to extend this work to more realistic
detector models, i.e., of finite spatial extent, or the case of a
hydrogenlike atom interacting with an electromagnetic
field [6]. We also may speculate on whether one can prove
a lower bound on the time/energy required to distinguish
different spacetimes; such a result would be of interest to
those researching the firewall question [32,33], for in-
stance, in the spirit of work done in [34]. While some
preliminary work was done on collapsing shells forming
black holes in [35], a detector-based calculation in such a
scenario would be of considerable interest.
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APPENDIX: NORMALIZATION

We verify that the modes described here are normalized
with respect to the Klein-Gordon inner product, which in
curved space is

ðΨ1;Ψ2Þ ¼ i
Z
Σ
dσ nμðΨ�

1∇μΨ2 −Ψ2∇μΨ�
1Þ ðA1Þ

over some Cauchy surface Σ, with normal nμ. Of course,
while this is not positive definite for generic solutions of
the Klein-Gordon equations, it works for positive fre-
quency solutions with respect to the Killing time. In this
case, the obvious choice of Cauchy surface is a constant-t
surface; since our solutions are time independent we are
free to choose whichever we like. The normalized normal
vector is then ð1=αðrÞ; 0; 0; 0Þ, and the surface area element
is dσ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðrÞr4 sin2 θ

p
.

If we write our modes as in (11), since the radial
functions ψ are real, we then find that the inner product
looks like

ðΨ1;Ψ2Þ ¼ −i
Z
Σ
dr dθ dϕ

�
aðrÞr2 sin θ

αðrÞ
�

× ðΨ�
1∂tΨ2 −Ψ1∂tΨ�

2Þ
¼ ω1 þ ω2

4π
ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p eiðω2−ω1Þt

×
Z
Σ
dr dΩ2

aðrÞr2
αðrÞ ψ�

1ðrÞψ2ðrÞY�
l1m1

Yl2m2
:

Rewriting in terms of ρ ¼ ψ=r and rearranging a few
things gets us
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ðΨ1;Ψ2Þ ¼
ω1 þ ω2

4π
ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p e−iðω2−ω1Þt
Z

∞

0

aðrÞdr
αðrÞ ρ�1ðrÞρ2ðrÞ

Z
S2
dΩ2Y�

l1m1
Yl2m2

:

If we rewrite the radial integral in terms of r�, we then get

ðΨ1;Ψ2Þ ¼
ω1 þ ω2

4π
ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p e−iðω2−ω1Þt
Z

∞

0

dr�ρ�1ðrÞρ2ðrÞ
Z
S2
dΩ2Y�

l1m1
Yl2m2

: ðA2Þ

Now, the angular integral is just the usual inner product of spherical harmonics, which under the usual normalization is
just δl1l2δm1m2

. The radial integral is the usual L2 inner product; however, since we know what the asymptotic behavior of ρ
is, we can go further. Specifically, since ρωl → 2 sinðωr� þ ζÞ for some phase ζ ¼ ζðl;ωÞ, the inner product is dominated
by the behavior at infinity (and thus we can ignore the part inside the shell), and so we can use standard arguments to findZ

∞

0

dr�ρ�1ðrÞρ2ðrÞ ≈
Z

∞

0

dr�ðeiðω1r�þζ1Þ − e−iðω1r�þζ1ÞÞðe−ðiω2r�þζ2Þ − eiðω2r�þζ2ÞÞ

¼
Z

∞

0

dr�ðe−iðω2r�þζ2−ω1r�−ζ1Þ − e−iðω2r�þζ2þω1r�þζ1Þr� þ H:c:Þ

¼ 2πðcosðζ2 − ζ1Þδðω2 − ω1Þ − cosðζ2 þ ζ1Þδðω2 þ ω1ÞÞ; ðA3Þ

where in the final line we use the fact that this integral is (half of) the Fourier transform of the Dirac delta distribution.
Of course, since ω is positive, we can ignore the second term.
Substituting the values found for the two integrals finally gives us

ðΨ1;Ψ2Þ ¼
ω1 þ ω2

4π
ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p e−iðω2−ω1Þt cosðζ2 − ζ1Þ2πδðω2 − ω1Þδl1l2δm1m2

¼ δðω2 − ω1Þδl1l2δm1m2
ðA4Þ

where we use the Dirac delta in the final line to simplify the prefactor.
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