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Quantum field theory—our basic framework for describing all nongravitational physics—conflicts with
general relativity: the latter precludes the standard definition of the former’s essential principle of locality,
in terms of commuting local observables. We examine this conflict more carefully, by investigating
implications of gauge (diffeomorphism) invariance for observables in gravity. We prove a dressing
theorem, showing that any operator with nonzero Poincaré charges, and in particular any compactly
supported operator, in flat-spacetime quantum field theory must be gravitationally dressed once coupled to
gravity, i.e., it must depend on the metric at arbitrarily long distances, and we put lower bounds on this
nonlocal dependence. This departure from standard locality occurs in the most severe way possible: in
perturbation theory about flat spacetime, at leading order in Newton’s constant. The physical observables in
a gravitational theory therefore do not organize themselves into local commuting subalgebras: the principle
of locality must apparently be reformulated or abandoned, and in fact we lack a clear definition of the
coarser and more basic notion of a quantum subsystem of the Universe. We discuss relational approaches
to locality based on diffeomorphism-invariant nonlocal operators, and reinforce arguments that any
such locality is state-dependent and approximate. We also find limitations to the utility of bilocal
diffeomorphism-invariant operators that are considered in cosmological contexts. An appendix provides a
concise review of the canonical covariant formalism for gravity, instrumental in the discussion of Poincaré
charges and their associated long-range fields.
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I. INTRODUCTION

A complete theory of quantum physics must include
gravity, yet certain features of gravity, already apparent
even in the weak-field regime, appear to imply a significant
departure from the traditional approach to physics via local
quantum field theory (LQFT). Specifically, the founda-
tional principles of quantum field theory are the principles
of quantum mechanics, of special relativity, and of locality.
While naïvely gravity merely involves generalization of
the principles of relativity, a more complete understanding
reveals a more profound challenge to the foundations of
local quantum field theory: once the invariance of the
theory includes general coordinate transformations (or
some precursor symmetry in a more fundamental theory),
the very definition or formulation of locality is no longer
apparent.
Indeed, a precise formulation of locality of local

quantum field theory is most clearly given in the algebraic
approach [1] to the subject, where locality is described
in terms of commutativity of subalgebras of observables
associated with spacelike separated regions of spacetime.
This results in a “net” structure of subalgebras of the
algebra of observables, which mirrors the topological

structure of open sets of the spacetime manifold.1

However, if one considers gravity, the requirement that
observables be gauge invariant then serves as a major
obstacle to an analogous definition of locality [2,3].
In fact, an even more primitive, and typically essential,

structure for physics is a decomposition of a physical
system into subsystems. In finite quantum systems, this is
usually described through a tensor factorization of the
Hilbert space. In quantum field theory, the algebraic net
structure provides an alternative to tensor factorization as a
way of defining subsystems that are localized. Tensor
factorization is generally problematic for two essentially
independent reasons. The first problem is that the algebras
associated with regions of space in field theory are type III
von Neumann algebras, and do not correspond to the full
algebra of bounded operators on any Hilbert space. This
means that the Hilbert space cannot be factored into factors
corresponding to adjacent regions. The issue is essentially
ultraviolet in nature (infinite entanglement of short-distance
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1In fact, the net structure of the algebra encodes more than just
the topology: it encodes the causal structure, which in turn
determines the metric up to a conformal factor. While fluctuations
in the causal structure are an obstruction to defining commuting
subalgebras in gravity, this is an essentially nonperturbative
effect. The effects we will discuss are more severe in that they
arise in perturbation theory.
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degrees of freedom), so may plausibly be resolved—though
in an unknown way—in quantum gravity, where we do not
trust LQFT to arbitrarily high energies. In the absence of
such a resolution, this issue can be avoided by a definition
of subsystems based on the commuting subalgebras. But an
apparently more severe issue is the presence of constraints
associated with gauge invariance. Specifically, as we will
describe, these constraints require long-range gravitational
fields, which obstruct commutativity of operators, and thus
interfere with an algebraic definition of subsystems via
commuting subalgebras. Since a tensor factorization would
imply commutativity of operators defined within separate
factors, this also prevents tensor factorization, though the
algebraic structure is the more general structure. This is
essentially an infrared effect and we do not expect it to be
solved even given a gauge-invariant UV regulator.
Problems with locality and observables in gravity have

been known for some time. For example, [4] argued that, in
a closed universe, there are no observables that are local
in time, by considering general integrals over a Cauchy
surface of any 3-form constructed from the 3-metric, its
canonical momentum, and finitely many derivatives
thereof. One of the goals of this paper is to sharpen and
extend such statements. As an example, in a LQFT of a
scalar field, the basic local observable is the field operator,
which creates or annihilates a particle. When we couple to
gravity we still expect that there are operators that create or
annihilate particles. But, for these obervables to be gauge
invariant, they must also be “gravitationally dressed,” so
that they create or annihilate the gravitational field con-
figuration of the particle; put differently, a particle is
inseparable from its gravitational field. This dressing makes
these observables nonlocal, as was explicitly described
in [2,3].
We will explore the requirement of gravitational dressing

in more generality in this paper. In particular, one might ask
whether such dressing can be screened, as is possible in
gauge theories of internal symmetries, such as quantum
electrodynamics. In these theories, this then permits the
definition of local commuting subalgebras, which provide a
way of defining locality for such theories. After considering
examples, we prove a general result: an operator with
nonzero Poincaré charges (momentum, angular momen-
tum) must act nontrivially on the asymptotic gravitational
field, and so its gauge-invariant, gravitationally dressed
version must be nonlocal. This severely restricts the
possible definition of local subalgebras and a correspond-
ing algebraic definition of subsystems.
One can then ask what operators one can find with

vanishing Poincaré charges. In the classical limit, positivity
of the energy indicates that positive energy of matter
cannot, for example, be screened by some negative gravi-
tational energy. The simplest examples of Poincaré-singlet
operators are integrals over all of D-dimensional spacetime
of D-form local operators, or, if one allows metric

dependence, of scalar operators times the volume form.
Such “single-integral” observables (in the nomenclature of
[5]) have a long history in the literature; see [6,7], and for
earlier related work, [8–11]. These integrated operators are
completely nonlocal, although in certain states they approx-
imately reduce to local operators. So, as we discuss further,
if one attempts to define locality via such operators, this
locality is state-dependent and approximate. So far, we do
not know a better definition of locality in gravitational
theories.
In line with the comments above, the situation is worse,

in that the trouble extends to that of even defining a coarser
structure than that of locality—we apparently lack a precise
definition of quantum subsystems of our quantum system,
the “Universe,” that reduces to the familiar notion of
subsystems, based on local commuting subalgebras of
LQFT, in the weak-gravity limit. In short, the basic
properties of gravity, evident in the weak-field limit, appear
to be at odds with the fundamental structure of local
quantum field theory, our otherwise very successful
framework for accurately describing the rest of physics.
This is a conundrum which reaches beyond more technical
issues, such as those of specific UV or IR divergences,
and plausibly has bearing on other deep puzzles such
as the unitarity crisis for black hole evolution. Locality, and
even the definition of subsystems—basic elements of
local quantum field theory and quantum mechanics,
respectively—are, unless defined in a fundamentally new
way, both state dependent and approximate.
In our discussion we also examine a different type of

observable that has been considered in gravity, where
local operators are connected by a geodesic of fixed length.
Such observables are candidate diffeomorphism-invariant
observables that have been for example investigated in
cosmological settings. We find that while such operators
can also be constructed in Minkowski backgrounds, they
are, at least to leading order in the gravitational coupling,
rather trivial: at least in a free theory, they essentially reduce
to just the number operator.
In outline, the next Sec. II gives a more extensive

discussion of the question of screening, in comparison
with gauge theory, and gives via examples an introduction
to the necessity of vanishing Poincaré charges in order to
avoid asymptotic gravitational dressing. This discussion
naturally incorporates that of diffeomorphism-invariant
bilinear operators and their leading-order triviality.
Section III then states and proves our result that non-
vanishing Poincaré charges imply such nonlocal dressing.
It also discusses the role of the positive energy theorem in
precluding screening, and the consequences of such no-
screening statements for the structure of the algebra of
observables and for locality. Section IV gives a discussion
of the Poincaré-invariant single-integral observables, and
their possible role in defining state-dependent, approximate
locality, as well as briefly discussing an approach [12]
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where the theory is supplemented by extra degrees of
freedom which are proposed to define a “localization.”
Following the discussion and conclusions, we provide two
appendices, Awith conventions, and B that gives a concise,
self-contained account of the covariant canonical formal-
ism for gravity. This formalism is used to understand
the structure of the Poincaré charges that enter into the
no-screening arguments of Sec. III.

II. GAUGE INVARIANCE VS LOCALITY
AND SUBSYSTEMS

An important question for quantum gravity is how it
reproduces the structure of local quantum field theory
(LQFT), in the weak-gravity approximation. In LQFT,
locality is a fundamental principle. Indeed, in an axiomatic
approach to the subject, such as that of algebraic quantum
field theory (or, “local quantum physics;” see, e.g. [1]), one
of the basic postulates is the existence of subalgebras of
operators that are associated with different regions of
spacetime; two subalgebras that are associated with space-
like-separated regions commute. More generally, a division
of a system like the Universe into subsystems is a key
ingredient for physics, and in LQFT these commuting
subalgebras furnish such decompositions.
While there has been a lot of discussion in gravitational

theories of physical phenomena and quantities that assume
the existence of such a subsystem decomposition (and,
moreover, a factorization of the Hilbert space), such as
entanglement, entropy, and quantum information transfer,
so far we do not know how to define this more basic (and
prerequisite) notion of subsystems in gravitational theories
[2]. Given the key role of commuting subalgebras of
observables in defining such a structure for LQFT, it is
natural to start by investigating the possibility of an
analogous definition in gravity. However, the requirement
of gauge invariance produces a significant obstacle, as has
been explored in [2,3]. Interestingly, the analogous obstacle
does not arise in gauge theories of internal symmetries,
such as in quantum electrodynamics (QED) or quantum
chromodynamics (QCD).
Let us first consider this case of Yang-Mills theories. Of

course, gauge-invariant local operators such as TrF2ðxÞ can
be immediately written down. The question becomes more
complicated when we consider operators that create
charged particles; for simplicity let us consider a single
charged scalar ϕðxÞ coupled to QED. The operator ϕðxÞ
itself is not gauge-invariant, but it is possible to construct
gauge-invariant dressed operators that create charged exci-
tations along with their electromagnetic fields [13]. The
dressing for a single particle necessarily extends to infinity,
and hence such an operator cannot be local. This happens
because the operator ϕ carries a nonzero charge; since, as
seen from Gauss’s law, the charge is measurable at infinity,
the operator must have a nontrivial effect on the field that

extends to spatial infinity. A charged particle cannot be
separated from its electromagnetic field.
While this field is inevitable, it does not need to extend to

infinity: it can be screened by introducing a second operator
creating an oppositely charged particle. Two such operators
can be combined with an electromagnetic dressing that
does not extend to infinity, such as

ϕðxÞeiq
R
Γ
dxμAμϕ�ðx0Þ; ð1Þ

where Γ is a curve connecting x and x0. If U is a connected
open set containing x and x0, a Γ can be found inU, and this
localized operator will commute with analogous such
operators associated with spacelike-separated open sets.
So, local subalgebras of such operators can be constructed
for QED, and more generally for non-Abelian theories.
In exploring the possibility of localized operators in

gravity, a first question is whether there is an analogous
construction there. As in the QED case, a scalar field
operator ϕðxÞ, coupled to gravity, is not gauge invariant.
Gauge-invariant operators can be found by solving the
constraints, which tell us that such an operator must be
gravitationally dressed. The nature of this dressing may be
explored to leading order in an expansion in the gravita-
tional coupling constant, κ ¼ ffiffiffiffiffiffiffiffiffiffiffi

32πG
p

. We will work
throughout in D > 3 spacetime dimensions, unless other-
wise specified.2 Gauge-invariant, dressed operators may be
found [3] which are of the form

ΦðxÞ ¼ ϕðxÞ þ VμðxÞ∂μϕðxÞ þOðκ2Þ; ð2Þ
where the vector field VμðxÞ is a choice of gravitational
dressing, which is of order κ1 and is defined as an integral
of the linearized metric perturbation hμν, defined by
gμν ¼ ημν þ κhμν. The simplest case of such a dressing is
a “gravitational Wilson line” extending to infinity [3],
which is in many ways analogous to its electromagnetic
counterpart, the Faraday line of [13]. For this gravitational
Wilson line observable the dressing is given by

VWz;zðxÞ ¼
κ

2

Z
∞

0

dshzzðxþ sẑÞ;

VWz;μ̌ðxÞ ¼ κ

Z
∞

0

ds

�
hzμ̌ðxþ sẑÞ

þ 1

2
∂ μ̌

Z
∞

s
ds0hzzðxþ s0ẑÞ

�
; ð3Þ

where μ̌ indicates the indices other than z. Then, the
operator (2) is invariant under the linearized diffeomor-
phism symmetry. Acting on the vacuum, the operator
creates a scalar field excitation together with a linearized
gravitational field concentrated on the line fxþ sẑ∶s ≥ 0g.

2As is well known, the case D ¼ 3 has certain peculiar
features [14].
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This operator may also be averaged over angles to give the
more standard “Coulomb” field [3]. In either case, the
operatorΦðxÞ is nonlocal, with support extending to infinity.
This construction seems analogous to that for QED, and

one might ask whether two such operators could be com-
bined to create a nonlocal, but localized, operator, where
the asymptotic gravitational dressing cancels. This would
provide an example of a gravitational analog of screening.
The simplest way to construct a diffeomorphism-invariant
dressing of an operator such as ϕðxÞϕðx0Þ is simply to take a
product of diffeomorphism-invariant operators:

A ¼ ΦWz
ðxÞΦWz

ðx0Þ: ð4Þ

In the analogous QED case, for equal but oppositely charged
operators with their Faraday lines extending in the same
direction along the z axis, the asymptotic parts of these lines
then cancel, yielding an expression like (1).
However, in the gravitational case, it is easily seen that

the operator A does not exhibit such a cancellation:

A ¼ ϕðxÞϕðx0Þ þ Vμ
Wz
ðxÞ∂μϕðxÞϕðx0Þ

þ ϕðxÞVμ
Wz
ðx0Þ∂μϕðx0Þ þOðκ2Þ: ð5Þ

This happens because the dressing term depends on the
derivative of ϕ, rather than on ϕ itself as in QED. This is a
consequence of the fact that gravity couples to energy-
momentum, and ϕðxÞ is not an operator with a definite
energy-momentum.
From this viewpoint the origin of the failure is

obvious—ϕðxÞϕðx0Þ is not the analog of a neutral operator
in QED, since the “charges” for gravity include momenta.
This also suggests a resolution: simply project this
composite operator onto its zero-momentum piece. Note
that we expect to be able to accomplish this even for energy,
since ϕðxÞ contains both creation (positive energy) and
annihilation (negative energy) terms. There are two
approaches to doing so. The first is to directly introduce
such a projection, by integrating over position: let
xμ0 ¼ xμ þ lμ, and form the zero-momentum operator

BðlμÞ ¼
Z

dDxϕðxÞϕðxþ lÞ; ð6Þ

one can then consider the OðκÞ dressing of this delocalized
operator. Alternatively, we can consider the matrix element
of ΦðxÞΦðx0Þ between two single-particle states of equal
momentum.
We first investigate this second approach, with single-

particle states3 jpi ¼ a†ðpÞj0i of momentum p; if we begin
with the fully dressed operators, we have

hpjΦðxÞΦðx0Þjpi ¼ hpjϕðxÞϕðx0Þjpi þ ½VλðxÞ − Vλðx0Þ�
× ðhpjpih0j∂μϕðxÞϕðx0Þj0i
− 2pλ sin½p · ðx − x0Þ�Þ þOðκ2Þ. ð7Þ

Then, we indeed see that after the zero-momentum pro-
jection, the leading-order contribution of the dressing
depends on the difference between the two dressings.
Interestingly, however, this is still not sufficient to obtain

a cancellation of the kind we found in QED. This can be
seen from (3): the dependence of VWz;μ̌ on hzz is linearly
rising with z. Thus when subtracting the two dressings the
leading linear term cancels but there remains a subleading
constant proportional to the separation between x and x0.
To be concrete, let x ¼ ðx⊥; zÞ and x0 ¼ ðx⊥; z0Þ be two
points separated along the z axis, with z0 > z. Then we have

VWz;zðxÞ − VWz;zðx0Þ ¼
κ

2

Z
z0

z
dshzzðx⊥; sÞ;

VWz;μ̌ðxÞ − VWz;μ̌ðx0Þ ¼ κ

Z
z0

z
dshzμ̌ðx⊥; sÞ

þ κ

2
∂ μ̌

Z
∞

z
ds½minðz0 − z; s − zÞ

× hzzðx⊥; sÞ�: ð8Þ

The function minðz0 − z; s − zÞ rises linearly for s between
z and z0, then becomes constant for s > z0. Thus the first
expression is entirely supported on the line between x and
x0, but the second has nontrivial dependence on the metric
all the way to infinity.
In fact a little more thought makes it clear why this

gravitational dressing must extend to infinity. By consid-
ering the diagonal matrix element in the momentum basis
we have restricted to a process that creates a particle at
point x and annihilates one at point x0 (or vice versa). This
leaves the total energy and momentum unchanged, but
changes the angular momentum. Angular momentum is
another conserved Poincaré charge to which gravity cou-
ples. Indeed, it may be calculated via a surface integral—
see for example [15], and the discussion in Appendix B.
The nonvanishing tail of the dressing in (8) reflects the fact
that the nonzero momentum of the operator must register at
spatial infinity. The lack of Poincaré invariance is particu-
larly evident in the alternative approach via (6), where lμ

will transform nontrivially under a rotation or boost.
Thus, if we want to eliminate the leading-order gravi-

tational dressing, it seems we should project onto singlets
of the full Poincaré group; the next section will more
carefully state this requirement. But, let us inquire whether
such a nontrivial observable can be formulated by averag-
ing BðlμÞ of (6). We might, for example, do this by
integrating over all lμ subject to a constraint l2 ¼ L2, for
some fixed distance L. This, then, would be a candidate for
a fully screened operator—albeit a highly nonlocal one.

3Our conventions are ϕðxÞ¼R fdp½aðpÞeipxþa†ðpÞe−ipx�,
with Lorentz-invariant measure fdp ¼ dD−1p=½ð2πÞD−12p0�.
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Indeed, let us consider a closely related definition of a
gauge invariant bilinear operator in gravity [16–18],[5], of a
kind considered also in cosmological contexts. Specifically,
we will examine an operator of the form

B ¼
Z

dDx
ffiffiffiffiffiffiffiffiffiffiffi
jgðxÞj

p
dDx0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jgðx0Þj

p
ϕðxÞϕðx0Þfðdðx; x0ÞÞ;

ð9Þ

where dðx; x0Þ is the geodesic distance between x and x0,
and f is a function with support on spacelike proper
distances.4 We can think of this operator as creating a
particle, and annihilating another particle at a distance
dðx; x0Þ. For example, if fðdðx; x0ÞÞ ¼ δ½dðx; x0Þ − L�, we
might expect such an operator to reduce to a projected
operator like we just described; the integral over both
x and x0, with dðx; x0Þ fixed, implements the projection to
Poincaré singlets.
However, to leading order in κ, this projected operator is

nearly trivial. To see this, at order κ0 we can simply insert
the mode expansion for ϕ, and replace dðx; x0Þ with the flat
spacetime distance jx − x0j. It is convenient to change
variables to Δx ¼ x − x0 and x ¼ 1

2
ðxþ x0Þ, giving

∶B∶ ¼
Z

dDxdDΔxfdp fdp0½ða†ðpÞa†ðp0Þ

þ aðpÞaðp0ÞÞeiðpþp0Þxþiðp−p0Þ1
2
Δx

þ 2a†ðpÞaðp0Þeiðp−p0Þxþiðpþp0Þ1
2
Δx�fðjΔxjÞ: ð10Þ

The first terms in (10) vanish. While we have dealt with
an additive divergence from the last term by normal
ordering, there is still an overall multiplicative divergence
coming from the integral over x. To regulate this latter
divergence in a Lorentz-invariant way we write the
momentum integral as

Z fdp ¼ 1

ð2πÞD−1

Z
dDpδðp2 þm2Þθðp0Þ; ð11Þ

so that the integral over x in (10) becomes

Z
dDxfdp fdp0 eiðp−p0ÞxFðp; p0Þ

¼ ð2πÞ
Z fdpδðp2 þm2ÞFðp; pÞ: ð12Þ

The δ function in this expression is redundant; it enforces
the mass-shell condition which is already present in the

integral fdp. Our prescription for regulating this integral
will be to simply drop the divergent factor 2πδ.
The resulting regulated operator is then given by

B ¼ 2

Z
dDΔxfdpa†ðpÞaðpÞeip·ΔxfðjΔxjÞ: ð13Þ

The Δx integral in this expression is manifestly Lorentz-
invariant, so it does not depend on p, but only on
p2 ¼ −m2. Thus we can use this freedom to replace p
in the Δx integral with pμ ¼ ðm; 0; 0; 0Þ, leaving the
operator

B ¼
�Z fdpa†ðpÞaðpÞ��2Z dDΔxe−imΔx0fðjΔxjÞ

�
:

ð14Þ

The first factor in parentheses is the number operator, and
the second is an integral that depends only on the function f
and the mass m.5 So, to leading order in κ, B is simply a
multiple of the number operator. One might also ask
whether there are interesting contributions at OðκÞ or
Oðκ2Þ. The former would annihilate a scalar and create
another, together with a graviton, but this would require
ω ¼ 0 for the graviton. The operators at Oðκ2Þ are more
complicated; we leave their exploration for future work.
Indeed, the simplest way to write down nontrivial

Poincaré singlets is instead to consider integrals of the
form

R
dDx

ffiffiffiffiffijgjp
OðxÞ, where O is a nontrivial local scalar

function of the fields and derivatives. We will return to such
observables after a more general discussion of the necessity
of considering Poincaré singlets in order to avoid gravita-
tional dressing.

III. GRAVITATIONAL DRESSING, LIMITATIONS
ON SCREENING, AND IMPLICATIONS

FOR LOCAL ALGEBRAS

In this section we prove a central result, the dressing
theorem, and discuss its implications for algebras of local
observables.

A. The dressing theorem

The preceding discussion leads us to formulate the
following theorem that constrains possible gravitational
dressings.
Dressing theorem: Let O be an operator in quantum

field theory on flat spacetime, with compact support. For
example O may be constructed out of matter fields, or out
of the metric perturbation hμν treated as a tensor field,

4Note that when working nonperturbatively, one should extend
the definition to the case where there are multiple geodesics
connecting x and x0, or none at all. For our perturbative
considerations, these issues do not arise.

5For f ¼ δðd − LÞ, it can be evaluated explicitly in terms of
Bessel functions, but its precise form is not important for our
purposes.
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localized to some finite region. Let ~O be a gravitationally
dressed version of O, i.e., a gauge (local diffeomorphism)-
invariant operator, which has perturbative expansion about
flat spacetime as

~O ¼ Oþ κOð1Þ þ κ2Oð2Þ þ � � � ð15Þ
Suppose that O transforms nontrivially under the Poincaré
group. ThenOð1Þ must depend on the asymptotic spacetime
metric.

Moreover, if O transforms nontrivially under spacetime
translations, then the falloff must be

δOð1Þ

δgμν
≳ 1=rD−3 ð16Þ

where by these falloff conditions we mean that there must
exist some direction and combinations of indices μ and ν
such that δOð1Þ=δgμν decays with radial distance r no faster
than 1=rD−3. If O transforms trivially under translations,
but nontrivially under boosts or rotations, then the falloff is
no faster than dipole:

δOð1Þ

δgμν
≳ 1=rD−2: ð17Þ

Proof: The general idea of the proof is as follows.
The integral of the constraint equations can be written as
the sum of two terms: an integral of the stress tensor for the
fields,6 and a boundary term. The constraints generate
gauge transformations (local diffeomorphisms), and must
commute with gauge-invariant operators ~O. In the case of a
Poincaré transformation, the integral of the stress tensor
gives the Poincaré generator. Thus if the generator does not
commute with ~O, the corresponding surface term cannot
commute with ~O.
Our proof uses the same general formalism as described in

Ref. [3], where commutators of the metric perturbation hμν
can be defined via a covariant gauge-fixed formalism. An
important property of these commutators is that they vanish
outside the lightcone and hence retain locality. While the
commutators of gauge-dependent quantities such as hμν
depend on the choice of gauge-fixing, commutators of
gauge-invariant operators such as ~O do not. Thus we are
free to use covariant gauge commutators in proving our
result, and for these purposes it is essential that there exists a
choice of gauge fixing for which the commutators are local.
Specifically, as is for example seen in Eq. (B18) of

Appendix B, a local (i.e., compactly supported) diffeo-
morphism ξ is generated by the integral of the constraint Cξ

over a spatial slice Σ; Cξ is proportional to the Einstein
equation contracted with the vector field ξ,

Cξ ¼ ð−ÞD⋆
��

Tμν −
1

8πG
Gμν

�
ξνdxμ

�
: ð18Þ

(Here Cξ is a D − 1-form; ⋆ denotes Hodge dual.
For definition and conventions see Appendix A.) A
gauge-invariant operator ~O must commute with these
constraints,

�Z
Σ
Cξ; ~O

�
¼ 0 ð19Þ

for all compactly supported ξ; here brackets may be
regarded either classically as Poisson brackets, or as
commutators in the quantum theory. However, Eq. (19)
must also hold for noncompact ξ, since we can simply
write any such ξ as a sum of compactly supported ξ.
In what follows we will take ξ to be an infinitesimal
isometry of Minkowski spacetime, i.e. a Poincaré
transformation.
We now rewrite the constraint (18) by expanding the

Einstein tensor perturbatively in the metric perturbation,
using gμν ¼ ημν þ κhμν, as a term linear in κhμν plus
quadratic and higher-order terms,

Gμν ¼ κGð1Þ
μν − 8πGtμν; ð20Þ

where the quadratic and higher order terms have been
absorbed into the definition of the effective gravitational
stress tensor tμν. Substituting the expansion (20), the
constraint becomes

ð⋆CξÞμ ¼
�
−

κ

8πG
Gð1Þ

μν þ Tμν þ tμν

�
ξν: ð21Þ

The integral of the linear term Gð1Þ
μν gives the Hamiltonian

generator Hξ of the Poincaré transformation, as shown in
Eq. (B25), so

Z
Σ
Cξ ¼ −Hξ þ

Z
Σ
ϵΣðTμν þ tμνÞnμξν ð22Þ

where ϵΣ denotes the induced volume form on Σ [here we
use (A5)]. Moreover this Hξ integrates to a surface term, as

shown in Eq. (B22). A gauge-invariant operator ~O, satisfy-
ing (19), therefore commutes with this surface term if and
only if it commutes with the integral of T þ t in (22). If ~O
has a nonzero commutator with this integral, it must depend
nontrivially on the asymptotic metric. If we expand this
statement perturbatively, it becomes

κ½Hξ;Oð1Þ� ¼
�Z

Σ
ϵΣðTμν þ tμνÞnμξν;O

�
þOðκÞ: ð23Þ6Including, in the case of the metric perturbation hμν, an

effective stress tensor to be defined below.
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The left-hand side of this equation is of order κ0, as seen in
Eqs. (B27)–(B30).7 The Oðκ0Þ term on the right is the
commutator with the usual field theory Poincaré generator,
including the contribution of the metric perturbation. Thus,
for O transforming nontrivially, the leading contribution
Oð1Þ to the dressing must depend on the asymptotic metric.
Examining the form of the generatorsHξ for the different

Poincaré transformations, Eqs. (B27)–(B30), we see that
for spacetime translations we have

Hξ ¼
1

κ

I
∂Σ

dABλμν∂λhμν ð24Þ

where Bλμν is a tensor whose components are Oðr0Þ as
r → ∞. This shows that if δOð1Þ=δgμν were to decay faster
than 1=rD−3, then the left-hand side of (23) would vanish,
which is in contradiction with the assumed nonzero trans-
formation law of O. Here we use the locality of the
commutators, noted above.
For boosts and rotations we have a similar expression for

Hξ, but now certain components of the tensor B are Oðr1Þ.
Because of the extra factor of r, we require only the weaker
dipolelike decay rate of 1=rD−2 to achieve a nonzero value
for the commutator.

B. Positive energy

The preceding argument shows that operators trans-
forming nontrivially under the Poincaré group must have
gravitational dressings extending to infinity. This argument
is quite general, and relies essentially only on diffeo-
morphism invariance, which allows the Poincaré charges
to be expressed as boundary terms. However, one may ask
how we know that we cannot cancel the contributions of
Tμν and tμν in (23) to obtain nontrivial local operators with
screened Poincaré charges. In classical general relativity
this possibility is severely limited by the positive energy
theorem. The positive energy theorem [19,20] states that
Minkowski spacetime is the unique global minimum of the
energy, provided matter satisfies the dominant energy
condition. In conjunction with the preceding result, the
positive energy theorem may place even stronger limita-
tions on local operators.
In the context of our discussion of operators, this result

can be translated as follows. An observable can be thought
of as generating a canonical transformation, mapping one
solution to another, via exponentiation; this is the classical
version of acting with a unitary operator such as eiλO,
for some real λ. If we begin with the vacuum, and the
transformation acts nontrivially, then by the positive energy
theorem it must map to another state with a larger energy, so

long as matter satisfies the dominant energy condition. But,
since the energy is a surface term, the operator therefore
cannot be a local operator. It is impossible to act purely
locally on the vacuum to produce nontrivial excitations.
This discussion can be restated simply in the context of

the quantum theory, if one adds the conjecture that the
positive energy theorem extends to a quantum version.
Suppose that O is any operator that has a nontrivial
matrix element between the vacuum and any other energy
eigenstate jEi,

hEjOj0i ≠ 0: ð25Þ

By positive energy, the state Oj0i must have a nontrivial
action under the Hamiltonian,

HOj0i ≠ 0: ð26Þ

It then follows that the operator O must commute non-
trivially with the Hamiltonian

½H;O� ≠ 0: ð27Þ

Since H is a boundary term, any such O must have
nontrivial asymptotic support, as given by (16).
This strengthens the result of the preceding subsection,

since the positive energy theorem (and, one might expect,
its quantum generalization) does not refer to perturbation
theory on a fixed background. However, the positive energy
considerations above do not subsume the previous result. In
particular, positive energy does not prohibit compactly
supported operators O such that Oj0i ¼ αj0i, but which
have arbitrary matrix elements among excited states. The
result of the preceding subsection goes further in con-
straining possible physical operators, since the spatial
momentum, angular momentum, and first moment of mass
(boost charge) are also boundary terms. Hence our theorem
restricts such operatorsO to be Poincaré singlets, which is a
much stronger criterion than simply preserving the vacuum.

C. Discussion and other implications

It is worth analyzing how the operators in the preceding
sections are compatible with our theorem. In the first case,
we defined an operator A in (4) by simply multiplying two
dressed operators (5). At leading order A reduces to the
two-point operator ϕðxÞϕðx0Þ. In QED, the analogously
constructed operator would define a compactly supported
gauge-invariant operator provided the two operators
we combine are of opposite charge and have collinear
Faraday lines. In gravity, the operator A is manifestly
diffeomorphism-invariant, since it is constructed as a
product of gauge-invariant operators. However, our theo-
rem requires such an operator to have nontrivial depend-
ence on the metric out to infinity, since at leading order the
operator has nontrivial matrix elements between states with

7The Poincaré generators have a prefactor of κ−1 when written
in terms of the metric perturbation hμν, or a factor 1=G when
written in terms of the metric gμν.
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different Poincaré charges. This explains the nontrivial
gravitational tail found in Eq. (8): the operator A satisfies
our theorem by failing to be compactly supported.
In the second case, we have defined an operator B in (9)

which is manifestly diffeomorphism-invariant. In particu-
lar, it is also invariant under diffeomorphisms that are
nontrivial asymptotically, including under the action of the
Poincaré group. Hence at leading order κ0 it must have a
trivial transformation law under the Poincaré group; and
indeed we find it is simply a multiple of the number
operator. Thus the operator B satisfies our theorem by being
a Poincaré singlet at leading order.
A further implication of our theorem is to establish the

commutation relation between the Poincaré generators
and the dressing field VμðxÞ of (2). Specifically, it implies
that for operators of the form (2), the commutation relation
between the dressing field VμðxÞ and the Poincaré gen-
erator Hξ is

½Hξ; VμðxÞ� ¼ −iξμðxÞ; ð28Þ

where in this equation the bracket refers to a commutator.
This result generalizes the commutation relation that was
derived in Ref. [3],

½Pμ; VνðxÞ� ¼ iημν; ð29Þ

which was found by explicit calculation in some specific
examples. The result (28) establishes that this commutation
relation is a general feature of gravitational dressings, and
extends (29) to include the Lorentz generators.

D. Consequences for algebra of observables

Our dressing theorem also has direct consequences for
the structure of the algebra of observables in perturbative
gravity. In short, we have shown that an operator can only
avoid dependence on the asymptotic metric, once dressed
to become gauge invariant, if it commutes with the
generators of the Poincaré group. This is the general
statement explaining the nontrivial dressing we found in
the examples of the preceding section. If an operator has
nontrivial dependence on the asymptotic metric, it cannot
be a local operator. Conversely, in order for an operator to
commute with the momenta, it cannot be supported just on
a compact region of spacetime, since the momenta would
generate translations of that region. Therefore there are no
gauge-invariant operators that can be associated with
compact regions of spacetime. This is different from
electromagnetism or non-Abelian Yang Mills, where one
can find local operators (such as Fμν, Wilson loops, pairs of
charges connected by electric strings, etc.) that have no net
charge and no dependence on the asymptotic gauge field,
and which are compactly supported in spacetime.
Despite there being no local commuting algebras, one

might still seek commuting subalgebras associated with

regions of spacetime that extend to infinity, and so can
“contain” the gravitational field lines running off to infinity.
For example, one could dress a scalar field operator ϕðxÞ to
find an operator ΦþðxÞ with a gravitational field line
running to infinity parallel to the þz axis, and one might
expect that it would commute with a neighboring dressed
operator Φ−ðx0Þ with a field line parallel to the −z axis,
such that the field lines are disjoint. However, in the full
nonlinear theory there is an apparent obstacle [2] to
defining subalgebras containing these operators. Namely,
ΦNþðxÞ can create an N-particle state, and thus for large N
can have a large energy. In the full nonlinear theory, the
support of its excitation of the gravitational field thus
grows; we expect this growth to be both transverse to the z
direction and into the negative z direction. Hence, for
large enough N, we do not expect ΦNþðxÞ to commute
with ΦN

−ðxÞ. An analog of this is seen explicitly in
2þ 1-dimensional gravity with a negative cosmological
constant [21]. In this setting matter sources introduce
conical deficits into spacetime, and there is a finite
minimum angular support on the boundary that is deter-
mined by the mass of the source and its location in the bulk.
For two sources whose total support exceeds 2π, commut-
ing operators cannot be defined. This general phenomenon
should be investigated more closely, but assuming it is
confirmed, it even obstructs definition of commuting
subalgebras, hence factorization into subsystems, associ-
ated with noncompact regions extending to asymptotic
infinity.

IV. OTHER CONSTRUCTIONS
OF OBSERVABLES

As indicated above, one cannot evade the theorem by
finding local operators that commute with the Pμ, since
such operators are not localized; screening is only possible
through complete delocalization. One can however con-
sider such nonlocal operators in order to avoid the
complications of asymptotic dressing, and investigate their
properties, and the question of their subalgebras and
possible localization. One example of such operators arises
if one integrates a local scalar operator over all spacetime,
but works in a state such that the integral is dominated by a
particular region in spacetime. Such operators have been
used widely in the literature on relational observables [6,7],
[5]. Another alternative is to define operators using addi-
tional, auxiliary structure such as considered in [12]. In
either case we can ask whether subalgebra structure can be
found that enables one to define locality and/or subregions,
or some approximation thereof. We turn to this ques-
tion next.

A. Relational field theory observables

Operators with vanishing Poincaré charges can be found
by integrating local operators over all of spacetime;
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these are the “single integral” observables of [6,7],[5].
For a general description of these, suppose that we can use
the fields (including possibly the metric) to define a local
D-form oðxÞ, which depends on the fields and their
derivatives at x. Then,

O ¼
Z

oðxÞ; ð30Þ

with integral over the spacetime manifold, is diffeomor-
phism invariant. A particular case is that where the D-form
arises as the dual of a scalar operator OðxÞ,

oðxÞ ¼ ⋆OðxÞ ¼
ffiffiffiffiffi
jgj

p
dDxOðxÞ: ð31Þ

In certain background states, such observables can be
used in the semiclassical approximation to provide a
localization [6,7],[5]. In fact, at the semiclassical level,
this is precisely how one solves the “problem of time” in
inflationary contexts: the value of the inflaton can be used
to define a time slice, and perturbations can then be defined
on this slice—e.g. on the slice where the inflaton reaches
the “reheating” value.
A simple example is the Z-model of [5]. If, in D

dimensions, we have scalar fields Za, with a ¼
0;…; D − 1, classical monotonic configurations for the
Za can be used to localize other operators. For example,
suppose we consider a configuration where Za ¼ λδaμxμ.
We also need a bump function, which we call fðzÞ; let it
vanish for jzj > 1. If we want to localize another observ-
able, say ϕðxÞ, we can classically do so by defining the
operator (31) with

OξðxÞ ¼ ϕðxÞ
YD−1

a¼0

f½ZaðxÞ − ξa�; ð32Þ

for any numbers ξa. Then, clearly, the integral (30) will
localize near the point xμ ¼ δμaξa=λ, and so classically O
reduces to ϕðxÞ near this point. A “topological” (metric-
independent) observable can likewise be defined using

oðxÞ ¼ OξðxÞ
YD−1

a¼0

dZa; ð33Þ

where wedge product is understood, and this observable
likewise localizes.
Reference [22] argues that this classical localization can

be extended to the quantum context to define localized
subalgebras. While this is an interesting topic for future
investigation, there are some significant obstacles.
The first is that, even at classical level, this method only

provides a localization for certain configurations of the Za

or other “locator” fields. For example, it is useless for
providing a localization if we are discussing perturbations

of empty Minkowski space. The construction thus fails in
precisely the situation where we would expect to most
easily recover ordinary field theory. In short, any such
localization is state dependent, and will not be useful in a
large class of states.
Even in states where this approach works, there are

significant questions about how it extends to the quantum
theory; some initial discussion of these issues appears in
[5,23]. Suppose that the Za are quantum fields in a state
with expectation values (e.g. resulting from appropriate
boundary conditions) hZai ¼ λδaμxμ. Then, we seek quan-
tum operators like (32) or (33) with the same kind of
localization properties. The essential problem is two-fold.
First, any such operator is a rather complicated operator
(due largely to the function f), whose quantum definition is
not obvious. Second, a quantum field Za undergoes
increasingly strong fluctuations at short distance scales,
as seen from the point-split two-point function,

hZðϵÞZð0Þi ∼ 1

ϵD−2 ; ð34Þ

with small ϵ, and thus essentially takes on all values,
including the desired one ∼ξ, in any neighborhood.
A warm-up problem is to try to find a definition of an

operator f½ZaðxÞ� for a single field with hZaðxÞi ¼ λδaμxμ

which approximately localizes on the codimension-one
surface xa ¼ 0. Reference [22] advocates defining such an
operator via power-series expansion of f, and using the
compact support of the derivatives of f. However, this is
problematic, except in a formal ℏ → 0 limit where pertur-
bations are taken to be infinitesimal, since such bump
functions, while smooth, are nonanalytic and thus are not
reproduced by well-defined power series expansions.
Different alternatives present themselves. One is, as in
[23], to instead attempt a quantum definition of fðZaÞ via a
Fourier transformation, and then seek a localization that is
perhaps at most approximate. Indeed, one may instead
consider analytic functions of Za, such as a Gaussian, that
only approximately localize as in [5], and investigate the
departures from localization in comparison to expected
Gaussian tails.
In short, it is not clear how to use this approach to define

an exact, as opposed to approximate, localization. It is
worth further investigating, systematically, the size of
departures from localization, and the limits to localization,
extending the analysis of [5,23].

B. Extended phase space

Reference [12] proposed an approach to defining
subsystems that is based on introducing, in addition to
the usual metric structure of general relativity, a map
X∶ m → M from a “reference manifold” m to the space-
time manifold M; X plays the role of a preferred coor-
dinatization. One can then define a localized subsystem by
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choosing a region8 σ of m, and considering its image under
X. The transformation law of such a map is given by

δξXμ ¼ ξμðXÞ ð35Þ

under diffeomorphisms, which is the nonlinear version of
the transformation law for Vμ given in Ref. [3]. The
operator

~ϕðxÞ ¼ ϕðXðxÞÞ ð36Þ

is then diffeomorphism invariant. Reference [12] shows
how the variables XμðxÞ can be used to define an extended
phase space for gravity associated with the region σ.
To relate this construction to the preceding discussion, it

is important to understand the origin and role of the X’s.
One possibility is that the X’s arise as collective coordinates
for certain field degrees of freedom that can be used to
define a reference system; e.g. one might think of them as
coordinates of a collection of reference satellites. In that
case, their origin is in more fundamental matter degrees of
freedom, and they will have a Lagrangian and stress tensor
that can be inferred from those of the more basic degrees of
freedom. Then, one returns to the prior discussion: generi-
cally the Xs will also contribute to the energy-momentum
that induces gravitational dressing; only if one defines
delocalized operators with vanishing momenta does this
dressing vanish. A remaining question is of identifying the
X’s in terms of more fundamental degrees of freedom, and
of finding the stress tensor that acts on the X’s to generate
the transformation (35). For example, in the Z model, the
X’s are simply the inverse functions to the Z fields.
One could also ask if the existence of a physical

reference frame like that described by such X’s is a
necessary part of the structure of gravitational theories.
Suppose one accepts the conjectured AdS/CFT correspon-
dence; interesting related work [24] from this direction then
provides circumstantial evidence for an affirmative answer.
Here, an extended conjecture relates bulk spacetimes with
multiple asymptotic regions, such as an eternal black hole,
to a Hilbert space that is a tensor product of CFTs. This
presents a puzzle, because the low-energy Hilbert space
does not naturally factor in the same way when the bulk
contains gauge fields (which occur whenever the CFT has
global symmetries). For example, one could consider a
Wilson line stretching from one asymptotic region to the
other, which does not have a factorization into low-energy
gauge-invariant operators of the two asymptotic regions.
An operator that factorized would have to look like a
Wilson line to all external probes, but terminate on the
horizon. Reference [24] suggested that this puzzle could be
naturally resolved by introducing charged matter into the

theory: such matter would allow the Wilson lines to end. It
was further argued that this leads to constraints on the
matter content of the bulk theory, namely that these charged
matter fields would automatically satisfy a form of the
weak gravity conjecture.
The apparent nonfactorization of the Hilbert space

occurs not only for gauge fields but for gravitational fields
as well, and the latter are always present in the bulk. One
therefore encounters the same puzzle. It may be that there is
no fundamentally consistent factorization of the Hilbert
space. But if one assumes that there is, this suggests the
same kind of conjectured resolution, that the gravitational
analogs of Wilson lines (3) must be allowed to end on the
bifurcation surface separating the two asymptotic regions.
And this indicates that there must be matter/fields on which
all such Wilson lines can terminate. We have seen that
gravitational Wilson lines have more constraints than their
electromagnetic counterparts: while it is possible for one
end of a Wilson line to end on matter (with the other
extending to infinity), it does not seem to be possible to
make both ends of a Wilson line end on matter. It is
therefore an interesting question to understand the compat-
ibility of the requirements of factorization. Note that in the
eternal AdS-Schwarzschild solution the time-translation
Killing vector changes orientation at the horizon; this does
suggest the possibility of a cancellation between “positive”
and “negative” mass particles on the respective sides of the
horizon, to give an unsourced Wilson line, which extends
from one asymptotic region to the other. Further inves-
tigation of constraints on matter and relation to this
conjectured factorization are worth further exploration,
and may even shed light on the role of structure like the
X’s. Unfortunately, the argument of Ref. [24] proceeds
mostly by analysis of a toy model with emergent gauge
symmetry. Analogous models of emergent gravity may be
more difficult to construct and analyze; while some such
models have been proposed, e.g. [25], some challenges are
outlined in [26].
As an alternate to deriving the X’s as “collective

coordinates” for matter, Ref. [12] proposed to introduce
the X’s as part of the basic structure of the theory. If the X’s
are fundamental variables in the theory, they can be used to
define an extended phase space associated with a region
σ ⊂ m. In [12] the theory carries an additional gauge
symmetry, distinct from the diffeomorphism symmetry,
under which δgμν ¼ 0, δXμ ¼ vμ, where vμ is any vector
field such that vμ and certain of its first derivatives vanish
on the boundary of the region σ. For a given σ, the X’s
introduce an additional structure into the theory, consisting
of the location of the boundary of σ in spacetime
(a spacelike codimension-2 surface without boundary),
and a conformal framing of this boundary. Defining
gauge-invariant operators in this theory is not quite as
straightforward as in (36); while such an operator is
invariant under diffeomorphisms it is not invariant under

8By region we mean a region of space, i.e. an achronal
spacelike codimension-1 hypersurface.
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the additional gauge symmetry that shifts X in the interior.
But one can still use the surface and its framing to define
observables localized in the interior, for example by
shooting geodesics inward from the boundary along speci-
fied directions. Such operators are gauge-invariant observ-
ables of the combined system consisting of the dynamical
fields together with a framed surface, but not of the field
theory without this additional structure. These observables
are natural generalizations of those constructed in asymp-
totically flat or asymptotically anti-de Sitter spacetimes
where, for example, geodesics can be shot inward from the
asymptotic boundary. A primary difference is that the
additional structure of the X’s is made explicit, whereas
in the usual treatment of asymptotically flat (or asymp-
totically AdS) spacetimes the additional structure is
implicit in the falloff conditions imposed on the metric
and other dynamical fields.
Note that observables defined relative to such a subregion

σ and its boundary are not however gauge-invariant when
considered from the viewpoint of a larger region in which σ
sits. Gauge-invariant quantities in the full spacetime can be
found by combining such observables in different regions.
For example, one could first localize a surface and its framing
in a gauge-invariantway, for example via the boundary of the
larger region or relative to some matter fields, and construct
further gauge-invariant observables relative to this surface.
Such observables must be nonlocal, or dressed, in keeping
with the theorem of Sec. III.
The introduction of the X’s into the fundamental theory

therefore suggests a possible approach to defining a notion of
subsystem different from that usually assumed in quantum
field theory. In this approach, a subsystem does not corre-
spond to an algebra of gauge-invariant and compactly
supported operators, since we have found obstructions to
finding such operators. Instead, a subsystem is defined to
consist of the values of the fields within a region together
with a specification of the region under consideration; in
this sense the usual gauge invariance has been restricted.
This is essentially what the X’s provide: they provide both a
demarcationof the subsystem, and a structure allowingone to
define gauge-invariant observables of the combined system
consisting of the dynamical fields and the location and
framing of the boundary surface. We leave further explora-
tion of this possible structure for future work.

V. DISCUSSION AND CONCLUSION

Local quantum field theory can be regarded as the
solution to a problem, that of reconciling the principles
of quantum mechanics and special relativity with the
principle of locality. In quantum field theory, the clearest
formulation of the principle of locality arises in the algebraic
approach, where locality is the statement that there are
operator subalgebras associated with subregions of space-
time, and that subalgebras associated with spacelike-
separated regions commute.

This paper has sharpened observations of [2,3] (with
antecedents in [4,5]), that basic properties of gravity, as
presently understood, obstruct such a definition of locality.
Specifically, the gauge invariance of gravity implies the
inevitability of long-range gravitational fields. We have
seen that such gravitational fields must dress operators
which have nonvanishing Poincaré charges. Moreover, the
only way that we have found to construct such Poincaré
singlets is to average an operator over all of spacetime—
rendering it nonlocal to begin with. The positive energy
theorem reinforces this statement, at least in the classical
theory, as it implies that even strong gravitational fields
cannot introduce negative energy that screens the positive
energy of matter.
In short, these results indicate that in a gravitational theory

with weak-field behavior governed by Einstein’s theory, and
with positive energy, dressed operators do not give local
subalgebras of the algebra of observables that reduce to those
of LQFT in the small-G limit. Since such subalgebras
underpin a precise definition of locality in local quantum
field theory, we lack a way of describing or defining locality.
This failure of locality extends previous discussion of

related criteria for nonlocality in gravity, such as the failure
of cluster decomposition pointed out in Ref. [27]. In that
work it was argued that correlation functions between
gravitationally dressed operators would fail to decay in
the joint limit of large separation and large energy.
Whether gravitational dressing could lead to a more severe
violation of cluster decomposition remains an interesting
open question.
Worse than that, we also appear to lack a way to even

define subsystems of a quantum system in a gravitational
theory that reduces to a familiar definition in theweak gravity
limit. Such a concept of a subsystem, which is more basic
than locality, is also an important prerequisite to discussions
of aspects of quantum information, such as characterizing
entanglement, entropy, and quantum information transfer.
Indeed, while there are, as we have discussed, commuting
subalgebras defining subsystems in gauge theories of internal
symmetries, even in that case there are significant subtleties
in combining subsystems to form a larger system.
Specifically, a proposed definition of entanglement of gauge
theories in terms of subalgebras of compactly supported
gauge-invariant observables [28] does not agree with a
Hilbert space definition of entanglement [29], due to con-
tributions ofWilson lines that “cross the boundary” between
the subsystems.We have encountered even further subtleties
in gravity, where there are even more challenging questions,
related to the limitations on screening, about how to treat the
analogous configurations, e.g. with Wilson lines crossing a
boundary.Whether this can be done by a prescription such as
proposed in [12] remains to be seen.
One might have also expected that even if there are not

local subalgebras, there could be subalgebras associated
with noncompact regions, extending to infinity: one could
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restrict the necessary gravitational dressing, for example,
to a narrow band running off to infinity, and thus
have commuting subalgebras associated with spacelike-
separated such bands. While we have not proven this is
impossible, there are indicators that such a construction is
forbidden, as a result of basic properties of gravity, and as
is seen in the simple case of three-dimensional spacetime.
An open question is whether gravitational theories can have
any interesting commuting subalgebra structure at all,
which matches onto that of LQFT in the small-G limit.
Of course, if the conjectured AdS/CFT duality were a
precise equivalence (isometric isomorphism) between
Hilbert spaces, that would provide a definition of commut-
ing subalgebras associated with boundary regions; how-
ever, the relation of such a subalgebra structure with
anything approximating the locality of the putative bulk
spacetime remains mysterious.
We have also found obstacles to existence of certain

proposed nontrivial gauge invariant operators, which are
bilinears in field operators, and have been considered in the
cosmological context (see [30] and references therein). In
the case of perturbation theory about a Minkowski-like
state, such operators are, at leading order in the gravita-
tional coupling κ, nearly trivial, specifically reducing to the
number operator.
Thus, the most promising kind of gauge-invariant

observables to consider are the “single-integral” observ-
ables [6,7],[5], which were discussed in Sec. IV. In certain
states, these can provide an approximate notion of locality,
by allowing localization with respect to features of the state,
as has been for example discussed in [5,22,23]. However,
as was also pointed out in [5], and is seen from a different
direction here, such a definition of locality is only approxi-
mate, and moreover is state-dependent. The weak-field
behavior of gravity, which we expect to be recovered from
any more basic theory, this seems to indicate that locality in
general is both approximate and state-dependent; it remains
to be seen if this can be circumvented in some more
fundamental approach.
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APPENDIX A: SOME CONVENTIONS

In this appendix we briefly summarize some of the
conventions used in the paper.

A p-form B is related to its components by

B ¼ 1

p!
Bμ1���μpdx

μ1 � � � dxμp ðA1Þ

where wedge product is understood between differentials
dxμ. In D ¼ dþ 1 dimensional spacetime, we define the
completely antisymmetric Levi-Civita tensor

ϵ01���d ¼
ffiffiffiffiffi
jgj

p
; ðA2Þ

with other permutations differing by the sign of the
permutation. The volume form is defined as

ϵ ¼ 1

D!
ϵμ1���μDdx

μ1 � � � dxμD: ðA3Þ

The Hodge dual of a p-form is defined as

ð⋆BÞμ1���μD−p
¼ 1

p!
ϵμ1���μD−p

ν1���νpBν1���νp ; ðA4Þ

note that this common convention differs from Wald’s
convention [31] by a factor of ð−1ÞpðD−pÞ acting on
p-forms. Repeated dual gives ⋆⋆ ¼ ð−1ÞpðD−pÞþ1 in
Lorentzian signature, so ⋆2 ¼ ð−1ÞD acting on one-forms,
and ⋆2 ¼ −1 acting on two-forms.
The integral of a (D − 1)-form over a (D − 1)-

dimensional spatial surface Σ is given in terms of its dual
components by

Z
Σ
A ¼

Z
Σ
ϵΣð⋆AÞμnμ ðA5Þ

where ϵΣ is the induced volume form on Σ, and nμ is the
unit normal.

APPENDIX B: THE COVARIANT
CANONICAL FORMALISM

In this appendix, we give a brief overview of the
covariant canonical formalism for gravity, which is used
in the proof of Sec. III. This formalism has been developed
in a large number of works, for example [32–38]. An
advantage of this formalism for our purposes is that it
identifies the phase space directly with the space of
physical solutions, allowing us to consider Poisson brackets
between observables defined at different times, rather than
having to express all such observables in terms of initial
data on a single time slice [39].
The space of solutions for general relativity can be

endowed with a conserved symplectic structure as follows.
We start with a Lagrangian D-form L, which describes
general relativity coupled to a scalar field,

WILLIAM DONNELLY and STEVEN B. GIDDINGS PHYSICAL REVIEW D 94, 104038 (2016)

104038-12



L ¼ 1

16πG
Rϵ −

�
1

2
∇μϕ∇μϕþ VðϕÞ

�
ϵ: ðB1Þ

HereG is theD-dimensional Newton constant and ϵ denotes
the volume form (for conventions, see AppendixA); we also
often substitute κ2 ¼ 32πG.
This Lagrangian is usually supplemented with a boun-

dary term [15,40–42] that is necessary to have a good
variational principle subject to fixed asymptotic conditions,
i.e. that the action be stationary under all variations
preserving the asymptotic conditions, given the local
equations of motion. While we could include such a
boundary term at this stage, we will see that it is not
needed for our discussion of the symplectic structure and
derivation of the Poincaré generators. In the covariant
canonical formalism, the appropriate boundary terms for
the Hamiltonian can also be fixed directly from the falloff
conditions as in [38] and as we will describe, rather than
derived from the boundary term in the Lagrangian as
in [41].
The symplectic potential (D − 1)-form θ is defined by

varying the Lagrangian,9

δL ¼ Eμνδgμν þ Eδϕþ dθ: ðB2Þ

The densities Eμν and E are proportional to the equations of
motion, which are the Einstein equation and the scalar field
equation respectively:

Eμν ¼
�

1

16πG
Gμν −

1

2
Tμν

�
ϵ; E ¼ ½∇2ϕ − V 0ðϕÞ�ϵ:

ðB3Þ

θ is the symplectic potential (D − 1)-form, which depends
linearly on the variations δgμν and δϕ:

ð⋆θÞμ ¼ −
1

16πG
ð∇νδgμν −∇μδgÞ þ ð∇μϕÞδϕ; ðB4Þ

here written in terms of its dual via the Hodge ⋆ operator.
One can think of an expression such as (B4) as giving a

differential form on field space, where e.g. δgμνðxÞ, δϕðxÞ
give a basis for one-forms. The variational derivative δ can
be thought of as an exterior derivative on this field space, so
raises the degree of such a form by one and satisfies δ2 ¼ 0.
The presymplectic form ω ¼ δθ is then obtained by

varying θ. Thus ω is a (D − 1)-form in spacetime and a
2-form in field space. Varying (B2) we see that ω is closed,
dω ¼ 0, whenever its arguments are linearized solutions.
It then follows that the symplectic form

Ω ¼
Z
Σ
ω ðB5Þ

is independent of the Cauchy surface Σ. More precisely the
symplectic form on two Cauchy surfaces Σ1 and Σ2 are
equal on-shell if ∂Σ1 ¼ ∂Σ2. In general one might wish to
consider two surfaces Σ1 and Σ2 separated in time; in that
case the symplectic form is preserved only provided the
boundary conditions are sufficiently strong that no sym-
plectic flux can escape between the two slices. The space of
solutions to the equations of motion with the form Ω
defines a presymplectic manifold: Ω is closed but is
degenerate. In this approach the phase space corresponds
to the space of solutions.
In order to have a well-defined phase space, the

symplectic form (B5) should be finite. If Σ consists of a
spacelike slice of asymptotically flat spacetime, this means
imposing suitable falloff conditions on the metric. We will
adopt standard asymptotically flat conditions such that
gμν ¼ ημν þ κhμν, with hμν satisfying the falloff conditions

hμν ¼ Oð1=rD−3Þ; ∂λhμν ¼ Oð1=rD−2Þ: ðB6Þ

ForD > 4, these falloff conditions are sufficient to ensure a
finite symplectic structure. However, for D ¼ 4 the falloff
conditions alone are insufficient. The symplectic form can
be written

Ω ¼
Z
Σ
ϵΣTαβλμν

σδgαβ∂λδgμνnσ ðB7Þ

where ϵΣ is the induced volume form on Σ, nσ the unit
normal, and T is a tensor constructed from the metric, see e.
g. [43]. The falloff conditions ensure that the integrand is
Oð1=r3Þ, which is not sufficient to rule out a logarithmic
divergence inΩ. To avoid this potential divergence, one can
impose the parity condition [15]: that the Oð1=rÞ piece of
hμν is even under parity (xμ → −xμ), whereas the Oð1=r2Þ
piece of ∂λhμν is parity odd. This condition is satisfied by
the Schwarzschild solution in its standard coordinates, and
is preserved under the action of the Poincaré group. Thus
this phase space is sufficient to describe any number of
particles accompanied by their gravitational fields.10 We
will also assume falloff conditions on the matter field ϕ so
that its contribution to Ω is finite. These conditions would
have to be relaxed further to account for massless fields
such as the electromagnetic field, but we will not consider
this generalization here.
The symplectic form allows us to associate conserved

currents and charges that act as Hamiltonian generators
with symmetries of the phase space. Let ξ be a vector field
in spacetime, specifying a diffeomorphism. We associate

9Here we use the convention that δgμν is the variation of the
inverse metric.

10For some work attempting to relax this parity condition
see Ref. [44].
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with ξ a vector field in field space where all the fields are
transformed by minus their Lie derivatives along ξ. Let I ξ

denote the interior product with this vector field in field
space, defined by

Iξδgμν ¼ −Lξgμν ¼ −∇μξν −∇νξμ;

Iξδϕ ¼ −Lξϕ ¼ −ξμ∇μϕ: ðB8Þ

We can then define the Noether current (D − 1)-form:

Jξ ¼ −I ξθ − iξL ðB9Þ

which becomes

ð⋆JξÞμ ¼ −
1

16πG
∇νð∇νξμ −∇μξνÞ þ

�
Tμν −

1

8πG
Gμν

�
ξν:

ðB10Þ

The current Jξ is conserved on shell, which can be seen
directly by writing it in the form

Jξ ¼ dQξ þ Cξ ðB11Þ

where Qξ is the Noether charge (D − 2)-form [38,45], and
Cξ is the constraint, which vanishes on shell:

ð⋆QξÞμν ¼
1

16πG
ð∇μξν −∇νξμÞ

¼ 1

16πG
ðdξÞμν;

ð⋆CξÞμ ¼
�
Tμν −

1

8πG
Gμν

�
ξν: ðB12Þ

Here ξμ is the one-form obtained by lowering the index
on ξμ.
To find the canonical generator Hξ of an infinitesimal

diffeomorphism ξ, we need to find a functional that
generates the transformation δξ ¼ −Lξ on all dynamical
fields. Hence its variation must solve the equation

δHξ ¼ IξΩ: ðB13Þ

This can be understood by considering a finite-dimensional
phase space with symplectic form ωab. When ω is
invertible, the Poisson brackets are defined by
ff; gg ¼ ðω−1Þab∂af∂bg. Then (B13) is equivalent to the
familiar statement that the Hamiltonian Hξ generates the
phase space flow ξ via the Poisson brackets:

δξf ¼ fHξ; fg; ðB14Þ

where f is a function of phase-space variables. An
advantage an approach based on (B13) is that it does
not require Ω to be inverted.

We find such a functional by first finding IξΩ. To do
this, begin with the variation of the Noether expression
(B9), which may be rewritten using the relation

δI ξθ þ Iξδθ ¼ −Lξθ ðB15Þ

and the variation (B2) to give

δJξ ¼ I ξω − iξEμνδgμν − iξEδϕþ dðiξθÞ: ðB16Þ

Substituting (B11) for Jξ and integrating over a slice Σ,
this implies the identity

Iξ

Z
Σ
ω ¼ δ

Z
Σ
Cξ þ

I
∂Σ

ðδQξ − iξθÞ

þ
Z
Σ
iξðEμνδgμν þ EδϕÞ: ðB17Þ

On-shell, the terms proportional to Eμν and E vanish.
Using this to solve the equation (B13) for Hξ allows
us to find the generator for a given infinitesimal
diffeomorphism.
We will be interested in two types of transformations.

First, consider the case where ξ is compactly supported on
the interior of Σ. In that case the boundary terms vanish; for
generic perturbations about a solution, the terms Eμν and E
also vanish. Formally, the generator is simply the integral of
the constraint:

Hξ ¼
Z
Σ
Cξ; for ξ compactly supported: ðB18Þ

This generator vanishes on shell; the corresponding diffeo-
morphism is a gauge symmetry.
The second type of transformation we will be interested

in is the Poincaré symmetries. In this case ξμ is not
compactly supported, so the generator is not just propor-
tional to the constraints. Instead Hξ can be written on
shell as

Hξ ¼
I
∂Σ

ðQξ þ BξÞ; ðB19Þ

where Bξ is an additional boundary term satisfying

δ

I
∂Σ

Bξ ¼ −
I
∂Σ

iξθ: ðB20Þ

In order for Hξ to exist, asymptotic conditions must be
imposed on the metric. In particular, by (B13), δIξΩ ¼ 0;
taking δ of (B17) shows that we requireI

∂Σ
iξω ¼ 0: ðB21Þ
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From the falloff conditions (B6) we see that this condition
is satisfied whenever ξ ¼ OðrαÞ with α < D − 3 as r → ∞.
This includes the translation subgroup of the Poincaré
group for D > 3. In the case of a Lorentz generator, the
corresponding vector field ξμ is Oðr1Þ, so the zero flux
condition is guaranteed by the falloff conditions for D > 4.
However, ξμ in this case is parity odd, and so in D ¼ 4 the
parity condition on the metric ensures that the zero flux
condition (B21) is satisfied. Thus the Poincaré generators
are well defined for all D ≥ 4.
We can solve for Bξ by simply replacing the occurrences

of δg in θ with the linearized perturbation κhμν. Denoting
Iκhδgμν ¼ κhμν, we can write the generators as

Hξ ¼
I
∂Σ
ðQξ − IκhiξθÞ ¼ Iκh

I
∂Σ
ðδQξ − iξθÞ: ðB22Þ

In the case where ξ is a Poincaré symmetry, we can also
express the generator as an integral of the linearized
Einstein tensor. Around a background with flat metric
and vanishing fields, I ξ of any form is zero, and the
background equations of motion are satisfied. In that case
(B17) yields

−
Z
Σ
δCξ ¼

I
∂Σ
ðδQξ − iξθÞ: ðB23Þ

Contracting with Iκh, we see that

−Iκh
Z
Σ
δCξ ¼ Hξ: ðB24Þ

Using the form of the constraint (B12), we then see that the
left hand side is simply the linearized Einstein tensor,
integrated over a slice:

Hξ ¼
1

8πG
Iκhδ

Z
Σ
ϵΣnμGμνξ

ν; ðB25Þ

where, as above, Iκhδ just means to expand the quantity to
linear order in the metric perturbation. If we explicitly
linearize about flat space and split this into timelike and
spacelike components, we obtain

Hξ ¼
2

κ

Z
dD−1x½ξ0ð∂i∂jhij − ∂2

i hjjÞ

þ ξi∂jð∂0hij − δij∂0hkk þ ∂ih0j − ∂jh0iÞ�: ðB26Þ

Finally, we will make use of the explicit form of the
Poincaré generators. These can be obtained either by
integrating the linearized Einstein tensor in (B26), or by
solving (B22). The result is

P0 ¼ 2

κ

I
∂Σ

dAr̂ið∂jhij − ∂ihjjÞ; ðB27Þ

Pi ¼ −
2

κ

I
∂Σ

dAr̂jð∂0hij − δij∂0hkk þ ∂ih0j − ∂jh0iÞ;

ðB28Þ

Lij ¼ −
2

κ

I
∂Σ

dAr̂k½xið∂0hjk − ∂kh0jÞ þ h0jδik� − ði ↔ jÞ;

ðB29Þ

Ki ¼ 2

κ

I
∂Σ

dAr̂j½xið∂khjk − ∂jhkkÞ − hij þ hkkδij

þ x0ð∂0hij − δij∂0hkk þ ∂ih0j − ∂jh0iÞ�: ðB30Þ

These generate transformations ξ ¼ ∂0, ξ ¼ −∂i, ξ ¼
−xi∂j þ xj∂i, and ξ ¼ xi∂0 þ x0∂i, respectively. It can
be verified that these agree with the standard expressions,
given e.g. in Ref. [15].
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