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Surface asymmetries of accreting neutron stars are investigated for their mass quadrupole moment
content. Though the amplitude of the gravitational waves from such asymmetries seems to be beyond the
limit of detectability of the present generation of detectors, it appears that rapidly rotating neutron stars with
strong magnetic fields residing in high-mass x-ray binaries would be worth considering for a targeted
search for continuous gravitational waves with the next generation of instruments.
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I. INTRODUCTION

Definitive detection of gravitational waves from collid-
ing stellar-mass black holes [1,2] have ushered in a new era
of astronomy and astrophysics by opening up a hitherto
unexplored waveband. It is but expected that the interest in
this area would escalate in the coming decades with plans
for even more advanced detectors. However, these collision
events are short-lived transients. Targeted observations of
steady sources of gravitational waves are still keenly
awaited, as those would allow for excellent opportunities
to study both the emission processes and the emitting
objects in great detail.
Neutron stars are hypothesized to be prolific and steady

sources of gravitational waves (see Ref. [3] for a brief
review), particularly because of their extreme compactness
and enormous magnetic fields. Gravitational waves were
originally invoked for neutron stars residing in low-mass
x-ray binaries (LMXBs) to explain the absence of neutron
stars with spin frequencies close to their breakup limit of
∼103 Hz [4,5]. It is understood that some of the bright
neutron stars accreting closer to the Eddington limit could
possibly be detected by the advanced Laser Interferometer
Gravitational-Wave Observatory (aLIGO) if they emit
gravitational waves at rates that balance the accretion
torques [6,7].

Moreover, nonaxisymmetric neutron stars are expected
to generate continuous gravitational waves as almost
monochromatic signals. Evidently, these would make for
excellent candidates for a targeted gravitational wave
search by advanced detectors. This is of importance
because direct detection of such gravitational waves would
impact the understanding of neutron star interiors, in terms
of the equation of state and material properties of dense
matter. It therefore makes sense to revisit some of the
gravitational wave emission scenarios from nonaxisym-
metric neutron stars, particularly in view of some of the
recent revisions in neutron star crustal physics [8,9].
Structural asymmetries of neutron stars have been of

interest for a long time and have received attention in dif-
ferent contexts like the evolution of magnetic fields [10–14],
the production of kilohertz quasiperiodic oscillations [15],
and the generation of gravitational waves [16–23].
There could be several possible ways of creating such

asymmetries since the solid crust of a neutron star is
capable of supporting deviations from axisymmetry by
anisotropic stresses. The simplest situation is that of the
existence of surface mountains similar to those seen on
solid planets [24]. Strong magnetic fields can also distort
the star if the magnetic axis is not aligned with the axis of
rotation. Indeed, the effects of strong higher multipoles and
toroidal components of the magnetic field in generating
such nonaxisymmetries have recently been investigated
[25–27]. Other mechanisms for generating asymmetries
could be the development of dynamic instabilities in
rapidly rotating neutron stars driven by nuclear matter
viscosity [28] or through r-mode oscillations (see Ref. [23]
and references therein).
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Conceivably, any of the above mechanisms can be active
in a neutron star. Accreting neutron stars can have yet
another additional set of mechanisms for producing non-
axisymmetry. It has been suggested that nonaxisymmetric
temperature variations in the crust of an accreting neutron
star could lead to “wavy” electron capture layers, giving
rise to horizontal density variations near such capture
layers [4,16].
However, the most widely discussed scenario for an

accreting neutron star to have a nonzero quadrupole
moment (leading to the generation of gravitational waves)
is that of the accretion-induced surface mountains sup-
ported by strong magnetic fields [10,11,14,29]. Usually,
ultrafast (Ps ∼ms) neutron stars in LMXBs are considered
in this context because such short spin periods (achievable
only in LMXBs) imply a larger amplitude of the emitted
gravitational waves. Recent investigations, however, indi-
cate that the prospect of detecting gravitational waves from
LMXBs is not very encouraging unless the neutrons star
has a buried magnetic field of ∼1012 G or more [22], even
though the existence of buried magnetic fields of such
strength is thought to be unlikely in the presence of
magnetic buoyancy [13]. On the other hand, neutron stars
in high mass x-ray binaries (HMXBs) typically have
stronger magnetic fields than in LMXBs, and therefore
accretion induced mountains are likely to be larger in them,
giving rise to larger mass quadrupole moments. However,
the neutron star spin frequencies are typically observed to
be in the range 1–10−3 Hz in HMXBs. Therefore, any
gravitational wave arising from structural asymmetries in
neutron stars residing in HMXBs is likely to be detected
only by the new generation of detectors accessing such a
frequency range.
In a series of recent papers [30–32], two of the present

authors have investigated the nature of accretion-induced
mountains on neutron stars in HMXBs. We use these
results to investigate the gravitational wave emission from
neutron stars in HMXBs due to the magnetically confined
accretion columns. Accordingly, this paper is organized as
follows. In Sec. II A, we revisit the crustal mountains on the
surface of the neutron stars in view of the recent revisions in
crustal properties. In Sec. II B, magnetically confined
mountains in accreting neutron stars are investigated. We
estimate the amplitudes of the gravitational waves that
could be produced by such structures on the surface and
consider the possibility of their detection in Sec. III Finally,
our conclusions are summarized in Sec. IV.

II. SURFACE ASYMMETRIES

A. Crystal mountain

The crust of a neutron star is essentially solid, apart from
an extremely thin liquid surface layer. Consequently, its
shape may not be necessarily axisymmetric as deviations
from axisymmetry can be supported by anisotropic stresses

in the solid. The shape of the crust depends not only on the
geological history of the star (for example, episodes of
crystallisation) but also on star quakes. As a result,
crystalline mountains may exist on the surface of a neutron
star, similar to those on the surface of a solid planet.
It has been demonstrated [24] that in a homogeneous

rock stable mountains cannot rise much farther than h1 ¼
Y=ρgs above the level of the surrounding plains (ρ is the
density at the base of the mountain, gs is the surface gravity,
and Y is the yield stress of the crustal material). Gently
sloping hills of crustal rock, floating in more or less
isostatic conditions on denser material, may be able to
rise to greater heights of the order of h2 ¼ ðh1bÞ1=2 where b
is the width of the base. From these considerations, the
maximum height of such a mountain, on the surface of a
neutron star, had been estimated to be ∼10−3 cm. However,
certain assumptions about the properties of the crustal
material are inherent in this estimate, and these assumptions
require another look considering the recent revisions of
those properties.
Assuming the basic nature of a mountain on the surface

of a neutron star to be the same as a mountain on a rocky
planet, we take the average density of the mountain
material to be the same as that of the base, i.e., the surface
density of the star. The condition for stability of such a
mountain is that the pressure at the base, given by

Pm ¼ ρmgnshm; ð1Þ

is less than the shear stress of the material on the surface,
where ρm is the average density of the mountain, gns is the
surface gravity of the star, and hm is the height of
the mountain. We assume the base of the mountain to
be located at the outermost solid surface layer, where the
liquid-solid phase transition occurs. This phase transition
is expected to take place when Γ≃ 175, where
Γð¼ Z2e2=akBTÞ is the Coulomb coupling parameter, Z
is the dominant ionic species at that density, and a is
the lattice spacing of the solid. Typically, ρm ∼
107–108 gm cm−3 for a cold (surface temperature 106 K)
neutron star. The surface gravity is ∼1014 cm s−2 for a
typical neutron star of mass 1.4 M⊙ and radius 10 km.
The “yield” or shear stress of the material in the crust of a

neutron star is given by

S ¼ μθ; ð2Þ

where μ is the shear modulus and θ is the shear strain of the
crust thought to be made up of unscreened nuclei arranged
in a bcc “metallic” lattice in which the internuclear spacing
(varies from 10−9 to 10−11 cm in the density range
105–1010 gm cm−3) exceeds the nuclear size by several
orders of magnitude. Thus, the lattice is very “open” and
“Coulombic” in nature. It has also been argued that the
crust of a neutron star may exist in a glassy state [33] but
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the effective shear moduli averaged over directions are not
very different for the bcc crystal and for a quenched glassy
solid (though recent observations of cooling neutron star
transients imply that the crust of a neutron star is unlikely to
be in an amorphous glassy state [34,35].)
The shear modulus of this Coulomb crystal is given

by [33]

μ ¼ 0.1194
1þ 1.781 × ð100=ΓÞ2

nðZeÞ2
a

; ð3Þ

where n is the ion number density, a is the interionic
distance (lattice spacing), Z is the atomic weight of the
dominant ionic species, and Γ is the Coulomb coupling
parameter. Since the dominant ionic species at a density
of 108 gm cm−3 happens to be 28Ni

62 [36] (nonaccreted
crust), we typically have Z ¼ 28, n≃ 1030 cm−3 and
a≃ 10−10 cm.
Even though the calculation of the shear modulus is

relatively straightforward, obtaining the correct value of the
shear strain is somewhat complicated. Theoretical calcu-
lations based on chemically and crystallographically per-
fect crystals of “terrestrial" metals gives θ≃ 10−1–10−2

[37]. But θ is a “structurally sensitive” quantity, and its
value changes significantly from an ideal crystal to that
containing impurities, defects, etc. The material in the
pulsar crust has traditionally been considered to be chemi-
cally impure (the result of partial burning and incomplete
mixing). It is also expected to contain a large number of
defects such as grain boundaries, dislocations, etc., which
may get enhanced in older stars that have experienced a
large number of star quakes and/or glitches. These defects/
dislocations are also expected to lower the value of θ, and
the shear strain on the surface of the neutron star has been
estimated to be [38]

θ ∼ 10−4–10−3; ð4Þ

the upper limit coming from the glitch magnitudes of radio
pulsars in conformity with the star-quake hypothesis [39].
Then, the shear stress on the surface of a typical neutron

star turns out to be

S ¼ μθ≃ 2 × 1020–2 × 1021 dyne cm−2: ð5Þ

The maximum height of a mountain on the surface of a
neutron star is then obtained when Pmnt ≃ S and is given by

hmax
mnt ≃ 0.02–0.2 cm: ð6Þ

The maximum mass contained in such a mountain
would be

ΔM ∼ ρmntðhmax
mnt Þ3 ∼ 108 gm ∼ 10−25Mns; ð7Þ

which is tiny compared to the total stellar mass.
As mentioned above, this estimate assumed the neutron

star crust to harbor a large number of defects and/or
dislocations and to have a high impurity content.
However, recent investigations [8,9], that have made use
of molecular dynamic simulations, indicate that, due to the
extremely high-pressure environment, the crust would
mostly be in a “pure crystal” phase. Accordingly, the
breaking strain (maximum value of shear strain, θ, that
can be withstood by the material) is found to be∼0.1, much
larger than the previous estimates. This implies that the
maximum height of a mountain on the surface of a neutron
star is ∼2–20 cm, taking the mass content of such a
mountain to

ΔM ∼ ρmntðhmax
mnt Þ3 ∼ 1014 gm ∼ 10−19Mns: ð8Þ

Though this is much larger than the previous estimate, the
resulting mass quadrupole moment is still about
1033 gm cm2, giving rise to gravitational waves that would
cause a strain of around ∼10−42 in a detector (see Sec. III
for details of strains caused by gravitational waves, etc.).
It needs to be noted here that all of the above estimates

are made assuming an isolated, cold neutron star with a
surface temperature of ∼106 K. This is appropriate because
the breaking strain has been shown to be highly dependent
on temperature and thermal history, but to remain more or
less constant at 106 K [9]. Evidently, these estimates would
not hold good for an accreting neutron star where the
surface temperature could be as high as 108 K, at which
temperature the breaking strain is expected to change by
half an order of magnitude over the time scale of a year.
Even though the solid surface layer would move to higher
densities in a hotter star, changing the naive estimates
above by a few orders of magnitude, any stable mountain
on the surface of an accreting neutron star may not
necessarily be much larger, owing to the variation in the
breaking strain.
It is evident that crystalline mountains, or rather mole-

hills, on the crust of neutron stars have ridiculously small
mass content and hence are totally unsuitable for any
gravitational radiation experiment. Fortunately, other
effects become important in creating larger mountains in
accreting neutron stars. We discuss the situation in the next
section.

B. Magnetically confined accretion columns

Early on, it was shown [40,41] that the accretion column
on a neutron star is like a small mountain of ionized
hydrogen over the polar cap, supported by a strong
magnetic field. In particular, in HMXBs, the accreting
material passes through a shock to finally settle onto the
polar cap. This may or may not happen at both the poles.
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But the height of such a column is restricted by the
condition that material starts flowing sideways when the
pressure in the accretion column becomes large enough
(typically hundred times more than the magnetic pressure
responsible for supporting the column [10]) to bend the
magnetic field lines, sufficiently producing strong horizon-
tal components.
Let us consider a neutron star with a magnetic field

strong enough for the accretion to be polar (typically
B≳ 1011 G in HMXBs). The material flows in along open
field lines and reaches the surface within the polar cap
region. If we further assume the rotation and the magnetic
axis to be aligned, then tracing the footprint of the dipolar
field lines onto the stellar surface, from where material
(accretion disk) stresses and magnetic stresses are in
equilibrium, the area of the polar cap, AP, of a neutron
star of mass Mns and radius Rns is obtained to be [42,43]

AP ¼ πR3
nsR−1

A

¼ πð2GÞ1=7M1=7
ns R9=7

ns B−4=7
s _M2=7

¼ 2.17 × 1011
�

Bs

1012 G

�
−4=7

�
_M

10−8 M⊙=yr

�2=7

×

�
Mns

1.4 M⊙

�
1=7

�
Rns

106 cm

�
9=7

cm2; ð9Þ

where Bs is the strength of the surface field, _M is the rate of
accretion, and RA is the Alfvén radius given by

RA ¼ ð2GMnsÞ−1=7R12=7
ns B4=7

s _M−2=7 cm: ð10Þ

We determine the extent of the accretion column by the
condition that the pressure at the bottom of the column is
∼100 times larger than the magnetic pressure [10], i.e.,

Pac ∼ 4 × 1024
�

Bs

1012 G

�
2

dyne cm−2: ð11Þ

where Pac is the pressure at the bottom of the column.
Hydrostatic equilibrium demands that this pressure equals
the pressure in the crust elsewhere (outside the polar cap) at
the same radius as the bottom of the column. This pressure is
due to the relativistic degenerate electrons and the ions, given
by the appropriate equation of state [36]. Interestingly, the
pressure in the density range 106gmcm−3≤ρ≤109gmcm−3

can be very well approximated by the following fitting
formula:

logP ¼ 13.65þ 1.45 log ρ: ð12Þ
As can be seen from Fig. 1, this is a reasonable approxima-
tion. This is significant because, for the entire range
of accretion rate realizable in a neutron star
(10−14 ≤ _M=M⊙ yr−1 ≤ 10−8), the density above which
the crustal material remains solid (and consequently the

density at which the accretion column would be anchored) is
confined to this range of densities [43]. Therefore, the
relation between the field strength and the density at the
bottom of the accretion column is roughly given by

�
ρ

107 gmcm−3

�
¼ 6.34

�
Bs

1012 G

�
1.38

: ð13Þ

The scale height of the column, hac, then turns out to be

hac ¼
Pac

ρbotgns
¼ 3.4 × 102 cm

×

�
Bs

1012 G

�
0.62

�
Mns

1.4 M⊙

�
−1
�

Rns

10 km

�
2

: ð14Þ

If we describe the density profilewithin the accretion column
by an “atmosphere” solution [44], then the total mass
contained within the column is given by

Mac ¼ AP

Z
0

h
ρbote−x=hdx

¼ 2.95 × 1021 gm

�
Mns

1.4 M⊙

�
−6=7

�
Rns

10 km

�
23=7

×
�

Bs

1012 G

�
10=7

�
_M

10−8 M⊙=yr

�2=7

¼ 1.5 × 10−12 M⊙
�

Mns

1.4 M⊙

�
−6=7

�
Rns

10 km

�
23=7

×

�
Bs

1012 G

�
10=7

�
_M

10−8 M⊙=yr

�2=7

: ð15Þ

It needs to be noted that some of the recent estimates
[14,29,45] place the mass of a magnetically confined

FIG. 1. The pressure vs density in the outer layers of a neutron
star, as calculated by Baym et al. [36]. The stars correspond to the
actual equation of state, whereas the solid curve corresponds to
our fitting formula given by Eq. (12).
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accretion column at a much larger value (ΔM ∼ 10−5 M⊙)
by allowing for mass loading beyond the accretion column.
This approach makes use of plasma loading on all field
lines providing additional lateral support to help form
accretion mounds with very large masses. However, mag-
netohydrodynamics (MHD) instabilities [46,47] are
expected to play a significant role in determining the extent
of the accretion column, since the accreted material is
expected to flow toward the equator not over accretion time
scales (which could be very large) but over much smaller
flow time scales. An early and rough estimate placed the
value of this flow time scale at about a year [12,13]. On the
other hand, this flow time scale happens to be larger than
the dynamic time scale of the neutron star—which simply
means that the accreted material would be assimilated as
fast as or faster than it comes to the equator and the density
of the crust would adjust itself to a spherical profile before
it becomes asymmetric enough to give rise to a significant
quadrupole moment.
It should be mentioned here that our use of an atmos-

pheric density profile inside the accretion column inher-
ently assumes an isothermal situation. However, it has been
shown that the correct physics is obtained by assuming an
adiabatic process. By numerically solving the appropriate
Grad-Shafranov equation, it has also been demonstrated
that magnetostatic solutions cannot be found for accretion
columns beyond a threshold height (and mass) indicative of
the presence of MHD instabilities [30]. The accreted matter
would eventually flow horizontally along the neutron
star surface. Detailed two- and three-dimensional MHD
simulations [31,32] indicate a lower mass threshold
(5 × 10−13 M⊙ for Bp ∼ 1012 G), above which pressure-
driven instabilities would start operating and matter could
not be efficiently confined by the local field in the polar
cap. This threshold mass is much smaller than the amount
indicated in earlier investigations [14,29,45] but matches
very closely with that obtained from simple dimensional
estimates in Eq. (15). This allows us to use Eq. (15), for
obtaining approximate values of the mass of an accretion
column, in the rest of this investigation.

III. GRAVITATIONAL WAVES

The amplitude of a gravitational wave is described in
terms of a strain, a dimensionless quantity h. This gives a
fractional change in length, or equivalently light travel
time, across a detector. The maximum amplitude of
gravitational waves produced by a spinning neutron star
due to a structural asymmetry in the weak field, wave zone
limit (d≳ cPs) is given by [28]

h0 ¼ 24π2Gc−4P−2
s Qd−1; ð16Þ

where Ps is the spin period of the star, d is the distance of
the observer from the star, and Q is the mass quadrupole
moment about the principal axis of asymmetry. It should be

noted that Q is the stationary mass quadrupole moment in
the rotating frame of the star and leads to the emission
of gravitational waves with a predominant frequency
ν ¼ 2=Ps [42].
The mass quadrupole moment is defined as the quad-

rupolar part of the 1=r3 term of the 1=r expansion of the
metric coefficient g00 in an asymptotically Cartesian and
mass centered coordinate system. The quadrupole moment
of the magnetically confined accretion column, considered
in Sec. II B, is estimated to be

Q ¼ MacR2
ns

¼ 2.96 × 1033 gmcm2

�
Mns

1.4 M⊙

�
−6=7

�
Rns

10 km

�
23=7þ2

×

�
Bs

1012G

�
10=7

�
_M

10−8 M⊙=yr

�2=7

: ð17Þ

This implies that the amplitude of the gravitational wave
generated by such accretion columns would be

h0 ¼ 1.87 × 10−35
�

Mns

1.4 M⊙

�
−6=7

�
Rns

10 km

�
37=7

× P−2
s

�
Bs

1012 G

�
10=7

×

�
_M

10−8 M⊙=yr

�2=7� d
kpc

�
−1
: ð18Þ

Now, the wave amplitude is usually expressed in terms of
the ellipticity (ϵ) of the nonaxisymmetric star, defined as

Iϵ ¼ 3

2
Qzz; ð19Þ

where I is the moment of inertia of the star. Then, the wave
amplitude can be written as

h0 ¼
16π2G
c4

Iϵ
P2
sd

¼ 4.21 × 10−30
�

I
1045 gm cm2

��
ϵ

10−6

�

× P−2
s

�
d
kpc

�
−1
: ð20Þ

Assuming the accretion column to peak in the z direction,
the asymmetry ϵ is given by

ϵ ¼
���� Izz − Ixx

Ixx

���� ¼
����ΔIzz − ΔIxx
I0 þ ΔIxx

����; ð21Þ

where Iaa is the principal moment of inertia in the a
direction and Iaa ¼ Io þ ΔIaa with Io and ΔIaa being the
symmetric and the asymmetric parts of it. Based on the
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detailed calculations made in Refs. [30], we obtain precise
values of ϵ and h0 for a few specific cases. These are shown
in Table I. It is seen that the h0 values obtained here match
almost exactly with that obtained in Eq. (18), which is but
an approximation.
The spin periods of neutron stars (from ultrafast millisec-

ond pulsars to slow x-ray pulsars in HMXBs) span a range of
10−3–103 s. Hence, the detectors appropriate for detecting
gravitational wave signatures (of the kind discussed here)
would be the aLIGO [48] and its extended version once
LIGO-India [49] starts operation. But it can also be readily
seen that thepossibility of detectionwould be severely limited
by the sensitivity of the present-day detectors [50]. However,
it can be seen from Fig. 2 that the space-based detectors, like
the evolving Laser Interferometer Space Antenna (eLISA)
[51], Advanced Laser Interferometer Antenna (ALIA), Big
Bang Observer (BBO), and Deci-hertz Interferometer GW

Observatory (DECIGO) [52], would be very good candidates
for this kind of work as these would have much higher
sensitivities in a range of frequencies that is of interest in the
present context. In particular, the frequency range relevant for
neutron stars residing in HMXBs (ν ∼ 10−3 − 1 Hz) is
precisely the one in which these space-based detectors would
be operative, as can be seen from Figs. 2 and 3.
It is then interesting to find theparameter space (in terms of

the spin and the magnetic field of the neutron stars) that is
most likely to be sampled by future detectors. Let us assume
the neutron stars, in consideration, to have Mns ¼ 1.4 M⊙,
Rns ¼ 10 km, accreting at the Eddington rate and at a
distance of 1 Kpc. Then, from Eq. (18), we obtain

h0 ¼ 1.87 × 10−35P−2
s

�
Bs

1012 G

�
10=7

: ð22Þ

This gives rise to a relation between Ps and Bs for a given
value of h0 with the form

log10Bs ¼ 1.4log10Ps þ 0.7log10h0 þ 36.31; ð23Þ

enabling us to identify the possible region, in the Ps − Bs
plane, on which future searches could focus.
In Fig. 3, we plot all known neutron stars (accreting or

otherwise) in the Ps − Bs plane. Lines corresponding to
three values of h0 have also been indicated in this plot using
Eq. (23). Since the maximum sensitivity limits for aLIGO
and BBO are 10−22 and 10−25, respectively, the lines
corresponding to those values of h0 indicate the maximal
capabilities of these detectors, though it must be remem-
bered that such a connection to a given detector is purely
“symbolic” here as BBO would not even be operative in the

TABLE I. Expected amplitude of gravitational waves due to the
magnetically confined accretion columns on a typical neutron
star. The quantities in the columns Bs, zc, M, ϵ, and h0,
respectively, refer to a) the surface magnetic field, b) the height
of the accretion column, c) the mass content of the column, d) the
ellipticity of the star due to the existence of the column, and e) the
amplitude of the gravitation waves. The spin period Ps and
the distance of the star d have, respectively, been assumed to be
1 s and 1 Kpc for all of the above cases.

Bs (G) zc (cm) M (M⊙) ϵ h0

1 × 1011 15 5.67 × 10−14 1.12 × 10−13 4.71 × 10−37

5 × 1011 30 4.63 × 10−13 9.20 × 10−13 3.87 × 10−36

1 × 1012 43 1.52 × 10−12 3.02 × 10−12 1.27 × 10−35

5 × 1012 72 8.13 × 10−12 1.62 × 10−11 6.82 × 10−35

FIG. 2. Sensitivities of second-generation space- and ground-based gravitational wave detectors, in the neutron star spin-frequency
range. The sensitivity curves have been generated using publicly available resources at http://www.rhcole.com/apps/GWplotter/ [52].
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indicated frequency range. Therefore, the region to the
left of a given line could simply be taken to be indicative
of the region of possible detectability (by “a” detector) of
gravitational waves with amplitudes equal to or larger
than the particular value of h0, if it is operative in that
frequency. Evidently, no known neutron star inhabits
this region. Moreover, all the accreting neutron stars are
very far away—the LMXBs being concentrated in the lower-
left region and the HMXBs showing up in the upper-middle
to upper-left regions of the neutron star parameter space.
Looking at Eq. (18) or its simplified version, Eq. (22), it

is evident that the amplitude of the emitted gravitational
waves increases with a decrease in the spin period or an
increase in the magnetic field of the neutron star. Clearly,
rapidly rotating magnetars residing in HMXBs would fit
the bill perfectly. It would also not be remiss to note that to
generate the strong magnetic fields through a dynamo
process the magnetars are expected to be born rotating fast,
with P≲ 1 ms [62]. In fact, such objects (nicknamed
“millisecond magnetars”) have been invoked to explain
some of the ultraluminous soft gamma-ray bursts [63].
However, such objects have an extremely rapid rate of

spindown. Assuming the spindown to be entirely electro-
magnetic, the characteristic spindown time scale is given
by [64]

τ ∼ 2 × 103 sðI45R−6
6 ÞB−2

s;15P
2
s;−3; ð24Þ

where I45, R6, Bs;15, and Ps;−3 denote the moment of inertia
in 1045 gm cm2, radius in 106 cm, Bs in 1015 G, and Ps in
10−3 s, respectively. In Fig. 3, two dashed lines mark
spindown time scales of 1 and 104 yr, respectively. Objects
on the left of a particular line would have spindown time
scales smaller than that on the line itself. Evidently, the
millisecond magnetar phase (region marked MM) would be
extremely short lived.
Nevertheless, strongly magnetized neutron stars residing

in HMXBs would still be the best candidates for gravita-
tional waves generated due to the mass quadrupole
moments induced by accretion columns, as can be seen
from the proximity of magnetars to the h0 ¼ 10−30 line in
Fig. 3 (though this is orders of magnitude beyond the
detection limit of even the second generation of detectors).

MM

P

FIG. 3. All known neutron stars (for which some measurement/estimate of the magnetic field exists) in the Ps − Bs plane (a detailed
discussion on various observational classes of neutron stars can be found in Ref. [53]). The solid lines marked h0 ¼ 10−22, h0 ¼ 10−25,
and h0 ¼ 10−30 are drawn using Eq. (23). The dashed lines mark spindown time scales of 1 yr and 104 yr. The rectangle marked MM is
the region where millisecond magnetars are expected to appear, and the region marked P is where nonrecycled neutron stars with strong
magnetic fields and short spin periods should be seen. Legends: RPP is the rotation powered pulsar, I/B is the isolated/binary, GC is the
globular cluster, GD is the galactic disc, AMXP is the accreting millisecond x-ray pulsar (in LMXBs), RRAT is the rotating radio
transients, INS is the isolated neutron star, and CCO is the central compact object. Note that the vertical lines associated with the AMXPs
are uncertainties coming from different models of field estimate, not error bars. Data: RPP—[54], http://www.atnf.csiro.au/research/
pulsar/psrcat/; RRAT—http://astro.phys.wvu.edu/rratalog/; Magnetar—http://www.physics.mcgill.ca/~pulsar/magnetar/main.html;
AMXP—[55,56]; HMXB—[57]; INS—[58,59]; CCO—[60,61].
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The presence of magnetars in HMXBs has recently been
invoked to explain certain ultraluminous supergiant fast
x-ray transients [65,66]. Therefore, such a population, in
fact, does exist. Now, it can also be seen from Fig. 3 that the
slow magnetars have spindown time scales ∼104 yr, which
also happens to be the typical time scale of HMXB activity.
However, it appears that the objects in the region marked

P neutron stars with reasonably short Ps and moderately
high Bs would be the best candidates (as sources of steady
gravitational waves) if they can be found in HMXBs before
significant spindown has happened. Now, we expect to see
an order of magnitude increase in the number of radio
pulsar detection with the advent of the Square Kilometer
Array (SKA) [67,68]. It is conceivable that the region
marked P may also see an increase in the density of objects
with short Ps and high Bs. Detection of the early HMXB
phase for such neutron stars may happen with the next
generation of sensitive x-ray instruments. Consequently,
the third generation of space-based detectors would likely
be able to target and study steady gravitational waves from
such systems.
It should be mentioned here that in the above calculation

we have assumed a symmetric dipolar magnetic field.
But a complex field with very strong higher multipole

components near the surface is not ruled out [69], as shown
in Fig. 4. It is evident that a simple higher multipole
component over and above the dipole can create other
asymmetric, off-axis polar regions.Charged particlesmoving
along the field lines would create “mountains” at these
positions, too. Therefore, with a complicated magnetic field,
it is possible to obtain a number of very asymmetric
mountains. And if the higher multipole components are
much stronger than the dipole, then the mass content of
the accretion column could be much larger. Recent inves-
tigations have shown that higher multipoles can generate
large ellipticity and be good candidates for gravitational
waves [26].
Moreover, the estimates in this section have implicitly

assumed that the accretion-induced mountains would be
stable even with surface magnetic fields much larger than
∼1013 G. This assumption may not hold if MHD insta-
bilities become stronger. In that case, the mass content of
the accretion-induced mountains and the consequent ampli-
tude of the gravitational waves would be even smaller. But
a precise statement in this regard cannot be made without a
detailed calculation of accretion onto strongly magnetized
neutron stars.

IV. CONCLUSION

In this paper, we present simple estimates of mass
quadrupole moments and corresponding amplitudes of
the gravitational waves that can be generated by a pair
of magnetically confined accretion column. It is seen that
the wave amplitudes are too small for the present gen-
eration of detectors. However, rapidly rotating strongly
magnetized neutron stars in HMXBs are expected to be
good candidates for a targeted search for gravitational
waves by the next generation of detectors.
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