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We calculated the dimensionless gyromagnetic ratio (“g-factor”) of self-gravitating, uniformly rotating
disks of dust with a constant specific charge ϵ. These disk solutions to the Einstein-Maxwell equations
depend on ϵ and a “relativity parameter” γ (0 < γ ≤ 1) up to a scaling parameter. Accordingly, the g-factor
is a function g ¼ gðγ; ϵÞ. The Newtonian limit is characterized by γ ≪ 1, whereas γ → 1 leads to a black-
hole limit. The g-factor, for all ϵ, approaches the values g ¼ 1 as γ → 0 and g ¼ 2 as γ → 1.
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I. INTRODUCTION

To any physical system with a well-defined notion for the
observables mass M, angular momentum J, electric charge
Q, and magnetic dipole moment μB, it is common to
introduce the gyromagnetic ratio (g-factor)

g ¼ 2
M
Q

μB
J
: ð1Þ

Such a dimensionless quantity plays an important role in
physics. Since this simple measurement is available in both
classical and quantum regimes, it allows one to establish
connections between several physical theories.
In fact, the g-factor was originally introduced in classical

electrodynamics [1]. Interestingly, for all classical con-
vective systems (where the ratio of charge and mass density
is constant, and where the mass and charge elements have
equal velocities, which satisfy v ≪ c), one obtains the
value g ¼ 1. In quantum mechanics though, a different
g-factor is necessary for explaining experimental results
from Zeeman spectroscopy. In the nonrelativistic Pauli
equation, the value g ¼ 2 for the magnetic moment
associated with the electron’s spin must be imposed ad hoc,
while it follows automatically from the Dirac equation, i.e.,
when relativistic effects are included.
The particular value g ¼ 2 is found in general relativity

as well. The most notable example is probably the Kerr-
Newman solution, describing a charged and rotating black
hole [2]. Later, the authors of [3] generalized this property
and showed that any electrovacuum solution to Einstein-
Maxwell’s equation obtained by an SUð2; 1Þ invariance
transformation [4–6] from a pure vacuum solution also has
the value g ¼ 2. The coincidence around the preferred
values g ¼ 2 usually motivates one to look for a deeper
common root between quantum theory and general rela-
tivity (see [7] for a recent review).

More recently, this topic has been further addressed in
several physical scenarios. Of particular interest were
“intermediate” objects in general relativity, for which the
gravitational fields were weaker than for the black-hole
solution, but with non-negligible strong field effects. Pfister
and King considered the case of a rotating charged mass
shell [8]. Apart from generalizing previous studies on this
matter [9–11], they noticed that g ≈ 2 is extremely robust,
in the sense that this value is obtained in a big part of the
mass shell’s parameter space.
However, a different result was obtained in [12]. After

constructing numerical equilibrium configurations of rotat-
ing neutron stars, the authors always found the value g < 2

within the models considered. In particular, the authors
observed values around g ≈ 1 in the Newtonian regime of
the solution, while the highest value measured by them was
g ≈ 1.9. A discrepancy to the preferred value g ¼ 2 is also
found in generalized gravity theories [13–19], typically due
to the absence of a comparable no-hair theorem and the
presence of additional fields contributing to the angular
momentum of the system.
Electrically charged rotating disks provide us with an

interesting scenario to enrich the discussion on this matter.
In fact, without taking gravitational effects into account,
relativistically rotating disks were discussed in [20]. Even
though Einsteins’s equations are not considered in his
framework, the author shows that the electromagnetic fields
share some similarities with the ones resulting from the
Kerr-Newman solution in the limit of vanishing gravita-
tional constant G.
In this work, we consider the complete self-gravitating

setup in general relativity and we show that the gyromag-
netic ratio of rotating disks of electrically charged dust
interpolates smoothly between the classical value g ¼ 1 up
until the black-hole value g ¼ 2. Note that this system
cannot be obtained directly from the known solution of
rotating disks of dust [21,22]. In fact, by performing a
Harrison transformation [4–6] on the rotating disk solution,*rodrigo.panosso‑macedo@uni‑jena.de
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one always obtains new (charged) solutions to Einstein-
Maxwell’s equations with g ¼ 2. Yet, the energy-
momentum tensor of those new solutions is, in general,
not a physically acceptable source [23].
The construction of our solution follows the strategy

from [24–26]. Assuming stationarity and axial symmetry, it
consists of solving Einstein-Maxwell’s equations for a
system with an energy-momentum tensor whose contribu-
tions come from the dust particles and from the electro-
magnetic fields. The system is parametrized in terms of a
constant specific charge ϵ ∈ ½−1; 1� and a “relativity
parameter” γ ∈ ð0; 1�. Based on the algorithm introduced
in [27], the authors of [25,26] were able to calculate the
solution in terms of a high-order post-Newtonian expansion
in the parameter γ. In particular, [26] provided strong
evidence that, analogous to the uncharged case [28], the
limit γ → 1 leads to the extreme Kerr-Newman black hole.
Contrary to the post-Newtonian expansion from [25,26],

we here resort to numerical methods in order to obtain a
(highly) accurate solution around the black-hole limit
γ → 1. To this end, we make use of a (pseudo)spectral
method, whose algorithm is based on the one described
in [29].
This paper has the following structure: Sec. II introduces

the physical model. It discusses the field equations and the
parameter space of the system. Section III is devoted to the
numerical method employed in this work. Section IV then
presents our results, while Sec. V summarizes this work
and brings some future perspectives. We use the following
conventions: boldface letters denote the abstract represen-
tation of tensors while latin indices a; b; � � � are used to
express their components in a given coordinate basis f∂ag.
Moreover, latin indices in parentheses ðaÞ; ðbÞ; � � � refer to
the components of a tensor in a given tetrad basis
eðaÞ ¼ eðaÞa∂a. We use units in which G ¼ c ¼ 4πϵ0 ¼ 1.

II. ROTATING DISK OF CHARGED DUST

A. Geometrical setup

The charged disk is completely described by Einstein’s
field equations

Rab ¼ 8π

�
Tab −

1

2
gabT

�
with T ¼ Ta

a; ð2Þ

together with Maxwell’s equations

∇bFab ¼ 4πja; dF ¼ 0: ð3Þ

With the assumption of stationarity and axial symmetry
through the existence of Killing vectors ξ and η, we can
globally express the metric in terms of the Weyl-Lewis-
Papapetrou coordinates ft; ρ; ζ;ϕg as

ds2 ¼ α2½dρ2 þ dζ2� þ ρ2

ν2
½dϕ − ωdt�2 − ν2dt2; ð4Þ

where the unknown functions α, ν, and ω depend only on
the coordinates fρ; ζg. In this adapted coordinate system,
the Killing vectors assume the simple form ξ ¼ ∂t and
η ¼ ∂ϕ. We remark that the line element (4) has a slightly
different representation than the one used in [24–26].
Also, the homogenous Maxwell equation in (3) is

trivially satisfied with the introduction of the vector
potential Aa via

Fab ¼ ∇aAb −∇bAa:

The vector potential can be put in the form

A ¼ Atðρ; ζÞdtþ Aϕðρ; ζÞdϕ ð5Þ

due to the axial symmetry.
Finally, it will be useful to introduce a tetrad basis feðaÞg

as proposed in [21]:

eð0Þ ¼
1

ν
½∂t þ ω∂ϕ�; eð1Þ ¼

1

α
∂ρ;

eð2Þ ¼
1

α
∂ζ; eð3Þ ¼

ν

ρ
∂ϕ: ð6Þ

Since eð0Þaηa ¼ 0, this tetrad is related to the local inertial
frame of zero angular momentum observers.

B. Model of matter

The energy-momentum tensor Tab is composed by a dust
and an electromagnetic (EM) contribution, i.e.,
Tab ¼ Tdust

ab þ TEM
ab , with

Tdust
ab ¼ μuaub and

TEM
ab ¼ 1

4π

�
FacFb

c −
1

4
gabFcdFcd

�
: ð7Þ

In the expressions above, μ is associated to the baryonic
mass density of the dust particles, while ua describes their
4-velocity. In the coordinate system ft; ρ; ζ;ϕg, we con-
sider the disk at the equatorial plane ζ ¼ 0, with a range
ρ ∈ ½0; ρ0� and therefore the baryonic mass density assumes
the form

μ ¼ σP
α
δðζÞ; ð8Þ

with δðζÞ the Dirac delta and σPðρÞ the proper surface mass
density [29]. The disk’s coordinate radius ρ0 sets the length
scale of the system.
The 4-velocity is expressed in terms of the Killing

vectors ξ and η as

ua ¼ 1

ν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ½δat þΩδaϕ�; with V ¼ ρ

ν2
ðΩ − ωÞ: ð9Þ
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Here, Ω ¼ dϕ
dt is the dust particle angular velocity. The

quantity V ensures the normalization uaua ¼ −1 and it can
be physically interpreted as the relative velocity between
the dust particle and a zero angular momentum observer.1

In this work, we are interested in disks with rigid rotation,
i.e., with Ω constant.
For the charged particles, we assume a purely convective

4-current density

ja ¼ ϱelua with ϱel ¼ ϵμ; ð10Þ

i.e., the charge density ϱel is related to the mass density via
the constant specific charge ϵ ∈ ½−1; 1�.

C. Field equations and boundary conditions

The field equations are conveniently expressed in terms
of the tetrad basis eðaÞ. Let

EðaÞðbÞ ¼ eðaÞaeðbÞb
�
Rab − 8π

�
Tab −

1

2
gabT

��
ð11Þ

MðaÞ ¼ eðaÞa½∇bFa
b − 4πja� ð12Þ

be the projection of Einstein’s equations (2) and Maxwell
equations (3) into the basis (6). Then, we obtain from the
components Eð0Þð0Þ, Eð0Þð3Þ, Mð0Þ, and Mð3Þ

Δν −
j∇νj2
ν

−
1

2

ρ2

ν3
j∇ωj2 − 1

ν
½ω∇Aϕ þ∇At�2 −

ν3

ρ2
j∇Aϕj2 ¼ 4πσPαν

1þ V2

1 − V2
; ð13Þ

∇
�
ρ2

ν4
∇ω

�
−

4

ν2
∇Aϕ · ½ω∇Aϕ þ∇At� ¼ −16πσPα

ρ

ν2
V

1 − V2
; ð14Þ

∇
�
ν2

ρ2
∇Aϕ

�
−
∇ω

ν2
· ½ω∇Aϕ þ∇At� ¼ −4πσPαϵ

ν

ρ

Vffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ; ð15Þ

∇
�
1

ν2
ðω∇Aϕ þ∇AtÞ

�
¼ 4πσPαϵ

ν

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p : ð16Þ

The symbols ∇ and Δ, respectively, denote the usual
gradient and Laplacian operators in flat space, expressed
here in cylindrical coordinates fρ; ζ;ϕg.
Outside the disk range (in the electrovacuum region),

we have σP ¼ ϵ ¼ 0 and the right-hand sides of equa-
tions (13)–(16) vanish. Hence, we obtain a coupled system
of four elliptic equations for the four variables ν;ω; At, and
Aϕ. Once these fields are known, one can use the remaining
equations Eð1Þð1Þ and Eð1Þð2Þ to obtain α.
In order to uniquely solve the system of elliptic equa-

tions (13)–(16), we need to specify boundary conditions
that describe the physical scenario we want to model.
Concretely, there are four surfaces of interest (see Fig. 1):

(i) Region A: the symmetry axis ðρ ¼ 0; ζ ≠ 0Þ
Equations (13)–(16) impose the following regularity

conditions:

ν;ρð0; ζÞ ¼ 0; ω;ρð0; ζÞ ¼ 0;

At;ρð0; ζÞ ¼ 0; Aϕð0; ζÞ ¼ 0: ð17Þ
(ii) Region B: spacelike infinity ðr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ζ2

p
→ ∞Þ

We demand the physical condition of asymptotic flatness:

lim
r→∞

νðρ; ζÞ ¼ 1; lim
r→∞

ωðρ; ζÞ ¼ 0;

lim
r→∞

Atðρ; ζÞ ¼ 0; lim
r→∞

Aϕðρ; ζÞ ¼ 0: ð18Þ

(iii) Region C: equatorial plane without matter
ðρ > ρ0; ζ ¼ 0Þ

Equatorial symmetry imposes

ν;ζðρ; 0Þ ¼ 0; ω;ζðρ; 0Þ ¼ 0;

At;ζðρ; 0Þ ¼ 0; Aϕ;ζðρ; 0Þ ¼ 0: ð19Þ

(iv) Region D: disk of charged dust ðρ ∈ ½0; ρ0�; ζ ¼ 0Þ
The surface mass density σP introduces a discontinuity in

the first derivative along ζ. Integrating Eqs. (13)–(16) along
ζ ∈ ½−z;þz� with z → 0, we obtain

ν;ζðρ; 0þÞ ¼ 2πσPαν
1þ V2

1 − V2
;

ω;ζðρ; 0þÞ ¼ −8πσPα
ν2

ρ

V
1 − V2

Aϕ;ζðρ; 0þÞ ¼ −2πσPαϵ
ρ

ν

Vffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ;

At;ζðρ; 0þÞ þ ωAϕ;ζðρ; 0þÞ ¼ 2πσPαϵν
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − V2
p : ð20Þ1In fact, in terms of the tetrad basis (6), u results from the boost

u ¼ 1ffiffiffiffiffiffiffiffi
1−V2

p ½eð0Þ þ Veð3Þ�.
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Since α is decoupled from the other fields, we can eliminate
this quantity from the boundary conditions by combining
any two of the equations in (20), which yields

ν;ζðρ; 0þÞ ¼ −
ρ

4ν

1þ V2

V
ω;ζðρ; 0þÞ;

Aϕ;ζðρ; 0þÞ ¼ ϵ
ρ2

4ν3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
ω;ζðρ; 0þÞ;

At;ζðρ; 0þÞ þ ωAϕ;ζðρ; 0þÞ ¼ −ϵ
ρ

4ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p

V
ω;ζðρ; 0þÞ:

ð21Þ

The boundary conditions (21) are complemented with a
relation following from ∇bTab ¼ 0. The divergence-free
condition of the energy-momentum tensor is easily inter-
preted if one considers the 4-velocity ua and its associated
projection operator hab ¼ gab þ uaub. In fact, the contrac-
tion ua∇bTab leads to the conservation of the baryonic
mass ∇aðμuaÞ ¼ 0, while hab∇cTbc gives

fa ¼ μaa; ð22Þ

with the acceleration aa ¼ ub∇bua and the Lorentz force
fa ¼ habFbcjc. The ρ-component of (22) reads2

ð1þ V2Þν;ρ ¼
�
V
ρ
ν −

ρ

ν
ω;ρ

�
V þ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
½At;ρ þ ΩAϕ;ρ�:

ð23Þ

As discussed in [24–26], one can integrate Eq. (23) in cases
where Ω and ϵ are constant to obtain

D ≔ ν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
− ϵðAt þ ΩAϕÞ ¼ constant: ð24Þ

The value of the constant D is obtained by inspecting the
right-hand side of Eq. (24) at any value ρ ∈ ½0; ρ0� and
ζ ¼ 0. Concretely, at the center of the disk (ρ ¼ 0), we
obtain

D ¼ νc − ϵAc
t ; ð25Þ

with νc ¼ νðρ ¼ 0; ζ ¼ 0Þ and Ac
t ¼ Atðρ ¼ 0; ζ ¼ 0Þ.

Note that the boundary condition in the differential form
(23) provides us with a more generic setup than the version
in Eq. (24). In fact, (23) could also be used to model disks
with a differential rotation Ω ¼ ΩðρÞ, whereas (24) is
restricted to the rigid rotation case Ω ¼ constant.
Finally, let us remark that Eq. (23) fixes the field ν at the

disk up to the integration constant D. In order to solve the
equations numerically, it is crucial to assert that the system
has a unique solution. Therefore, at the point ðρ ¼ 0; ζ ¼
0Þ one would have to fix the value of the integration
constant. Equivalently (and more convenient from the
physical point of view; see discussion in the next section),
one can specify a given value for the quantity νc.

D. Parameter space and physical quantities

The parameter space of the problem has been identified
in the works [24–26]. In our system of units, the specific
charge assumes values in the range −1 ≤ ϵ ≤ 1. Two values
of this parameter are of particular relevance. The solution to
the (uncharged) disk of dust [21,22,27] is clearly recovered
in the case ϵ ¼ 0. On the other hand, the case jϵj ¼ 1 leads
to the so-called electrically counterpoised dust configura-
tion (see, e.g., [30]), in which the gravitational attraction is
exactly counterbalanced by the electric repulsion.
Apart from the specific charge ϵ (without loss of

generality, we restrict ourselves to ϵ ≥ 0), it is convenient
to introduce the relativity parameter

γ ¼ 1 − νc; ð26Þ

also used in the study of the uncharged disk [21,22,27,28].
This parameter is related to the redshift Zc of a photon
emitted at the center of the disk and measured at infinity via
γ ¼ Zc=ð1þ ZcÞ. As in the uncharged case, one intuitively
expects to obtain the Newtonian limit as γ ≪ 0, while
γ → 1 should lead to a black-hole transition. Indeed, first
studies of the post-Newtonian expansion provide a strong
indication for this behavior [26].
With such a parametrization, the angular velocity Ω is

not a free quantity that we are allowed to choose. Since Ω
depends on the freely specifiable parameters fγ; ϵg, it must
be considered as an unknown variable. Therefore, the
numerical scheme should be able to account for this extra
unknown parameter together with the field variables (see
discussion in Sec. III). Apart from Ω, we are interested in
the dependence of the following physical quantities upon
the parameters fγ; ϵg: the mass M, angular moment J,

FIG. 1. The rotating disk of charged dust shown in the Weyl
coordinates (left) and the compactified coordinates (right). The
thick line denotes the infinitely thin disk with radius ρ0. The areas
illustrated in the figure imply each particular part of the boundary
conditions: A, the ζ-axis; B, infinity; C, the equatorial plane
outside of the disk; D, on the disk surface.

2This condition also follows from a convenient combination of
the equations Eð1Þð1Þ; Eð1Þð2Þ, and EðaÞðaÞ.
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electric charge Q, and magnetic moment μB. In terms of a
spherical-type representation of the coordinates ρ ¼ r sin θ
and ζ ¼ r cos θ, these observables are computed out of the
far-field behavior of the field variables via

ν ∼ 1 −
M
r
; ω ∼

2J
r3

;

At ∼ −
Q
r

and Aϕ ∼
μB
r
sin2θ: ð27Þ

The gyromagnetic factor g is then directly obtained
according to (1). The physical quantities derived from
the far field are connected to the disk quantities by the
relation [24–26]

M ¼ 2ΩJ þD
Q
ϵ

¼ 2ΩJ þ
�
1 − γ

ϵ
− Ac

t

�
Q; ð28Þ

with the second line obtained from (25) and (26). Since
Eqs. (27) and (28) are derived independently from each
other, the latter provides us with a solid test for the
correctness of our framework.

III. NUMERICAL METHODS

A. Adapted coordinates

In order to use spectral methods to solve the set of
equations (13)–(16), we first need to map the original
domain ½ρ; ζ� ∈ ½0;∞Þ × ð−∞ ×∞Þ into a compact region
ðσ; τÞ ∈ ½0; 1�2. The aim is that the regions A;B; C, and D
are mapped onto the boundaries of the numerical domain.
This objective is achieved by two coordinate transforma-
tions

ρ ¼ ρ0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
; ζ ¼ ρ0ξη; and

σ ¼ 2

π
arctan ξ; τ ¼ η2: ð29Þ

The former introduces the elliptic coordinates ðξ; ηÞ ∈
½0;∞� × ½0; 1�, while the latter compactifies the ξ-direction.
Note that we exploit the equatorial symmetry and restrict
ourselves to the region ζ ≥ 0 (η ≥ 0). Altogether, we obtain
the following maps (see Fig. 1):

(i) Region A∶η ¼ 1 ⇒ τ ¼ 1
(ii) Region B∶ξ → ∞ ⇒ σ ¼ 1
(iii) Region C∶η ¼ 0 ⇒ τ ¼ 0
(iv) Region D∶ξ ¼ 0 ⇒ σ ¼ 0.

In Appendix A, we explicitly give the corresponding
expression for the field equations (13)–(16) and the
boundary conditions (17)–(19), (21), and (23) in terms
of the spectral coordinates fσ; τg.

B. Spectral methods

As already mentioned, we solve the field equations by
means of a (pseudo)spectral method and here we give some
details on the techniques used. Let us recall that, apart from
the functions νðσ; τÞ;ωðσ; τÞ;Atðσ; τÞ; and Aϕðσ; τÞ, we
also must include the parameter Ω as an unknown in our
scheme. As usual in any spectral algorithm, we first fix a
resolution Nσ and Nτ and consider a vector ~X composed of
all the variables of the system:

~X ¼ ðνijωijAij
t A

ij
ϕ jΩÞT for i ¼ 0 � � �Nσ; j ¼ 0 � � �Nτ:

ð30Þ

In the above expression, we use the notation3 fij ¼
fðσi; τjÞ to denote the function values at the Chebyshev-
Lobatto grid points given by

σi ¼
1

2

�
1þ cos

�
π

i
Nσ

��
; τj ¼

1

2

�
1þ cos

�
π

j
Nτ

��
:

ð31Þ

For each function f stored in ~X, we can compute its
corresponding Chebyshev coefficients cmn by inverting the
relation

fij ¼
XNσ

m¼0

XNτ

n¼0

cmnTmð2σi − 1ÞTnð2τj − 1Þ: ð32Þ

Finally, we compute spectral approximations of first and
second derivatives in the σ- and τ-directions at all grid
points (31), which we perform by applying specific differ-
entiation matrices to the vector ~X; see [31,32].
With all the discrete quantities available, we evaluate the

field equations (A1)–(A4) and boundary conditions (A5)–
(A8) at the grid points (31). This set of equationsþ
boundary conditions forms a system for determining the
field variables ν;ω; At, and Aϕ. We still need one extra
condition to fix the parameter Ω uniquely, which is
achieved by explicitly imposing the value of νc ¼ 1 − γ
at the center of the disk [see Eq. (A9)]. Altogether, we
obtain a nonlinear system of algebraic equations ~Fð~XÞ of
order ntotal ¼ 4ðNσ þ 1ÞðNτ þ 1Þ þ 1. This system is
solved with a Newton-Raphson scheme. Note that within
the Newton-Raphson scheme, one must solve a linear
system involving the Jacobian matrix Ĵ ¼ ∂ ~F=∂ ~X. As
detailed in [29], this linear system is solved with the
iterative Bi-conjugate gradient stabilized method
(BiCGStab) method, with a preconditioner based on a
finite difference representation of the algebraic system of
equations.

3With f denoting ν;ω; At, or Aϕ.
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In order to cover the entire parameter space fγ; ϵg, we
start with parameters γ ∼ 0 and ϵ ¼ 0 and provide the

solver with a initial guess ~X0 constructed out of the lowest
post-Newtonian approximation

ν2 ¼ 1þ 2U; Ω2 ¼ γ

�
1 −

γ

2

�

ω ¼ At ¼ Aϕ ¼ 0:

The potential U corresponds to the exact solution for the
gravitational potential of the uncharged disk of dust in the
Newtonian theory of gravity:

U ¼ −
4

3π
Ω2ρ20

�
arccotξ

þ 3

4

�
ξ −

�
ξ2 þ 1

3

�
arccotξ

�
ð1 − 3η2Þ

�
:

Once a solution is available, we use it as an initial guess for
a modified set of parameters fγ; ϵg. By slowly increasing γ
and ϵ we are able to cover the region ðγ; ϵÞ ∈ ð0; 1Þ × ½0; 1Þ
in the parameter space.
We end this section by mentioning that near the ultra-

relativistic limit γ ¼ 1, the functions develop strong gra-
dients around the boundary σ ¼ 1. In order to avoid a
massive increase in the resolution Nσ (which in turn
significantly slows down the speed of the solver), we
implement the analytical mesh refinement

σ ¼ 1 −
sinh½κð1 − σ̄Þ�

sinhðκÞ with κ ∼ j lnð1 − γÞj ð33Þ

introduced in [29] and successfully applied in many
different contexts [33,34].

IV. RESULTS

A. Numerical accuracy

We begin the results section with a technical discussion
on the performance of the numerical solution. Note that
Eq. (28) provides us with a neat accuracy test to check our
results. Indeed, the equation relates far-field observables
(out of which the gyromagnetic factor is constructed) with
quantities defined on the disk. Furthermore, it includes the
angular velocity Ω, which is an unknown variable within
the numerical code on its own. Thus, we introduce an error
measurement for the numerical solution via the relative
deviation

Error ¼
				1 −

�
2ΩJ
M

þ
�
1 − γ

ϵ
− Ac

t

�
Q
M

�				: ð34Þ

The error dependence on the parameter γ is shown in
Fig. 2 for some representative values of the specific charge
(ϵ ¼ 0.01, 0.5, 0.99). The numerical solutions were
obtained with a resolution4 Nσ ¼ Nτ ¼ 50. We observe
that the error is of order ≲10−8 in a large range of the
parameter space. From γ ≈ 0.9 onwards, the error increases
significantly due to strong gradients in the fields around the
boundary σ ¼ 1. As discussed in Sec. III B, we apply the
analytical mesh refinement (33) to subdue this problem. As
shown in the inset of the same figure, this technique is
essential to keep the accuracy at ≲10−8 without a massive
increase of the numerical resolution.FIG. 2. Accuracy test of the physical quantities using (34).

Starting from γ ≈ 0.9, the analytical mesh refinement is applied to
rectify the gradient problem of the field equations around the
boundaries. As shown in the inset, high numerical accuracy is
assured for values of γ → 1, i.e., in the black-hole limit.

FIG. 3. Gyromagnetic factor g from the Newtonian to the
ultrarelativistic limit with different specific charge ϵ. The lower
right window shows the result near the ultrarelativistic limit, with
all curves tending monotonically to g ¼ 2.

4We systematically used the same resolution for all parameters
discussed. For small values of γ, however, the numerical
saturation could be reached with a smaller number of grid points.
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The saturation of the numerical resolution at this order of
magnitude is limited by the machine precision and it is
compatible with the measured observables. Note that the
angular momentum is given by J ¼ limr→∞r3ω=2. When
expressed in terms of the coordinates fσ; τg, the limit can
be explicitly performed and it involves third derivatives
ω;σσσ . The final accuracy is, hence, restricted to the
numerical errors on the performance of third derivatives
with spectral methods.

B. Gyromagnetic factor

With the numerical solution under control, we proceed
and study the dependence of the gyromagnetic factor on the
“relativity parameter” γ. Here again, we concentrate our-
selves on representative values ϵ ¼ 0.01, 0.5, 0.99 for the
specific charge. Figure 3 confirms that the g-factor of
rotating disks of electrically charged dust interpolates
smoothly between the classical value g ¼ 1 and the
black-hole limit g ¼ 2. Moreover, we obtain a very mild
dependence on ϵ. As shown in the figure, the slightly
charged case ϵ ¼ 0.01 and the near electrically coun-
terpoised case ϵ ¼ 0.99 do not deviate drastically from
each other.
It is interesting to note that the g-factor has a (non-

vanishing) finite limit in both cases ϵ → 0 and ϵ → 1. The
former corresponds to the uncharged rotating disk with
Q ¼ μB ¼ 0, while the latter leads to the electrically
counterpoised case with J ¼ μB ¼ 0. That the gyromag-
netic ratio has a finite limiting case, in spite of vanishing
observables, can be best appreciated with the help of the
post-Newtonian expressions. In [26], it is shown that the
charge, the angular momentum, and the magnetic moment
scale as Q ∼ ϵ, J ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
, and μB ∼ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
respec-

tively. Therefore, the ratio μB=ðQJÞ is finite in both limits.
Figure 3 brings a further inset, where we zoom in on the

ultrarelativistic limit γ ≈ 1. Note that the g-factor

monotonically approaches the black-hole limit and the
value g ¼ 2 is achieved with slope zero, i.e.,

lim
γ→1

g;γ ¼ 0:

First hints for this behavior can be inferred from a high-
order post-Newtonian expansion [26]. Yet, the ultrarela-
tivistic limit is rather delicate. Hence, an ultimate con-
clusion regarding this issue requires the use of more
powerful techniques. Indeed, we compared our numerical
results with the one obtained via a post-Newtonian expan-
sion up to the ninth order.5 Here we show results for the
case ϵ ¼ 0.5.
The left panel of Fig. 4 shows that, as expected, the post-

Newtonian method reproduces the behavior at low γ, in
particular the evidence of g ¼ 1 in the Newtonian limit
γ ≪ 1. However, the post-Newtonian expansion is not so
accurate in the prediction of the g-factor at larger γ (see
lower inset). A more detailed comparison is depicted in the
right panel of Fig. 4, where we display the difference
between the numerical g-factor gnumeric and the post-
Newtonian gPN.
Note that in [26], the extrapolation for larger γ values is

addressed with two techniques. One either directly calcu-
lates the series expansion in the parameter γ or one makes
use of a Padé extrapolation with the obtained coefficients.
Both methods are displayed in Fig. 4. Confirming our
previous explanation, the numerical results deliver a more
accurate description as we increase γ. In the post-
Newtonian best performance (post-Newtonian expansion
together with Padé extrapolation), the numerical solution is
more accurate from γ ≈ 0.5 onwards and the error in the
black-hole limit is of the order 10−3.

FIG. 4. Left: Comparison of the numerical and post-Newtonian result. The upper left window depicts the detail of the g-factor near the
Newtonian limit, whereas the lower right shows the result near the ultrarelativistic limit. Right: The comparison of the accuracy between
the numerical and the post-Newtonian/Padé approximation.

5In Appendix B we present concretely the expansion of the
g-factor up to the fourth order.
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V. DISCUSSION

In this work we calculated the gyromagnetic ratio of
rotating disks of electrically charged dust. The disk is para-
metrized by a specific charge ϵ and a parameter γ controlling
the strength of relativistic effects. The system ismodeledwith
an energy-momentum tensor composed of dust and electro-
magnetic contributions and the resulting Einstein-Maxwell
equations are solved numerically with spectral methods.
This system provides us with a nice scenario to study and

discuss the g-factor of electrically charged rotating objects in
both Newtonian and relativistic regimes. Indeed, our highly
accurate numerical results showed that the g-factor
approaches the classical value g ¼ 1 in the Newtonian limit
γ ≪ 1, while the black-hole value g ¼ 2 is obtained in the
ultrarelativistic limit γ → 1. In particular, these two values are
connected smoothly and monotonically through the param-
eter γ. The dependence on ϵ, on the other hand, is rather mild.
While in thisworkwe focused on a rigidly rotatingdisk,we

would like to stress that our approach imposes no restriction to
this feature and one could use the same setup (field equations
and boundary conditions) to obtain numerical solutions with
differential rotation Ω ¼ ΩðρÞ. In a broader perspective, it
would be interesting to address the question under which
general conditions the relation 1 ≤ g ≤ 2 holds. Studies in
these directions are planned for future work.
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APPENDIX A: FIELD EQUATIONS IN
fσ;τg-COORDINATES

In this first appendix we display the equations numeri-
cally implemented in terms of the spectral coordinates
fσ; τg [see Eq. (29)]. For the numerical solution, it is
convenient to introduce the rescaled fields

~ω ¼ ρ0
νc

ω and ~At ¼
ρ0
νc

At:

In the electrovacuum region ðσ; τÞ ∈ ð0; 1Þ2, the field
equations (13)–(16) read

Eqν∶ −
1

2
ρ0

2ð1 − τÞνFDust
ν þ FEM

ν ¼ 0; with

FDust
ν ¼ ð1 − 3τÞν;τ þ 2Δ0ν −

2

ν
ð∇0νÞ2 − ð1 − τÞðνcÞ2

cos2ðπ
2
σÞν3 ð∇0 ~ωÞ2;

FEM
ν ¼

�
cos2

�
π

2
σ

�
ν4 þ ðνcÞ2ð1 − τÞ ~ω2

�
ð∇0AφÞ2 þ ðνcÞ2ð1 − τÞ½2 ~ω∇0Aφ∇0 ~At þ ð∇0 ~AtÞ2�; ðA1Þ

Eq ~ω∶ −
ρ0

2ð1 − τÞ
8cos2ðπ

2
σÞν2 F

Dust
~ω þ FEM

~ω ¼ 0; with

FDust
~ω ¼ 1

π
sinðπσÞ ~ω;σ þ ð1 − 5τÞ ~ω;τ −

8

ν
∇0ν∇0 ~ωþ 2Δ0 ~ω;

FEM
~ω ¼ ½∇0Aφ∇0 ~At þ ~ωð∇0AφÞ2�; ðA2Þ

Eq ~At
∶
1

2
ð1 − 3τÞνð ~ωAφ;τ þ ~At;τÞ − 2 ~ω∇0ν∇0Aφ þ ν∇0 ~ω∇0Aφ

− 2∇0ν∇0 ~At þ ν ~ωΔ0Aφ þ νΔ0 ~At ¼ 0; ðA3Þ

EqAϕ
∶
1

2π
cos2

�
π

2
σ

�
ν4½sinðπσÞAφ;σ − πð1 − τÞAφ;τ�

− 2cos2
�
π

2
σ

�
ν3∇0ν∇0Aφ þ ðνcÞ2ð1 − τÞ ~ω∇0 ~ω∇0Aφ

þ ðνcÞ2½ð1 − τÞ∇0 ~ω∇0 ~At� − cos2
�
π

2
σ

�
ν4Δ0Aφ ¼ 0: ðA4Þ
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The actions of the operators Δ0 and ∇0 on two generic
functions aðσ; τÞ and bðσ; τÞ are, respectively,

∇0a∇0b ≔
1

π2
cos2

�
π

2
σ

�
a;σb;σ þ τð1 − τÞa;τb;τ;

Δ0a ≔
1

π2
cos2

�
π

2
σ

�
a;σσ þ τð1 − τÞa;ττ:

Moreover, the equivalents to the boundary conditions
(17)–(19), (21), and (23) are, respectively,

(i) Region A∶τ ¼ 1; σ ∈ ð0; 1Þ

lim
τ→1

Eqν
1−τ

; lim
τ→1

Eq ~ω

1−τ
; Eq ~At

j
τ¼1

; Aϕ¼0: ðA5Þ

(ii) Region B∶σ ¼ 1; τ ∈ ½0; 1�

ν ¼ 1; ω ¼ At ¼ Aϕ ¼ 0: ðA6Þ

(iii) Region C∶τ ¼ 0; σ ∈ ½0; 1Þ

ν;σ ¼ ~ω;σ ¼Aϕ;σ ¼ ~Aϕ;σ ¼0 ðσ¼0Þ
Eqνjτ¼0; Eq ~ωjτ¼0; EqAϕ

j
τ¼0

; Eq ~At
j
τ¼0

ðelseÞ:
ðA7Þ

(iv) Region D∶σ ¼ 0; τ ∈ ð0; 1�

4ν ~Vν;σ ¼−νc½1þV2� ~ω;σ;

4ν3Aϕ;σ ¼ ϵρ0ν
cð1−τÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−V2

p
~ω;σ;

4ν ~V½ ~At;σþ ~ωAϕ;σ�¼−ϵρ0
ffiffiffiffiffiffiffiffiffiffiffiffi
1−V2

p
~ω;σ;

νð1þV2Þν;τ¼−
1

2
½ν2 ~Vþ2νcð1−τÞ ~ω;τ� ~V

þν
ϵ

ρ0
½Aϕ;τðνc ~ωþ ~Vν2Þþνc ~At;τ�

×
ffiffiffiffiffiffiffiffiffiffiffiffi
1−V2

p
: ðA8Þ

Note that we introduced

~V ¼ Vffiffiffiffiffiffiffiffiffiffi
1 − τ

p ¼ Ωρ0 − νc ~ω

ν2

in the expressions above.
In order to complete the system, we must also fix νc at

the center of the disk. This value is related to the relativity
parameter γ via (26). Thus, at ðσ ¼ 0; τ ¼ 1Þ, we impose an
extra condition

νð0; 1Þ ¼ νc ¼ 1 − γ: ðA9Þ

APPENDIX B: POST-NEWTONIAN EXPANSION
FOR THE g-FACTOR

With the help of studies in the post-Newtonian approxi-
mation from [24–26], we expand the g-factor in the form6

g ¼ 1þ
X∞
k¼0

Xk
l¼0

ck;lϵ2lγk: ðB1Þ

Here, we present the coefficients up to the fourth order in γ:

c1;0¼
38

35
; c1;1¼

1

5
; c2;0¼

80

9π2
−
1181

1575
;c2;1¼

20789

66150
−

40

9π2
; c2;2¼−

19

675
; c3;0¼−

19277

808500
−

592

3465π2
;

c3;1¼
8891257

16632000
−

2936

495π2
; c3;2¼

2152

693π2
−

539977931

1629936000
; c3;3¼

260177

12936000
−

8

45π2
;

c4;0¼−
7978729279

22702680000
−
56320

243π4
þ22923716

868725π2
; c4;1¼

369388881091199

488198430720000
þ26240

81π4
−

41255480963

1021620600π2
;

c4;2¼−
579496867964537

976396861440000
−
29120

243π4
þ 36234236351

2043241200π2
; c4;3¼

1320650497820209

10252167045120000
þ 640

81π4
−

3807395827

2043241200π2
;

c4;4¼
104

1215π2
−

5474341391

715134420000
:

As already mentioned, we clearly recover the classical result g ¼ 1 as γ ¼ 0. Moreover, we also obtain a finite limit in
both the uncharged (ϵ ¼ 0) and electrically counterpoised case (ϵ ¼ 1).

6We encountered a misprint in Eq. (A.23) from [26]. One of the terms proportional to ψ4 should read 9=22400 instead of 9=86400.
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