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In this paper we show that there is a universal prediction for the Newtonian potential for a specific class
of infinite derivative, ghost-free, quadratic curvature gravity. We show that in order to make such a theory
ghost free at a perturbative level, the Newtonian potential always falls-off as 1=r in the infrared limit, while
at short distances the potential becomes nonsingular. We provide examples which can potentially test the
scale of gravitational nonlocality up to 0.004 eV.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) has passed
successfully through innumerable tests from small scales to
large scales [1]. One of its predictions, the existence of
gravitational waves, has recently been confirmed by
the advanced Laser Interferometer Gravitational-Wave
Observatory (LIGO), which has observed a transient gravi-
tational-wave (GW) signal and tested the reliability of GR
[2]. In all these examples, in the infrared (IR), the theory
matches the Newtonian fall of 1=r potential. In spite of these
great successes, the theory of GR is incomplete in the
ultraviolet (UV), the classical solutions of GR exhibit black
hole and cosmological type singularities, and at a quantum
level the theory is not UV finite. GR definitely requires
modifications in the UV; the question is what kinds of
corrections in the UVone would expect, which would make
the theory well behaved in the classical and the quantum
sense, and possibly resolve the short distance singularities.
For a massless graviton, in four dimensions, all the inter-

actions in the UV can in principle be captured by incorpo-
rating higher derivatives allowed by the diffeomorphism
invariance. For instance, it is well known that higher deri-
vatives can ameliorate the UV behavior, i.e. fourth derivative
gravity is renormalizable, but at a cost of introducing a ghost
term in the spin-2 component of a graviton propagator [3].
Indeed, the presence of ghosts can lead to a destabilizing of
the classical vacuum, therefore rendering the theory unpre-
dictable at both the classical and the quantum level.
Recently, the issue of ghosts has been addressed in the

context of quadratic gravity—in order to make the theory
generally covariant and ghost free at the perturbative level,
one would require infinite derivatives [4,5]. Indeed, these
infinite derivatives would modify the graviton propagator.
However, if we capture the roots of these infinite deriva-
tives by the exponential of an entire function, then there

will be no new degrees of freedom propagating in space-
time other than the massless transverse and traceless
graviton, since such modification of the graviton propaga-
tor would not introduce any new pole.
It has been demonstrated that these infinite derivatives

with a graviton propagator modified by the exponential of
an entire function can indeed soften the quantum UV
behavior [6–11]. Furthermore, in a linearized limit, such a
prescription also removes the cosmological Big Bang
singularity [5,12], and the black hole type singularity in
both the static limit [4], and the dynamical context [13].
One intuitive way to understand this is due to the fact that
infinite derivatives render the gravitational interactions
nonlocal [6,11]. This nonlocality also introduces an
inherent new scale in four dimensions, i.e. M ≤ Mp ∼
2.4 × 1018 GeV. Furthermore, an intriguing connection can
be established between the gravitational entropy [14] and
the propagating degrees of freedom in the spacetime. The
gravitational entropy for ghost-free, infinite gravity does
not get a contribution from the UV, but only from the
Einstein-Hilbert action [15], and follows strictly the area
law for entropy for a Schwarzschild’s black hole.
The aim of this paper is twofold: first we show that for a

wide class of infinite derivative theories of gravity which
are ghost free, it is possible to recover not only the 1=r fall
of the Newtonian potential in a static limit in the IR, but
also to ameliorate the short distance behavior in the UV
limit. Second, we wish to put a bound on the scale of
nonlocality, i.e. M, from the current table-top experiments
from the deviation of Newtonian gravity.

II. QUADRATIC CURVATURE
GRAVITATIONAL ACTION

Let us first start by discussing the properties of GR in
four dimensions. The linearized GR can be quantized
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around the Minkowski background, which is described
by two massless degrees of freedom. The transverse and
traceless components of the graviton propagator in four
dimensions can be recast in terms of the spin projector
operators, which involves the tensor Pð2Þ, and only one of

the scalar components, i.e. Pð0Þ
s [16]:

Πðk2Þ ∼ 1

k2

�
Pð2Þ −

1

2
Pð0Þ

s

�
; ð1Þ

where kμ is the 4-momentum vector, and we have sup-
pressed the spacetime indices.
In fact, in [4,17] it has been shown that around the

Minkowski background, in four dimensions, the most
general quadratic order torsion-free and parity invariant
gravitational action which can be made ghost free can be
written in terms of the Ricci scalar, R, the symmetric
traceless tensor, Sμν ¼ Rμν − 1

4
Rgμν, and Cμναβ is the Weyl

tensor. It is sufficient to study the quadratic order action—
which captures Oðh2Þ terms around the Minkowski back-
ground, i.e. gμν ¼ ḡμν þ hμν, where ḡμν is the Minkowski
background, and hμν are the excitations, in order to find the
graviton propagator. The S-tensor vanishes on maximally
symmetric backgrounds [Minkowski or (anti–)de Sitter]
[17].1 Therefore the full action can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ λ

2
ðRF 1ð□ÞR

þSμνF 2ð□ÞSμν þ CμνλσF 3ð□ÞCμνλσÞ
�
; ð2Þ

whereM2
P is thePlanckmass; and λ is a dimensional coupling

accounting for the higher curvature modification; and theF i
are Taylor expandable (i.e. analytic) functions of the covar-
iant d’Alembertian [4], i.e. F ið□Þ ¼ P

n¼0cin□
n=M2n,

where M is the scale of nonlocality.
The equations of motion of this action have been

worked out in [19]. As we shall show now, this class of
infinite derivative theory indeed provides a unique platform
to study the departure from GR in future table-top
experiments [20].

III. UNIVERSALITY OF THE NEWTONIAN
POTENTIAL

Physical excitations of this action, Eq. (2), around the
Minkowski background have been studied very well. This
can be computed by the second variation of the action,
using gμν ¼ ḡμν þ hμν. A quick computation can be made
by employing the covariant mode decomposition of the
metric [21]:

hμν ¼ ~hμνþ ∇̄μAνþ ∇̄νAμþ
�
∇̄μ∇̄ν−

1

4
ḡμν□̄

�
Bþ 1

4
ḡμνh;

ð3Þ

where ~hμν is the transverse and traceless spin-2 excitation;
Aμ is a transverse vector field; and B, h are two scalar
degrees of freedom which mix. Upon linearization around
maximally symmetric backgrounds, the vector mode and
the double derivative scalar mode vanish identically, and
we end up only with ~hμν and ϕ ¼ h −□B [17]. Performing
the necessary computations (which are indeed straightfor-
ward around Minkowski as all derivatives commute), one
gets [17]

δ2Sð ~hνμÞ ¼
Z

dx4
ffiffiffiffiffiffi
−ḡ

p 1

2
~hμν□̄að□̄Þ ~hμν;

að□̄Þ ¼ 1þ λ

M2
P
□̄ðF 2ð□̄Þ þ 2F 3ð□̄ÞÞ

δ2SðϕÞ ¼ −
Z

dx4
ffiffiffiffiffiffi
−ḡ

p 1

2
ϕ□̄cð□̄Þϕ;

cð□̄Þ ¼ 1 −
λ

M2
P
□̄

�
6F 1ð□̄Þ þ 1

2
F 2ð□̄Þ

�
ð4Þ

for the tensor component (where the field was rescaled by
MP=2 to become canonically normalized), and the scalar
component (where the field was rescaled by MP

ffiffiffiffiffiffiffiffiffiffi
3=32

p
to

be canonically normalized), respectively.
The full graviton propagator can then be written using a

similar method to [16], barring the suppressed indices2

[17,19,22]:

Πðk2Þ ¼ Pð2Þ

k2að−k2Þ þ
Pð0Þ

k2ðað−k2Þ − 3cð−k2ÞÞ ; ð5Þ

where Pð2Þ;ð0Þ are the spin projection operators [16]. Note
that the graviton propagator has two unknown functions
aðk2Þ and cðk2Þ, where all the information about the infinite
derivatives is hiding; see [4,19,22] for an alternative way of
deriving the graviton propagator, Eq. (5), and related
discussion on form factors. It is possible that að□̄Þ and
cð□̄Þ are not uniquely defined under field redefinitions
[7–9], but this issue is beyond the scope of this paper.
In order to reduce the graviton propagator to that of GR,

one method is to assume that að□̄Þ ¼ cð□̄Þ. In the IR limit
then both aðk2 → 0Þ ¼ 1 and cðk2 → 0Þ ¼ 1, such that
Eq. (5) reduces to Eq. (1). In this limit the theory would
match exactly GR’s predictions in the IR, but would lead to

1The original action was written in terms of Rμν and Rμνλσ in
[4]. However there is no loss of generality in expressing the action
as Eq. (2); see [17]. See also [8,9,18], where ghost conditions
have been studied in the context of string theory.

2In [16], the authors imposed six projection operators to
decompose the spin-2 and spin-0 components of the propagator;
here we have employed a slightly different technique to decom-
pose the ten metric degrees of freedom.
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modification in the UV. The entire modification can be
summarized by one unknown function að□̄Þ, which con-
strains the functions such that (see for instance [19])

12F 1ð□̄Þ þ 6F 2ð□̄Þ þ 4F 3ð□̄Þ ¼ 0:

In order that the propagator have no poles except the
massless graviton at k ¼ 0, we require that að□̄Þ and
ðað□̄Þ − 3cð□̄ÞÞ contain no zeros. This way the propaga-
tor, Eq. (5), will not contain any extra degrees of freedom
propagating in the space-time other than the massless
graviton with two helicity states. One possible choice is
to assume that að□̄Þ is the exponential of an entire function.
This choice makes sure that in spite of infinite derivatives,
there exist no ghosts at the perturbative level for a quadratic
curvature gravity Eq. (2). One such example will be [4,5,7]

að□̄Þ ¼ cð□̄Þ ¼ e−□̄=M2

: ð6Þ
This choice guarantees that in the UV the theory is
softened, as for k → ∞, að−k2Þ ¼ cð−k2Þ ¼ ek

2=M2

sup-
presses the propagator in the UV, i.e. Πðk2Þ → 0 in Eq. (5),
while k → 0 yields the pure 4D GR propagator.
Our aim in this paper will be to generalize this to any

entire function τð−k2Þ, such that in the momentum space
we have

að−k2Þ ¼ cð−k2Þ ¼ e−τð−k2=M2Þ: ð7Þ

The computation of the Newtonian potential, i.e. ΦðrÞ, for
the simplest choice, when τð−k2=M2Þ ¼ −k2=M2 as in
Eq. (6), was done already in [5], and the result is

ΦðrÞ ∼ −
μ

M2
Pr

ffiffiffi
π

2

r
erfðMr=2Þ; ð8Þ

where μ is the mass of a δ-source. This potential is
finite near r ≈ 0 and decays as 1=r at distances above
the nonlocality scale, i.e. r ≫ M−1. The 1=r fall of
Newtonian gravity has been tested in the laboratory up
to 5.6 × 10−5 m [23], which implies that for the scale of
nonlocality should be bigger than M > 0.004 eV. Indeed,
we know very little about the gravitational interaction
above this limit. The cornerstone of this computation is
the sine Fourier transform

fðrÞ ¼
Z þ∞

−∞

dk
k
eτð−k2Þ sinðkrÞ; ð9Þ

where

ΦðrÞ ¼ −
μ

4π2M2
p

fðrÞ
r

: ð10Þ

When we consider the simplest choice, τ ¼ −k2=M2, the
function fðrÞ indeed gives an erf-function.

We now set out to prove that the leading behavior of the
potential at small distances, r, away from the source is
always given by Φ ≈ Φ0 þOðrÞ, where Φ0 is constant
irrespectively of the form of an entire function τðk2Þ, as
long as it does not introduce any extra pole other than the
massless graviton.

IV. GENERALIZATIONS OF THE
ENTIRE FUNCTION

Note that for an entire function, we can always treat fðrÞ
as a polynomial function. As a warm-up exercise we note
that the sine Fourier transformation for

τ ¼ −
k2n

M2n ð11Þ

gives

fðrÞ ¼ Mr
n

X∞
p¼0

ð−1Þp Γðpn þ 1
2nÞ

ð2pþ 1Þ! ðMrÞ2p; ð12Þ

using the gamma function ΓðxÞ≡ ðx − 1Þ!. The above
result is a generalization of [24], where the authors
analyzed special cases for n ¼ 1, 2, 4. From Fig. 1 we
see that the Newtonian potential never blows up at r ¼ 0.
An important observation here is that increasing the

value of n yields a larger modulation for large r, giving us a
clear deviation from predictions of GR at larger distances,
and providing us with a glimpse of testing the nonlocality
scale M. We can see that by having higher modes we now
switch on a new mechanism that can be falsifiable in a near-
future experiment.
Tests of the inverse square law assume that departure

from the Newtonian potential follows a Yukawa potential,
VðrÞ ¼ −V0½1þ α expð−r=λÞ�. In [23], Adelberger et al.

FIG. 1. We plot fðrÞ=r vs r for different n for Eq. (12),
where n ¼ 1 corresponds to the error function. Recall that

the Newtonian potential ΦðrÞ ¼ − μ
4π2M2

p

fðrÞ
r . For illustrative

purposes, we have taken M ¼ 4 × 10−3 eV.
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found in 20073 that this potential was ruled out for α ¼ 1

down to a length scale of 5.6 × 10−5 m, which means that
we can now constrain M for each τð−k2Þ.
For each specific value of n in Eq. (12), we can check for

what value ofM our potential would be detectable by [23].
The experiment ruled out a Yukawa potential VðrÞ ¼
V0=rð1þ expð−r=5.6 × 10−5Þ down to length scales of
5.6 × 10−5 m. Since this Yukawa potential is already ruled
out, if a particular value of the scale of nonlocality M
provides a larger divergence from GR than this potential,
then it can also be ruled out, as otherwise it would have
been detected by [23]. Using Eq. (12), this occurs at M ∼
0.004; 0.02; 0.03; 0.05 eV for n ¼ 1, 2, 4, 8 so we can set
these as our lower bounds on the scale of nonlocality.
Clearly this still leaves us with a large hierarchy between

M ≥ 0.004 eV and Mp ∼ 2.4 × 1018 GeV, which signifies
that indeed very little is known about the gravitational
interaction.
Now, let us illustrate the most general situation. When τ

is not a monomial, we may represent it as

τð−k2Þ ¼ −
k2

M2
þ ρðk2Þ: ð13Þ

If we expand eρðk2Þ ¼ P
mρmk

2m=M2m (clearly ρ0 ¼ 1), we
yield the sine Fourier transformation of eτðk2Þ,

fðrÞ ¼
X∞
m¼0

ρmð−1Þm
∂

∂αm
Z

dp
p

e−α
p2

M2 sinðprÞ; ð14Þ

which we can calculate either explicitly as

fðrÞ ¼
X∞
m;p¼0

ρmð−1Þp
Γðmþ pþ 1

2
Þ

ð2pþ 1Þ! ðMrÞ2pþ1; ð15Þ

or using Hermitian polynomials HmðxÞ as

fðrÞ ¼ πerf

�
Mr
2

�

− 2
ffiffiffi
π

p
e−

M2r2
4

X∞
m¼1

ρmð−1Þm
1

4m
H2m−1

�
Mr
2

�
: ð16Þ

Note that Eq. (16) converges to a constant if ρm decreases at

least as fast as ð−1Þm
m!

, i.e. ρ ¼ −k2=M2.
In order to satisfy the low energy requirements of the

underlying physics, we require that the function eτð−k2Þ fall
at least as fast as e−k

2=M2

[4]. Any eτð−k2Þ which does this
will also fulfil the convergence condition for Eq. (16),
meaning that any physically realistic að□Þ will give a
Newtonian potential which returns to the GR 1=r potential
in the IR limit.

Next, in order to graphically show the behavior of
Eq. (16) in Fig. 2, we take the next simplest case, where
τ is the binomial

τ ¼ −
k2

M2
− aN

k2N

M2N ; ð17Þ
and the choice of aN is motivated by the purpose of illus-
tration of the oscillations that occur for r ≈M−1. In this case,

ρm ¼ ð−aNÞm=N

ðm=NÞ! for
m
N

∈ Nand zero otherwise: ð18Þ

V. CONCLUSION

Let us conclude by pointing out that infinite derivative,
ghost-free theories of gravity pose a real falsifiable feature
compared to GR, which can be tested by measuring the
Newtonian potential in near-future experiments. We have
shown that there exists a universal class of entire functions for
which the theory is ghost free aswell as singularity free in the
UV, while leaving some tantalizingly small effects in the IR,
albeit falling as the 1=r-fall of the Newtonian potential. The
current experimental limit puts the bound on nonlocality
to be around M ∼ 0.004 eV. Indeed, it is intriguing to
reiterate that we know very little about gravity and any
modification from the Newtonian potential can occur in the
gulf of scales spanning some 30 orders of magnitude, i.e.
0.004 eV ≤ M ≤ 1018 GeV, but this window also provides
an opportunity for testing gravity at short distances.
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FIG. 2. We have plotted fðrÞ=r vs r for Eqs. (16) and (18),
where we have chosen a2 ¼ 4.65 × 10−3 and a4 ¼ 1.24 × 10−7,
and for illustrative purposes, we have set M ¼ 4 × 10−3 eV.

3Although further tests have been carried out, such as in [25],
none of these gives a stronger constraint on r for α ¼ 1.
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