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In canonical gravity, covariance is implemented by brackets of hypersurface-deformation generators
forming a Lie algebroid. Lie-algebroid morphisms, therefore, allow one to relate different versions of the
brackets that correspond to the same spacetime structure. An application to examples of modified brackets
found mainly in models of loop quantum gravity can, in some cases, map the spacetime structure back to
the classical Riemannian form after a field redefinition. For one type of quantum corrections (holonomies),
signature change appears to be a generic feature of effective spacetime, and it is shown here to be a new
quantum spacetime phenomenon which cannot be mapped to an equivalent classical structure. In low-
curvature regimes, our constructions not only prove the existence of classical spacetime structures assumed
elsewhere in models of loop quantum cosmology, they also show the existence of additional quantum
corrections that have not always been included.

DOI: 10.1103/PhysRevD.94.104032

I. INTRODUCTION

Several independent examples of modified gauge
transformations have been found in different models of
canonical quantum gravity, using effective [1–7] and
operator calculations [8–12]. In classical canonical for-
mulations, spacetime structure is encoded not in the usual
form of general covariance of tensors but by the equiv-
alent version of gauge covariance under hypersurface
deformations in spacetime [13,14]. The new structures
found as a direct consequence of key ingredients of
the quantization process using holonomies instead of
connections, therefore, confirm a general expectation:
quantum geometry may lead to modified spacetime
structures [15,16].
Although these modified gauge structures have been

found within a variety of models of loop quantum gravity
and by virtue of different computational methods, they all
share some important properties. There is a phase-space
function β modifying only the Poisson bracket of two
smeared Hamiltonian constraints (or normal deformations
of hypersurfaces). Denoting the constraints by H½N� with
the lapse function N that specifies the magnitude of the
normal deformation at every point on a spatial hypersur-
face, we have

fH½N�; H½M�g ¼ −Ha½βqabðN∂bM −M∂bNÞ�: ð1Þ

On the right-hand side, Ha represents the components of
the diffeomorphism constraint (generating tangential
deformations) and qab is the inverse metric on a spatial
hypersurface. Brackets involving Ha½Ma� retain the
classical form

fHa½Ma
1�; Hb½Mb

2�g ¼ −Hc½LM2
Mc

1� ð2Þ

fH½N�; Ha½Ma�g ¼ −H½LMN�: ð3Þ

There have been attempts to modify the brackets involving
not only the Hamiltonian constraint as in (1) but also the
diffeomorphism constraint [17,18]. Other such examples
are given by fractional spacetime models, in which the
modification functions can, however, be absorbed [19]. A
discrete version of the brackets has been defined in [20],
which differs from (2) and (3). In this paper, we focus on
continuum effective theories in which space (but not
necessarily spacetime) has the classical structure.
Accordingly, (2) will not be modified. We will derive a
new form of brackets in which (3) is modified, but (2) is
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not. Nevertheless, our main focus will be on brackets with
modifications, as in (1).
The correction function β ≠ 1 depends on the phase-

space variables and transforms as a spatial scalar. In the
classical case, the hypersurface-deformation brackets are
(on shell) related to the Lie algebra of spacetime diffeo-
morphisms, reflecting the coordinate invariance of general
relativity. Brackets with β ≠ 1 modify the general covari-
ance of the effective theory, but in such a way that no gauge
transformations are violated. (Obeying the condition of
anomaly freedom, gauge transformations are allowed to be
modified by quantum corrections, but not to be destroyed.)
With modified brackets, the effective metric qab appear-

ing in (1) cannot be part of a spacetime line element of
classical form: modified gauge transformations of qab,
generated by H½ϵ� and Ha½ϵa�, do not complement coor-
dinate transformations of dxa to form an invariant space-
time line element,

ds2 ¼ −N2dt2 þ qabðdxa þ NadtÞðdxb þ NbdtÞ; ð4Þ

in canonical form. Nevertheless, there may be field rede-
finitions of different kinds which allow one to find a
classical spacetime picture for some function β of the
phase-space variables. For instance, in some cases, β can
be absorbed in the lapse function by N0 ≔

ffiffiffiffiffiffijβjp
N, with

classical brackets in terms of N0, or a combination of
the original spatial metric and extrinsic curvature could
determine the spatial geometry of an effective spacetime
of the classical type. The question was investigated in
certain spherically symmetric models in [21], with some
encouraging results: gauge transformations of the original
canonical fields of the effective theory (including qab)
are deformed, but by applying canonical transformations
it is possible, in some cases, to recover the classical
hypersurface-deformation brackets, and hence to restore
general covariance. For example, a canonical transforma-
tion with this effect was found in [21] when β depended
only on metric components. Absorbing β in qab then
provides a simple canonical transformation. If β depends
on the momentum (extrinsic curvature) as well, it is more
difficult to see whether it can be removed from the brackets.
In this paper, we analyze the same question from a

different perspective which is insensitive to the availability
of canonical transformations. Our discussion makes use of
the general setting of Lie algebroids, of which a suitable
fiber-bundle formulation of (1) provides an example [22].
More generally, the language of Lie algebroids is a well-
defined mathematical structure that allows one to formalize
theories with structure functions. Our results are indepen-
dent of details of any specific form of quantum gravity,
in the sense that we will not use equations or methods
characteristic of a specific approach. Instead, we use the
general form (1) of the modified bracket of two normal
deformations as a guiding principle and study possible

Lie-algebroid realizations. Modifications of the classical
brackets can be understood as a generic form of quantum
corrections, introduced by some effective quantum-gravity
theory.
We will be able to classify different inequivalent space-

time structures corresponding to modified brackets of the
type (1) that cannot be related by morphisms. While there
appears to be an arbitrary modification function β in (1)
with virtually unrestricted quantum corrections, only sgnβ
remains as the single choice left after equivalence classes of
brackets up to morphisms are considered. This result helps
to clarify the implications of modified brackets (1) for
spacetime structures. Specifically, they can be related to
the classical brackets by Lie-algebroid morphisms as long
as β has a definite sign and is nonzero. The existence of
effective Riemannian spacetime structures is confirmed in
this case, which so far has only been assumed (for instance,
in [23–26]). Such modifications, therefore, do not imply
radical changes of the spacetime structure, even though
they may still lead to a modified dynamics on and of the
effective spacetime. If β does not have a fixed sign, a new
version of quantum spacetime is obtained which exhibits
signature change as a new physical effect.
In some cases, concrete morphisms can be formulated

with simple interpretations of their implications on canoni-
cal variables and the dynamics. For instance, with spatially
constant β ≠ 1, as in cosmological models with first-
order perturbative inhomogeneity, a suitable morphism is
obtained by changing the usual conventions in setting up
the canonical formulation based on spacetime foliations
into spatial slices. Somewhat akin to absorbing β in the
lapse function, one can make use of a generalized canonical
formulation which is a hybrid version of, on one side, the
Dirac [13] and the Arnowitt-Deser-Misner (ADM) [27]
formulation, with variables adapted to directions normal
and tangent to a spatial hypersurface, and, on the other,
Rosenfeld’s [28] earlier derivation of canonical gravity
without reference to a foliation or preferred directions. We
will use a foliation but do not require the timelike vector nμ

to be normalized or orthogonal to the spatial tangent plane.
The normalization function nμnμ can be related to β.
Therefore, nonstandard normalizations present a more-
general way of relating modified brackets to classical
spacetime structures than absorbing β in the lapse function
would do. The angles between nμ and the spatial tangent
plane give rise to new modifications of the brackets that
have not yet been encountered elsewhere. At the same time,
we make use of a concise derivation of the hypersurface-
deformation brackets and use the example to introduce Lie
algebroids in this context. Morphisms of Lie algebroids
will lead to further transformations that can be used to
relate modified brackets of different types, still with the
classical signature as the only parameter that characterizes
inequivalent spacetime structures of brackets of the form
(1) via sgnβ. This result allows us to draw rather general
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conclusions about implications of the modified dynamics
according to (1).

II. CANONICAL GRAVITY AND
LIE ALGEBROIDS

In order to set up the canonical formalism, we assume, as
usual, spacetime M to be globally hyperbolic and intro-
duce a foliation by constant-level surfaces of a parameter
t ∈ R, such that the hypersurfaces are all spacelike.
Each spatial slice is homeomorphic to a 3-manifold σ, on
which we may choose local coordinates xa, a ∈ f1; 2; 3g.
We realize σ as a spatial hypersurface Σt≔XtðσÞ at
constant t by an embedding X∶R × σ ↪ M, with
ðt; xÞ ↦ Xðt; xÞ ≕ XtðxÞ.
We choose a foliation Xt ¼ Xðt; ·Þ and define a time-

evolution vector field τμ by

τðXÞ ≔ ∂tXμðt; xÞ∂μ: ð5Þ

This vector field is, in general, not normal to Σt. Following
ADM [27], it is convenient to introduce vector fields
tangential to Σt, given by

XaðXÞ ≔ ∂aXμðt; xÞ∂μ; ð6Þ

and to define a timelike vector field normal to the time slice
Σt by

gμνnμXν
a ¼ 0; gμνnμnν ¼ −1: ð7Þ

If we further require that nμ point toward the future, that is,
nμ∂μt > 0, it is uniquely defined. By introducing the lapse
function NðXÞ and the shift vector field MaðXÞ, the time-
evolution vector field τμ is decomposed into its components
normal and tangential to Σt:

τμðXÞ ¼ NðXÞnμðXÞ þ NaðXÞXμ
aðXÞ: ð8Þ

Since the choice of the embedding X is arbitrary, the
components of lapse and shift are free functions as long as
they give rise to a timelike τμ.
So far, we have used only well-known and basic

ingredients of the canonical formulation. (See [29] for
further details.) The decomposition (8) and the normali-
zation condition of nμ in (7) play a key role in our
considerations of modified spacetime structures. In order
to exhibit the full freedom of the formalism, we will not
follow the common convention of normalizing nμ by
gμνnμnν ¼ −1. We may fix any other negative constant,
or even a phase-space function, for the Lorentzian space-
time signature, or a positive constant (or phase-space
function) for the Euclidean signature. We may, therefore,
require that gμνnμnν ¼ ϵβ, where ϵ ¼ −1 in the Lorentzian
case and ϵ ¼ þ1 in the Euclidean case. If the signature is
constant, β > 0 is a positive phase-space function.

However, in anticipation of applying these methods to
some of the models found in the context of loop quantum
gravity, we allow for β to change its sign, so that sgnβ ≕ ϵβ
may not be constant. The overall signature is then locally
given by the product ϵϵβ.
In order to compare dynamical results obtained with

different normalizations, we should demand that τμðXÞ
remain the same and be independent of β:

τμðXÞ ¼ 1ffiffiffiffiffiffijβjp NðXÞnμðXÞ þMaðXÞXμ
aðXÞ

¼ ∶NβðXÞnμðXÞ þMaðXÞXμ
aðXÞ; ð9Þ

where nμ=
ffiffiffiffiffiffijβjp

is now normalized to �1 ¼ ϵϵβ. This
condition ensures that equations of motion for evolution
along τμ exist independently of the canonical decomposi-
tion in terms of hypersurfaces. At this stage, we see the
simple result that the lapse function has to absorb any
nonstandard normalization factor β, but later on we will
be able to draw more benefit from these simple-looking
considerations. The only requirement for (9) to be used is
that nμ and Mμ ¼ MaXμ

a form a basis of the tangent space
to M at each point. We may, therefore, drop the normali-
zation conditions as well as the orthogonality of nμ andMμ.

A. A concise derivation of the
hypersurface-deformation brackets

We derive the brackets of hypersurface deformations
with nonstandard normalization by repurposing a deriva-
tion of the usual result given in [22]. The main aim of this
paper is to analyze the Lie-algebroid structure of the
brackets, which we will describe in the following sub-
section. Some part of the mathematical analysis of [22]
amounts to a brief derivation of the brackets, which we
formulate here in abstract index notation, and, at the
same time, use it to derive the brackets with nonstandard
normalization. As a further generalization, we will also
assume a nonorthogonality relation between nμ and Xμ

a.
More traditional derivations using ADM-style evolution
equations or geometrodynamics are given in the Appendix
for the case of a nonunit normal nμ, with equivalent results.
The explicit derivation of hypersurface deformations

depends on choices of coordinates or embedding functions,
but the brackets must be covariant under changes of these
auxiliary structures. As in [22], one can exploit the
coordinate freedom by working with embeddings such
that the spacetime metric, from which the spatial metric qab
in the structure functions is induced, is Gaussian with
respect to the hypersurfaces:

ds2 ¼ ϵdt2 þ qabdxadxb: ð10Þ

In this way, one fixes a representative in each equivalence
class of hypersurface embeddings. The remaining coordinate
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freedom is given by diffeomorphisms generated by so-called
g-Gaussian vector fields vμ, which preserve the Gaussian
form of the metric and therefore satisfy

nμLvgμν ¼ 0; ð11Þ

with some vector field nμ normal to t ¼ constant, but not
necessarily normalized. This condition ensures that an
infinitesimal diffeomorphism along vμ, changing gμν to
g0μν ≔ gμν þ Lvgμν, respects the relations nμnνg0μν ¼
nμnνgμν ¼ ϵ and nμwνg0μν ¼ 0 if nμwνgμν ¼ 0 of the
Gaussian system. Because they generate diffeomorphisms
preserving the Gaussian form of the metric, g-Gaussian
vector fields form a subalgebra of the Lie algebra of all
vector fields with a bracket that is the usual Lie bracket. As
found in [22], one can derive the hypersurface-deformation
brackets by rewriting the Lie bracket using properties of
vector fields vμ satisfying (11).
Some restriction on the form of vector fields is necessary

because the hypersurface deformations as gauge trans-
formations are known to be equal to infinitesimal spacetime
diffeomorphisms only on shell [14], that is, when some of
the generators H and Ha and the equations of motion they
generate are set to zero as phase-space functions. The
restriction is implemented here by using g-Gaussian vector
fields, which turn out to have Lie brackets directly related
to the hypersurface-deformation brackets. Such a restric-
tion cannot be chosen arbitrarily but must fulfill three
conditions. (i) The vector fields considered must provide a
unique extension from spatial (lapse) functions N and
spatial (shift) vector fieldsMa to a spacetime vector field vμ

which equals Nnμ þMaXμ
a on the spatial slice. If this

condition is fulfilled, it is possible to compute spacetime
Lie brackets. (ii) The vector fields considered must form a
subalgebra of the Lie algebra of all spacetime vector fields.
(iii) The Lie bracket of spacetime extensions of two pairs,
ðN1;Ma

1Þ and ðN2;Ma
2Þ, should depend not on the exten-

sions but only on the spatial derivatives of Ni and Ma
i ,

in addition to the functions and vector fields themselves.
With conditions (ii) and (iii) fulfilled, it is then possible
to interpret the Lie bracket of extensions of the two
pairs ðN1;Ma

1Þ and ðN2;Ma
2Þ as the unique extension of

a third pair, ðN3;Ma
3Þ, and to define a new bracket,

½ðN1;Ma
1Þ; ðN2;Ma

2Þ� ≔ ðN3;Ma
3Þ. All three conditions

can be shown to be true for g-Gaussian vector fields
[22], recovered as a special case (β ¼ 1 and αa ¼ 0) of
the following calculations. To the best of our knowledge, it
is not known whether g-Gaussian vector fields are the only
choice fulfilling all three conditions, but having one such
choice is sufficient for a derivation of the brackets.
We first derive properties (i), (ii), and (iii), found in [22],

using abstract index notation. We write (11) as

0¼nμLvgμν¼nμvρ∂ρgμνþnμgνρ∂μvρþnμgμρ∂νvρ: ð12Þ

The first two terms can be expressed by the Lie bracket of
nμ and vν if we write nμvρ∂ρgμν ¼ vρ∂ρnν − gμνvρ∂ρnμ.
The last term in nμLvgμν can be replaced by a total
derivative using nμgμρ∂νvρ ¼ ∂νðnμvρgμρÞ − vρ∂νnρ. In
addition to the Lie bracket and the total derivative, there
remain two extra terms related to the 2-form dn:

0¼nμLvgμν¼½n;v�μgμνþ∂νðnμvρgμρÞþvρðdnÞρν: ð13Þ

If nμ is hypersurface orthogonal, by the Frobenius
theorem we have dn ¼ n∧w with some 1-form w which
can, without loss of generality, be assumed to be orthogonal
to nμ. For nμnμ ¼ ϵ and the metric in Gaussian form, w ¼ 0

because n ¼ ϵdt is closed. In this case, nμ is hypersurface
orthogonal in a neighborhood of the initial slice by
construction of the Gaussian system. If nμnμ ¼ ϵβ, the
analog of the Gaussian system has an nμ hypersurface
orthogonal only if β is spatially constant. In order to allow
for spatially nonconstant β, we use a Gaussian system
constructed from a unit normal, which would be ~nμ ≔
nμ=

ffiffiffiffiffiffijβjp
if nμnμ ¼ ϵβ. This rescaled normal is extended to

a closed 1-form in its Gaussian system. We can compute
dn ¼ n∧w from the equation d ~n ¼ 0, resulting in
w ¼ − 1

2
β−1ðdβ − ϵjβj−1=2 _βnÞ. The second term, with

_β ¼ ∂β=∂t, is chosen such that nμwμ ¼ 0.
We include one further generalization by relaxing the

usual orthogonality relation to gμνnμXν
a ¼ αa, with fixed

phase-space functions αa allowed to be nonzero. The
components of αa are related to the direction cosines
(hyperbolicus) of nμ with respect to the spatial basis Xν

a.
The new condition can equivalently be written as an
orthogonality relation gμνn0μXν

a ¼ 0 with a redefined
n0μ ≔ nμ − αaXμ

a. With the nonstandard normalization
of nμ, the redefined vector satisfies n0μn0μ ¼ ϵβ − αaα

a ≕
ϵγ. In the Euclidean case, ϵ ¼ 1, we must have γ > 0 and
therefore αaαa < β. The same condition ensures that nμ

and Xμ
a form a basis because the angle between the

direction nμ and the spatial tangent plane spanned
by Xμ

a is less than 90°. In the Lorentzian case, αaαa is
unrestricted.
We construct a Gaussian system as before. The hyper-

surface orthogonal vector is now given by ~n0μ ≔ n0μ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijβ − ϵαaαaj
p ¼ n0μ=

ffiffiffiffiffijγjp
. Computing dn0 ¼ n0∧w

from the equation d ~n0 ¼ 0 now results in w ¼
− 1

2
γ−1ðdγ − ϵjγj−1=2 _γn0Þ. With the redefined normal, (13)

takes the form

0 ¼ n0μLvgμν ¼ ½n0; v�μgμν þ ∂νðn0μvρgμρÞ þ vρðdn0Þρν:
ð14Þ

We use n0μ because we need a normal vector for the
condition of a g-Gaussian vector field. However, we may
decompose a g-Gaussian vector field vμ according to our
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original basis ðnμ; Xν
aÞ or according to the redefined basis

using n0μ instead of nμ:

vμ ¼ Nnμ þMμ ¼ Nn0μ þM0μ; ð15Þ

with Mμ ¼ MaXμ
a and M0μ ¼ Mμ þ NαaXμ

a, or
M0a ¼ Ma þ Nαa. The latter choice simplifies some der-
ivations and is, therefore, employed below, but for full
generality we will transform the final result to a decom-
position with respect to ðnμ; Xν

aÞ.
Wewill need the following ingredients in order to rewrite

(14) with a decomposed vector field vμ. In contrast to the
standard case, n0μn0μ ¼ ϵγ is not a constant because αa and
β may depend on space and time via phase-space variables.
Therefore, for spatial Mμ (or M0μ), ½n0;M�μ has a normal
component given by

n0μn0ν½n0;M�ν
n0κn0κ

¼ 1

ϵγ
n0μðn0νn0ρ∇ρMν − n0νMρ∇ρn0νÞ

¼ −
1

ϵγ
n0μðMνn0ρ∇ρn0ν þ n0νMρ∇ρn0νÞ

¼ −
1

ϵγ
n0μð2Mνn0ρ∇ρn0ν þ n0νMρðdn0ÞρνÞ

¼ −
1

ϵγ
n0μ

�
2Mν

ffiffiffiffiffi
jγj

p
~n0ρ∇ρ

� ffiffiffiffiffi
jγj

p
~n0ν
�

þ 2n0νMρn0½ρwν�
�

¼ 1

ϵγ
n0μn0νn0νMρwρ ¼ n0μMρwρ; ð16Þ

using Mν ~n0ν ¼ 0 and the geodesic property ~n0ρ∇ρ ~n0ν ¼ 0

of the normal in a Gaussian system. With

vρðdn0Þρν ¼ 2ðNn0ρ þM0ρÞn0½ρwν� ¼ ϵγNwν −M0ρwρn0ν;

ð17Þ

we can write (14) as

0 ¼ n0μgμνn0ρ∂ρN þ ½n0;M0�μgμν þ ∂νðNn0μn0ρgμρÞ
þ ϵγNwν −M0ρwρn0ν ð18Þ

or

0 ¼ ½n0;M0�μ þ n0μn0ρ∂ρN þ ϵ∂μðγNÞ
þ ϵγNwμ −M0ρwρn0μ: ð19Þ

The equation can now be split into components parallel
and orthogonal to n0μ. The normal component implies

n0ρ∂ρN ¼ −
1

2

N
γ
n0ν∂νγ ð20Þ

(the contribution from dn0 canceling out with the normal
contribution from ½n0;M0�), while the spatial component
gives

½n0;M0�a ¼ qaμ½n0;M0�μ
¼ −ϵqab∂bðγNÞ − ϵγNwa

¼ −ϵðgradqðγNÞÞa − ϵγNwa: ð21Þ

The full spacetime commutator is

½n0;M0�μ ¼ qμa½n0;M0�a þM0ρwρn0μ; ð22Þ

combining (21) with (16).
With these relations, the hypersurface-deformation

brackets follow immediately from the Lie brackets of
g-Gaussian vector fields. First, in the Gaussian system,
(20) and (22) provide first-order partial differential
equations for N and Mμ or M0μ to be extended into a
neighborhood of the initial slice. [Importantly, all Mμ-
dependent terms cancel out in (20), even with nonstandard
normalization. The equation for N is therefore decoupled
from the equation forMμ.] We can then compute spacetime
Lie brackets of two g-Gaussian vector fields,

½v1; v2� ¼ ½N1n0 þM0
1; N2n0 þM0

2�
¼ ½N1n0; N2n0� þ ½N1n0;M0

2�
þ ½M0

1; N2n0� þ ½M0
1;M

0
2�

¼ ðN1Ln0N2 − N2Ln0N1Þn0 þ ðLM0
1
N2 − LM0

2
N1Þn0

þ N1½n0;M0
2� − N2½n0;M0

1� þ ½M0
1;M

0
2�: ð23Þ

The first term, N1Ln0N2 − N2Ln0N1, is zero even with
the new contributions in (20) for a nonconstant γ.
Similarly, the wa term in (21) does not contribute to
N1½n0;M0

2� − N2½n0;M0
1�. However, the normal contribution

M0ρwρn0μ ¼ − 1
2
γ−1n0μM0ρ∂ργ in (22) does not cancel out

and provides a new normal term in

½v1; v2� ¼
�
LM0

1
N2 − LM0

2
N1 −

1

2γ
ðN1LM0

2
γ − N2LM0

1
γÞ
�
n0

− ϵN1gradqðN2γÞ þ ϵN2gradqðNγÞ þ ½M0
1;M

0
2�

¼ 1ffiffiffiffiffijγjp �
LM0

1

� ffiffiffiffiffi
jγj

p
N2

�
− LM0

2

� ffiffiffiffiffi
jγj

p
N1

��
n0

− ϵγðN1gradqN2 − N2gradqN1Þ þ ½M0
1;M

0
2�:
ð24Þ

The last line can now be transformed from n0μ ¼ nμ − αμ

and M0μ ¼ Mμ þ Nαμ to nμ and Mμ. Inserting the expres-
sions for the primed vectors leads to several extra terms,
most of which cancel out. However, two new contributions
remain:
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½v1; v2� ¼
�

1ffiffiffiffiffijγjp �
LM1

� ffiffiffiffiffi
jγj

p
N2

�
− LM2

� ffiffiffiffiffi
jγj

p
N1

��
þ N1LαN2 − N2LαN1

�
n − ϵγðN1gradqN2 − N2gradqN1Þ

−
ffiffiffiffiffi
jγj

p �
N1LM2

αffiffiffiffiffijγjp − N2LM1

αffiffiffiffiffijγjp
�
þ ½M1;M2�: ð25Þ

By extracting terms parallel to n or the tangent plane, we
write this Lie bracket as bracket relationships between pairs
ðN;MaÞ:

½ð0;Ma
1Þ; ð0;Mb

2Þ� ¼ ð0; ½M1;M2�cÞ ð26Þ

½ðN; 0Þ; ð0;MaÞ� ¼ ð−jγ−1=2jLMðjγj1=2NÞ;
− jγj1=2NLMðjγj−1=2αaÞÞ ð27Þ

½ðN1; 0Þ; ðN2; 0Þ� ¼ ðN1LαN2 − N2LαN1;

− ϵγðN1gradaqN2 − N2gradaqN1ÞÞ:
ð28Þ

The following special cases are of interest:
(i) If αa ≠ 0, there is a new class of modified brackets

which have not been derived explicitly in models of
loop quantum gravity. New features are a transversal
deformation (along a non-normal nμ) contributing to
the bracket of two transversal deformations, and a
spatial diffeomorphism contributing to the bracket of
a transversal deformation and a spatial diffeomor-
phism. If this example is realized by quantum-
gravity effects, it would require the existence of a
preferred spatial direction αa.

(ii) If αa ¼ 0, the bracket of two normal deformations is
a spatial diffeomorphism, as in the classical version,
but with a multiplicative correction function γ ¼ β.
One can obtain the modified brackets (28) by
replacing Ni with

ffiffiffiffiffijγjp
Ni and n0 with n0=

ffiffiffiffiffijγjp
in

the standard brackets, in accordance with the rescal-
ing transformations of the normal keeping Nn0
invariant for (9) to be preserved. However, our
calculation shows more than this because it ensures
that the three conditions required for a meaningful
relation between hypersurface-deformation brackets
and spacetime Lie brackets are still satisfied for
g-Gaussian vector fields with a nonstandard normal.

(iii) If αa ¼ 0 and γ ¼ β is spatially constant, all
derivatives of γ cancel out and the bracket of a
normal deformation and a spatial diffeomorphism
is unmodified. A time-dependent γ therefore leads
only to a multiplicative modification of the standard
brackets, and it appears only in the bracket of two
normal deformations. This is the example (1) found
in models of loop quantum cosmology with first-
order perturbative inhomogeneity.

B. Lie algebroids

The hypersurface-deformation generators do not form a
Lie algebra, owing to the appearance of structure functions.
Structure functions can be elegantly described by the notion
of Lie algebroids, which may be motivated as follows.
Assume that we have a finite number of constraints CI ,
I ¼ 1;…; n, on a Poisson manifold B, which satisfy an
algebra fCI; CJg ¼ cKIJðxÞCK with structure functions
cKIJðxÞ depending on x ∈ B. We can formally rewrite
brackets with structure functions in terms of structure
constants by defining an extended system of infinitely
many constraints:

CI; CIJ ≔ fCI; CJg ¼ cKIJCK

CHIJ ≔ fCH;CIJg ¼ ðfCH; cKIJg þ cLIJc
K
HLÞCK… ð29Þ

The brackets fCI; CJg ¼ CIJ; fCH;CIJg ¼ CHIJ;… of the
extended system then have structure constants.
These constraints span a certain linear subspace of the

space ΓðAÞ of sections α ¼ αðxÞICI of a vector bundle A
over the base manifold B (phase space) with fiber
π−1ðxÞ ≈Rn∋fαðxÞ1;…; αðxÞng. The sections of this
bundle form a Lie algebra by taking Poisson brackets
½α1; α2� ¼ fα1ðxÞICI; α2ðxÞJCJg. Moreover, we can define
a linear map ρ∶ΓðAÞ→ΓðTBÞ;α¼αIðxÞCI ↦fαðxÞICI; ·g
which appears in a Leibniz rule,

½α; gβ� ¼ fαðxÞICI; gðxÞβðxÞJCJg
¼ gðxÞfαðxÞICI; βðxÞJCJg
þ fαðxÞICI; gðxÞgβðxÞJCJ

¼ gðxÞfαðxÞICI; βðxÞJCJg
þ ðρðαðxÞICIÞgðxÞÞβðxÞJCJ

¼ g½α; β� þ ðρðαÞgÞβ; ð30Þ
and ρ is a homomorphism of Lie algebras:

ρð½α; β�Þ ¼ ffαðxÞICI; βðxÞJCJg; ·g
¼ fαðxÞICI; fβðxÞJCJ; ·gg
− fβðxÞJCJ; fαðxÞICI; ·gg

¼ ρðαÞρðβÞ − ρðβÞρðαÞ ¼ ½ρðαÞ; ρðβÞ�; ð31Þ

using the Jacobi identity. The Lie bracket on sections
together with a homomorphism ρ characterize A as a Lie
algebroid [30].
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Definition 1.—A Lie algebroid is a vector bundle A over
a smooth base manifold B together with a Lie bracket ½·; ·�A
on the set ΓðAÞ of sections of A and a bundle map
ρ∶ΓðAÞ → ΓðTBÞ, called the anchor, provided that

(i) ρ∶ðΓðAÞ; ½·; ·�AÞ → ðΓðTBÞ; ½·; ·�Þ is a homomor-
phism of Lie algebras, that is,

ρð½ξ; η�AÞ ¼ ½ρðξÞ; ρðηÞ�;

where ½·; ·� is the commutator of vector fields
in ΓðTBÞ.

(ii) For any ξ, η ∈ ΓðAÞ and for any f ∈ C∞ðBÞ, the
Leibniz identity

½ξ; fη�A ¼ f½ξ; η�A þ ðρðξÞfÞη

holds.
If the base manifold B is a point, the Lie algebroid is a

Lie algebra. Another example for a Lie algebroid is the
tangent bundle TB of a manifold B, with ρ∶ΓðTBÞ →
ΓðTBÞ being the identity map and the Lie bracket of vector
fields as the bracket on sections. The hypersurface-
deformation brackets have been shown in [22] to be
captured by a certain Lie algebroid more specific than
the construction based on (29). This notion can, therefore,
provide useful methods in an analysis of different versions
of hypersurface deformations. In order to identify classes of
equivalent Lie algebroids, one may generalize the notion of
a Lie algebra morphism to the Lie-algebroid case.
Definition 2.—A base-preserving morphism between

Lie algebroids ðA; ½·; ·�A; ρÞ and ðA0; ½·; ·�A0 ; ρ0Þ is a bundle
map Φ∶A → A0 over idB∶B → B0 ¼ B, such that Φ induces
a Lie algebra homomorphism Φ∶ðΓðAÞ; ½·; ·�AÞ →
ðΓðA0Þ; ½·; ·�A0 Þ and satisfies ρ0∘Φ ¼ ρ.
If the induced base map ϕ0 is a diffeomorphism, the

definition can still be used. In such cases, which will be of
interest to us, the bundle map induces a map on sections via
ΦðξÞðyÞ ¼ ξðϕ−1

0 ðyÞÞ for ξ ∈ ΓðAÞ and y ∈ B0. For com-
pleteness, we mention that a Lie-algebroid morphism which
does not preserve the base manifold can be defined as
follows (see, for instance [31]).
Definition 3.—A Lie-algebroid morphism from A → B

to A0 → B0 is a bundle map ϕ∶A0� → A� with induced base
map ϕ0∶B0 → B, such that

(i) The induced map Φ∶ΓðAÞ → ΓðA0Þ, defined by
ΦðξÞðyÞ ¼ ϕ�ξðϕ0ðyÞÞ for y ∈ B0, preserves the
Lie bracket on sections: ½ΦðξÞ;ΦðηÞ� ¼ Φð½ξ; η�Þ
for all ξ; η ∈ ΓðAÞ.

(ii) We have ρ ¼ ϕ0�∘ρ0∘Φ.
We will not use general morphisms in this paper, but

note that an example of a morphism as in the preceding
definition could be used to relate the spacetime structures
underlying general relativity and higher-curvature actions,
respectively. The latter are higher-derivative theories and
have additional canonical degrees of freedom compared

with general relativity; therefore, the base manifolds are not
diffeomorphic. Nevertheless, the hypersurface-deformation
brackets are the same in both settings [32] and could be
used to construct a Lie-algebroid morphism.
From now on, we focus on the specific example of the

algebroid underlying general relativity. We quote useful
definitions and one central result from [22]:

(i) A connected Lorentzian manifold (or spacetime)
ðM; gÞ is called Σ adapted if it admits an embedding
of Σ as a spacelike hypersurface. Such an embedding
is called a Σ space in M, and a pair consisting
of a spacetime and a Σ space in it is called a Σ
spacetime. On every Σ space, we have an induced,
or spatial, metric q ¼ i�g using the embedding
i∶ðΣ; qÞ ↪ ðM; gÞ.

(ii) Coordinate independence leads to the concept of a Σ
universe, an equivalence class [i] of Σ spacetimes
where i∶ðΣ; qÞ ↪ ðM; gÞ and i0∶ðΣ;qÞ↪ ðM0;g0Þ
are equivalent if there is an isometry Ψ∶ðM; gÞ →
ðM0; g0Þ, which preserves the coorientation of Σ and
satisfies Ψ∘i ¼ i0. The set of all Σ universes is
denoted by UΣ. In order to confirm that this
definition is consistent, we pull back g0 along i0
and obtain the same result as before applying the
isometry: ði0Þ�g0 ¼ ðΨ∘iÞ�g0 ¼ i�ðΨ�g0Þ ¼ i�g ¼ q.

(iii) At this point, the relations between a Cauchy
hypersurface Σ and a spacetime M have been
formalized. The next step is to look at the evolutions
of one time slice into another time slice. A time slice
is defined to be an embedding it for a fixed time
parameter t ¼ constant within a one-parameter fam-
ily. Different time slices are related by Σ evolutions,
equivalence classes ½i1; i0� of pairs ði1; i0Þ of Σ
spaces in the same spacetime, where a pair ði1; i0Þ
in M is equivalent to ði01; i00Þ in M0 if there is a
single isometry Ψ∶M → M0 which is consistent
with the coorientations of time slices and which
satisfies bothΨ∘i1 ¼ i01 andΨ∘i0 ¼ i00. The set of all
Σ evolutions is denoted by EΣ.

The set of Σ evolutions, EΣ, forms a Lie groupoid [22]
with elements in UΣ, source map sð½i1; i0�Þ ¼ ½i0�, and
target map tð½i1; i0�Þ ¼ ½i1�, with multiplication given by
½i2; i1�½i1; i0� ¼ ½i2; i0� and inversion by ½i1; i0�−1 ¼ ½i0; i1�.
The definition, therefore, gives rise to an evolution picture
in terms of groupoid multiplication. The Lie algebroid AEΣ
belonging to the Lie groupoid EΣ provides the link between
this formulation and the infinitesimal one used, for in-
stance, in [14]. According to [22], we have the following:
Proposition 1.—The Lie algebroid AEΣ of EΣ is

isomorphic as a vector bundle to the trivial bundle
UΣ × ðΓðTΣÞ ⊕ C∞ðΣÞÞ over the base manifold UΣ.
Proposition 1 tells us that infinitesimal evolutions of an

equivalence class in UΣ are described by (shift) vector
fields in ΓðTΣÞ and (lapse) C∞ functions on Σ. The base
manifold of the Lie algebroid is the space of equivalence
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classes of spatial embeddings. Structure functions of the
classical hypersurface-deformation brackets depend on the
spatial metric, which in turn depends only on the equiv-
alence class of embeddings Σ ↪ M for a given spacetime
metric. Similarly, extrinsic curvature on Σ depends on the
embedding in ðM; gÞ, but it is not invariant under space-
time isometries fixing ðΣ; qÞ. Since the modification
function β may depend on all phase-space variables, we
should refine the equivalence classes to those transforma-
tions that keep both qab andKcd fixed on Σ. However, if the
hypersurface-deformation brackets are modified, it is not
clear whether a spacetime metric structure exists which can
induce a spatial metric. It is then more appropriate to
formulate the Lie algebroid directly over a base manifold of
spatial metrics and extrinsic-curvature tensors on Σ (or the
classical phase space). In fact, [22] indicates the way to
such a formulation using Gaussian representatives.
For an explicit construction of Lie-algebroid brackets and

the anchor, [22] chooses as a representative for a Σ universe a
slicing which is locally of Gaussian form, as in the derivation
of Sec. II A. A representative of a class in UΣ can then be
fixed by specifying the induced metric q instead of the
embedding. The tangent space of the resulting base manifold
of spatial metrics is, at a point q, given by TqUΣ ¼ S2T�Σ,
the space of symmetric tensors identified with Lie derivatives
of the spacetime metric by g-Gaussian vector fields
vμ ¼ Nnμ þMμ: since such vector fields preserve the
Gaussian form, Lvg is equivalent to a change δvq ≔ LMqþ
N _q of just the spatial metric, where _q ¼ Lnq ¼ 2K is
proportional to the extrinsic-curvature tensor. The latter
changes by δvK ¼ LMK þ N _Kðq;KÞ, where _K ¼ LnK is
a function of qab and Kcd via the field equations. (The field
equations had been bypassed on [22] by working with
equivalence classes of the entire neighborhood of embed-
dings of Σ in M.) Notice that the anchor ρ depends on the
field equations of the theory, while the brackets do not.
The anchor map of the Lie algebroid with the gravita-

tional phase space as base manifold is given by ðN;MÞ ↦
ðδNnþMq; δNnþMKÞ. This base manifold and the anchor
have been extended to the space of induced metrics and
extrinsic-curvature tensors, which is necessary if one works
with modified brackets where β depends on qab and Kab.
The same calculations as in Sec. II A imply that the
Lie algebra of g-Gaussian vector fields v leads to a
Lie-algebroid bracket

½ðN1;M1Þ; ðN2;M2Þ�

¼
�

1ffiffiffiffiffiffijβjp �
LM1

� ffiffiffiffiffiffi
jβj

p
N2

�
− LM2

� ffiffiffiffiffiffi
jβj

p
N1

��
;

ϵβðN1gradqN2 − N2gradqN1Þ þ ½M1;M2�
�

ð32Þ

(if αa ¼ 0) once the decomposition vμ ¼ Nnμ þMμ is
introduced.

III. PHYSICS FROM HYPERSURFACE-
DEFORMATION ALGEBROIDS

Using the Lie-algebroid structure of hypersurface defor-
mations, we can now look at possible modified versions
and their relations to the classical brackets. In some cases,
they turn out to be related by algebroid morphisms. We
begin with a review of existing examples for deformed
brackets.

A. Modified brackets

The classical hypersurface-deformation brackets have
been derived from the usual spacetime structure, using, for
instance, infinitesimal spacetime diffeomorphisms in (24).
They are independent of specific solutions to Einstein’s or
modified field equations as long as the theory is based
on Riemannian geometry. For instance, the same brackets
are obtained for higher-curvature actions [32]. In several
effective models of loop quantum gravity, however, modi-
fied versions of the brackets have been found, and it has
not been clear what spacetime structure or what effective
actions they may correspond to. In this subsection, we
discuss several relevant conceptual details of such models,
leaving aside technical features.
Modified brackets have been derived canonically, by

including possible quantum corrections in the classical
constraints and checking under which conditions they still
give rise to a closed set of Poisson brackets. Generically,
quantum corrections suggested by loop quantum gravity,
based on real connection variables, could be implemented
consistently only when the brackets were modified as in
(1). For complex connections, the derivative structure of
the Hamiltonian constraint is different, in that there are
no second-order derivatives of the triad, unlike in real
formulations which have the generic pattern responsible
for signature-change-type deformations [33]. At least in
spherically symmetric models, it is then possible to have
undeformed brackets even in the presence of holonomy
modifications [34]. Such models are less restrictive than the
full theory, and therefore it is not clear whether the full
brackets can be undeformed.
Two main classes of models in which deformed brackets

have been derived are (i) cosmological perturbations [1,35]
where, to linear order, β is a function only of time (via the
background spatial metric and extrinsic curvature) and
(ii) spherically symmetric models [2–4,7] where β may
also depend on the radial coordinate. With so-called
holonomy modifications of the classical dynamics, β
depends on Kab as some kind a of higher-curvature
correction, but only in spatial terms, so that the modifica-
tion is not necessarily spacetime covariant. Detailed
calculations have shown that it is possible to have such
spatial-curvature modifications and still maintain closed
brackets of correspondingly modified hypersurface-
deformation generators, but only when β and the way it
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appears in the equations of motion are restricted. This is the
condition of anomaly freedom. Generically, whenever β
depends on Kab, it changes sign at large curvature if
quantum effects lead to bounded curvature or densities
(so-called bounce models). The same observations have
been found in cosmological and spherically symmetric
models, with agreement also in the specific functional
form of β [36]. There are, however, obstructions in models
with local physical degrees of freedom [37,38], in which
no anomaly-free holonomy-modified versions have been
found yet. (There are also obstructions in some operator
versions of spherically symmetric models that implement
spatial discreteness [39].)
In these two classes of models, two kinds of methods

have been used to provide complementary insights.
Effective calculations proceed by computing Poisson
brackets of classical hypersurface-deformation generators
modified by potential quantum corrections, following a
systematic canonical version of effective-action techniques
[40–43]. Operator methods compute commutators of quan-
tized generators. Also here, there is full agreement between
results from these two different methods: the operator
calculations of [12] in spherically symmetric models
provide the same restrictions on modifications and the
function β as found by effective methods [2]. It is not
known how to implement cosmological perturbations at the
operator level, but there is a set of (2þ 1)-dimensional
models which provide complementary insights. In [8], a
modification function for holonomies was found that shows
the same features related to the change of sign of β; see
also [44].
Other operator calculations in (2þ 1)-dimensional mod-

els [9–11] are only partially off shell at this point and,
therefore, are not able to show the full brackets. Particularly
since they amount to factoring out spatial diffeomorphisms
everywhere except at a finite number of isolated points,
they cannot exhibit holonomy modifications which are
spatially nonlocal. The interesting conclusion of β chang-
ing sign, therefore, cannot yet be tested in this setting.
Nevertheless, these models have confirmed the presence of
modified brackets for metric-dependent modifications.
For instance, Eq. (9.27) in [9] gives a definition of the
right-hand side of the operator equivalent of (1), which
contains an inverse-metric operator with a factor of
ðdet qÞ−1=4 modified by so-called inverse-triad corrections

]45,46 ]. We note that reading off modified brackets from
commutators is not straightforward because, in addition to
the commutator, an effective bracket contains information
about semiclassical states. Defining such states and com-
puting expectation values in them is notoriously difficult
in background-independent quantum-gravity theories.
Nevertheless, it is clear that the naive classical limit of
the equation just cited shows a modification of the classical
bracket. (In the naive classical limit, one replaces operator
factors in the quantized constraints and structure functions

with their expectation values in simple states, thus ignoring
fluctuations and higher moments.)
Some quantization schemes of constrained gravitational

systems represent hypersurface deformations in an indirect
way, after reformulating the classical constraints so as to
make them easier to quantize. In the present context, two
examples are relevant in which one can use reformulations
in order to eliminate structure functions from the constraint
brackets. In [11], (2þ 1)-dimensional gravity is quantized
by writing the bracket of two Hamiltonian constraints in the
schematic form fH½N�; H½M�g ¼ fD½N0a�; D½M0b�g, where
N0a and M0b are shift vector fields related to N and M,
respectively. There are no structure functions on the right-
hand side, and it is possible to represent the bracket relation
without modifications. However, this result does not imply
that the hypersurface-deformation brackets are unde-
formed; in fact, one can check that fH½N�; H½M�g, written
as a single diffeomorphism constraint, has quantum-
corrected structure functions. (The vector fields N0a and
M0b mentioned above depend on the spatial metric and
give rise to new terms in structure functions when
fD½N0a�; D½M0b�g is expressed as a term linear in D.)
Similarly, spherically symmetric systems can be refor-

mulated in a way that partially Abelianizes the constraint
algebra [47,48]. The Hamiltonian constraint is here
replaced by a linear combination C½L� ≔ H½L0� þD½L00�,
with L0 and L00 suitably related to L, such that
fC½L1�; C½L2�g ¼ 0. Structure functions are thus elimi-
nated from the constrained system ðC;DÞ, and the brackets
can be represented without quantum corrections in their
coefficients. However, if one tries to find hypersurface-
deformation generators of quantum constraints with the
correct classical limit, it turns out that this is possible
only if the hypersurface-deformation brackets are
deformed [37,38].
Since all of these examples are obtained after quantizing

generators of normal deformations with respect to nμ such
that gμνnμnν ¼ ϵ and the vector field nμ is not subject to
quantum corrections, the deformed algebra refers to a unit
normal vector. With such modified brackets—but standard
normalization—the spacetime considerations of [14] no
longer apply and, therefore, a nonclassical spacetime
structure seems to be realized.
The new brackets, in general, cannot be viewed as

describing deformations of hypersurfaces in a
Riemannian spacetime with metric gμν. They do, however,
determine a well-defined canonical theory in which one
can, in principle, solve the constraints and compute gauge-
invariant observables, which is all that is needed for
physical predictions. Importantly, the brackets are still
closed, which is the challenging part of their constructions.
If the brackets were not closed, the models would be
anomalous and inconsistent because gauge transformations
would be violated and results would depend on the choice
of coordinates.
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Modified brackets can be formulated as a Lie algebroid
over the space of pairs of symmetric tensor fields ðqab; KcdÞ
with a positive-definite qab. The inverse of qab, as well as
Kab through possible modifications in β, appears in the
structure functions of the constraint brackets, but they
together play the role only of phase-space functions, which
need not have a geometrical interpretation as spatial metric
and extrinsic curvature associated with a slice Σ in
spacetime ðM; gÞ. Instead of defining these spatial tensors
in terms of the embedding functions XðxÞ and a spacetime
metric gμν, the only option is to view qab and Kab as
independent phase-space degrees of freedom on which the
constraints and the structure functions depend. The modi-
fication function must be covariant under transformations
with brackets (2), (3), and (1). Particularly since these
brackets contain infinitesimal spatial diffeomorphisms as a
subalgebra, β must be a spatial scalar. In the modified case,
the theory is not necessarily standard spacetime covariant,
but, if the brackets close, β and the resulting theory are
covariant under transformations generated by Poisson
brackets with the modified constraints. In the absence of
a spacetime picture, the physical meaning of qab and Kcd is
supplied by how they appear in canonical observables. The
latter have a known interpretation in the classical limit of
β → 1 (low curvature), which is extended to nonclassical
regimes in an anomaly-free deformed theory. Alternatively,
one may employ field redefinitions such that a relation
of Lie-algebroid elements to spacetime metrics becomes
possible. We discuss two possible types in the following
subsections.

B. Base transformations

In (1), β always appears in combination with the inverse
of qab, whose components can be used as coordinates on
the base manifold along with the components of Kab.
We can define a transformation of the base manifold by
mapping ðqab; KcdÞ to ðjβj−1qab; KcdÞ and can extend it
to a fiber map ðqab; Kcd; N;MeÞ ↦ ðjβj−1qab; Kcd; N;MeÞ.
Here, the fiber coordinates N and Me as well as Kcd are
unchanged, while qab absorbs jβj. As long as β ≠ 0,
the base map is a diffeomorphism and a well-defined
Lie-algebroid morphism is obtained, eliminating jβj from
the brackets. The only parameter that cannot be absorbed is
sgnβ because qab is required to be positive definite and,
especially, invertible.
We may then consider jβj−1qab as the spatial metric on a

spatial slice in a spacetime with the line element

ds2 ¼ ϵϵβN2dt2 þ jβj−1qabðdxa þMadtÞðdxb þMbdtÞ;
ð33Þ

which cannot be obtained generically by a coordinate
transformation from (4). (If this were possible, one
could eliminate the scale factor a ¼ jβj−1=2 of a

Friedmann-Robertson-Walker metric by a coordinate trans-
formation.) The extrinsic curvature of a t ¼ constant slice
in (33) is not equal to Kab. However, we can use the field
equations of the modified theory in order to relate Kab to
_qab ¼ Lnqab. Using the standard equation for extrinsic
curvature computed from (33), a relationship between Kab
and extrinsic curvature is obtained, which may not be the
identity.
The new variables ðjβj−1qab; KcdÞ are no longer canoni-

cal coordinates on the base manifold. Noncanonical base
coordinates do not make a difference for a Lie algebroid,
which, in general, does not even have a Poisson structure
on its base. However, we need a Poisson structure on the
base manifold in order to derive the dynamics generated
by the constraints, and for this it is useful to have a
canonical set of variables. Modifying the map
ðqab; KcdÞ ↦ ðjβj−1qab; KcdÞ such that it becomes canoni-
cal is possible in some models [21], but it may be
complicated in general.
While base transformations can map modified brackets

to the classical version—as long as β does not change
sign—it is not easy to derive general, theory-independent
effects because the interpretation of Kab depends on the
dynamics, and there may be no simple canonical sets of
variables. It turns out that general aspects of physical
implications of the absorption are easier to discern if one
uses morphisms that originate from fiber maps. We will
be able to do so by absorbing jβj in the normalization
condition, at least partially, allowing us to discuss the
possible physical implications in general terms.

C. Change of normalization as algebroid morphism

One usually expects that the classical theory can be
recovered when β approaches one in some regime, such as
low curvature. However, as already mentioned, the classical
theory can be described with a more-general β if one uses
nonstandard normalizations gμνnμnν ¼ ϵβ of normal vec-
tors to hypersurfaces. Even the classical brackets can,
therefore, be modified without changing the implied
physics. Although it is customary to assume the normal
vector nμ to be normalized to ϵ ¼ �1, depending on the
signature, this choice is a mere convention and one may as
well introduce a different normalization. Thus, the require-
ment of having the correct classical limit does not restrict β
much, except that β should not be identically zero.
Sincewe know from Sec. II A that, for a spatially constant

β, the hypersurface-deformation brackets belong to a Lie
algebroid, irrespective of how thenormal is normalized, there
are no further conditions on β from the Jacobi identity. As in
our explicit derivation of the brackets, we may obtain a
deformation by using a nonstandard normalization of the
normal vector field in classical general relativity.
We introduce a bundle mapΦwith fiber map ðN;MaÞ ↦

ð ffiffiffiffiffiffijβjp
N;MaÞ and the identity as base map. It obeys
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½ΦððN1; 0ÞÞ;ΦððN2; 0ÞÞ� ¼
h� ffiffiffiffiffiffi

jβj
p

N1; 0
�
;
� ffiffiffiffiffiffi

jβj
p

N2; 0
�i

¼ ð0; jβjMa
12Þ ¼ Φðð0; jβjMa

12ÞÞ
¼ Φð½ðN1; 0Þ; ðN2; 0Þ�βÞ; ð34Þ

where Ma
12 ¼ qabðN1∂bN2 − N2∂bN1Þ and we have more

specifically denoted the modified bracket by ½·; ·�β, while
½·; ·� is the classical bracket. The anchor is preserved
because Nnμ ¼ ffiffiffiffiffiffijβjp

~nμ with a nonstandard normal ~nμ,
such that gμν ~nμ ~nν ¼ 1=jβj. If β is spatially constant, as in
models of first-order cosmological perturbations, modified
brackets of sections in the Lie algebroid A are mapped to
the classical brackets on A0, with the required anchor
because Nnμ ↦ ðN=

ffiffiffiffiffiffijβjp Þnμ ¼ N ~nμ. With a spatially
dependent β, the existence of a morphism is less clear
because fH½N�; Ha½Ma�g is not modified in effective
models of loop quantum gravity, while it would change
in (24). Fiber transformations are, therefore, less general
than base transformations in mapping modified brackets to
the classical ones.
The fiber map just introduced is valid only if β has a

constant sign. When β is of an indefinite sign, no
β-absorbing morphism can exist: for opposite signs of β,
the corresponding groupoids are inequivalent because their
compositions are concatenations of slices in Lorentzian
spacetime and the four-dimensional space of the Euclidean
signature, respectively.
For a spatially constant β > 0, we have a Lie-algebroid

morphism between modified and unmodified brackets,
irrespective of where the deformation function β originates.
In the modified case, we then have the classical spacetime
structure after applying the morphism that absorbs β in the
normalization. But the classical structure is obtained after a
field redefinition: the spacetime metric obtained from qab is
not of the standard canonical form but reads

ds2 ¼ ϵβN2dt2 þ qabðdxa þ NadtÞðdxb þ NbdtÞ; ð35Þ

depending, in general, on qab and Kab. This line element is
conformally related to (33).

D. Equations of motion

When we interpret hypersurface deformations as actual
moves in spacetime, we refer to time-evolution vector fields
and, therefore, to coordinate structures. Spacetime coor-
dinates are not quantized in canonical quantum gravity,
and, therefore, the vector field should not receive quantum
corrections if there is a classical manifold picture for
the effective theory. Deformed brackets with β > 0 can
sometimes be mapped to the classical spacetime structure
in terms of hypersurface deformations, but this does not
necessarily lead to the same physics in terms of time
evolution.

For a classical deformation with standard normalization,
we use

τμ ¼ δXμ ¼ δN ~nμ þ δNaXμ
a ð36Þ

in order to identify time deformations, while, in the
classical case with nonstandard normalization, we have

δXμ ¼ δNβnμ þ δNaXμ
a; ð37Þ

with nμ ¼ ffiffiffiffiffiffijβjp
~nμ. These vector fields must be the same:

changing the normalization of the normal vector should
not affect the relative position of two hypersurfaces Xμ

and Xμ þ δXμ embedded in spacetime. Thus, the two time-
evolution vector fields have to be the same, and it follows
that the infinitesimal lapse function δNβ of the modified
theory must be given by

δNβ ¼
1ffiffiffiffiffiffijβjp δN: ð38Þ

1. Classical theory with nonstandard normalization

Classically, we have standard hypersurface-deformation
brackets with the normalization condition gμνnμnν ¼ ϵ, and
we know, from [14], that second-order equations of motion
for the metric are the classical field equations of general
relativity. However, we may change the normalization
condition to gμνnμnν ¼ ϵjβj. The theory is still classical,
but the generator of normal deformations is rescaled.
Accordingly, the hypersurface-deformation brackets are
modified. Since the physics is insensitive to our choice
of normalization, we should be able to recover Einstein’s
field equations from the new brackets.
In [14,49] the Lie derivative with respect to the normal

vector field plays an important role in the derivation of
possible Hamiltonian constraints consistent with the brack-
ets, and hence in the derivation of the equations of motion.
One obtains a partial differential equation which the
Hamiltonian constraint, as the generator of normal defor-
mations, must obey [14], and, similarly, there is a related
partial differential equation for the Lagrangian [49]. If the
brackets are modified, the differential equation is changed
by a new coefficient β. For instance, a metric-dependent
Lagrangian L½qabðxÞ; KabðxÞ� consistent with constraints
satisfying (1) must satisfy the functional equation [15]

δLðxÞ
δqabðx0Þ

Kabðx0Þ þ 2ð∂bβÞðxÞ
∂LðxÞ
KabðxÞ

∂aδðx; x0Þ

þ 2βðxÞ ∂LðxÞ
∂KabðxÞ

∂a∂bδðx; x0Þ − ðx ↔ x0Þ ¼ 0; ð39Þ

where Kab ¼ 1
2
Lnqab is taken with a nonstandard normal

nμ. The normal derivative is subsequently written as a Lie
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derivative along τμ in order to arrive at equations of motion
with respect to the time-evolution vector field. For the
classical equations to result in this second case, in which
the algebroid and the normalization are modified in such a
way that we are still dealing with the classical theory, the
function β appearing in nμ with nonstandard normalization
(and therefore in the Lie derivative Ln as well) must cancel
the function β appearing in the modified brackets. We will
make use of the presence of such cancellations in our
discussion of the modified case.

2. Modified theory

In models of loop quantum gravity, the hypersurface-
deformation brackets are modified. However, since one sets
up the models in the standard canonical formulation, the
normalization gμνnμnν ¼ ϵ is preserved. Since the normal
does not depend on phase-space variables and is not
quantized, the normalization convention does not change.
Yet the brackets are modified. This case is, therefore,
different from simply rescaling the normal vector.
Nevertheless, one can understand the resulting structures
by rescaling the normal after new brackets have been
obtained from quantum effects. For a spatially constant β, a
morphism to the classical brackets is obtained. By applying
the preceding arguments, we nevertheless expect non-
classical equations of motion: there is a function β from
the modified brackets appearing in the Hamiltonian con-
straint or the Lagrangian regained from the brackets, but
now there is no compensating for β in the normal Lie
derivative in relation to the τμ derivative because it is
defined with respect to the standard normal vector nμ.
The dynamics is, therefore, modified, which is consistent

with the results of several detailed investigations of
cosmological [6,50–57] and black-hole consequences
[3,4,58,59] in terms of physical, coordinate-independent
effects. An open question has been whether one can
introduce a modified effective spacetime metric which is
generally covariant in the standard sense, or whether the
deformed algebroid modifies this symmetry and leads to an
entirely new spacetime structure.
For a spatially constant β, we know that deformed

brackets can be mapped to classical brackets by a Lie-
algebroid morphism so long as β does not change sign. In
terms of spacetime geometries, rescaling the normal vector
nμ to ~nμ ¼ jβj−1=2nμ then leads us back to the unmodified
brackets. We already know that this algebroid implements
standard spacetime covariance in the canonical formalism.
Therefore, we see, in qualitative agreement with [21], that a
field redefinition allows us to restore the undeformed
brackets, and consequently general covariance in the
classical form. The equations of motion are, nevertheless,
different from the classical ones because we moved the β
appearing in the modified brackets into the new normal
vector, which is not canceled out when we finally switch to
equations of motion with respect to τμ.

IV. CONSEQUENCES

Hypersurface-deformation brackets can be modified by
replacing the usual normalization of the normal vector by
gμνnμnν ¼ ϵβ, while the time-evolution vector field must be
the same for the modified as well as the unmodified theory.
These two facts raise the question of whether it is possible
to distinguish between classical modifications from non-
standard normalizations and modifications induced by
quantum-gravity theories. We have answered this question
in the affirmative because equations of motion with respect
to a fixed time-evolution vector field do change.

A. Field equations and matter couplings

If β has a definite sign and is spatially constant, one can
absorb the bracket modifications in a nonstandard normali-
zation. Gauge transformations generated by the algebroid
then amount to the standard symmetries of covariance.
Accordingly, regained constraints or Lagrangians must
belong to the canonical theory of some higher-curvature
action, assuming that a local effective action exists.
We expect higher-curvature effective actions when a

local derivative expansion exists. In canonical terms, a
nonlocal quantum effective action is obtained by coupling
expectation values to independent quantum moments
[40,41], which formally play the role of auxiliary fields
in a nonlocal theory. Only when moments behave adia-
batically can they be eliminated from the equations of
motion, and a local effective action results. As shown in
[42], moments do not appear in structure functions such as
β here, but they lead to higher-order constraints which
restrict the moments as independent variables. For a local,
higher-curvature version of the effective theory, one would
have to solve for almost all of the higher-order constraints,
which may not always be possible. A canonical effective
theory still exists.
However, even if we have a standard higher-curvature

effective action after a field redefinition, there are addi-
tional effects from modified brackets. The Hamiltonian
constraint in such a system generates deformations along a
nonstandard normal vector. Therefore, when equations of
motion are written with respect to a time coordinate, they
belong to an effective action in which time derivatives
are multiplied by a factor of β. The main consequence of
modified algebroids is, therefore, a nonclassical propaga-
tion speed, which is in agreement with the specific results
obtained in [5,6,35,50,51,54] for cosmological scalar
and tensor modes. From (35), we have the kinetic term
ϕ̈=β − Δϕ in an equation of motion for a scalar field on the
effective Riemannian spacetime. This result is in agreement
with a related one derived in [15] for a metric-dependent β,
following [15,49]. At the same time, we have generalized
the result of [15] by extending it to β functions that may
depend on extrinsic curvature, as in the cases of interest for
signature change.
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One can turn these arguments around and try to generate
explicit consistent models with modified brackets by
introducing nonstandard normalizations in different
classical actions or constraints. More generally, we could
relax the orthogonality condition between nμ and Xμ

a in
order to find models with the new modified brackets (27)
and (28), with αa ≠ 0. The recent analysis of [60] suggests
that such modified versions of constraints will have to be of
higher than second order in extrinsic curvature.

B. (Non)existence of an effective
Riemannian structure

Sometimes, the classical spacetime structure is assumed
in toy models of quantum gravity, without checking closure
of modified constraints. In fact, one should consider such
constructions not as models of quantum gravity but of
quantum-field theory on (modified) curved spacetimes
because quantum gravity is usually understood as including
a derivation of nonclassical spacetime structures, in addi-
tion to a modified dynamics. For instance, some construc-
tions [24–26] use perturbation equations on a modified
background q̄ab subject to evolution equations with quan-
tum corrections. Perturbations are gauge fixed or combined
into gauge-invariant expressions before quantization, and
therefore one assumes the classical spacetime structure. As
confirmed here, an effective formulation with the classical
spacetime structure does exist, as long as β > 0, but only
after a field redefinition using either base transformations
or, in the case of a spatially constant β as it is realized in
first-order cosmological perturbation theory, fiber trans-
formations of the hypersurface-deformation algebroid.
There are, therefore, two important caveats regarding

assumptions such as those made in [24–26]. First, if the
evolution of q̄ab is modified, a consistent description of
spacetime transformations for inhomogeneous modes
requires a modified N, which can only be computed if
one knows a consistent set of β-modified brackets.
(The lapse function of the postulated spacetime metrics
in [24–26] do have quantum corrections, but in an
incomplete way that ignores the field redefinition required
for a consistent spacetime structure.) The modified N, as
opposed to the classical N, then implies further quantum
corrections not directly present in the evolving q̄ab. One
can, of course, partially absorb

ffiffiffiffiffiffijβjp
in N0 ¼ ffiffiffiffiffiffijβjp

N by
introducing a new time coordinate t0 with dt0 ¼ ffiffiffiffiffiffijβjp

dt.
However, the dependence of q̄ab on this new t0 is different
from the original dependence on t, so additional quantum
corrections are present.

C. Signature change

Specifically, as the second caveat, the signature of the
effective spacetime metric can be determined only if one
knows the sign ϵϵβ by which βN2dt2 enters the metric (35)
in the equivalent Riemannian spacetime structure, which

can differ from the classical value if β does not have definite
sign. The sign, in turn, affects the form of well-posed partial
differential equations on the background; see, for instance,
[33,61]. In the presence of a signature change, there is no
deterministic evolution through large curvature. Also,
even if one tries to ignore this conclusion for a formal
analysis of the resulting phenomenology, no viable results
are obtained [62].
If β is of indefinite sign, it can no longer be absorbed

globally. The classical spacetime structure can be used only
to model disjoint pieces of a solution in which β has a
definite sign, corresponding to Lorentzian spacetime
patches when β is positive and Euclidean spatial patches
when it is negative. We then have nonisomorphic Lie
algebroids. A nonconstant sign of β therefore triggers
signature change [15,61,63], with the effective signature
locally given by ϵϵβ. Globally, such a solution of an
effective quantum-gravity model can be described consis-
tently only with a modified algebroid, in which all structure
functions are continuous and well defined even when β
goes through zero. It is no longer possible to absorb β
globally and, therefore, a new version of quantum space-
time is obtained.
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APPENDIX: ADM AND GEOMETRODYNAMICS
DERIVATION OF NONSTANDARD

CLASSICAL CONSTRAINTS

We derive the results of Sec. II A for αa ¼ 0 using more
familiar methods.

1. ADM

Given a spacetime metric gμν and a time-evolution vector
field of the form (9) with respect to a foliation, we obtain
the canonical form of the metric by expanding gμνdXμdXν

using

dXμ ¼ ∂tXμdtþ ∂aXμdxa ¼ ðNβnμ þ NaXμ
aÞdtþ Xμ

adxa;

ðA1Þ

with Nβ ¼ N=
ffiffiffiffiffiffijβjp

. If nμ has the nonstandard normaliza-
tion gμνnμnν ¼ ϵβ, the metric components are

gtt ¼ NaNa þ ϵβN2
β ¼ NaNa þ ϵϵβN2;

gat ¼ Na; gtb ¼ Nb; gab ¼ qab: ðA2Þ

With respect to a nonstandard normal, we define the
tensor
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Kμν ¼
1

2
Lnqμν: ðA3Þ

It differs from the extrinsic-curvature tensor by a factor offfiffiffiffiffiffijβjp
, as can be seen from the alternative version

Kμν ¼
1

2Nβ
Lτ− ~Nqμν ðA4Þ

derived from (A3) using (9). The relationship between
Kab ¼ KμνX

μ
aXν

b and the τ derivative _qab ¼ Lτqab is,
therefore,

Kab ¼
1

2Nβ
ð _qab − L ~NqabÞ: ðA5Þ

In order to relate Kab to the momentum of qab, we
need the gravitational action S ¼ R

dy4
ffiffiffiffiffiffiffiffiffiffiffiffiffij det gjp

R, in
new variables defined with respect to a nonstandard
normal. (We set 16πG ¼ 1.) The standard derivation from
Gauss-Codazzi equations gives us the spacetime Ricci
scalar

R ¼ R −
ϵ

β
ðKabKab − K2Þ; ðA6Þ

expressed as a combination of the spatial Ricci scalar R
and Kab. (See also [64], where a time-dependent β has
been assumed to study classical signature change.)
Together with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ðX�gÞj

p
¼ N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgabÞ

p
¼ Nβ

ffiffiffiffiffiffi
jβj

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqabÞ

p
; ðA7Þ

all contributions to the Einstein-Hilbert action that appear
are written in terms of new variables. The momentum of
qab is

Pabðt; xÞ ¼ δS
δ _qab

¼ −
ϵϵβffiffiffiffiffiffijβjp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqabÞ
p

ðKab − qabKc
cÞ; ðA8Þ

while the momenta P of N and Pa of Na vanish as usual.
[The factor of ϵϵβ=

ffiffiffiffiffiffijβjp ¼ ðϵ=βÞðN=NβÞ in (A8) is a
result of combining ϵ=β in (A6) with N in (A7) and one of
the Nβ’s obtained after converting Kab to _qab using (A5).]
For the primary constraints P ¼ 0 and Pa ¼ 0 to be
preserved in time, we obtain as secondary constraints
the diffeomorphism and Hamiltonian constraints

Ha ≔ −2qab∇bPbc ðA9Þ

H ≔ −
ϵϵβ

ffiffiffiffiffiffijβjp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqabÞ

p
�
qacqbd −

1

2
qabqcd

�
PabPcd

−
ffiffiffiffiffiffi
jβj

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqabÞ

p
R: ðA10Þ

These constraints have closed Poisson brackets corre-
sponding to (24). In terms of the extrinsic curvature
instead of the momentum, the first term of (A10) has a
factor of ϵβ=

ffiffiffiffiffiffijβjp
, in agreement with expressions

regained from modified brackets [15], following the
methods of [14,49].

2. Geometrodynamics

Using the formalism of hyperspace [65–67], the hyper-
surface-deformation brackets can be derived from infini-
tesimal deformations, irrespective of the dynamics. An
infinitesimal deformation δXμ may be decomposed as

δXμ ¼ δNβnμ þ δNaXμ
a: ðA11Þ

The (nonstandard) normalization and orthogonality rela-
tions gμνnμnν ¼ ϵβ and gμνnμXν

a ¼ 0 allow us to compute
δNβ and δNa from δXμ:

δNβ ¼
ϵ

β
nμδXμ; δNa ¼ Xa

μδXμ: ðA12Þ

Here, we do not refer to τμ or δN because the present
geometrical considerations refer to what is considered the
normal vector with a nonstandard normalization.
An arbitrary functional F ¼ F½XμðxaÞ� on hyperspace

changes if we deform the hypersurface by δNβðxÞ along a
normal geodesic and stretch it by δNaðxÞ. Using (A11), we
write the infinitesimal change of F as

δF ¼
Z
σ
d3xδXμðxÞ δ

δXμðxÞF

¼
Z
σ
d3xðδNβðxÞρ0ðxÞ þ δNaðxÞρaðxÞÞF; ðA13Þ

with the generators of pure deformations and pure stretch-
ings given by

ρ0ðxÞ ≔ nμðXðxÞÞ δ

δXμðxÞ ;

ρaðxÞ ≔ Xμ
aðxÞ δ

δXμðxÞ : ðA14Þ

These generators can be interpreted as the Lie-algebroid
anchor ρ∶ΓðAÞ → ΓðTBÞ, with base manifold B being the
space of embeddings X∶σ → M, expressed in a local basis:
in a neighborhood U ⊂ B, we introduce a smooth chart
ðU; fxagÞ of the manifold B and a local frame feig for
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sections of the Lie algebroid π−1ðUÞ ⊂ A. Then there exist
smooth functions ckij; ρ

a
i ∶B → R, such that

½ei; ej�A ¼ ckijek; ρðeiÞ ¼ ρai
∂
∂xa : ðA15Þ

These functions are called the structure functions of the
Lie algebroid with respect to the local frame feig and the
local coordinates fxag. For the hypersurface-deformation
algebroid, ρ0 ¼ ρðe0Þ and ρa ¼ ρðeaÞ.
There are infinitely many generators ρ0ðxÞ and ρaðxÞ

which span the tangent space to hyperspace at each
hypersurface. Compared to the coordinate basis δ=δXμ,
an important advantage of this basis is its independence of
the choice of spacetime coordinates Xμ. We can, therefore,
describe the kinematics in terms intrinsic to the hyper-
surfaces. However, the basis is nonholonomic: commuta-
tors of the generators ρ0ðxÞ and ρaðxÞ do not, in general,
vanish.
In order to establish the commutators of deformation

generators (A14), we have to know how the normal vector
changes under an infinitesimal deformation. To this end,
the formula

δnμ ¼ −ϵXμaδN;a þ KabXμaδNb

− Γμ
ρσX

ρ
cnσδNc − Γμ

ρσnρnσδN ðA16Þ

was used in [14,65] in order to compute the commutator
of normal deformations ρ0ðxÞ in which δnμðxÞ=δXνðx0Þ
appear. Only the first term in (A16) contributes to this
commutator, while all other terms are irrelevant for this
purpose because they present variations proportional to
delta functions. Since delta functions are symmetric in

their arguments, they will cancel out thanks to the anti-
symmetry of a commutator. The variation given by the
first term in (A16), on the other hand, is proportional to
δ;aðx; x0Þ ¼ −δ;a0 ðx0; xÞ, which is antisymmetric and does
contribute.
The first term in (A16) follows from a simple

consideration that can easily be extended to nonstandard
normalizations of nμ. One can compute the full (A16) in
terms of its normal and tangential components by varying
gμνnμnν ¼ ϵ and gμνX

μ
anν ¼ 0. Since the first term in (A16)

does not contribute to the normal component nμδnμ, it must
result from δðgμνXμ

anνÞ ¼ 0. This variation has three terms,
so the equation can be solved for

Xaμδnμ ¼ −nμδXμ;a − Xμ
anνδgμν

¼ −ðnμδXμÞ;a − nμ;aδXμ − Xμ
anνδgμν: ðA17Þ

The metric variations in the last term, as well as nμ;a in the
second term, can be written in terms of the extrinsic
curvature and the Christoffel symbol, while the first term
provides the first part of (A16) upon using (A12) with
β ¼ 1. For β ≠ 1, the first term in (A16) is replaced by
−ϵðβδNβÞ;a, or −ϵβðδNβÞ;a if the derivative of β is
combined with the last term in (A16) which drops out
of commutators. As a result, there is a factor of β in the
commutator

½ρ0ðxÞ; ρ0ðx0Þ� ¼ ϵβðqabðxÞδ;aðx; x0ÞρbðxÞ
− qabðx0Þδ;aðx0; xÞρbðx0ÞÞ: ðA18Þ

This result agrees with (24).
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[65] K. V. Kuchař, J. Math. Phys. (N.Y.) 17, 777 (1976).
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