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The solution to the linearized Einstein equation in de Sitter (dS) spacetime and the corresponding
two-point function are explicitly written down in a gauge with two parameters “a” and “b”. The
quantization procedure, independent of the choice of the coordinate system, is based on a rigorous group
theoretical approach. Our result takes the form of a universal spin-two (transverse-traceless) sector and a
gauge-dependent spin-zero (pure-trace) sector. Scalar equations are derived for the structure functions of
each part. We show that the spin-two sector can be written as the resulting action of a second-order
differential operator (the spin-two projector) on a massless minimally coupled scalar field (the spin-two
structure function). The operator plays the role of a symmetric rank-2 polarization tensor and has a
spacetime dependence. The calculated spin-two projector grows logarithmically with distance and also no
dS-invariant solution for either structure functions exist. We show that the logarithmically growing part and
the dS-breaking contribution to the spin-zero part can be dropped out, respectively, for suitable choices of
parameters “a” and “b”. Considering the transverse-traceless graviton two-point function, however, shows
that dS breaking is universal (cannot be gauged away). More exactly, if one wants to respect the covariance
and positiveness conditions, the quantization of the dS graviton field (as for any gauge field) cannot be
carried out directly in a Hilbert space and involves unphysical negative norm states. However, a suitable
adaptation (Krein spaces) of the Gupta-Bleuler scheme for massless fields, based on the group theoretical
approach, enables us to obtain the corresponding two-point function satisfying the conditions of locality,
covariance, transversality, index symmetrizer, and tracelessness.
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I. INTRODUCTION

The relevance of de Sitter spacetime (for a review see e.g.
[1]) to certain cosmological models such as inflationary
epoch during the early moments of the Universe [2–6] has
brought increasing attention to quantum field theory on this
background in recent years. Moreover, cosmological obser-
vations show that the expansion of our Universe is accel-
erating, so that, it might evolve into a de Sitter stage in the
future [7]. Another interest in dS space stems from the fact
that it is the maximally symmetric solution of Einstein
equation with positive cosmological constant. Therefore,
the study of the linear perturbations of Einstein gravity
around the de Sitter metric (the dS linear gravity) and the
associated graviton two-point functions, which represent
correlation of vacuum fluctuation in the gravitational field,
are of particular importance in dS space.
Investigation of graviton two-point function in de Sitter

spacetime has been performed extensively in the literature
from various point of views [8–14]. One of the main
subjects in analyzing graviton propagator, more exactly, the
question that whether infrared (IR) divergences are
restricted to the gauge sector of linearized gravity or they
also appear in the physical sector, has been the origin of

controversy for over three decades. Many authors have
studied the subject and utilized IR divergences associated
with the graviton propagator, which explicitly break de
Sitter invariance, to obtain physical results, e.g., instability
in de Sitter space, decrease of cosmological constant in
time,1 inflationary cosmology, and change in some cou-
pling constants [17–32]. On the other side and quite
contrary to the above point of view, many believe that
the IR-divergent part of the graviton two-point function is
gauge artifact and hence is not physical. To review the
viewpoint for various gauges and coordinate systems, one
can refer to [33–44].
In this paper, neglecting the graviton-graviton inter-

actions, we proceed with the examination of the graviton
two-point function in de Sitter spacetime through a group
theoretical approach. More precisely, we generalize our
previous work [45] and write the linearized Einstein
equation in a gauge with two parameters “a” and “b”.
This procedure not only allows us to handle the logarithmic
divergences of the spin-two projector and the dS-breaking
contribution to the spin-zero part of the graviton two-point
function, but also provides the opportunity to suppress the
mathematical shortcomings in the gauge-fixing procedure
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1For a criticism about some obtained results and refutation see
for instance [15,16].

PHYSICAL REVIEW D 94, 104030 (2016)

2470-0010=2016=94(10)=104030(15) 104030-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.104030
http://dx.doi.org/10.1103/PhysRevD.94.104030
http://dx.doi.org/10.1103/PhysRevD.94.104030
http://dx.doi.org/10.1103/PhysRevD.94.104030


of our previous work (for a detailed discussion about
these shortcomings, refer to Sec. III-B, part 1. Comment
on the gauge-fixing procedure in [45]). Moreover, we
remarkably show that the IR divergences associated with
the transverse-traceless graviton two-point function are
completely independent of the choice of the gauge-fixing
parameters.
At the beginning, in Sec. II, we start from the

linearized Einstein equation given in de Sitter intrinsic
coordinates and rewrite it by using the ambient space
formalism in terms of the coordinate-independent de
Sitter-Casimir operators. With respect to the spectral
values of these Casimir operators, the unitary irreducible
representations (UIRs) of the dS group are classified
[46,47]. Now, it is our goal to find an expression for the
(linear) gravity, the field solution, in terms of covariant
derivative projection operators acting on some scalar
functions.
The transverse-traceless part of the field (KTT

αβ ðxÞ) is
considered in Secs. III-A and B (the pure-trace sector will
be investigated in Sec. IV). In this regard, first, the group
theoretical content of the field equation is studied. Then,
the source of the mathematical shortcomings of the
previous work are explicitly discussed. More exactly, we
address that how the mistake was entered and more
importantly how by utilizing a proper gauge-fixing pro-
cedure the main achievements of the previous work is
preserved. Indeed, in complete agreement with the context
of the de Sitter group theory [48,49], and previous works
(see for instance [41,42]), we show that the value a ¼ 5=3
corresponds to the minimal (or “optimal”) choice, without
any logarithmic singularity. Choosing a ¼ 5=3, we con-
struct the transverse-traceless part of the field solution in
terms of the massless minimally coupled (MMC) scalar
field ϕm and a projection operator

KTTðxÞ ¼ DTTðx; ∂Þϕm:

The solutions, however, do not constitute a closed set
under the action of the dS group for any gauge field.2

Actually, an explicit computation gives that the problematic
element of the solution is quite relevant to its structure
function (the MMC scalar field). To present a deeper
insight into the problem, we notice that comprehensive
studies of the quantization of the MMC scalar field have
shown that (see for instance [50] and references therein) in
obtaining a covariant construction of the propagator func-
tion for the field on the Euclidean continuation of dS space,
S4, one confronts the obstacle that the Laplace-Beltrami
operator □H has a normalizable zero-frequency mode
(more accurately a constant mode). Therefore, no dS-
invariant propagator inverse for the wave operator □H

exists; the infrared divergence appears.3 It should be
emphasized that this result is not an artifact of the
Euclidean continuation since Allen has proved that
[51,52] no de Sitter covariant Fock vacuum for the
MMC scalar field exists. Note that, the norm of the so-
called zero mode is positive; nonetheless, it is not part of
the Hilbertian structure of the one-particle sector [53–56].
More clearly, the action of the dS group on it generates
all the negative frequency solutions (with regard to the
conformal time) of the field equation. On the other
hand, another difficulty appears when dealing with fields
involving a gauge invariance (the de Sitter MMC free
field Lagrangian L ¼ ffiffiffiffiffijgjp ∂μϕm∂μϕm is invariant under a
gaugelike global transformation ϕm → ϕm þ “constant”).
The Gupta-Bleuler formalism was invented to handle both
covariance and gauge invariance in quantum electrody-
namics. Therefore, it is not surprising that a similar
construction performs the same task for the MMC scalar
field on dS spacetime. On this basis and in consistency
with Allen’s theorem [51,52], it has been shown that [53–
56] the dS breaking and the associated infrared divergence
of the MMC scalar field disappear if one uses the Gupta-
Bleuler type vacuum [the Krein-Gupta-Bleuler (KGB)
vacuum] defined by de Bièvre, Renaud [53] and
Gazeau, Renaud, Takook [54].
As noted above, the transverse-traceless linearized grav-

itons suffer from the same difficulty as the MMC scalar
field. Therefore, to construct the fully de Sitter covariant
and infrared-free two-point function for the transverse-
traceless linearized gravitons, the KGB quantization should
be taken into account (see Sec. III-C); the minimal space on
which the Fock space should be constructed to preserve the
covariance of the full theory under the full dS group
SOoð1; 4Þ4 is the Krein space (the direct sum of Hilbert
and anti-Hilbert space). Here, it must be emphasized that
including the negative norm states in the theory, which is
the price to pay in order to obtain a fully covariant theory,
endangers the analyticity of the final result for the graviton
two-point function. Indeed, respecting the above state-
ments, the only fully dS-covariant two-point function for
linearized gravitons which naturally appears is the com-
mutator that is not of the positive type, and it does not allow
us to select physical states (for a detailed discussion see
[45]). Again, the crucial point is that any definition a priori
of different two-point functions, like Wightman or
Hadamard functions, cannot yield a covariant theory; there
exists no nontrivial covariant two-point function of the

2Here, we especially emphasize the covariance aspect which
should be understood in the sense of the action of the dS group.

3It is worth mentioning that in some coordinates such as the
Poincaré patch, which is the part of de Sitter space pertinent to
inflation, there is no constant mode at all. Indeed, the non-
convergence of the Fourier integral is responsible for the infrared
problems, which must be cut off at some low momentum to
obtain a finite result.

4The subscript 0 refers to the subgroup of SOð1; 4Þ connected
to the identity.
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positive type for the MMC scalar field on dS space
[51–56]. In spite of the presence of negative norm
modes in the theory, however, it must be underlined that
no negative energy can be measured: expressions as
hnk1nk2…jT00jnk1nk2…i are always positive [53,54].
Interestingly, our group theoretical approach to the

dS linearized gravitons supports the results expressed
by Woodard et al.: “one encounters contrary state-
ments in the mathematical physics literature, so that
the IR divergence of graviton propagator is gauge
artifact and hence can be gauged away (e.g. see [43]
and references therein), but close examination reveals
that the authors admit they are constructing a formal
solution to the propagator equation which is not a
true propagator5 by the illegitimate technique of
adding negative norm states to the theory” [28].
“Indeed, including negative norm states in the mode
sum is the only way to avoid de Sitter breaking and
also the problematic nature of analytical continua-
tions” [32].
At the end, the pure-trace sector of the theory is

investigated in Sec. IV. We show that the pathological
large distance behavior associated with this part is
gauge-dependent and, hence, a proper gauge-fixing
procedure can eliminate IR divergences and preserve
dS invariance. We also show that there is a suitable
value for parameter “b” for which the spin-zero sector is
written in terms of the dS massless conformally coupled
scalar field.
Finally, a brief conclusion is given in Sec. V.

II. THE FIELD EQUATION

In this section, by splitting our metric into a dS
fixed background ĝμν and a small fluctuation hμν;
gμν ¼ ĝμν þ hμν, we investigate linear perturbations of
Einstein gravity around the dS metric. Pursuing this path,
the following gauge invariance is the translation of the
reparametrization invariance

hμν → hμν þ ð∇μΞν þ∇νΞμÞ; ð1Þ

Ξν is an arbitrary vector field. The wave equation for
massless6 tensor fields hμν propagating on dS background
therefore would be

ð□H þ 2H2Þhμν − ð□H −H2Þĝμνh0 − 2∇ðμ∇ρhνÞρ
þ ĝμν∇λ∇ρhλρ þ∇μ∇νh0 ¼ 0: ð2Þ

H stands for the Hubble constant, ∇ν for the dS covariant
derivative, □H ¼ ĝμν∇μ∇ν for the Laplace-Beltrami oper-
ator and h0 ¼ ĝμνhμν. In what follows, a generalization of
the Lorentz/harmonic gauge condition will be considered
as the gauge-fixing term

∇μhμν ¼ b∇νh0; ð3Þ

where “b” is an arbitrary constant.
Here, with respect to the Wigner theorem and in

analogy with the Minkowskian cases, we wish to con-
struct the dS tensor field equation (2) as an eigenvalue
equation of a de Sitter group Casimir operator. In this
regard, it will be convenient to employ the ambient space
coordinates that makes manifest the SO0ð1; 4Þ invariance;
the dS spacetime is described as a one-sheeted hyper-
boloid embedded in a five-dimensional Minkowski space-
time (α, β ¼ 0, 1, 2, 3, 4)

XH ¼ fx ∈ ℜ5; x2 ¼ ηαβxαxβ ¼ −H−2g; ð4Þ

where ηαβ ¼ diagð1;−1;−1;−1;−1Þ. The dS metric then
would be the induced metric on the dS hyperboloid

ds2 ¼ ηαβdxαdxβjx2¼−H−2 ¼ ĝμνdXμdXν; ð5Þ

where the Xμ’s are intrinsic spacetime coordinates (μ,
ν ¼ 0, 1, 2, 3).
In these notations, the tensor field KαβðxÞ can be viewed

as a homogeneous function in the ℜ5 variables xα with
some arbitrarily chosen degree σ,

xα
∂
∂xαKβγðxÞ ¼ x · ∂KβγðxÞ ¼ σKβγðxÞ; ð6Þ

while, the transversality condition guarantees that the
direction of K lies in the dS spacetime

xαKαβðxÞ ¼ xβKαβðxÞð≡x ·KðxÞÞ ¼ 0: ð7Þ

Respecting the importance of this transversality property of
dS fields, defining the symmetric transverse projector
θαβ ¼ ηαβ þH2xαxβ enables us to construct transverse
entities such as the transverse derivative

∂̄α ¼ θαβ∂β ¼ ∂α þH2xαx · ∂; x · ∂̄ ¼ 0: ð8Þ

θαβ is actually the transverse form of the de Sitter metric

ĝμν ¼
∂xα
∂Xμ

∂xβ
∂Xν θαβ:

On the other hand, considering the above notations, the
second order Casimir operator of the dS group can be easily

5Reminder: the only fully dS-covariant two-point function for
linearized gravitons which naturally appears is the commutator
that is not of the positive type … .

6Note that, thanks to the maximal symmetry of (anti-)de Sitter
spaces, the mass concept can be defined precisely on these
spacetimes [57,58].

COVARIANT AND INFRARED-FREE GRAVITON TWO- … PHYSICAL REVIEW D 94, 104030 (2016)

104030-3



defined in terms of the self-adjoint Lαβ representatives of
the Killing vectors7 [48,49]

Q2 ¼ −
1

2
LαβLαβ ¼ −

1

2
ðMαβ þ ΣαβÞðMαβ þ ΣαβÞ; ð9Þ

where the action of the orbital and the spinorial parts are
respectively defined by

Mαβ ≡ −iðxα∂β − xβ∂αÞ; ð10Þ

ΣαβKγδ ≡ −iðηαγKβδ − ηβγKαδ þ ηαδKγβ − ηβδKγαÞ; ð11Þ

and the subscript 2 refers to the fact that the carrier space is
constituted by second rank tensors. On this basis, the action
of Q2 on K would be

Q2K ¼ ðQ0 − 6ÞKþ 2ηK0 þ 2Sx∂ ·K − 2S∂x ·K; ð12Þ

in which S is the symmetrizer operator, Sξαωβ ¼
ξαωβ þ ξβωα, and Q0 is the scalar part of the Casimir
operator, Q0 ¼ − 1

2
MαβMαβ ¼ −H−2ð∂̄Þ2.

Now, considering the above identities and the fact that
the “intrinsic” field hμνðXÞ is locally specified by the
“transverse” tensor field KαβðxÞ,

hμνðXÞ ¼
∂xα
∂Xμ

∂xβ
∂XνKαβðxðXÞÞ; ð13Þ

one can easily present the field equation forKαβ in terms of
the second order Casimir operator [59,60]

ðQ2 þ 6ÞKðxÞ þD2∂2 ·KðxÞ ¼ 0; ð14Þ

in which

D2K ¼ H−2Sð∂̄ −H2xÞK; ð15Þ

and ∂2·, the generalized divergence on the dS hyperboloid,
is

∂2 ·K ¼ ∂ ·K −H2xK0 −
1

2
H2D1K0; ð16Þ

D1 ¼ H−2∂̄ and K0 is the trace of Kαβ. Now, utilizing the
identities [61,62]

∂2 ·D2Λg ¼ −ðQ1 þ 6ÞΛg; Q2D2Λg ¼ D2Q1Λg;

ð17Þ

in which the action of the Casimir operator Q1 on a vector
field Λg is

Q1Λg ¼ ðQ0 − 2ÞΛg þ 2x∂ · Λg − 2∂x · Λg; ð18Þ

the gauge invariance (1) of the field equation can be easily
presented as [50],

K → KþD2Λg; ð19Þ

while the gauge conditions (3) takes the form

∂2 ·K ¼
�
b −

1

2

�
∂̄K0: ð20Þ

Respecting the field equation (14), the corresponding
action then would be

S ¼
Z

dσL; L ¼ −
1

2x2
K · ·ðQ2 þ 6ÞKþ 1

2
ð∂2 ·KÞ2:

ð21Þ

dσ is the volume element in de Sitter space. By adding a
gauge-fixing term to the Lagrangian, one obtains

L ¼ −
1

2x2
K · ·ðQ2 þ 6ÞKþ 1

2
ð∂2 ·KÞ2

−
1

2a

�
∂2 ·K −

�
b −

1

2

�
∂̄K0

�
2

: ð22Þ

Note that “a” and “b” are gauge-fixing parameters. Then,
the variation of L leads to the equation

ðQ2 þ 6ÞKþD2∂2 ·K

−
1

a

�
D2∂2 ·K −

�
b −

1

2

�
2

SD1∂̄K0

−
�
b −

1

2

�
ðD2∂̄K0 − SD1∂2 ·KÞ

�
¼ 0. ð23Þ

The general solution of the field equation (23) can
be constructed from a combination of a transverse-
traceless (spin-two) part, KTT , plus a pure-trace (spin-zero)
part, KPT ,

KðxÞ ¼ KTTðxÞ þKPTðxÞ:

With respect to the Lagrangian (22) and field equation (23),
therefore we have

ðQ2 þ 6ÞKTT þ
�
1 −

1

a

�
D2∂2 ·KTT ¼ 0; ð24Þ

and
7A familiar realization of the Lie algebra of the dS group is the

one generated by the ten Killing vectors Kαβ ¼ xα∂β − xβ∂α.
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ðQ2 þ 6ÞKPT þ
�
1 −

1

a

�
D2∂2 ·KPT

−
1

a

�
−
�
b −

1

2

�
2

SD1∂̄K0

−
�
b −

1

2

�
ðD2∂̄K0 − SD1∂2 ·KPTÞ

�
¼ 0: ð25Þ

Finding the optimum value of “a” and “b” is practically a
nontrivial question in curved spacetimes and have signifi-
cant consequences on the two-point function that will be
developed in the next sections.

III. THE TRANSVERSE-TRACELESS
(SPIN-TWO) SECTOR

A. Group theoretical content

The elementary particle fields are classified by their
corresponding UIR à la Wigner.
Now, we explain that Eq. (24) has a clear group

theoretical content. The operator Q2 commutes with the
action of the de Sitter group generators and, therefore, it is
constant in the corresponding UIR; the UIR’s are classified
by the use of eigenvalues of Q2, i.e., hQ2i. According to
Takahashi and Dixmier’s notation [46,47], the eigenvalues
of the Casimir operator,

hQpi ¼ −pðpþ 1Þ − ðqþ 1Þðq − 2Þ;
are classified under the following series representations in
the present situation:

(i) For principal series representations ðU2;νÞ (also
called “massive” representations) [57,58]

hQ2i ¼ ν2 −
15

4
; p ¼ 2;

q ¼ 1

2
þ iν; ν ∈ ℜ: ð26Þ

(ii) For complementary series representations ðV2;μÞ

hQ2i ¼ μ − 4; p ¼ 2; q ¼ 1

2
þ μ;

μ ∈ ℜ; 0 < jμj < 1

2
: ð27Þ

(iii) For discrete series representations ðΠ�
2;qÞ (also called

the “massless” representations) [57,58],

hQ2i ¼ −6 − ðqþ 1Þðq − 2Þ; p ¼ 2;

q ¼ 1; 2: ð28Þ

For the discrete series, regarding the parameter
q ¼ 1 (hQ2i ¼ −4), leads to the representation
Π�

2;1, which has no corresponding counterpart in
the Minkowskian limit. The second value, q ¼ 2

(hQ2i ¼ −6), however, leads to the representation
Π�

2;2. They are exactly the unique extensions of the
massless Poincaré group representations with hel-
icity �2.

On this basis, the field equation for a transverse-traceless
rank-2 tensor (or spin-2) field would be [61]

ðQ2 − hQ2iÞKTTðxÞ ¼ 0: ð29Þ

Constrained with the condition ∂ ·KTT ¼ 0, this equation
was solved in Ref. [61] rendering the following solution:

KTT ¼
�
−
2

3
θZ1 ·þSZ̄1 þ

1

hQ2i þ 6
D2

�
Z1 · ∂̄

−H2xZ1 ·þ3H2x · Z1 −
1

3
H2D1Z1·

��
K; ð30Þ

where Z1ð¼ Z1αÞ is a five-dimensional constant vector
(Z̄1α ¼ θαβZ

β
1) and K is a vector field

ðQ1 − hQ1iÞK ¼ 0; ð31Þ

with hQ1i ¼ hQ2i þ 4, x · K ¼ ∂ · K ¼ 0.
Clearly, for the spin-2 massless field, Eq. (30) reveals

that the value hQ2i ¼ −6 results in a singularity. This
singularity is actually due to the divergencelessness con-
dition needed to associate the tensor field with a specific
UIR of the dS group. Therefore, the subspace specified by
∂ ·KTT ¼ 0 considered so far is not sufficient for the
construction of the massless tensor field. In order to
suppress this difficulty, the divergencelessness condition
must be dropped [61]. As a result two consequences follow
immediately:

(i) the appearance of gauge invariance in the field
equation [see Eq. (24)], and

(ii) the necessity of using an indecomposable represen-
tation of dS group.8

The quantization of the tensor field, however, necessitates
the fixing of the gauge parameter. This fixing bears the
elimination of the singularity. In the context of the de Sitter
group theory, it is proved that the minimal (or optimal)
choice, that restricts the space of solutions to the minimal
content of any massless invariant theory, is [48,49]

c

�
¼ a − 1

a

�
¼ 2

2sþ 1
; ð32Þ

s is the angular momentum, spin, of the field. Any other
choice of “c” represents logarithmic singularities, which

8More precisely, in this context, massive elementary systems
are associated with UIRs of the dS group [61], while, massless
elementary systems are connected to the indecomposable repre-
sentations of this group [63,64].
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implies reverberation inside the light cone [64].
Interestingly, investigating the massless vector field in
dS space has proved that, in complete agreement with
the general formula (32), the minimal choice, for which no
logarithmic-divergent terms appear, is c ¼ 2

3
[63].

Pursuing this path, in the following section we present
the solution of Eq. (24) and in consistency with the above
statements, we show that the optimal choice, for which the
logarithmic contribution disappears, is c ¼ a−1

a ¼ 2
5
.

B. Solution of the field equation

We now solve the field equation (24). Consider the
traceless-transverse tensor field KTT , the most general
solution, in terms of a five-dimensional constant vector
Z1ð¼ Z1αÞ, a scalar field ϕ1 and two vector fields K and Kg

by [48]

KTT ¼ θϕ1 þ SZ̄1K þD2Kg; ð33Þ

where x · K ¼ 0 ¼ x · Kg and

2ϕ1 þ Z1 · K þH−2∂̄ · Kg ¼ 0; ð34Þ

that is obtained from the tracelessness condition on (33).
We also impose the vector field K to be divergence-
less ∂ · K ¼ 0.9

Applying (24) to the above ansatz (33) we obtain
(c ¼ a−1

a )

8>>>>>>>>><
>>>>>>>>>:

ðQ0 þ 6Þϕ1 ¼ −4Z1:K; ðIÞ
ðQ1 þ 2ÞK ¼ Q0K ¼ 0; ðIIÞ
ðQ1 þ 6ÞKg ¼ c

2ðc−1ÞH
2D1ϕ1

þ 2−5c
1−c H

2x · Z1K

þ c
1−c ðH2xZ1 · K

− Z1 · ∂̄KÞ: ðIIIÞ

ð35Þ

In order to obtain these equations we made use of the
following commutation relations [49]:

Q2D2Kg ¼ D2Q1Kg; Q2θϕ ¼ θQ0ϕ;

Q2SZ̄1K ¼ SZ̄1ðQ1 − 4ÞK − 2H2D2x · Z1K þ 4θZ1 · K;

∂2 · θϕ ¼ −H2D1ϕ; ∂2 ·D2Kg ¼ −ðQ1 þ 6ÞKg:

Using the spectral theorem and the Eqs (35-I) and (35-II),
the scalar field ϕ1 is completely determined by the vector
field K by the simple relation

ϕ1 ¼ −
2

3
Z1 · K; ð36Þ

which also implies that ϕ1 verifies the massless minimally
coupled scalar field equation Q0ϕ1 ¼ 0.
Now let us solve Eq. (35-II). The most general form for

the vector field K is [48]

K ¼ Z̄2ϕ2 þD1ϕ3; ð37Þ

in which ϕ2 and ϕ3 are two scalar fields, and Z2 is another
five-dimensional constant vector. By substituting (37) into
(35)-II) and using the condition ∂̄ · K ¼ 0, we have

ϕ3 ¼ −
1

2
½Z2:∂̄ϕ2 þ 2H2x:Z2ϕ2�; ð38Þ

Q0ϕ2 ¼ 0: ð39Þ

This means that also ϕ2 verifies a massless minimally
coupled scalar field equation. The vector field K, therefore,
would be

K ¼ Z̄2ϕ2 −
1

2
D1½Z2 · ∂̄ϕ2 þ 2H2x · Z2ϕ2�; ð40Þ

and from (36) we have

ϕ1 ¼ −
2

3
Z1 ·

�
Z̄2ϕ2 −

1

2
D1½Z2 · ∂̄ϕ2 þ 2H2x · Z2ϕ2�

�
:

ð41Þ

Now we will show that the vector field Kg can also
be obtained from the vector field K. In order to invert
Eq. (35-III)we will use the following identities [59]:

ðQ1 þ 6ÞD1ðZ1 · KÞ ¼ 6D1ðZ1 · KÞ; ð42Þ

ðQ1 þ 6ÞxðZ1 · KÞ ¼ 6xðZ1 · KÞ; ð43Þ

ðQ1 þ 6ÞZ1 · ∂̄K ¼ 6Z1 · ∂̄K þ 2H2D1ðZ1 · KÞ; ð44Þ

ðQ1 þ 6Þ½H2ðx · Z1ÞK� ¼ 2½H2xðZ1 · KÞ − Z1 · ∂̄K�; ð45Þ

Kg is then obtained as

Kg ¼
c

2ð1 − cÞ
�
H2ðx · Z1ÞK þ 1

9
H2D1ðZ1 · KÞ

�

þ 2 − 5c
1 − c

ðQ1 þ 6Þ−1H2x · Z1K þ Λg: ð46Þ

Note that Λg is a vector field

ðQ1 þ 6ÞΛg ¼ 0; x · Λg ¼ 0; ∂̄ · Λg ¼ 0:

Now our task is to handle ðQ1 þ 6Þ−1H2x · Z1K. In this
regard, we utilize the plane wave formalism [65,66] and9Note that, for transverse tensors like K; ∂ · K ¼ ∂̄ · K.

HAMED PEJHAN and SURENA RAHBARDEHGHAN PHYSICAL REVIEW D 94, 104030 (2016)

104030-6



explicitly show that this term leads to a singularity in the
solution.
Equation (39) means that the scalar field ϕ2 obeys

□Hϕ2 ¼ 0; ð47Þ

and its solutions are known to be the dS massless waves
[65,66]

ϕ2 ¼ ðHx · ξÞσ; σ ¼ 0;−3 ð48Þ

where this 5-vector ξ lies on the positive null cone
Cþ ¼ fξ ∈ ℜ5; ξ2 ¼ 0; ξ0 > 0g. Then, substituting (48)
into Eq. (40) leads to

K ¼ −
σ

2

�
Z̄2 þ ðσ þ 2Þ ðx · Z2Þ

ðx · ξÞ ξ̄

�
ϕ2: ð49Þ

Note that for simplicity the conditions Z1 · ξ ¼ Z2 · ξ ¼ 0
are imposed. Because of these conditions, the degree of
freedom of 5-vectors Z1 and Z2 is reduced from 5 to 4.
Using Eqs. (45) and (49), we can easily show that

ðQ1 þ 6ÞH2ðx · Z1ÞK
¼ −2σH2ðx · Z1ÞK

þ σH2

�
ðσ þ 3Þðx · Z2ÞZ̄1 þ ðσ þ 2ÞH−2 Z1 · Z2

x · ξ
ξ̄

�
ϕ2;

ð50Þ

or equivalently

ðQ1 þ 6Þ−1H2ðx · Z1ÞK

¼ −
1

2σ
H2ðx · Z1ÞK

þ 1

2
ðQ1 þ 6Þ−1

�
H2

�
ðσ þ 3Þðx · Z2ÞZ̄1

þ ðσ þ 2ÞH−2 Z1 · Z2

x · ξ
ξ̄

�
ϕ2

�
; ð51Þ

in which σ ¼ 0;−3. Obviously, in order to handle
ðQ1 þ 6Þ−1H2x · Z1K, we inevitably face an expression
proportional to 1

σ which is divergent at σ ¼ 0. We must,
therefore, set c ¼ 2=5 to eliminate the divergent solutions
from (46). On this basis, choosing c ¼ 2=5, Kg would be

K
ð2
5
Þ

g ¼ 1

3

�
H2ðx · Z1ÞK þ 1

9
H2D1ðZ1 · KÞ

�
: ð52Þ

Accordingly, using Eqs. (40), (41), and (52), the field
solution for c ¼ 2=5,KTTð2

5
Þ, can be written in the following

form:

K
TTð2

5
Þ

αβ ¼ D
TTð2

5
Þ

αβ ðx; ∂; Z1; Z2Þϕ2; ð53Þ

where ϕ2 ≡ ϕm is the dSMMC scalar field andDTTð2
5
Þ is the

projection tensor

DTTð2
5
Þðx; ∂; Z1; Z2Þ

¼
�
−
2

3
θZ1 ·þSZ̄1

þ 1

3
D2

�
H2ðx · Z1Þ þ

1

9
H2D1ðZ1·Þ

��

×

�
Z̄2 −

1

2
D1½ðZ2 · ∂̄Þ þ 2H2ðx · Z2Þ�

�
: ð54Þ

We are now in the position to write the general field
solution in the convenient following form:

KTT ¼ KTTð2
5
Þ þ

2
5
− c

1 − c
D2ðQ1 þ 6Þ−1ð∂ ·KTTð2

5
ÞÞ: ð55Þ

The term ðQ1 þ 6Þ−1ð∂ ·KTTð2
5
ÞÞ is responsible for the

singularity which implies reverberation inside the light
cone (for more detailed discussions, see [64]). From now
on, we shall work essentially with the c ¼ 2=5 gauge. It is
actually the so-called “minimal case” in the context of de
Sitter group theory [48,49]. Here, it is worth mentioning
that the obtained result for the gauge-fixing parameter, c ¼
2=5 and consequently a ¼ 5=3, is exactly what obtained in
[41,42] (it eliminates logarithmically divergent solutions).
Searching for a covariant quantization, one must find the

minimum space of solutions that is dS-invariant. In this
regard, we examine the dS covariance of the general
solution by applying the action of the dS group on (53).
One can easily show that [Note that, for the sake of
simplicity, from now on the index “ð2

5
Þ” is omitted.]

LαβKTT
ρδ ¼ LαβðDTT

ρδ ϕmÞ ¼ DTT
ρδ ðMαβϕmÞ: ð56Þ

Respecting explicit computation given in Ref. [54], con-
sidering any complete set of (positive norm) modes
including the zero mode, one can easily see that the
invariance of the transverse-traceless sector of the field
solution (as for any gauge field) is broken owing to the
structure function ϕm. In fact, it is proved that [53,54] the
smallest complete, nondegenerate and invariant inner-
product space for the MMC scalar field is a Krein space;
a direct sum of a Hilbert space and an anti-Hilbert space (a
space with definite negative inner product). To manage this
difficulty and also the aforementioned gaugelike symmetry
ϕm → ϕm þ “constant”, as already pointed out, a canonical
quantization method à la Gupta-Bleuler in which the
Fock space is built over the Krein space, the so-called
Krein-Gupta-Bleuler quantization method, should be in
order [53–56].
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In the KGB context, the MMC scalar field operator φm
would be [53–56]10

φm ¼ 1ffiffiffi
2

p
�X

p∈P
½apðϕmÞp þ a†pðϕ�

mÞp�

þ
X
p∈P

½b†pðϕmÞp þ bpðϕ�
mÞp�

�
: ð57Þ

Note that, the first sum on the right is the standard scalar
field operator as was used by Allen [51,52]. Then, we have
the following operational relations:

apj0i ¼ 0; ½ap; a†p0 � ¼ δpp0 ;

bpj0i ¼ 0; ½bp; b†p0 � ¼ −δpp0 ; ð58Þ

other commutation relations are zero.
Here, it must be underlined that the Krein-Fock vacuum

is invariant under the dS group action [54]. More accu-
rately, in the Krein context, the Fock vacuum is unique and
normalizable. It is independent of the Bogolubov trans-
formations [54]. This does not, however, concern us since
in this construction not only is the vacuum different but so
is the field itself. The point is indeed within the concept of
how to determine an observable in the Gupta-Bleuler
formalism. Actually, defining observables is performed
through the feature that they do not “see” the gauge states.
As a result, the field itself is not an observable (it is gauge-
dependent). Nevertheless, regarding the fact that μ refers to
global coordinates, the physically interesting observables
(e.g. the energy-momentum tensor) can be built using
operators ∂μ on the total space [53]. While, as usual in a
Gupta-Bleuler construction, the average values of observ-
ables will be evaluated only with physical states. (In this
regard, to see how the KGB method can be used for
calculating physical observables e.g. the Casimir energy-
momentum tensor in braneworld scenarios, see [67,68].)
In this construction, therefore, the fact that the field is not

an observable implies that the different two-point functions,
like Wightman or Hadamard functions

h0jφmðxÞφmðx0Þj0i; h0jφmðxÞφmðx0Þ þ φmðx0ÞφmðxÞj0i;

are gauge-dependent. As an example, the symmetric two-
point function (Hadamard function) is not expected to have
great meaning in our construction and a straightforward
computation indeed shows that it vanishes. The crucial
point is that any definition a priori of such a function
cannot yield a covariant theory; there exists no nontrivial
covariant two-point function of positive type for the

minimally coupled quantum field on de Sitter space-time
[51,52,56]. Therefore, this result is nothing but another
formulation of Allen’s theorem cited above. Indeed, the
only two-point function which naturally appears is the
commutator, but it is not of positive type, and it does not
allow to select physical states [53,54]. In addition, one
should pay attention that in this construction, the link
between the vacuum and the two-point function is not the
same as the standard QFT. The standard classification of
vacua is based on two-point functions, and the Krein
vacuum does not fit this classification. In this context,
contrary to the usual QFT for which to choose a vacuum is
to choose a physical space of states and a two-point
function, the vacuum is unique and does not characterize
the physical space of states.
Furthermore, it must be expressed that the invariance of

the Fock vacuum does not infer that Bogolubov trans-
formations, which are merely a simple modification of the
set of physical states, are no longer valid in this formalism.
As a matter of fact, the physical states space is affected by
both the observer and the considered space-time; an
accelerated observer in Minkowski space has different
physical states from those an inertial observer does (the
Unruh effect), while for both cases, the same field repre-
sentation can be utilized [54]. In summary, in the context of
the KGB construction, “instead of possessing a multiplicity
of vacua, we have several possibilities for the space of
physical states and only one field and one vacuum which do
not depend on Bogolubov transformations. More accu-
rately, the usual ambiguity about vacua is not suppressed
but displaced” [55].
Respecting the KGB quantization method, the corre-

sponding transverse-traceless graviton two-point function
is given in Sec. III-C. We show that the method enables us
to obtain the fully dS-covariant and infrared-free construc-
tion for the linearized gravity.

1. Comment on the gauge-fixing procedure in [45]

As already discussed, a group theoretical approach to
massless fields in dS spacetime reveals that, in order to
avoid logarithmic-divergent terms, the divergencelessness
condition which is needed to associate such tensor fields
with specific UIRs of the dS group must be dropped. The
quantization procedure, therefore, necessitates the fixing of
the gauge parameter. It is, however, reported in [45] that
exerting the extra condition ∂̄ · K ¼ 0, which contracts the
solutions space, could suppress the logarithmic divergences
from the theory. The conclusions of [45] were based on
calculations and reasonings presented in [59], where, in
spite of imposing the divergencelessness condition on the
dS massless spin-2 field, the corresponding two-point
function is free of any logarithmic divergences. These
calculations convinced us that applying the extra condition
∂̄ · K ¼ 0 contracts the space of solutions so that the
logarithmic contribution disappears; it could have been

10Here, in order to simplify the notation, we consider P to be
the set of indices for the positive norm modes

P ¼ fðL; l; mÞ ∈ N × N × Z; 0 ≤ l ≤ L;−l ≤ m ≤ lg:
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supposed as the last option, by relaxing which, we could
recover the existence of the logarithmic divergences antici-
pated by the group theory. Then, in order to prove it and
extend our previous work [45], we decided to solve the
equation without applying the extra condition to obtain the
most general form for the two-point function and show
that how the logarithmic divergences, in consistency with
the content of the de Sitter group theory, appear. Therefore,
we relaxed the ∂̄ · K ¼ 0 condition and performed calcu-
lations from the very beginning. Surprisingly we found,
through tedious but straightforward calculations, that even
by relaxing this condition no logarithmic divergence
appears. Respecting to the de Sitter group theory (see part
A. Group theoretical content) then rang a bell. Something
was not right.
Investigating the whole procedure revealed that the

shortcoming was concealed in the Appendix E expressions
of the paper [59], more exactly how (E6) and consequently
(E7) are obtained. Technically, the expressions (E1) to (E4)
[the same as the above (42) to (45)] are correct, and based
on them one can easily write (E5)

ðQ1 þ 6Þ½ðx · Z1ÞK�

¼ 1

3
ðQ1 þ 6Þ

�
1

3
D1ðZ1 · KÞ þ xðZ1 · KÞ − Z1 · ∂̄K

�
:

ð59Þ

To obtain (E6), the differential operator ðQ1 þ 6Þ is
dropped from both sides as follows:

ðx · Z1ÞK ¼ 1

3

�
1

3
D1ðZ1 · KÞ þ xðZ1 · KÞ − Z1 · ∂̄K

�
;

ð60Þ

which is obviously an illegitimate action and indeed the
origin of the problem. More precisely, this illegal procedure
has automatically but incorrectly avoided the logarithmic
divergences to appear in the theory.

On this basis, in the present paper, we correct the
calculations given in our previous work [45]; the correct
form of Eq. (48) for Kg in [45] is as Eq. (52). This also
imposes another corrections to [45] which will be noticed
in appropriate places. However, it must be emphasized here
that the aforementioned corrections do not alter the main
achievements of [45] (we will prove it in the rest of the
present paper). More accurately, the final transverse-trace-
less graviton two-point function is free of IR divergences if
and only if we use the Krein-Gupta-Bleuler (an indefinite
inner product) quantization scheme. Otherwise, pursuing
the standard quantization approach, naturally results in that
dS-breaking (the appearance of IR divergences) is univer-
sal. Furthermore, by choosing two gauge-fixing parame-
ters, the two-point function for the pure-trace part can still
be written in terms of the massless conformally coupled
scalar field (see Sec. IV).

C. The two-point function

Pursuing Allen and Jacobson procedure in Ref. [69], the
two-point functions in de Sitter space are written in terms of
bitensors in this section [bitensors are functions of two
points ðx; x0Þ and behave like tensors under coordinate
transformations at each point [69]]. Bitensor two-point
functions are the cornerstone of the dS axiomatic field
theory construction [66]. Bitensors are called maximally
symmetric if they hold dS invariance [69]. Any maximally
symmetric bitensor can be expressed in ambient space
notations as

WTT
αβα0β0 ðx; x0Þ ¼ θθ0W0ðx; x0Þ þ SS0θ · θ0W1ðx; x0Þ

þD2D0
2Wgðx; x0Þ; ð61Þ

where W1 and Wg are transverse bivectors, W0 is biscalar
andD2D0

2 ¼ D0
2D2. The two-point function must verify the

field equation (24), regarding both x and x0 (with no
difference). We first choose x to start our study. By making
bitensor (61) to comply Eq. (24), one finds (c ¼ 2

5
)

8>><
>>:

ðQ0 þ 6Þθ0W0 ¼ −4S0θ0 ·W1; ðIÞ
ðQ1 þ 2ÞW1 ¼ 0; ðIIÞ
ðQ1 þ 6ÞD0

2Wg ¼ −1
3
H2D1θ

0W0 þH2S0½2
3
ðD1θ

0 · −xθ0 · −H−2θ0 · ∂̄Þ�W1; ðIIIÞ
ð62Þ

where the condition ∂ ·W1 ¼ 0, is exerted. Considering
Eqs. (62-I) and (62-II) yields

θ0W0ðx; x0Þ ¼ −
2

3
S0θ0 ·W1ðx; x0Þ: ð63Þ

The bivector two-point function W1, which is the solution
of Eq. (62-II), can be written as

W1 ¼ θ · θ0W2 þD1D0
1W3;

whereW2 andW3 are biscalar two-point functions, so that

D0
1W3 ¼ −

1

2
½2H2ðx · θ0ÞW2 þ θ0 · ∂̄W2�;

Q0W2 ¼ 0:
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Therefore, W2 ≡Wmc is a MMC biscalar two-point
function. Regarding the above identities, we will have
the bivector two-point function as follows:

W1ðx; x0Þ ¼
�
θ · θ0 −

1

2
D1½θ0 · ∂̄ þ 2H2x · θ0�

�
Wmcðx; x0Þ:

ð64Þ

Following a similar procedure used to calculate (42) to
(45), we will obtain

ðQ1 þ 6Þxθ0 ·W1 ¼ 6xθ0 ·W1;

ðQ1 þ 6ÞD1θ
0 ·W1 ¼ 6D1θ

0 ·W1;

ðQ1 þ 6Þθ0 · ∂̄W1 ¼ 6θ0 · ∂̄W1 þ 2H2D1ðθ0 ·W1Þ;
ðQ1 þ 6Þ½H2ðx · θ0ÞW1� ¼ 2½H2xðθ0 ·W1Þ − ðθ0 · ∂̄ÞW1�:

Utilizing the above identities together with Eqs. (62-III)
and (63), we have

D0
2Wgðx; x0Þ ¼

H2

3
S0
�
x · θ0W1 þ

1

9
D1θ

0 ·W1

�
: ð65Þ

Correspondingly, the bitensor two-point function (61)
will be

WTT
αβα0β0 ðx; x0Þ ¼ ΔTT

αβα0β0 ðx; x0ÞWmcðx; x0Þ; ð66Þ

where

ΔTTðx; x0Þ ¼ −
2

3
S0θθ0 ·

�
θ · θ0 −

1

2
D1½θ0 · ∂̄ þ 2H2x · θ0�

�
þ SS0θ · θ0

�
θ · θ0 −

1

2
D1½θ0 · ∂̄ þ 2H2x · θ0�

�

þ 1

3
H2S0D2

�
x · θ0 þ 1

9
D1θ

0·
��

θ · θ0 −
1

2
D1½θ0 · ∂̄ þ 2H2x · θ0�

�
: ð67Þ

Furthermore, the bitensor (61) must verify Eq. (24) with respect to x0. So, following the same routine, we obtain

8>><
>>:

ðQ0
0 þ 6ÞθW0 ¼ −4Sθ ·W1; ðIÞ

ðQ0
1 þ 2ÞW1 ¼ 0; ðIIÞ

ðQ0
1 þ 6ÞD2Wg ¼ − 1

3
H2D0

1θW0 þH2S½2
3
ðD0

1θ · −x0θ · −H−2θ · ∂̄ 0Þ�W1; ðIIIÞ

here, the condition ∂ 0 ·W1 ¼ 0 is applied. In this situation, we have

θW0ðx; x0Þ ¼ −
2

3
Sθ ·W1ðx; x0Þ; ð68Þ

W1ðx; x0Þ ¼
�
θ · θ0 −

1

2
D0

1½θ · ∂̄ 0 þ 2H2x0 · θ�
�
Wmcðx; x0Þ; ð69Þ

D2Wgðx; x0Þ ¼
H2

3
S
�
x0 · θW1 þ

1

9
D0

1θ ·W1

�
: ð70Þ

Utilizing Eqs. (68)–(70), we can write the bitensor two-point function in the following form:

WTT
αβα0β0 ðx; x0Þ ¼ Δ0TT

αβα0β0 ðx; x0ÞWmcðx; x0Þ; ð71Þ

where

Δ0TTðx; x0Þ ¼ −
2

3
Sθ0θ ·

�
θ0 · θ −

1

2
D0

1½θ · ∂̄ 0 þ 2H2x0 · θ�
�
þ SS0θ0 · θ

�
θ0 · θ −

1

2
D0

1½θ · ∂̄ 0 þ 2H2x0 · θ�
�

þ 1

3
H2SD0

2

�
x0 · θ þ 1

9
D0

1θ·

��
θ0 · θ −

1

2
D0

1½θ · ∂̄ 0 þ 2H2x0 · θ�
�
: ð72Þ
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Briefly, till here by utilizing an ansatz similar to the one used for computing the field solutions, we have shown that
transverse-traceless sector of the graviton two-point function can be written in the sense of the MMC scalar two-point
function Wmcðx; x0Þ. This must be underlined here that the fundamental assumption that the whole procedure fulfills de
Sitter invariance is the base of our calculations from the very beginning [see (61)]. More exactly, only upon this assumption,
the transverse-traceless graviton two-point function can be written in terms of the maximally symmetric bitensors [69]. As
already pointed out, the only way to preserve dS invariance is including all the negative frequency solutions in the theory.
Indeed, the Krein-Gupta-Bleuler construction should be in order [53–56]. This results in thatWmc is only a function of the
invariant length Z ≡ −H2x · x0; Wmc ¼ WmcðZÞ, and hence, the equation Q0WmcðZÞ ¼ 0 turns into the ordinary
differential equation

�
ð1 − Z2Þ d2

dZ2
− 4Z

d
dZ

�
WmcðZÞ ¼ 0: ð73Þ

Now, we can use the formulas given in [45] (see Appendix A) to obtain the following expressions:

θ0α0β0W0ðx; x0Þ ¼
1

3
S0
�
θ0α0β0 þ

4

1 − Z2
H2ðx · θ0α0 Þðx · θ0β0 Þ

�
Z

d
dZ

WmcðZÞ; ð74Þ

W1ββ0 ðx; x0Þ ¼
1

2

�
3þ Z2

1 − Z2
H2ðx0 · θβÞðx · θ0β0 Þ − Zðθβ · θ0β0 Þ

�
d
dZ

WmcðZÞ; ð75Þ

D2αD0
2α0Wgββ0 ðx; x0Þ ¼ −

H2

54ð1 − Z2Þ2 SS
0
�
H−2Zð1 − Z2Þð1þ 3Z2Þθαβθ0α0β0

þH−2Zð1 − Z2Þð17 − 9Z2Þðθα · θ0α0 Þðθβ · θ0β0 Þ þ 24Zð2 − Z2Þθαβðx · θ0α0 Þðx · θ0β0 Þ
þ ð−79 − 62Z2 þ 45Z4Þðθα · θ0α0 Þðx · θ0β0 Þðx0 · θβÞ þ 12Zð1þ Z2Þθ0α0β0 ðx0 · θαÞðx0 · θβÞ

þ 12ZH2

1 − Z2
ð21 − 2Z2 − 3Z4Þðx0 · θαÞðx0 · θβÞðx · θ0α0 Þðx · θ0β0 Þ

�
d
dZ

WmcðZÞ: ð76Þ

By substituting Eqs. (74)–(76) into (61) we obtain the exact form of the two-point function (the Krein two-point function,
which is actually the commutator [45,54]) in the ambient space formalism as follows:

WTT
αβα0β0 ðx; x0Þ ¼

2Z
27ð1 − Z2Þ2 SS

0

× ½θαβθ0α0β0f1ðZÞ þ ðθα · θ0α0 Þðθβ · θ0β0 Þf2ðZÞ þH2ðθ0α0β0 ðx0 · θαÞðx0 · θβÞ þ θαβðx · θ0α0 Þðx · θ0β0 ÞÞf3ðZÞ

þH4ððx0 · θαÞðx0 · θβÞðx · θ0α0 Þðx · θ0β0 ÞÞf4ðZÞ þ ðθα · θ0α0 Þðx · θ0β0 Þðx0 · θβÞf5ðZÞ� d
dZ

WðZÞ; ð77Þ

in which

f1ðZÞ ¼ ð1 − Z2Þð2 − 3Z2Þ; f2ðZÞ ¼ ð1 − Z2Þð−11þ 9Z2Þ; f3ðZÞ ¼ −3ð1þ Z2Þ;

f4ðZÞ ¼ −
3

ð1 − Z2Þ ð21 − 2Z2 − 3Z4Þ; f5ðZÞ ¼ 1

Z
ð40þ 2Z2 − 18Z4Þ:

Note: In the above computations, it is presumed that the
two points, x and x0, are not located on the light cone of
each other and hence 1 − Z ≠ 0.
Regarding the differential equation (73), the function

Wmc (the general solution) will be [45]

WmcðZÞ ¼ C1

�
1

1þ Z
−

1

1 − Z
þ ln

1 − Z
1þ Z

�
þ C2; ð78Þ

where C1 and C2 are real constants. This function
brings forward problems with locality [56]. However,
this is not concerning because in the two-point
function (77), this function enters only through its
derivative,

d
dZ

WmcðZÞ ¼ −4C1

ðZ2 − 1Þ2 ; ð79Þ
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which is a local function. Now, by substituting (79) into
(77), because of the large order of Z in the denominator of
(79), it is easily seen that the large-distance growth of the
two-point function [including linearly growing terms which
appear due to the presence of expressions f1ðZÞ and
f2ðZÞ] clearly will not be reflected in the computed
two-point function (77).
In summery, the two-point function (77) satisfies the

following conditions:
(i) Indefinite sesquilinear form For any test function

fαβ ∈ DðXHÞ, an indefinite sesquilinear form is
given by

Z
XH×XH

f�αβðxÞWTT
αβα0β0 ðx; x0Þfα

0β0 ðx0ÞdσðxÞdσðx0Þ;

ð80Þ

where f� is the complex conjugate of f and dσðxÞ
characterizes the dS-invariant measure on XH.
DðXHÞ is the space of functions C∞ with compact
support in XH.

(ii) Locality For every spacelike separated pair ðx; x0Þ, i.
e. x · x0 > −H−2,

WTT
αβα0β0 ðx; x0Þ ¼ WTT

α0β0αβðx0; xÞ: ð81Þ

(iii) Covariance

ðg−1Þγαðg−1ÞδβWTT
γδγ0δ0 ðgx; gx0Þgγ

0
α0g

δ0
β0 ¼ WTT

αβα0β0 ðx; x0Þ;
ð82Þ

for all g ∈ SO0ð1; 4Þ.
(iv) Index symmetrizer

WTT
αβα0β0 ðx; x0Þ ¼ WTT

βαβ0α0 ðx; x0Þ: ð83Þ

(v) Transversality

xαWTT
αβα0β0 ðx; x0Þ ¼ 0 ¼ x0α0WTT

αβα0β0 ðx; x0Þ: ð84Þ

(vi) Tracelessness

ðWTTÞααα0β0 ðx; x0Þ ¼ 0 ¼ ðWTTÞαβα0α0 ðx; x0Þ: ð85Þ

At the end of this part, we mention that the final spin-two
part graviton two-point function in [45] [Eq. (81) and
underlying expressions] should be replaced by Eq. (77)
without altering any conceptual discussions about the two-
point function and its properties.
We complete this section by demonstrating the two-point

function projected onto the de Sitter intrinsic space as
follows (to review the details of projecting procedure one
can refer to [45]):

QTT
μνμ0ν0 ðX;X0Þ ¼ 2Z

27
SS0

�
f1

ð1 − Z2Þ2 gμνg
0
μ0ν0

þ f2
ð1 − Z2Þ2 gμμ0g

0
νν0

þ f3
1 − Z2

ðgμνnμ0nν0 þ g0μ0ν0nμnνÞ

þ
�
2ðZ − 1Þf2
ð1 − Z2Þ2 þ f5

1 − Z2

�
gμμ0nνnν0

þ
�

f2
ð1þ ZÞ2 −

f5
1þ Z

þ f4

�
nμnνnμ0nν0

�

×
d
dZ

WmcðZÞ: ð86Þ

The coefficients in this expansion are functions of
the geodesic distance σðx; x0Þ and the parallel propagator
gμν0 ,

nμ ¼ ∇μσðx; x0Þ; nμ0 ¼ ∇μ0σðx; x0Þ;
gμν0 ¼ −c−1ðZÞ∇μnν0 þ nμnν0 :

For Z ¼ −H2x · x0, the geodesic distance can be charac-
terized by

�
Z ¼ coshðHσÞ; if x and x0 are timelike separated;

Z ¼ cosðHσÞ; if x and x0 are spacelike separated:

ð87Þ

The two-point function (86) has been written completely
in terms of Z in the dS global coordinate and hence is
dS-invariant.11 It is also free of any infrared divergences.
In order to see a comparison between our results and
existing results in the literature, one can refer to
Appendix A.
Concluding remarks: We have shown that there exists

no nontrivial covariant two-point function of the positive
type for the spin-two sector of the gravitons field; this
supports the statements by Woodard et al. that “including
negative norm states in the mode sum is the only way to
avoid de Sitter breaking” (see Sec. I). More exactly, the
only two-point function naturally appears is the Krein
two-point function which is actually the commutator, but
it is not of positive type, and it does not allow to select
physical states. Furthermore, our vacuum (the KGB
vacuum) does not fit in the usual classification of vacua
which is based on two-point functions. In this regard, we
must insist on the fact that it is the field itself which is
different in our construction and not only the vacuum
[45,53–55].

11Note that, Zðx; x0Þ is an invariant entity under the isometry
group Oð1; 4Þ, and therefore any function constructed by Z is
also dS-invariant.
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IV. THE PURE-TRACE (SPIN-ZERO) SECTOR

Thus far, the spin-two sector of linearized gravitons
has been studied. It has been shown that through a
standard linear covariant gauge-fixing procedure one can
eliminate the logarithmic divergences associated with
this part. Moreover, it has been proved that the trans-
verse-traceless graviton two-point function is universally
IR-divergent unless the KGB approach is considered.
In this section, we study the pure-trace (spin-zero)

part, KPT , of the graviton two-point function. It should
be noted that the spin-zero sector does not correspond to
a UIR of the dS group. In fact, the tracelessness
condition on the tensor field is an essential condition
to relate it to the UIRs of the dS group [62].
To start, we consider

KPT ¼ 1

4
θΨ; ð88Þ

where Ψ is a scalar field. By taking trace of Eq. (25) and
putting α ¼ 5=3, we can obtain the field equation for the
scalar Ψ, which in order to be comparable with the results
of [45], we demonstrate it as follows:

�
Q0 þ

12

2þ 2fðbÞ
�
Ψ ¼ 0; ð89Þ

where fðbÞ is a real number

fðbÞ ¼ 1

5
−
3

2

�
b −

1

2

�
−
6

5

�
b −

1

2

�
2

: ð90Þ

On the other hand, any scalar field in accordance with the
scalar discrete series UIR of the dS group obeys the
subsequent equation with integer n [47]

ðQ0 þ nðnþ 3ÞÞΨ ¼ 0: ð91Þ

Well-known difficulties arise when we try to quantize
these fields with the so-called “imaginary mass” [with
2fðbÞ > −2 or discrete series with n > 0]. The correspond-
ing two-point functions of these field exhibits a pathologi-
cal large distance behavior [70]

W ≈ jZðx; x0Þj−3
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
9þ 18

2þ2fðbÞ
p

2 ; ð92Þ

for which, the choice 2fðbÞ < −2 eliminates the patho-
logical large distance behavior from the spin-zero sector
two-point function. By applying this condition on Eq. (90),
we find a rang for the gauge-fixing parameter “b” as
follows:

b >
−3þ ffiffiffiffiffiffiffiffi

801
p

24
; b <

−3 −
ffiffiffiffiffiffiffiffi
801

p

24
;

so that, de Sitter invariance is indeed restored and the
theory is infrared-free. Therefore, the obtained result for
the spin-zero sector is perfectly compatible with the
usual point of view which supports that this sector is
gauge-dependent, and hence the introduced divergences
can be eliminated by suitable gauge-fixing procedure
[31,41,42].
On the other hand, by comparing Eq. (89) with (91)

while 2fðbÞ < −2, one can easily show that only the values
n ¼ −1;−2, which render 2fðbÞ ¼ −8, relate Eq. (89) to
the scalar series UIR of the dS group (see [45]). By
applying this condition on Eq. (90), one can obtain the
“optimal” value for “b”

b ¼ −3� ffiffiffiffiffiffiffiffiffiffi
2241

p

24
;

which converts Eq. (89) to

ðQ0 − 2ÞΨ ¼ 0: ð93Þ

It, Ψ, is indeed the conformally coupled massless scaler
field in de Sitter space.

V. CONCLUSION

In this paper, through a rigorous group theoretical
approach, we have obtained the fully dS-covariant grav-
iton two-point function in dS space in a gauge with two
parameters “a” and “b”. An appropriate gauge-fixing
procedure enables us to eliminate logarithmic divergence
and the dS-breaking contribution to the spin-zero part.
Furthermore, in complete agreement with Woodard view-
point (e.g. see [28] and references therein), we have
proved that the de Sitter breaking of the transverse-
traceless part of the linearized gravitons two-point func-
tion is gauge-independent and quite universal. We have
also shown that the only way to eliminate IR divergences
to preserve covariance of the theory is utilizing the Krein-
Gupta-Bleuler quantization scheme which includes all the
unphysical negative norm states in the theory and
inevitably breaks the analyticity of the two-point function
(the obtained Krein two-point function, actually, is the
commutator).
Frankly speaking, in quantizing procedure of the

linearized gravitons in de Sitter spacetime, covariance
and analyticity cannot be summoned under one sin-
gle roof.
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APPENDIX: A COMPARISON WITH EXISTING RESULTS

In this section, we compare the Krein two-point function (the commutator) (86) with existing results. In this regard, first,
by substituting the expressions for d=dZWmcðZÞ, Eq. (79) (for the sake of simplicity we choose C1 ¼ 1), and f1 to f5
[below Eq. (77)], the explicit form of the two-point function (86) is obtained as follows:

QTT
μνμ0ν0 ðX;X0Þ ¼ SS0½F1gμνg0μ0ν0 þ F2ðgμνnμ0nν0 þ g0μ0ν0nμnνÞ þ F3nμnνnμ0nν0 þ F4gμμ0nνnν0 þ F5gμμ0g0νν0 �; ðA1Þ

in which

F1 ¼ −
8

27

Zð2 − 3Z2Þ
ð1 − Z2Þ3 ; F2 ¼ −

8

27

Zð−3 − 3Z2Þ
ð1 − Z2Þ3 ;

F3 ¼ −
8

27

ð−40 − 114Z − 88Z2 þ 12Z3 þ 32Z4 þ 6Z5Þ
ð1þ ZÞ2ð1 − Z2Þ3 ;

F4 ¼ −
8

27

ð40þ 22Z − 20Z2 − 18Z3Þ
ð1 − Z2Þ3 ; F5 ¼ −

8

27

Zð−11þ 9Z2Þ
ð1 − Z2Þ3 :

Such a comparison can now be easily done by considering the tensor/vector sector of the graviton Wightman two-point
function given in Ref. [42]; in the gauge a ¼ α ¼ 5=3 which as already pointed out is employed to remove logarithmic
divergences, we calculate the corresponding commutator in 4-dimension using Eqs. (A10a) to (A10e) in Ref. [42]. On this
basis, the obtained commutator would be of the same structure as (A1) [see Eqs. (172) and (173) in Ref. [42]] with the
following coefficients:

F0
1 ¼ −

32

27

Zð1þ 3Z2Þ
ð1 − Z2Þ3 ; F0

2 ¼
32

9

Zð7þ Z2Þ
ð1 − Z2Þ3 ;

F0
3 ¼ −

8

27

Zð985 − 263Z2 þ 19Z4 þ 27Z6Þ
ð1 − Z2Þ3 ;

F0
4 ¼ −

2

27

Zð649 − 311Z2 þ 19Z4 þ 27Z6Þ
ð1 − Z2Þ3 ; F0

5 ¼
16

27

Zð−17þ 9Z2Þ
ð1 − Z2Þ3 :

Both coefficients (“F”s) and (“F0”s) have the same overall structure but disagree in numerical factors which is due to
the fact that the transverse-traceless and scalar sectors are defined differently in our paper and Ref. [42]. Moreover,
contrary to our calculated Krein two-point function, the corresponding commutator obtained from [42] suffers from IR
divergences. It is indeed because of different vacuums utilized in these works which has been thoroughly discussed in
the present article.
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