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A phenomenologically viable theory of quantum gravity must accommodate all observed matter degrees
of freedom and their properties. Here, we explore whether a toy model of the Higgs-Yukawa sector of the
Standard Model is compatible with asymptotically safe quantum gravity. We discuss the phenomenological
implications of our result in the context of the Standard Model. We analyze the quantum scaling dimension
of the system and find an irrelevant Yukawa coupling at a joint gravity-matter fixed point. Further, we
explore the impact of gravity-induced couplings between scalars and fermions, which are nonvanishing in
asymptotically safe gravity.
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I. INTRODUCTION

Asymptotic safety [1] provides a framework in which a
local quantum field theory of the metric—or related gravi-
tational degrees of freedom, such as, e.g., the vielbein—
could be established. Compelling hints for theviability of the
asymptotic-safety scenario have been uncovered in pure
gravity [2–44], for reviews see [45–51]; similar ideas have
been explored in other quantum field theories, see, e.g.,
[52–54]. These results suggest that quantum fluctuations of
gravity could induce an interacting Renormalization Group
(RG) fixed point, generalizing the success-story of asymp-
totic freedom to a quantum gravitational setting. Yet, a
fundamentalmodel of spacetime that is viable in our universe
must be compatible with the existence and properties of the
observedmatter degrees of freedom. First results suggest that
asymptotic safety in gravity persists if thematter fields of the
Standard Model and some of its extensions are coupled
minimally to gravity [55–58].Here,we focus on the converse
question, namely the effect of quantum gravity on matter
fields and their interactions in the ultraviolet (UV). The
StandardModel is a low-energy effective field theory, which
presumably features perturbative Landau poles and a trivi-
ality problem beyond perturbation theory in the Higgs sector
and the U(1) hypercharge sector. Within the asymptotic-
safety scenario local quantum field theory remains a valid
framework up to arbitrarily highmomentumscales, requiring
a quantum-gravity induced Renormalization Group fixed
point for matter. First hints for its existence have been found
in [59–69].
In this work, we focus on a toy model of the Yukawa

sector of the Standard Model, a matter system with a
massless Dirac fermion and a real scalar interacting via a
Yukawa term with coupling y, in the presence of quantum
gravity. Within canonical power counting, the Yukawa
coupling y corresponds to a marginally irrelevant coupling.

If the coupled matter-gravity system is asymptotically safe
and the Yukawa coupling remains irrelevant, this results in
a prediction for the low-energy limit: The value of the latter
is dominated by the UV-relevant couplings in the vicinity of
the UV-fixed point, which determine the RG-trajectory
from the UV-regime to the low energy regime. In turn, UV-
irrelevant couplings correspond to a UV-repulsive direction
of a fixed point, and their value governs the approach to the
critical surface at low energies. Thus, in this scenario most
values of y in the infrared (IR) are incompatible with
asymptotic safety. A relevant Yukawa coupling most likely
implies that its observed low-energy value can be accom-
modated within an asymptotically safe UV completion. On
the other hand, an irrelevant Yukawa coupling makes the
model more predictive, and can only accommodate one
particular value of the Yukawa coupling. If this does not
match the observed value, this particular UV completion is
ruled out. The arguably most interesting case is realized if
the Yukawa coupling is irrelevant, and the predicted low-
energy value agrees with observations. This scenario would
showcase how an interacting fixed point can have an
enhanced predictive power over a perturbative setting,
where the Yukawa couplings are free parameters.
In this spirit it has been conjectured that the Higgs mass

could be predicted within asymptotic safety [70,71]. Two
conditions need to be satisfied for this scenario to work in
the Standard Model: Firstly, the Higgs self-interaction must
become irrelevant at the fixed point. Secondly, the top-
Yukawa coupling needs to be relevant, if the corresponding
fixed point lies at a vanishing value of the coupling.
Otherwise, the UV-repulsive fixed point at y ¼ 0 is difficult
to reconcile with the value of the top-Yukawa coupling at
the Planck scale, which is significantly larger than zero in
the Standard Model [72].
The main goals of this paper are the following two:

Firstly, we study the quantum gravitational correction to the
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critical exponent of the Yukawa coupling at its fixed point
to determine whether the low-energy value of the Yukawa
coupling could be predicted in a matter-gravity model in
Sec. III. Secondly, we take a more detailed look at the
properties of a joint matter-gravity fixed point. In particular,
we focus on quantum-gravity induced interactions, and the
shift of a possible matter fixed point to an asymptotically
safe instead of an asymptotically free one in Sec. IV.

II. YUKAWA THEORY COUPLED
TO QUANTUM GRAVITY

A. Effective action

We will analyze the momentum-scale running of the
effective action Γk of a Yukawa theory coupled to gravity in
the presence of an infrared cutoff scale k. More specifically,
we will monitor the scale dependence of matter couplings
in the vicinity of the asymptotically safe UV fixed point of
the theory. The theory consists of a Dirac fermion ψ and a
real scalar ϕ coupled to a fluctuating metric. The flowing
action Γk of the model is parametrized as

Γk½ḡ;Φ� ¼
Zϕ

2

Z
d4x

ffiffiffi
g

p ðgμν∂μϕ∂νϕþm2
ϕϕ

2Þ

þ iZψ

Z
d4x

ffiffiffi
g

p
ψ̄∇ψ

þ iZψZ
1=2
ϕ y

Z
d4x

ffiffiffi
g

p
ϕψ̄ψ

þ Γk;ho½ḡ;Φ� þ Γk;grav½ḡ;Φ�; ð1Þ

with scale-dependent couplings yðkÞ and m2
ϕðkÞ and wave-

function renormalizations ZϕðkÞ, ZψðkÞ. The Dirac term
contains the spin connection; see Appendix F. The effective
action depends on an auxiliary background metric ḡμν and
the fluctuating quantum fields Φ with

Φ ¼ ðhμν; cν; c̄ν;ψ ; ψ̄ ;ϕÞ: ð2Þ

In (2) the field h carries the metric fluctuations and the
corresponding pure-gravity dynamics is contained in
Γk;grav. The full metric gμν ¼ gμνðḡ; hÞ in the first three
lines of (1) is chosen to be

gμν ¼ Z1=2
ḡ ḡμν þ

ffiffiffiffi
G

p
Z1=2
h hμν; ð3Þ

with Newton coupling G. The wave-function renormaliza-
tions Zḡ and Zh carry the cutoff-scale dependence of the
respective kinetic terms similar to those of the scalar and
fermion. The parametrization (1) with (3) leaves us with
RG-invariant but scale-dependent couplings y and G, while
the RG scaling of the vertices is carried entirely by the
corresponding Z factors. The factor

ffiffiffiffi
G

p
leaves the fluc-

tuation field h with the canonical dimension of a bosonic

field such that powers of G occur in all matter-gravity and
pure-gravity vertices.
The presence of the background metric is required for two

reasons: Firstly, the use of an RG-approach in gravity
requires to set a scale in order to distinguish the “high-
momentum modes” of the model. This is possible with the
help of the background-covariant Laplacian. Secondly, our
approach requires the specification of a propagator for the
metric, which, as in any gauge theory, requires the intro-
duction of a gauge-fixing term. Here, wewill use a family of
gauge-fixing functionals with respect to the background
metric.
In the present setting, classical diffemorphism invariance

is encoded in Slavnov-Taylor identities. They imply that
the quantum effective action cannot be expanded in
diffeomorphism-invariant terms. This entails that the first
three lines in (1) are accompanied by higher-order termsΓk;ho
dictated by the Slavnov-Taylor identities. These terms are
neglected in the present work. A more detailed discussion of
background independence is given in Appendix A.
The propagator of metric fluctuations is obtained from

the Einstein-Hilbert action with general covariant gauges
and the same linear metric split, cf. (3). The classical action
reads

SEH ¼ 1

16πG

Z
d4x

ffiffiffi
g

p ð2Λ − RÞ þ Sgf þ Sgh; ð4Þ

and we employ the linear gauge-fixing condition,

Fμ ¼
�
δρμD̄σ −

1þ β

4
ḡρσD̄μ

�
hρσ; ð5Þ

where D̄ is the covariant derivative with respect to the
background metric ḡμν. This results in a gauge-fixing term,

Sgf ¼
1

32πGα

Z
d4x

ffiffiffī
g

p
ḡμνFμFν; ð6Þ

accompanied by the standard Faddeev-Popov-ghost term.
We thus have a two-parameter family of gauges labeled by
ðα; βÞ. Given an expansion in powers of the fluctuating
graviton h, we obtain the quadratic part of the pure-
gravity effective action from which we construct the
scale-dependent full metric propagator; for details, see
Appendix C. In the present work we will not evaluate
the gravitational RG flow explicitly, but instead utilize
results for pure quantum gravity, and quantum gravity
coupled to free matter. Thus gravitational couplings such as
G and the graviton-mass parameter μh [defined in (C1)]
constitute free parameters of our equations.
We close this section with a discussion of the global

symmetries of the model in (1). The kinetic terms of the
scalar and fermion feature a separate Z2 symmetry under
which ϕ → −ϕ, and a chiral symmetry in the fermion
sector under which ψ → eiγ5ϑψ and ψ̄ → ψ̄eiγ5ϑ.
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The Yukawa coupling reduces these separate symmetries to
a combined discrete chiral symmetry under which the
scalar and the fermions transform simultaneously and
ϑ ¼ π=2. It has the same effect a global chiral symmetry
would have in the Standard Model, forbidding a fermionic
mass term. Further, it restricts the type of self-interactions
that can be induced by quantum gravity. All induced
interactions respect the global symmetries of the matter
sector, especially the separate symmetries of the fermionic
and scalar kinetic terms, as these provide the vertices that
source the induced interactions. Note that it would be
interesting to understand whether the general argument,
that black-hole configurations in the quantum gravitational
path integral lead to the breaking of global symmetries [73]
also applies in asymptotic safety and if the preservation of
global symmetries that we observe is an artifact of the
truncation or our choice of background and/or signature.

B. Functional renormalization group approach

To explore the scale dependence of our matter-gravity
theory, we employ the nonperturbative functional renorm-
alization group (FRG) approach; for reviews, see [74–82].
In this approach, the theory is regularized in the infrared

below a momentum scale k. This is achieved with an
infrared regulator term in the classical action that underlies
the generating functional,

Scl → Scl þ
1

2

Z
x

ffiffiffī
g

p
ΦIRk;IJΦJ; ð7Þ

where I, J comprise internal indices and species of fields.
For example, for the metric fluctuation Φ1 ¼ h we have
I ¼ 1; μν. The regulator term in (7) has to be quadratic in
the fluctuation field in order for the FRG flow equation to
be of a particularly simple one-loop structure. Hence, the
regulator contains a background field dependence with

ffiffiffī
g

p
.

Moreover, it is chosen such that it suppresses low-
momentum fluctuations in the path integral, while high-
momentum ones are integrated out. In gravity, this again
necessitates the specification of a metric, and hence also Rk
depends on the background metric, e.g., via the covariant
background Laplacian Δḡ. The explicit form of the
regulators Rk;IJ used in the present work is given in
Appendix D.
Within this framework, Γk interpolates between the

microscopic action for k → ∞ and the full quantum
effective action for k → 0. The effective action
Γk½ḡμν;Φ� obeys a one-loop flow equation, the Wetterich
equation [83],

∂tΓk ≔ k∂kΓk ¼
1

2
Tr

1

Γð2Þ
k ½ḡμν;Φ� þ Rk

∂tRk; ð8Þ

see also [84,85]. In (8), the trace Tr includes a sum over
internal indices and species of fields, including a negative

sign for fermions, as well as a momentum integration.

Γð2Þ
k ¼ δ2Γk=δΦ2 denotes the second functional derivatives

of the effective action with respect to Φ. This flow
equation can be depicted as a one-loop diagrammatic

equation, as 1=ðΓð2Þ
k þ RkÞ corresponds to the full, field

dependent propagator of the theory. The corresponding
diagrams are not perturbative diagrams but rather fully
nonperturbative depictions of derivatives of the above
flow equation (8).
Quantum fluctuations generate all interactions which are

compatible with the symmetries of the model. For practical
purposes, it is necessary to truncate the space of all action
functionals to a (typically) finite dimensional space. As our
truncation, we choose (1). In the first part of this work, see
Sec. III, we consider a truncation containing the first three
lines in (1) and neglect all additional terms. In a canonical
counting, all scalar-fermion interaction terms beyond this
truncation are irrelevant. While residual interactions at an
asymptotically safe fixed point alter the scaling properties
of operators, the canonical dimensionality can still remain a
useful ordering principle. In particular, if quantum fluctua-
tions shift the critical exponents by anomalous contribu-
tions ofOð1Þ, then only a small number of couplings can be
relevant. This reasoning has been demonstrated to hold in
pure gravity within a truncation based on higher powers of
the scalar curvature, [29]. Here, we adopt this principle to
motivate our truncation in the matter sector. More
formally, our truncation can be understood as the leading
order in a combined vertex- and derivative expansion,
cf. Appendix B.
In the second part, cf. Sec. IV, we ask which of the

higher-order couplings contained in Γk;ho½ḡ;Φ� in (1) are
induced by gravity. Specifically, these are the leading-
order terms in a canonical counting, for which the only
possible fixed point must be interacting. The vertices in the
diagrams underlying their beta functions arise from the
kinetic terms for scalars and fermions, and must respect
the separate Z2 symmetry in the scalar and chiral symmetry
in the fermion kinetic terms (cf. last paragraph in Sec. II A).
The canonically most relevant induced structures are
quartic in the fields, i.e., two-fermion–two-scalar inter-
actions, of order p3. A complete basis of the induced
operators reads

Γk ho½ḡ;Φ� ¼ Γk induced

¼ iZϕZψ X̄1−

Z
x

ffiffiffi
g

p ½ðψ̄γμ∇νψ − ð∇νψ̄ÞγμψÞ∂μϕ∂νϕ�

þ iZϕZψ X̄2−

Z
x

ffiffiffi
g

p ½ðψ̄γμ∇μψ − ð∇μψ̄ÞγμψÞ∂νϕ∂νϕ�:

ð9Þ
In Appendix B, we give a more detailed discussion of our
expansion in the matter and gravity sector. This also helps
to understand the technical details as well as the systematics
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underlying the derivation of the β functions of the matter
couplings that are used for our analysis in Secs. III and IV.

III. FIXED POINTS FOR THE
YUKAWA COUPLING

In this section, we analyze the UV stability of the present
Yukawa-gravity system, which serves as a toy model for the
top-Yukawa sector of the Standard Model. It is a first step
towards answering the question, whether asymptotically
safe quantum gravity is compatible with a sizeable top-
Yukawa coupling at the Planck scale MPl. This is required
within the Standard Model without additional degrees of
freedom up toMPl. Then, a perturbative evaluation is viable
up to that scale, and yields y ≈ 0.4=

ffiffiffi
2

p
[72].

This is compatible with asymptotic safety within two
physically distinct scenarios. In the first one, the Yukawa
coupling features a UV-attractive fixed point, assuming that
its value at the Planck scale lies within the basin of attraction
of the fixed point. In the second scenario the Yukawa
coupling becomes irrelevant at the fixed point. Then, its
low-energy value, i.e., at momentum scales at or below the
Planck scale, is a prediction of asymptotic safety.
Disregarding the curvature of the critical surface, the
fixed-point value would have to correspond to the value at
the Planck scale.

A. Results

We analyze the RG flow of the Yukawa coupling within
the truncation specified by (1) with Γk ho ¼ 0, cf. Fig. 1.
The full result for the gravity-induced part is lengthy and
thus presented in Appendix E. We recover the standard
pure-matter contribution that agrees with FRG results in
[52], such that

βy ¼
y
2
ðηϕ;0 þ 2ηψ ;0Þ

þ y3

16π2

�
1 − ηψ=5

1þ μϕ
þ 1 − ηϕ=6

ð1þ μϕÞ2
�
þ βgravy ; ð10Þ

where βgravy ∼ yg is proportional to the dimensionless
Newton coupling g=k2 ¼ G and ηΦ ¼ −∂t lnZΦ. It also
depends on the dimensionless graviton mass parameter
μhk2 ¼ −2Λ; see Appendix E for the full expression. In
(10) we have also used the dimensionless mass parameter
of the scalar field, μϕk2 ¼ m2

ϕ. Further details on the
graviton propagator can be found in Appendix C. Note
that we use that term in a lose way for the propagation of
metric fluctuations. The latter are not restricted to small
fluctuations around some background, and the ansatz
therefore goes beyond the perturbative notion of a graviton
propagator.
To compare to previous results, we note that if we fix the

gauge parameters to α ¼ 0 and β ¼ 1, set the graviton mass
parameter and all anomalous dimensions to zero such as to
compare to [59] and [68], we come to agreement with the
results obtained in [68],

βy ¼
y3ð2þ μϕÞ

16π2ð1þ μϕÞ2
þ gy

ð29 − 2μϕ þ 5μ2ϕÞ
20πð1þ μϕÞ2

: ð11Þ

Note that in their notation μϕ ¼ 2λ2. As the term yψ̄ψϕ is
only symmetric under a combined Z2 transformation of the
scalar, ϕ → −ϕ and discrete chiral transformation of the
fermions, while all other terms in the truncation are
invariant under these transformations separately, the RG
flow of y must be proportional to y. Thus there is always a
Gaussian fixed point y ¼ 0. Therefore, the asymptotically
safe fixed point that has first been discovered in pure
gravity in [2,5] and has been shown to extend to a gravity-
matter fixed point in minimally coupled truncations
[55–58] trivially extends to the case with a Yukawa
coupling. In particular, we can combine the Yukawa
coupling with any truncation in the gravity-matter sector
that already features a fixed point, and will find a trivial
generalization of that fixed point. For definiteness, let us
quote the results obtained in a vertex expansion for gravity
and matter, first analyzed in [57] in the gauge α ¼ 0,
β ¼ 1, with

g� ≈ 0.55; μh;� ≈ −0.58; ηh� ≈ 0.42;

ηc;� ≈ −1.58; y� ¼ 0; μϕ� ¼ 0; ηϕ� ¼ ηϕ;0� ¼ 0;

ηψ� ≈ 0.07; ηψ ;0� ≈ 0.72; ð12Þ

with a UV-irrelevant Yukawa coupling. We distinguish the
anomalous dimensions from the definition of the vertex,
ηψ=ϕ;0, included in Eq. (1) from those arising from loop
integrals, i.e., those that arise from the inclusion of the
wave-function renormalization in the regulator and which
are accordingly sensitive to ZΦðp ≈ kÞ, since our vertices
are evaluated at vanishing momentum [57]. Note that
corrections from Yukawa-diagrams to the matter anoma-
lous dimensions ηϕ=ψ vanish at a fixed point with y ¼ 0.

FIG. 1. Depicting metric propagators by a double line, scalars
by a dashed line, and fermions by a directed line, we show the
diagrams contributing to βy that contain at least one metric
propagator. All diagrams with n different internal propagators
exist in n versions, with a regulator insertion on each of the n
interal propagators. All contributions are ∼gy, and thus contribute
directly to the critical exponent at a fixed point.
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Therefore, the system in [57] does not change under the
inclusion of a Gaussian Yukawa coupling. Hence, by
combining the results, we obtain the critical exponent of
the Yukawa coupling,

θy ¼ −
∂βy
∂y
����
y¼0;g¼g�…

≈ −2.33: ð13Þ

We compare this to the result that can be obtained in a
hybrid background calculation, where the graviton anoma-
lous dimension is distinguished from that of the back-
ground Newton coupling, but the graviton mass parameter
is equated to the background cosmological constant, [55].
In that case, we obtain θy ¼ −0.06. While the sign is in
agreement with (13), the absolute value differs signifi-
cantly. We can trace that difference back to the background-
approximation for the graviton mass parameter. In fact,
using the fixed-point value for the Newton coupling and the
anomalous dimensions from [55] and combining them with
the mass parameter from [57], yields a critical exponent
of θy ¼ −4.88.

B. Gauge dependence

Next, we analyze the gauge dependence of our result by
varying the two gauge parameters α and β. Note that, in a
consistent treatment, we would substitute α → Zαα,
β → Zββ in the gauge-fixing term (5); see Appendix C.
Here, we approximate Zα ¼ 1 ¼ Zβ.
First, we focus on the specific gravitational fixed-point

values quoted in (12) in Figs. 2 and 3, which were obtained
with α ¼ 0, β ¼ 1, but which we extrapolate to other values
of the gauge parameters. We observe poles at specific
values of α, β, which are induced by an incomplete gauge
fixing. Extrapolating the fixed-point values for the gravi-
tational couplings that were obtained for the choice α ¼ 0,
β ¼ 1 into that region is inconsistent. We expect that in a

complete study, in which the gravitational couplings, all
anomalous dimensions and θy are evaluated in a gauge-
dependent way, these pole-structures disappear. It is
reassuring to note that all values of α and β excepting
the poles lead to the same sign for the critical exponent,
θy < 0, cf. Fig. 3. Within the flow equation, positive and
negative values of α seem admissible, as both result in an
invertible two-point function. On the other hand, choosing
α < 0 flips the sign of the contribution of the vector mode
to βy. Within the path integral, only α ≥ 0 naively corre-
sponds to an implementation of the gauge condition. For
our choice of gravitational couplings, both signs of α lead
to a negative critical exponent for the Yukawa coupling,
cf. Fig. 4. We observe a similar behavior if we use the fixed-
point values from [55], combined with the fixed-point value

FIG. 2. We plot the critical exponent θy for the fixed-point
values given in (12) which were obtained with α ¼ 0, β ¼ 1. We
extrapolate to other values of α and β without adjusting the fixed-
point values in the gravitational sector.

10−4 1 104
|α|

5

10

50

100
−θ y

FIG. 3. We plot −θy as a function of α for the fixed-point values
in (12). The blue thick curve is for positive α, while the green
dotted one is for negative α. At large values, both reach the
asymptotic limit θy ¼ − 18

25
− 206838269

40924800π which is independent of β.
The value of θy at α ¼ 0 depends on β, but is negative for all β for
the values in (12).

FIG. 4. We plot the critical exponent θy as a function of the
gauge parameters α (horizontally) and β (vertically). Green
and lighter (red and darker) areas indicate positive (negative)
values of θy and thus a relevant (irrelevant) Yukawa coupling.
Contours are drawn at −8, −6, −4, −2, 0, 2, 4, 6, 8 and 10. The
black axis indicates the line along which the gauge parameters
take fixed point values at α⋆ ¼ 0. Additional parameters
ðg; μh; μϕ; ηh; ηϕ; ηψ Þ are set to the values from [57] (left panel),
and from [55] with the fixed-point value for the graviton mass
parameter taken from [57] (right panel).
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μh� ≈ −0.58 from [57], cf. Fig. 4. Resolving the back-
ground approximation for the graviton mass parameter has
a significant impact on the results; see upper left panel in
Fig. 5. If the fixed-point value for the background cosmo-
logical constant is used for the graviton mass parameter, the
sign of the critical exponent is not stable with respect to
variations of the gauge. Note that, in Fig. 5, we use fixed-
point values obtained for the gauge β ¼ 1 ¼ α away from
that point. A more consistent study of the gauge depend-
ence of our result should also include gauge-dependent
gravitational fixed-point values. Nevertheless, the strong
gauge dependence could be interpreted as a hint that a
resolution of the background approximation is of particular
importance for the graviton mass parameter, at least when
matter fields are present.
For vanishing masses and anomalous dimensions the

gravitational contribution to the beta function for the
Yukawa coupling reduces to

βgravy ¼ yg
ð5αð5β2 − 30β þ 53Þ þ 35β2 − 258β þ 339Þ

20πðβ − 3Þ2 :

ð14Þ

For this case, the dependence on the gauge parameters is
depicted in the lower right panel of Fig. 5. In (14) a pole
occurs in the propagator, when the gauge-fixing condition
(5) does not correspond to a proper gauge fixing,
cf. Eq. (C4), as well as [40]. While a particular choice
of the gauge parameters can lead to a change of the sign of
the critical exponent, cf. Fig. 5, it seems to be induced by
the pole in the propagator that arises from a bad choice of
gauge, β ¼ 3.
Varying all gravitational parameters, we observe that

some choices of α, β can lead to a change in the sign of the
critical exponent, which we tentatively consider an artifact.

C. Stability and predictive power

In the last section, we have utilized results for the
Newton coupling and the graviton mass parameter from
[55,57] for matter-gravity systems. These results were
obtained in an approximation in which matter has no
self-interactions at the UV fixed point.
Next, we consider effects beyond our truncation which

will change the flow in the gravitational sector and the
anomalous dimensions, but which do not couple directly
into βy. Some of these will change the fixed-point values of,
e.g., g or ηh. Thus we test how strongly any of the
parameters g; μh; μϕ; ηh; ηc; ηϕ; ηψ have to deviate from
the results in (12) for the Yukawa coupling to become
relevant.
We then focus on the preferred choice of gauge α ¼ 0,

which corresponds to an RG fixed point [86]. The latter
holds, as the gauge-fixing condition is strictly imposed,
which cannot be changed by the -finite- flow. Further, we
choose β ¼ α, while noting that the choice β ¼ 1, α ¼ 0
does not lead to any qualitative differences in our results,
cf. Sec. III. We observe that a large positive mass parameter
of the graviton—corresponding to a negative cosmological
constant in a single-metric truncation or a negative level-2-
cosmological constant in a “bi-metric” truncation—can
change the sign of the critical exponent, cf. Fig. 6, as can
negative anomalous dimensions for matter. For instance,
setting μϕ ¼ 0 leads to

θy ≔ −
∂βy
∂y

����
y¼0

¼ −
1

2
ðηϕ;0 þ 2ηψ ;0Þ þ g

231 − 41ηψ
280πð3þ 2μhÞ

−
g

6720π

�
2800ð6 − ηhÞ
ð1þ μhÞ2

− 3
6888þ 869ηh
ð3þ 2μhÞ2

�
: ð15Þ

At large enough μh and/or large negative ηϕ=ψ , the last line
in (15) is suppressed, and the positive contribution domi-
nates. In that case, two further fixed-point solutions are
pulled from the complex plane onto the real axis. The non-
Gaussian fixed-point values are given by

FIG. 5. We plot the critical exponent θy as a function of the
gauge parameters α (horizontally) and β (vertically). Green and
lighter (red and darker) areas indicate positive (negative) values
of θy and thus a relevant (irrelevant) Yukawa coupling. Contours
are drawn at −8, −6, −4, −2, 0, 2, 4, 6, 8 and 10. The dashed
black curve highlights the crossing from negative to positive
values. The black axis indicates the line along which the gauge
parameters take fixed point values at α⋆ ¼ 0. Additional param-
eters ðg; μh; μϕ; ηh; ηϕ; ηψ Þ are set to the values from [55] (upper
left panel), ð0.7;−0.42; 0;−2; 0; 0Þ (cf. [35], upper right panel),
ð0.55;−0.1;0;−1;−1;0Þ (lower left panel) and (0.55, 0, 0, 0, 0, 0)
(lower right panel).
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y� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

14ð−6ηψ − 5ηϕ þ 60Þ
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g

�
24ð231 − 41ηψÞ

3 þ 2μh
þ 3ð6888 − 869ηhÞ

ð3 þ 2μhÞ2
−
2800ð6 − ηhÞ
ð1 þ μhÞ2

�
− 3360πð2ηψ ;0 þ ηϕ;0Þ

s
:

ð16Þ

We emphasize that large positive values of μh are far
from being accessible in state-of-the-art truncations in
gravity. Nevertheless, they might be realized in extended
truncations.
While matter interactions do not contribute directly to

the pure-gravity parameters, they couple back into the
matter anomalous dimensions ηϕ=ψ . Even for a vanishing
Yukawa coupling, tadpole diagrams from matter 4-point
interactions will contribute, cf. Sec. IV. The corresponding
changes in the anomalous dimensions could present
another possible mechanism for pushing the Yukawa
coupling into relevance, as negative (positive) ηϕ=ψ tend
to make the Yukawa coupling more relevant (irrelevant),
cf. Fig 6. Perturbing the fixed-point values from (12), the
case of ηψ ¼ ηϕ ¼ −1.411 features a real fixed point

[cf. (16)] at y� ≈
ffiffiffi
2

p
· 0.4 with critical exponents

θy ¼ −0.01. This would enforce that particular value of
the Yukawa coupling in the vicinity of the Planck scale,
corresponding exactly to the value of the top-Yukawa
coupling at that scale. Note that this scenario is contingent
upon large negative values for the anomalous dimensions,
which would require substantial changes from the results in
(12). In general a scenario with additional non-Gaussian
fixed points in the Yukawa coupling can be realized
whenever there are negative contributions to the Yukawa
β function. In the present truncation, supplemented by

gravitational fixed-point values from (12), such contribu-
tions are absent.
We conclude that in the present simple truncation the

Yukawa coupling exhibits a Gaussian fixed point with
irrelevant UV-behavior. We also observe that our calcu-
lation is compatible with a variety of approximations in the
metric sector. For instance, within a single-metric approxi-
mation, gwould correspond to the background value for the
Newton coupling, and μh ¼ −2Λ. As an example, we use
fixed-point values from [40] with ηh ¼ −2, which yield
θy ¼ −1.44 for g� ¼ 0.89; μh ¼ −0.33, α ¼ 0, β ¼ 1, and
θy ¼ −1.97 for g� ¼ 0.88; μh ¼ −0.36 for β ¼ 0 ¼ α and
finally θy ¼ −2.34 for g� ¼ 0.72; μh ¼ −0.32 for
β ¼ 1 ¼ α. In a “bi-metric” calculation, the gravitational
couplings entering the beta function for the Yukawa
coupling would be those of the dynamical metric.
Choosing g� ≈ 0.7; μh ≈ −0.42; ηh ¼ −2 and α ¼ 1,
β ¼ 1, as in [35] in fact leads to a critical exponent of
θy ¼ −3.16. Thus, our conclusions on the critical exponent
of the Yukawa coupling do not rely on specific assumption
for the approximation in the gravitational sector, but hold
using fixed-point values from various studies in the
literature.
The irrelevance of this coupling signals that its low-

energy value can be predicted. This could open the door to
an observational test of asymptotically safe quantum
gravity, as the low-energy values of the Yukawa couplings
in the Standard Model are known experimentally.
Neglecting the curvature of the critical surface, the fixed
point cannot be reached in the UV, unless the low-energy
value of the coupling already equals the fixed-point value.
We would thus conclude that at the Planck scale, where the
joint matter-gravity RG flow sets in, the Yukawa coupling
would already have to vanish in order for the RG trajectory
to reach the fixed point. While this is close to the right value
for the Yukawa couplings of the Higgs to the bottom and all
lighter quarks and leptons, we know that the top-Yukawa
coupling in the Standard Model is of the order y ≈ 0.4=

ffiffiffi
2

p
at the Planck scale. This might suggest that the fixed point
that we have analyzed here is not one which is compatible
with the properties of the Standard Model at low energies.
Note however, that statements about quantum gravity
effects on the running couplings of the Standard Model
are also generically regularization-scheme-dependent, see,
e.g., [61,65,87–91]. As couplings do not directly corre-
spond to observable quantities, nonuniversality is not a
problem. Still, it implies that only results obtained in the

FIG. 6. We plot the gravitational contribution to the critical
exponent of the Yukawa coupling divided by the Newton
coupling, for gauge parameters β ¼ α ¼ 0, and g�; η�h from
[57], as a function of the graviton mass parameter μh for ηψ ¼
0.07& ηψ ;0 ¼ 0.72 (cf. (12); thick blue line), ηψ ¼ ηψ ;0 ¼ 0 (dark
green dashed line) and ηψ ¼ ηψ ;0 ¼ −1 (light green dotted line).
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same scheme can be compared. Finally, here we only
consider a toy model of the Yukawa sector, and have
neglected additional matter fields of the Standard Model,
which have to be included, e.g., along the lines of [92]. In
summary, such a comparison requires further work in order
to be dependable.
Moreover extensions of the truncation are clearly indi-

cated: A reliable evaluation of the anomalous dimensions
for the matter fields is critical to settle these questions. As
has already been pointed out for scalar fields and fermions
[66,67], quantum gravity fluctuations induce further
momentum-dependent interactions at the fixed point.
These couple directly into the flow of the anomalous
dimension, and are thus of critical importance for our
study. This will entice us to consider in more detail,
whether the above truncation already captures all important
effects of quantum gravity on the Yukawa sector. As we
will show in the next sections, it does not.

IV. GRAVITY-INDUCED MATTER
INTERACTIONS

As has been pointed out for scalar and fermionic systems
separately [66,67,69,93], asymptotically safe quantum
gravity induces nonvanishing matter self-interactions at
the fixed point, cf. Fig. 7. Thus the only possible fixed
points that exist for the joint matter-gravity system are
necessarily non-Gaussian in some of the matter couplings.
Clearly, the Yukawa coupling is not one of those couplings,
as all couplings with an odd number of matter fields can
vanish. This scenario is as close as possible to a fixed point
that is Gaussian in the matter sector. Then, the first,
genuinely gravity-induced couplings are the matter four-
point vertices. Here we investigate the two-fermion–two-
scalar couplings. The four-fermi, and four-scalar couplings
have been discussed separately in gravity-fermion systems,
[66,69], and gravity-scalar systems, [67]. Both of them
couple nontrivially into the flow of two-fermion–two-scalar
couplings. Here, we make a first step in the exploration of
this system by focussing on the mixed interactions, only.
In that system, there are two main questions:
(i) Is there a fixed point in the matter-gravity system?
(ii) Are canonically irrelevant couplings shifted into

relevance at the joint fixed point?
Note that the first is a vital question since it is a necessary
condition for the realization of asymptotic safety in a
quantum theory of gravity combined with matter fields.

A. Synopsis

In this section, we show that certain momentum-
dependent scalar-fermion interactions cannot have a
Gaussian fixed point in the presence of asymptotically
safe gravity. In particular we show that the Gaussian matter
fixed point for vanishing gravitational coupling g is shifted
to an interacting one at finite g, called the shifted Gaussian
fixed point (sGFP). Thus, asymptotically safe quantum
gravity cannot be coupled to a fully asymptotically free
matter system. At least a subset of the matter couplings
must become asymptotically safe. This entails that the
scaling dimensions of these couplings depart from canoni-
cal scaling. In fact, we observe that some of the canonically
irrelevant scalar-fermion couplings will be pushed towards
relevance.
Moreover, we find that for large enough gravitational

coupling, the sGFP moves off into the complex plane; i.e.,
quantum-gravity effects can lead to fixed-point annihila-
tions, i.e., the collision of two fixed points on the real line
and their subsequent disappearance into the complex plane
in the matter sector. Then, the only remaining viable fixed
points are fully interacting and exhibit a larger number of
relevant directions. These fixed-point annihilations require
the effective strength of gravitational interactions to exceed
a critical value which is well beyond that reached in results
in the literature, see, e.g., [35,55,69].
Our main results are summarized in Fig. 10, where light

grey dots mark a region where the shifted Gaussian fixed
point does not exist. The fixed-point values obtained in [57]
lie within the green region, where the shifted Gaussian
fixed point exists.

B. Induced two-fermion–two-scalar interactions

From here on, we work in the gauge α ¼ 0 and β ¼ 1.
Including the covariant matter kinetic terms in the action
automatically generates vertices with two matter fields and
an arbitrary number of gravitons, i.e.,

ð17Þ

ð18Þ

These vertices give rise to diagrams that induce higher-
order 2s-point, 2f-point and 2s-2f-point functions, where
2s; 2f is the number of external scalar and fermion fields,
respectively. Couplings with an odd number of external

FIG. 7. Mixed quartic diagrams generated by covariant kinetic
terms in the flow equation. These diagrams are nonzero, even if
all matter self-interactions are set to zero initially. They prevent
the corresponding 2-scalar-2-fermion couplings from being able
to reach asymptotic freedom.
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fermions or scalars are not purely gravity-induced from the
kinetic terms. We follow canonical power counting, and
focus on the leading-order terms in the corresponding
expansion in the remainder of this section, which has
s ¼ f ¼ 2. The fixed-point properties of the corresponding
couplings are encoded in the four types of diagrams shown
in Fig. 7. These diagrams are nonvanishing, even if all
matter self-interactions are set to zero. Thus, if we switch
off all matter self-interactions, but keep a finite gravita-
tional coupling, the beta functions of these quartic
scalar-fermion couplings will be nonzero. Accordingly,
there are scalar-fermion couplings which cannot vanish at a
matter-gravity fixed point. This leads us to the canonically
most relevant induced structures. These are quartic in the
fields and of order p3. A complete basis of these operators
manifestly obeying reflection positivity of the Osterwalder-
Schrader theorems [94,95] is built from the reflection
positive combinations

ψ̄γμ∂νψ þ ð∂νψ̄Þγμψ ;
iψ̄γμ∂νψ − ið∂νψ̄Þγμψ ; ð19Þ

traced either into δμν∂ρϕ∂ρϕ or into ∂μϕ∂νϕ. The first
reflection positive combination in (19) corresponds to
imaginary flows in Euclidean space. However, these
operators are neither created by gravity nor by the other
reflection positive operators. Therefore these imaginary
couplings are completely decoupled from the system and
remain zero. An intuitive reasoning for this can be given
since all other operators in the initial effective action are
reflection positive and real in Euclidean space and the flow
preserves these properties. A detailed discussion of this
issue can be found in Appendix G. The reflection positive
and Euclidean-space real combinations amount to the
gravity-induced higher-order couplings already put down
in (9). For the sake of a fixed-point analysis it is convenient
to introduce dimensionless couplings, to wit

X i ¼ X̄ ik4: ð20Þ

Inserting the definition (20) leads us to a complete basis of
induced structures

Γk induced

ZϕZψk4

¼ iX1−

Z
d4x

ffiffiffi
g

p ½ðψ̄γμ∇νψ − ð∇νψ̄ÞγμψÞð∂μϕ∂νϕÞ�

þ iX2−

Z
d4x

ffiffiffi
g

p ½ðψ̄γμ∇μψ − ð∇μψ̄ÞγμψÞð∂νϕ∂νϕÞ�;

ð21Þ

where the flow of the left hand side can be easily projected
on the couplings X i, see Appendix G.

C. Fixed-point shifts and annihilations
in a simplified system

1. Beta functions

First we analyze the two distinct interactions in (21)
grouped together in a single coupling

X ¼ 1

2
ðX1− þ X2−Þ ð22Þ

Therefore we combine the flows obtained with the projec-
tion rules specified in (G6) and (G7) according to the above
relation and employ X1− ¼ X2− ¼ X. This yields a β
function for the combined coupling. The intriguing proper-
ties that we will observe in this simplified system persist
within a more extended analysis, see Sec. IV D. For the
sake of simplicity we have set the metric mass parameter
and all anomalous dimensions to zero. The β function for
the joint coupling X then reads

βX ¼ 4X þ 7

2
g2 −

99

160π
gX þ 143

896π2
X2; ð23Þ

The key effect of gravity is encoded in the term 7=2g2 in
Eqs. (23), which implies that no Gaussian fixed point in X
can exist at finite g. Thus, a major result of ours is that as
soon as metric fluctuations are switched on, the Gaussian
fixed point is shifted to become interacting (cf. Fig. 8).
Accordingly, its scaling exponent deviates from the canoni-
cal value −4, and becomes less irrelevant. At finite g, this
fixed point is distinct from other possible interacting fixed
points as its scaling exponent still reflects the canonical
irrelevance of the coupling.

FIG. 8. We plot the beta function for X ¼ ðX1− þ X2−Þ=2 for
vanishing anomalous dimensions and metric mass parameter and
for g ¼ 0 (gray dotted line), g ¼ 3 (blue dashed line) and
g≡ gcrit ≈ 6 (red line). The Gaussian fixed point at X ¼ 0 only
exists for g ¼ 0, and then becomes shifted to an interacting fixed
point at finite g, which annihilates with the second interacting
fixed point at gcrit ≈ 6.
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2. Fixed-point annihilations and excluded regions

At finite gravitational couplings g; μh, the system shows
an intriguing fixed-point behavior, because the non-
Gaussian gravitational contributions, i.e., the second and
third term in Eq. (23), are potentially destabilizing. This is
best understood starting from the gravity-free case: At
g ¼ 0, the system features a single Gaussian fixed point,
cf. (23). As a function of g, this fixed point moves away
from the origin, cf. Fig. 8. Simultaneously, the non-
Gaussian fixed point moves towards the origin, such that
both fixed points approach one another, i.e., gravity has a
destabilizing effect on the pure matter system. Finally, at a
critical gravitational coupling strength gcrit ≈ 6 the two
fixed points have been driven to a collision by metric
fluctuations and no real fixed point remains.
It is thus crucial to understand the system of induced

interactions in more detail, to clarify whether asymptoti-
cally safe gravity is compatible with the existence of a
Yukawa sector in nature. In this spirit, we provide a first
step by analyzing the full system in the next section.

D. Induced fixed-point interactions: the full system

1. Shifted Gaussian fixed point
and fixed-point annihilations

After the instructive, simplified analysis in the reduced
system in the previous section, we now take into account
both induced two-fermion–two-scalar interactions as put
down in (21). To disentangle all tensor structures in the
X -sector we now use a projection on the two couplings
separately, cf. Eqs. (G6), (G7), (G8) and (G12). After
projecting out the terms with three momenta, we choose a
fully symmetric momentum configuration, cf. Appendix G.
The resulting beta functions are presented in Appendix H.
For vanishing Newton coupling, g ¼ 0, the two-

dimensional matter system of nonvanishing couplings
exhibits four fixed points. In addition to the Gaussian
fixed point three interacting fixed points are purely real and

thus potentially physical. Values of all real fixed points and
critical exponents for specific choices of gravitational
couplings can be found in Table I.
In a first step, we keep μh ¼ ηh ¼ ηϕ ¼ ηψ ¼ 0 and only

vary the gravitational interactions with g. In this process
gravity shifts all four real fixed points (sGFP, NGFP1=2=3)
of the pure matter system, cf. Fig. 9 and Table. I.
The shifted Gaussian fixed point (sGFP) remains UV

repulsive in both directions but becomes non-Gaussian
when gravity is switched on, cf. Fig. 9. The gravitational
contribution to the scaling dimensionality of X1=2− is
positive for both of these couplings. Accordingly, they
are shifted towards relevance. At g ≈ 3.2, the shifted
Gaussian fixed point collides with one of the other
interacting fixed points, and moves off into the complex
plane. As expected, this fixed-point collision is accompa-
nied by a change in sign in one of the critical exponents,
cf. Fig. 9, right panel. Thus gravity might not only deform
the universality class of an asymptotically free matter fixed
point, but might even completely destroy it. In a partial
range of values for g where the shifted Gaussian fixed point
does not exist, two other interacting fixed points remain at
real coordinates. These provide possible universality
classes for the matter system coupled to gravity. As the
presence of additional interacting fixed points is a differ-
ence to the simpler truncation analyzed in Sec. IV C, it is
not clear whether these are truncation artifacts.
At g ≈ 7.3 also the other two interacting fixed points

collide and for effective metric fluctuation-strengths
stronger than that no fixed point can be found at all. It
is unclear whether the vanishing of all possible fixed points
is a truncation artifact but if this persists in higher-order
truncations it implies that the strength of quantum-gravity
interactions must not exceed a critical value, as otherwise
the existence of a Yukawa sector for matter is excluded.
Our results further exemplify, that the regime of very

strong gravitational coupling could correspond to a setting,
where the UV completion for the Standard Model coupled
to gravity might be one which is fully non-Gaussian, and
which is actually not a quantum-gravity deformation of an
asymptotically free fixed point.

2. Allowed gravitational parameter space

The effective gravitational interaction strength is related
to the combination g=ð1þ μhÞ, and thus grows with
increasing g ≥ 0 and decreasing μh ≥ −1. Thus at a very
large mass parameter, the shifted Gaussian fixed point is
nearly Gaussian. As a function of decreasing mass param-
eter, it then undergoes the same type of collisions as it does
as a function of increasing g. We thus conclude that the
shifted Gaussian fixed point does not exist in all regions of
the gμh plane within our truncation, cf. Fig. 10. If we
assume that a phenomenologically viable fixed point has to
be the shifted Gaussian one, in order to smoothly connect to
the perturbative behavior of the Standard Model in the

TABLE I. Fixed-point values and critical exponents in the
X1−-X2−-truncation for g ¼ 0, g ¼ 2 and g ¼ 4, for vanishing
graviton mass parameter and vanishing anomalous dimensions.

g X�
1− X�

2− θ1 θ2

0 0 0 −4 −4 GFP
−217.9 −72.7 4 −3.55 NGFP1
−145.9 −469.4 4.59 4 NGFP2
159.7 −660.2 4 −5.38 NGFP3

2 −12.74 3.08 −2.69 −3.84 sGFP
−157.7 46.9 2.68 −3.49 NGFP1
−118.5 −464.8 4.10þ 0.49i 4.10 − 0.49i NGFP2
178.6 −658.4 3.92 −5.25 NGFP3

4 −76.8 −469.7 3.67 − 0.95i −3.67þ 0.95i NGFP2
183.8 −647.0 3.78 −4.64 NGFP3
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vicinity of the Planck scale, the gray region in Fig. 10 is
exluded from the viable gravitational parameter space in
our truncation.
Comparing these results to the simpler truncation in

Sec. IV C, we observe that the region in which the shifted
Gaussian fixed point is complex remains quantitatively
similar and persists. Whether this trend also persists under
further extensions of the truncation is an important question
for future studies.
Matter anomalous dimensions shift the areas of existence

of the shifted GFP as they shift the critical exponents and
therefore also the locations where these cross zero.

Interestingly, the fixed point values of the noninteracting
matter-gravity sector [57] fall into a regime of gravitational
strength where the shifted GFP of the X sector exists
(cf. Fig. 10), with

X�
1− ¼ −10.3; X�

2− ¼ 2.40;

θ1 ¼ −4.33; θ2 ¼ −3.23: ð24Þ

Note that these values will be modified in a combination of
the study in [57] with our truncation, as the X interactions
alter the matter anomalous dimensions. As in Sec. III C,
large negative matter anomalous dimensions can qualita-
tively alter our results. If, e.g., ηψ þ ηϕ ≲ −2.5 the shifted
Gaussian fixed point disappears. It is therefore crucial to
quantify shifts in the matter anomalous dimensions due to
the induced matter interactions. If such large shifts are
indeed observed, truncations should include these inter-
actions, even though they are of higher order according to
our ordering principle of canonical dimensionality.
Combining the two aspects of the Yukawa sector that we

have analyzed, we observe that the X couplings cannot
couple directly into the flow of the Yukawa coupling, due to
their derivative structure. Thus, a truncation including
y;X1− and X2− still features the Gaussian fixed point
for y. This fixed point can be combined with any of the
fixed points in the X sector, which remain unaltered by the
inclusion of y. On the other hand, a more extended
truncation, including momentum-dependent Yukawa cou-
plings, as well as two-fermion–two-scalar couplings with a
lower power of momenta could feature contributions of
these new couplings to both βy as well as βX1=2−

.

FIG. 9. Left-hand panel: Flow lines towards the UV for g ¼ 3 in X1−X2−-space. The four fixed points sGFP, NGFP1, NGFP2 and
NGFP3 are marked by a circle, square, up-triangle, and down-triangle, respectively. Lighter shaded points mark the locations of the fixed
points at g ¼ 0. Middle panel: Change of fixed-point coordinates X⋆

1− of the sGFP (solid blue), NGFP1 (dashed green), NGFP2 and
NGFP3 (dotted dark green) with growing g. Real parts of complex fixed-point values are shown in light gray. Right-hand panel: Real
parts of the critical exponents of the shifted Gaussian fixed point (sGFP) for growing g. The blue-shaded area marks the region where all
fixed point coordinates are real. The fixed-point collision at g ≈ 3.2 (cf. right-hand panel) is accompanied by a vanishing critical
exponent.

FIG. 10. Existence of a fully attractive fixed point correspond-
ing to the shifted Gaussian fixed point in the fully disentangled
X i-truncation for different values of the gravitational parameters
ðg; μhÞ and vanishing anomalous dimensions. Darker green dots
in the g; μh plane mark existence regions. For the gravitational
fixed point values g� ≈ 0.55 and μh;� ≈ −0.58 (red dot) from [57]
an interacting matter fixed point with two irrelevant directions
exists. The depicted fixed-point values have been obtained for
nonvanishing anomalous dimensions taken from [57]. Inbetween
the two thick blue lines, no shifted GFP exists in the simplest
truncation, cf. Fig. 8. We observe qualitative agreement between
the different approximations.
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V. CONCLUSIONS AND OUTLOOK

As a step towards a unification of the Standard Model
with quantum gravity within the paradigm of asymptotic
safety, we have performed an extensive analysis of a
Yukawa system. Our model consists of a Dirac fermion
and a scalar, coupled to asymptotically safe quantum
gravity. The fixed-point structure of our model is deter-
mined by two major quantum-gravity effects on the matter
sector:
(1) Quantum-gravity fluctuations generate a correction

to the quantum scaling of matter operators.
(2) Quantum-gravity fluctuations induce nonzero matter

self interactions, triggering a departure from asymp-
totic freedom in the matter sector.

The first property is of particular interest in a scenario
where no additional matter degrees of freedom exist up to
the Planck scale. There, a direct connection can be
established between low-energy values of the Standard
Model couplings, and the properties of a joint matter-
gravity fixed point. In particular, the low-energy values of
irrelevant couplings can be predicted, thus potentially
enabling observational tests of the quantum-gravity regime.
Our studies suggest that the Yukawa coupling could be
used to bridge the gap between experimentally accessible
scales and the Planck scale: In the UV, the Yukawa
coupling in our toy model features a UV-repulsive fixed
point at zero for most of the gravitational parameter space.
This implies that it must already be very close to zero at the
Planck scale. This condition is actually realized in Nature
for the Yukawa couplings of the lighter leptons of the
Standard Model. However the top Yukawa coupling is
sizable at the Planck scale, which would probably prevent it
from reaching a fixed point at zero in the far UV.
Within our toy model, there is a small region of

parameter space for which the Yukawa coupling becomes
relevant. Simultaneously, an interacting fixed point at
which it is irrelevant is generated. If extended truncations
feature a similar fixed point, a scenario is conceivable, in
which the observed value of the top-Yukawa coupling is in
fact a consequence of asymptotic safety.
For the Yukawa sector, the second major quantum-gravity

effect is manifest in newly generated, momentum-dependent
interactions. The lowest order gravity-induced interactions
between fermions and scalars are two-fermion–two-scalar
interactions with couplings X i. At vanishing gravitational
coupling, the system features a noninteracting, Gaussian
fixed point. Then, switching on quantum gravity fluctua-
tions, the Gaussianmatter fixed point is shifted, becoming an
interacting fixed point which we call shifted Gaussian fixed
point. In an extended truncation,we thus find only interacting
fixedpoints for theX i, while theYukawacouplingy is zero at
that fixed point. Thus, the only viable matter-gravity fixed
point appears to be one which is asymptotically safe, rather
than asymptotically free, at least for a subsector of matter
self-interactions. Unlike other interacting fixed points of the

matter system, the shiftedGaussian fixed point shows scaling
exponents similar to the canonical ones, at least in the weak-
gravity regime.
We have demonstrated that the model is dominated by an

intriguing interplay of several fixed points at large values of
the gravitational coupling. At a critical value of the
gravitational coupling strength, one of these interacting
fixed points collides with the shifted Gaussian fixed point.
Subsequently, they disappear into the complex plane. Thus,
the shifted Gaussian fixed point ceases to exist for larger
values of the effective gravitational coupling. In fact,
gravitational fixed-point values from recent studies lie
within the regime allowing a shifted Gaussian fixed point,
cf. Fig. 10 which summarizes our main results. Crucially,
extending our truncation leads to quantitatively similar
results on the allowed gravitational parameter space,
cf. Fig. 10.
Our results highlight that even though the canonical

dimensionality of the momentum-dependent matter inter-
actions is irrelevant, they might nevertheless play a pivotal
role in the dynamics of an asymptotically safe matter-
gravity system. We conclude that quantum gravity could
have a significant impact on the properties of the matter
sector in the UV, and might even require a UV completion
that deviates considerably from a shifted Gaussian fixed
point and the associated near-canonical power counting. In
order for this scenario to be realized, gravitational cou-
plings must exceed a critical strength, which lies beyond
that observed in the literature, see, e.g., [35,55,69]. Thus,
truncations that neglect gravity-induced matter self inter-
actions, and therefore discover a free fixed point in the
matter sector might potentially not capture the properties of
a matter-gravity fixed point at a qualitative level: If the joint
matter-gravity fixed point is not the shifted Gaussian one,
then the scaling exponents in the matter sector will be rather
different from those at a Gaussian matter fixed point.
As one of our main results, we find that a shifted

Gaussian fixed point with irrelevant fermion-scalar inter-
actions and an irrelevant Yukawa coupling exists at
gravitational fixed-point values from recent studies.

A. Outlook

Our study also clearly indicates the need for extended
truncations in the matter sector. In the future, wewill extend
our current study to include further matter interaction terms
that have an impact on the scaling dimension of the Yukawa
coupling and on the induced matter-interactions. A major
missing piece of this puzzle are four-fermion interactions,
which have been shown to feature only interacting fixed
points under the effect of asymptotically safe quantum
gravity [66,69]. They feed back into the beta functions
in our system. Further, momentum-dependent self-
interactions of scalars and fermion-scalar interactions will
alter the value of the matter anomalous dimensions. As has
been discussed in Sec. IV, including dynamical anomalous
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dimensions is a critical step towards a quantitative control
of the system.
It should be stressed that within asymptotically safe

quantum gravity, the Einstein-Hilbert action is not the
complete fixed-point action for gravity. Just as quantum
fluctuations induce further matter interactions, higher-order
terms, such as, e.g., curvature-squared terms, are also
present. In particular, a subset of these corresponds to
relevant couplings at a pure-gravity fixed point. Testing the
impact of these terms on the matter sector is an important
bit of the puzzle that we hope to come back to in the future.
On the phenomenological side, the quantum-gravity-

generated fermion-scalar interactions could be of interest in
the context of Higgs portals to fermionic dark matter, see,
e.g., [96]: Asymptotically safe quantum gravity, according
to our studies, contains a generic mechanism to couple dark
sectors, e.g., additional scalars and fermions, to a scalar
such as the Higgs. This coupling might therefore provide a
basis for a possible connection of asymptotic safety to dark
matter phenomenology.
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APPENDIX A: BACKGROUND INDEPENDENCE

The classical action of the present matter-gravity theory
is given by the first three lines in (1) with ZΦ ¼ 1 and the
Einstein-Hilbert action, (4). This action is a function of a
single metric field g and consequently, does not depend on
the choice of the background metric ḡ. This statement
generalizes to expectation values of diffeomorphism invari-
ant operators for any quantized matter-gravity theory, based
on a microscopic action that depends on a single metric. In
turn, for diffeomorphism-variant correlation functions such
as those of the metric fluctuations h, diffeomorphism
invariance and background independence translate into
nontrivial Slavnov-Taylor identities (STIs) and Nielsen
identities (or split Ward identities), that depend on the
background metric. This leads to the counter-intuitive
situation, that any diffeomorphism-invariant and back-
ground-independent approximation to the fluctuation
dynamics breaks the underlying diffeomorphism invariance
and background independence of the theory. For further
discussions see [36,42,57].
In the present setting with an additional regulator term

(cf. Appendix D for a discussion of the employed

regulators), the STIs turn into mSTIs and modified
Nielsen identities (split Ward identities); see, e.g.,
[9,16,19,20,39,44,65,78,86,100–103]. Importantly, regula-
tor modifications scale with the cutoff k and are hence
potentially dominant, in particular for the UV-relevant
parameters. This makes the distinction between back-
ground and fluctuation quantities crucial. The flow of both
background and fluctuation correlations is generated by
closed flow equations of the fluctuation propagator and
vertices. In turn, only the background field effective
action Γk¼0½g; ~Φ ¼ Φ ¼ ð0; 0; 0;ψ ; ψ̄ ;ϕÞ� is diffeomor-
phism invariant, background independent and related
directly to S-matrix elements of the theory. By this
reasoning—in order to compute diffeomorphism invariant
and background-independent observables—we first have to
solve the dynamical, closed system of fluctuation correla-
tion functions ΓðnÞ and use the latter in the flow of
Γk¼0½g; ~Φ�.

APPENDIX B: EXPANSION SCHEME

The vertex expansion reads

Γk½ḡ;Φ� ¼
X
n

1

n!
ΓðnÞ½ḡ; 0�Φn ðB1Þ

and requires the choice of a specific metric and matter
background ðḡ; Φ̄Þ as an expansion point. We choose
Φ̄ ¼ 0, which is a saddle point or minimum of the matter
part of the effective action. A good physical choice for the
metric background is a solution of the gravity equation of
motion, which however complicates the computations
considerably. Instead we choose a flat background,

ḡμν ¼ δμν; ðB2Þ

with a flat Euclidean metric. We emphasize that it is not
necessary to choose a solution of the equations of motion,
ḡEoM; Φ̄EoM as the expansion point. It is expected, though,
that such a choice ḡEoM; Φ̄EoM leads to a more rapid
convergence of the vertex expansion.
In the present work we use the lowest order of the vertex

expansion in the matter sector to access low-order n-point
functions. The related effective matter-gravity action under-
lying our results in Sec. III is summarized in the first three
lines of (1) and amounts to Γk;ho ¼ 0. This approximation
also features an additional derivative expansion since no
higher-momentum dependences or additional tensor struc-
tures are considered. In its lowest order, this leaves us with
the scale-dependent Yukawa coupling y. Additionally,
wave-function renormalizations Zϕ=ψ are included. At
the next order in our expansion scheme, these would be
upgraded to field-dependent wave-function renormaliza-
tions. In this work, we neglect additional terms in the purely
scalar sector which are canonically relevant/ marginal, as
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they do not directly impact θy, which is the main physics
question we focus on.
In Sec. IV, we consider two-fermion–two-scalar inter-

actions, induced by gravity. These interactions give rise to
additional terms in the effective action, Γk;induced that are
part of the higher-order terms in Γk;ho. From the class of all
gravity-induced interactions, these are the lowest-order
terms in a combined derivative and vertex expansion;
i.e., they are those with the least irrelevant canonical
dimensionality. Following a canonical counting, lower-
order scalar-fermion interactions exist; however, these
are not induced by gravity fluctuations directly. On the
other hand, once gravity fluctuations switch on the X i

interactions, these can induce further matter interactions,
e.g., through tadpole diagrams. This backcoupling of
quantum-gravity induced interactions will be the subject
of a future work.
Finally, by using a metric split, cf. (3), in the matter part

of the effective action [cf. (1)], we have identified all matter
couplings to gravity with a single Newton coupling

ffiffiffiffi
G

p
.

Typically, such a universality holds for the first two
nonvanishing perturbative coefficients of the β function
of a dimensionless coupling in a mass-independent renorm-
alization scheme. None of the above hold in the current
case. Instead, it is expected that all the gravity couplings
run differently due to the missing universality as well as due
to the regulator-induced modifications of the mSTIs. The
respective modifications are either of higher order in the
gravity fluctuation h, as well as higher order in derivatives.

Our computations rely on automated algebraic manipu-
lation tools. For setting up the truncation as well as deriving
the vertices and diagrams we use the Mathematica package
TARDIS [99]. When calculating the traces of these dia-
grams we rely on the FormTracer package [97,98].

APPENDIX C: GRAVITY EXPANSION

The above Appendix B summarizes our expansion
scheme in the matter sector of the theory. For the fixed
point analysis, we also need the metric propagator as well
as the Newton coupling in a flat background. Given the
expansion in powers of the fluctuating graviton h, this is
naturally augmented with results in the same expansion
scheme for the gravity correlations put forward in
[24,36,42,57,69], or with mixed approaches [28,55,58].
Equivalently, the same information can be encoded in an
approach featuring the background metric as well as the full
metric, [16,19,20,35]. Note that our results for the matter
sector can be combined with different approximation
schemes in the gravity sector, as they simply use the
gravitational couplings g, μh, and ηh as input parameters.
We adopt the linear split [cf. (3)] in the Einstein-Hilbert

action [cf. (4)] in the spirit of the present combined vertex
and derivative expansion, and drop higher-order terms. Full
consistency of the present expansion scheme as a derivative
expansion then also requires α → Zαα; β → Zββ in the
gauge-fixing term (5). With these cutoff dependences, the
quadratic part of the pure gravity effective action reads

Γðh;hÞμνρσ
k grav hμνhρσ ¼

Zh

64π

Z
d4p
ð2πÞ4 hμνðpÞhρσð−pÞ ×

�
ðμhk2 þ p2ÞgμðρgσÞν − ðμhk2 þ 2p2Þgμνgρσ

þ 2ðgμνpρpσ þ gρσpμpνÞ − gμðρpσÞpν − gνðρpσÞpμ

−
1

Zα

�
1þ Zββ

α
ðgμνpρpσ þ gρσpμpνÞ þ 1

α
ðgμðρpσÞpν − gνðρpσÞpμÞ þ ð1þ ZββÞ2

4α
p2gμνgρσ

��
: ðC1Þ

The present approximation is based on a common approxi-
mation on the mSTI in gauge theories, leading to a diffeo-
morphism-invariant representation with multiplicative wave
function and coupling renormalizations. In this work it is
induced by the truncation in [cf. (1)] with linear split [cf. (3)]
and by using diffeomorphism-invariant terms in the effective
action before substituting (3). This leads to a uniform wave-
function renormalization Zh for all York decomposed com-
ponents of the graviton propagator [cf. line 2 and 3 in (C1)],
except for the gauge-fixing terms [cf. last two lines in (C1)].
The York decomposition reads

hμν ¼ hTTμν þ 2D̄ðμvνÞ þ
�
2D̄ðμD̄νÞ −

1

2
ḡμνD̄2

�
σ þ 1

4
ḡμνh;

ðC2Þ

with D̄μhTTμν ¼ 0, hμTTμ ¼ 0, hμμ ¼ h and D̄νvν ¼ 0. In the
gravity results used here Zh is obtained from the traceless
transverse part of the inverse propagator, Zh ¼ Zh;TT.
Moreover, the related approximation of the mSTI

leads to

Zα ¼ Zh; Zβ ¼ 1; ðC3Þ

for the longitudinal directions singled out by the gauge
condition in (5). For the sake of simplicity we have used the
additional approximation Zα ¼ 1 for the results shown in
this work. We have checked that the results do not differ
significantly from the consistent choice (C3).
The respective results for gravity in the literature are

mostly obtained in very few gauge choices, singled out
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by conceptual or technical reasons. For instance, the
harmonic gauges, β ¼ 1, or the Feynman gauge,
α ¼ β ¼ 1, lead to considerable technical simplifi-
cations. However, none of these gauges persists during
the flow for α ≠ 0 beyond the current, classical, approxi-
mation to the mSTIs. In turn, α ¼ 0 is a fixed point of
the FRG flow, as the flow of 1=α is finite, see [86]. In
terms of convergence of the current expansion in the

gauge-fixing sector of the theory this singles out the line
ðα; βÞ ¼ ð0; βÞ as the most stable one.
The choice ofβ also rotates the physicalmode in the scalar

sector from pure trace mode (β → 0) into pure σ mode (see
Eq. (21) in [40]). Inverting the scalar projection of the 2-

point function onto the scalar York sector Γð2Þ
k;grav;ðσhÞ½Φ�, the

corresponding part of the metric propagator is given by

Γð2Þ−1
k;grav;ðσhÞ ¼

64πG
4αμ2h þ 2p2ð2α − β2 þ 3Þμh þ ðβ − 3Þ2p4

 
p2ðα − 3Þ − 2αμh

ffiffiffi
3

p
p2ðα − βÞffiffiffi

3
p

p2ðα − βÞ ð3α − β2Þp2 þ 2αμh

!
: ðC4Þ

This equation already shows that, for β ¼ 3, the gauge
fixing is incomplete. In terms of RG-flows also, the
gauge parameters should, in fact, be regarded as running
quantities (directions in theory space). This viewpoint
favors α⋆ ¼ 0 (Landau-limit) as a UV-fixed point of the
RG-flow [86].

Finally, concerning the gauge dependence of flows in the
matter sector, e.g., the Yukawa coupling, it is interesting to
observe that they only enter via the metric propagator or its
regularized version

ðΓð2Þ
k ½ḡμν;Φ� þ RkÞ−1∂tRkðΓð2Þ

k ½ḡμν;Φ� þ RkÞ−1 ¼
1

ððβ − 3Þ2 þ 2μhð2α − β2 þ 2αμh þ 3ÞÞ2

×
1

ðμh þ 1Þ2
1

ðαμh þ 1Þ2 × analytic: ðC5Þ

Since in all diagrams in Fig. 1 there is precisely one—
possibly regulated—metric propagator, the gauge-pole
structure of the Yukawa β function is, at most, given by
the above regulated propagator poles. Indeed, all gauge
poles as well as poles in μh are lifted when dividing (E1) by
the pole structure given in (C5).

APPENDIX D: OPTIMIZED REGULATORS

For the explicit computations in the flat background, we
employ the Litim or flat cutoff [104,105] in momentum
space for the matter degrees of freedom,

Rk;ϕðpÞ ¼ Zϕp2rϕðxÞ; Rk;ψðpÞ ¼ ZψprψðxÞ; ðD1Þ

with x ¼ p2=k2. The shape functions for bosons and
fermions take the form

rϕðxÞ ¼ ðx − 1Þθð1 − xÞ; rϕðxÞ ¼ ð ffiffiffi
x

p
− 1Þθð1 − xÞ:

ðD2Þ

The graviton propagator that enters the diagrams for the
matter wave-function renormalizations and the Yukawa
coupling is represented in the York decomposition. The
regulator used for all modes in the York decomposition

(cf. (C2) is the bosonic one in (D1), where Zϕp2 is
substituted by the full kinetic factor that can be read-
off from (C1). A comparison of different, also
smooth, regulators for pure gravity computations in a flat
background has been put forward in [24]. The
regulator dependences of the results have been found to
be small.
We close this section with a remark on the use of flat

regulators in a derivative expansion. The flat regulator has
been singled out by optimization theory as the optimal one
within the lowest order of the derivative expansion, see
[78,104]. To higher orders in the derivative expansion, this
does not hold because of the nonanalyticity of the regulator.
Note, however, that smooth, analytic versions of the flat
regulator satisfy the optimization criterion for higher order
of the derivative expansion, see [78]. The latter property is
potentially important for the convergence of our approxi-
mation, when we take higher-order gravitationally induced
terms into account; see Sec. IV. It turns out that, in our
projection scheme, all derivatives with respect to external
momentum hit the momentum dependences of the vertices.
In other words, in terms of optimization we are still in the
same situation as for the lowest order of the derivative
expansion, and the regulators satisfy the optimization
criteria in [78,104].
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APPENDIX E: GAUGE-PARAMETER DEPENDENCE OF THE YUKAWA β FUNCTION

Here we present the full gauge-dependent βy function for μϕ ¼ 0. All other parameters are kept free.

βy ¼ y

�
ηψ ;0þ

ηϕ;0
2

�
þ y3ð5−ηψÞ
80π2ðμϕþ1Þþ

y3ð6−ηϕÞ
96π2ðμϕþ1Þ2

þyg

�
þ ðηψ −6Þðβ−2αμh−3Þ
5πð6β−2μhð2αðμhþ1Þþ3Þþβ2ð2μh−1Þ−9Þ

−
12ðηh−7Þððβ−3Þ3−4αð2α−β2þβÞμ2h−4αðβ−3Þ2μhÞ
35πð−6βþ2μhð2αðμhþ1Þþ3Þþβ2ð1−2μhÞþ9Þ2

−
ηh−8

64πðαμhþ1Þ2ð−6βþ2μhð2αðμhþ1Þþ3Þþβ2ð1−2μhÞþ9Þ2
× ½ð1−αÞðβ−3Þ4þ4α3ð4α−3ðβ−2Þβ−7Þμ4hþμ2hþ8ðα−1Þα2ðβ−3Þ2μ3hþ2αðβ−3Þ2ð−4αþ3ðβ−2Þβþ7Þμh
þαð−16α2þαðβðβððβ−12Þβþ78Þ−156Þþ121Þ−4ðβðβ3−3β−6Þþ12ÞÞ�

þ ðηψ −7Þððα−1Þðβ−3Þ2þαð4α−3ðβ−2Þβ−7ÞμhÞ
56πðαμhþ1Þð−6βþ2μhð2αðμhþ1Þþ3Þþβ2ð1−2μhÞþ9Þ

−
ðηh−6Þ

12πðμhþ1Þ2ðαμhþ1Þ2ð−6βþ4αμ2hþð4αþ6Þμhþβ2ð1−2μhÞþ9Þ2
× ½96α4ðμhþ1Þ2μ4h−4α3ðμhþ1Þμ2hðβ2ð2μ3hþ18μ2h−15μh−1Þþ6βð4μ2hþ15μhþ1Þ−3ð6μ3hþ62μ2hþ73μhþ7ÞÞ
þα2μhð3β4μhð6μ2h−8μhþ1Þþ12β3μhðμ2hþ12μh−4Þþβ2ð−64μ4h−412μ3h−240μ2hþ410μhþ32ÞÞ
þα2ð−12βð31μ3hþ148μ2hþ148μhþ16Þþ3ð64μ4hþ614μ3hþ1272μ2hþ833μhþ96ÞÞ
þαð3β4ð4μ4hþ16μ3h−19μ2hþ1Þþ12β3ð8μ3hþ33μ2h−8μh−3Þ−2β2ð40μ4hþ280μ3hþ177μ2h−416μh−83ÞÞ
þαð−12βð32μ3hþ173μ2hþ200μhþ29Þþ3ð44μ4hþ480μ3hþ1081μ2hþ768μhþ93ÞÞ
þ3ðβ4ð6μ2h−8μhþ1Þþ4β3ðμ2hþ12μh−4Þþβ2ð−44μ2h−48μhþ86Þ−12βðμ2hþ12μhþ16Þþ3ð26μ2hþ72μhþ51ÞÞ�

þ 2ðηϕ−6Þμϕðαð2μh−1Þþ3Þ
3πðμϕþ1Þ2ð−6βþ4αμ2hþð4αþ6Þμhþβ2ð1−2μhÞþ9Þ

−
12ðηϕ−7Þμϕðβ−2αμh−3Þ

35πðμϕþ1Þ2ð6β−2μhð2αðμhþ1Þþ3Þþβ2ð2μh−1Þ−9Þ

þ2ðηh−6Þμϕðð3−αÞðβ−3Þ2þ4αð3α−β2Þμ2hþ4αðβ−3Þ2μhÞ
3πðμϕþ1Þð6β−2μhð2αðμhþ1Þþ3Þþβ2ð2μh−1Þ−9Þ2

þ12ðηh−7Þμϕððβ−3Þ3−4αð2α−β2þβÞμ2h−4αðβ−3Þ2μhÞ
35πðμϕþ1Þð6β−2μhð2αðμhþ1Þþ3Þþβ2ð2μh−1Þ−9Þ2

�
ðE1Þ

APPENDIX F: EXPLICIT FORM OF
MATTER-METRIC VERTICES FROM

COVARIANT KINETIC TERMS

To explain the derivative structure of the quartic interactions
we present the matter vertices as obtained when taking
appropriate variations of the covariant kinetic terms. Note
that for fermions also the variations of the spin connection,

δΓμ ¼ −
1

8
Dαδgβμ½γα; γβ�; ðF1Þ

and the gamma matrices,

δγμ ¼ 1

2
δgμνγν; ðF2Þ

are taken into account. For the descriptionof spinors in gravity,
we use the spin-covariant derivative γμ∇μ ¼ γμð∂μ þ ΓμÞ,
where Γμ denotes the spin connection, defined using the spin-
base invariant formalism introduced in [106,107]. Note that
the results for the variations from the spin-base invariant
formalism agree with those obtained in the standard vielbein
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formalism within a symmetric O(4) gauge [108,109]. This allows us to rewrite vielbein fluctuations in terms of metric
fluctuations:

�
δ

δψðpψ1
Þ

δ

δψ̄ðpψ2
Þ

δ

δhμνðph1Þ
Γk

�
Φ¼0

¼ 1

8
½−2gμνðpψ1

þ pψ2
Þ þ γμpν

ψ1
þ γνpμ

ψ1
þ γμpν

ψ2
þ 2γνpμ

ψ2
� ðF3Þ

�
δ

δψðpψ1
Þ

δ

δψ̄ðpψ2
Þ

δ

δhμνðph1Þ
δ

δhρσðph2Þ
Γk

�
Φ¼0

¼ 1

8
½ðgμσgρν þ gμρgνσ − gμνgρσÞðpψ1

þ pψ2
Þ�

þ 1

64
½ðpμ

ψ1
þ pμ

ψ2
Þð4gρσγν − 3gνργσ − 3gνσγρÞ þ ðpν

ψ1
þ pν

ψ2
Þð4gρσγμ − 3gμργσ − 3gμσγρÞ

þ ðpρ
ψ1

þ pρ
ψ2
Þð4gμνγσ − 3gμσγν − 3gνσγμÞ þ ðpσ

ψ1
þ pσ

ψ2
Þð4gμνγρ − 3gμργν − 3gνργμÞ�

þ 1

32
½þgμρgνσðph1 − ph2Þ� þ

1

64
½ðph1 − ph2Þðgμσγνγρ − gμργνγσ−gνργμγσ − gνσγμγρÞ�

þ 1

64
½ðpμ

h1
− pμ

h2
Þðgνργσ þ gνσγρÞ þ ðpν

h1
− pν

h2
Þðgμργσ þ gμσγρÞ − ðpρ

h1
− pρ

h2
Þðgμσγν þ gνσγμÞ

− ðpσ
h1
− pσ

h2
Þðgμργν þ gνργμÞ� ðF4Þ

�
δ

δϕðpϕ1
Þ

δ

δϕðpϕ2
Þ

δ

δhμνðph1Þ
Γk

�
Φ¼0

¼ 1

2

h
gμνðm2

ϕ þ ph1 · pϕ1
þ pϕ1

· pϕ1
Þ þ pμ

ϕ1
pν
h1
þ pν

ϕ1
pμ
h1
þ pμ

ϕ1
pν
ϕ1

i
ðF5Þ

�
δ

δϕðpϕ1
Þ

δ

δϕðpϕ2
Þ

δ

δhμνðph1Þ
δ

δhρσðph2Þ
Γk

�
Φ¼0

¼ 1

4
½−pσ

ϕ1
pμ
ϕ2
gρν − pρ

ϕ1
pν
ϕ2
gμσ − pσ

ϕ1
pν
ϕ2
gμρ − pν

ϕ1
pρ
ϕ2
gμσ

þ pσ
ϕ1
pρ
ϕ2
gμν − pμ

ϕ1
pσ
ϕ2
gρν − pν

ϕ1
pσ
ϕ2
gμρ þ pρ

ϕ1
pσ
ϕ2
gμν

þ gμσgρνpϕ1
· pϕ2

þ gρσð−gμνpϕ1
· pϕ2

þ pν
ϕ1
pμ
ϕ2

þ pμ
ϕ1
pν
ϕ2
Þ

− gνσð−gμρpϕ1
· pϕ2

þ pρ
ϕ1
pμ
ϕ2

þ pμ
ϕ1
pρ
ϕ2
Þ�: ðF6Þ

APPENDIX G: SPECIFYING PROJECTIONS
IN THE X SECTOR

The quartic tensor structures the flow generated by the
diagrams in Fig. 7 are restricted by the following
requirements:
(i) All diagrams contain at least three external momenta.

This is the case as the momentum of every external
scalar must appear at the vertex, accounting for two of
the external momenta. The third is required, as the
chiral symmetry for the fermions requires the exist-
ence of a γ matrix in the generated interaction. To
construct a Lorentz scalar, a third momentum is then
necessary to saturate the open index of the γ matrix.

(ii) All resulting tensor structures come with momentum-
dependent scalar legs because of the structure of the
ðhÞhϕϕ-vertex (F6), in which no term exists with
constant scalar legs.

(iii) As the kinetic terms are reflection positive and
Euclidean-space real operators, we observe that the

generated diagrams are reflection positive and Euclid-
ean-space real as well.

(iv) Further momentum structures of Oðp5Þ and higher
are generated but will not be considered in this
truncation as operators with more derivatives (there-
fore couplings with higher canonical dimension) are
expected to remain less relevant at a possible
fixed point.

Of the four independent reflection positive combinations
built from the terms in Eq. (19), i.e.,

O1þ ≔ ðψ̄γμ∇νψ þ ð∇νψ̄ÞγμψÞð∂μϕ∂νϕÞ ðG1Þ

O1− ≔ ðiψ̄γμ∇νψ − ið∇νψ̄ÞγμψÞð∂μϕ∂νϕÞ ðG2Þ

O2þ ≔ ðψ̄γμ∇μψ þ ð∇μψ̄ÞγμψÞð∂νϕ∂νϕÞ ðG3Þ

O2− ≔ ðiψ̄γμ∇μψ − ið∇μψ̄ÞγμψÞð∂νϕ∂νϕÞ; ðG4Þ
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only the two “−”-combinations correspond to Euclidean-
space real operators. A complete basis of the induced
flows is, therefore, given by those two operators only.
Thus, while a complete basis of ΓkX contains all four
independent tensor structures, the induced action Γk induced,
cf. Eq. (21), of quantum-gravity induced scalar-fermion
interactions to lowest order in a canonical power counting
is Euclidean-space real and, therefore, only contains two
independent couplings. That the flow only induces the
X1=2− combinations can be seen from the ψψ̄h and ψψ̄hh
vertices in Eqs. (F3) and (F4). They both depend only on
the fermionic momenta in the combination corresponding
to the “−” prescription. To show that this holds in all
diagrams, we used projection prescriptions on all four

tensor structures and checked that _X1=2þ → 0 as
X1=2þ → 0. Then the “þ” sector decouples and imaginary
flows are avoided.
To project onto the couplings X1þ,X 1−, X2þ and X2−,

we apply functional derivatives with respect to the fields
and switch to momentum space (∂μϕðxÞ → ipμ

~ϕðpÞ). For
fermions, we use the convention ∂μψðxÞ → ipμ ~ψðpÞ and
∂μψ̄ðxÞ → −ipμ ~̄ψðpÞ connected to conventions for the
Fourier transformations fixed, e.g., in [110]. To account
for the γ matrix, we additionally project with an external
γμp

μ
ext such that the Dirac trace does not evaluate to zero.

Then we make use of the identity Trðγμpμ
aγνpν

bÞ ¼ 4pa · pb

to obtain

1

4
Tr

�
δ

δϕðp1Þ
δ

δϕðp2Þ
δ

δψðp3Þ
δ

δψ̄ðp1 þ p2 þ p3Þ
Γkγρp

ρ
ext

�����
Oðp4Þ

¼ X1−½p1 · pextp2 · ðp1 þ p2 þ 2p3Þ þ p2 · pextp1 · ðp1 þ p2 þ 2p3Þ�
− X1þ½p1 · pextp2 · ðp1 þ p2Þ þ p2 · pextp1 · ðp1 þ p2Þ� þ 2X2−½p1 · p2pext · ðp1 þ p2 þ 2p3Þ�
− 2X2þ½p1 · p2pext · ðp1 þ p2Þ�: ðG5Þ

Projections onto X1− and X 2− can be determined purely by means of momentum derivatives and choice of external
momentum, i.e.,

X1− ¼ −9
16

ffiffiffi
2

p
�
∂p1

∂p2
∂p3

∂pext

�
Tr

�
δ

δϕðp1Þ
δ

δϕðp2Þ
δ

δψðp3Þ
δ

δψ̄ðþp1 þ p2 þ p3Þ
Γkγρp

ρ
ext

���
pi¼0;ϑ3;ext¼0

ϑ1;ext¼ϑ2;ext¼
ffiffi
2

p
=3

ðG6Þ

X2− ¼ −9
8
ffiffiffi
2

p
�
∂p1

∂p2
∂p3

∂pext

�
Tr

�
δ

δϕðp1Þ
δ

δϕðp2Þ
δ

δψðp3Þ
δ

δψ̄ðþp1 þ p2 þ p3Þ
Γkγρp

ρ
ext

���
pi¼0;ϑ1;ext¼ϑ2;ext¼0

ϑ3;ext¼
ffiffi
2

p
=3

ðG7Þ

X1þ ¼ 9i
20

�
∂p1

∂p2

�
−
2

3
∂p1

þ ∂p2
þ ∂p3

�
∂pext

�
Tr

�
δ

δϕðp1Þ
δ

δϕðp2Þ
δ

δψðp3Þ
δ

δψ̄ðþp1 þ p2 þ p3Þ
Γkγρp

ρ
ext

���
pi¼0;ϑ3;ext¼0

ϑ1;ext¼1
2
;ϑ2;ext¼1

3

:

ðG8Þ

For concreteness, we give an explicit parametrization of such a momentum configuration:

p1 ¼

0
BBB@

1

0

0

0

1
CCCA; p2 ¼

0
BBB@

−1=3

2
ffiffiffi
2

p
=3

0

0

1
CCCA; p3 ¼

0
BBB@

−1=3

−
ffiffiffi
2

p
=3

−
ffiffiffiffiffiffiffiffi
2=3

p
0

1
CCCA: ðG9Þ

The explicit external momentum choices corresponding to the above explicit parametrization [cf. (G9)] and the
projections (G6)–(G8) are
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pext;X1−
¼

0
BBB@

ffiffiffi
2

p
=3

2=3

−1=
ffiffiffi
3

p

0

1
CCCA; pext;X2−

¼

0
BBB@

0

0

−1=
ffiffiffi
3

p
ffiffiffiffiffiffiffiffi
2=3

p

1
CCCA; pext;X1þ ¼

0
BBB@

1=2

3=ð4 ffiffiffi
2

p Þ
−5=ð4 ffiffiffi

6
p Þ

−
ffiffiffiffiffiffiffiffiffiffi
5=24

p

1
CCCA: ðG10Þ

Assuming the same fully symmetric momentum configuration and allowing for the most general derivative projection,
i.e., ðA∂p1

þ B∂p2
þ ∂p3

Þ∂p1
∂p2

∂pext
, the generated system of equations does not allow for a solution defining a clean X2þ

projection. Therefore, we resort to a X2þ projection corresponding to a nonsymmetric momentum configuration. The
according momenta read

pμ
1 ¼ p1

0
BBB@

1

0

0

0

1
CCCA; pμ

2 ¼ p2

0
BBB@

−1=3

2
ffiffiffi
2

p
=3

0

0

1
CCCA; pμ

3 ¼ p3

0
BBB@

−1=3

−7=
ffiffiffiffiffi
72

p
ffiffiffiffiffiffiffiffiffiffi
5=24

p
0

1
CCCA; pμ

ext;X2þ ¼ pext

0
BBB@

−1=3

5=
ffiffiffiffiffi
72

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
13=24

p Þ
0

1
CCCA; ðG11Þ

with a projection prescription:

X 2þ ¼ i

�
∂p1

∂p2

�
5

16
∂p1

þ 7

16
∂p2

−
9

2ð−9þ ffiffiffiffiffi
65

p Þ ∂p3

�

× ∂pext

�
Tr

�
δ

δϕðp1Þ
δ

δϕðp2Þ
δ

δψðp3Þ
δ

δψ̄ðþp1 þ p2 þ p3Þ
Γkγρp

ρ
ext

���
: ðG12Þ

APPENDIX H: ANALYTIC β FUNCTIONS IN THE X SECTOR

Here we present the full β functions in the X sector, as obtained with the above projections, cf. Appendix G, evaluated
at X1=2þ → 0.
The two “þ”-combinations are not induced by the flow and thus remain as trivial couplings. Independent of metric

fluctuations their Gaussian fixed points persist and they pose a trivial extension to the solutions discussed in Sec. IV D.

_X1−jX1=2þ→0 ¼ ð4þ ηψ ;0 þ ηϕ;0ÞX1− −
2ðηh − 7Þgn2
7ðμh þ 1Þ3 −

10ðηh − 6Þgn2
9ðμh þ 1Þ3 −

gn2ðηψ − 6Þ
9ðμh þ 1Þ2 −

5ðηh − 8ÞgnX1−

384πðμh þ 1Þ2 þ gnðηψ − 7ÞX 1−

84πðμh þ 1Þ

þ ðηh − 7Þgnð11X1− − 52X2−Þ
840πðμh þ 1Þ2 þ ðηh − 6Þgnð17X1− þ 8X 2−Þ

96πðμh þ 1Þ2 þ gnðηψ − 6Þð9X1− − 8X2−Þ
360πðμh þ 1Þ

þ ðηψ − 8Þð−5X1−
2 þ 8X1−X2− þ 4X2−

2Þ
1792π2

−
ðηϕ − 9Þð121X1−

2 þ 64X1−X2− þ 4X 2−
2Þ

6048π2
ðH1Þ

_X2−jX1=2þ→0 ¼ ð4þ ηψ ;0 þ ηϕ;0ÞX2− þ ðηh − 7Þgn2
14ðμh þ 1Þ3 þ

5ðηh − 6Þgn2
18ðμh þ 1Þ3 þ gn2ðηψ − 6Þ

36ðμh þ 1Þ2

−
ðηh − 8Þgnð7X1− þ 33X2−Þ

384πðμh þ 1Þ2 −
ðηh − 7Þgnð2X1− − 7X2−Þ

120πðμh þ 1Þ2 þ ðηh − 6Þgnð4X1− þ 13X2−Þ
96πðμh þ 1Þ2

−
gnðηψ − 7Þð7X1− þ 24X 2−Þ

336πðμh þ 1Þ −
gnðηψ − 6Þð9X1− − 44X2−Þ

2880πðμh þ 1Þ þ gnðηψ − 6Þð44X2− − 9X1−Þ
2880πðμh þ 1Þ

þ ðηϕ − 9Þð59X1−
2 − 52X1−X2− − 76X2−

2Þ
12096π2

þ ðηψ − 8ÞðX1− − 2X2−ÞðX1− þ X2−Þ
896π2

ðH2Þ

_X1þjX1=2þ→0 ¼ 0 ðH3Þ

_X2þjX1=2þ→0 ¼ 0 ðH4Þ

The vanishing flows _X1=2þ ≡ 0 guarantee that the “þ” sector fully decouples and remains zero at throughout the flow.
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