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We use fully nonlinear numerical relativity techniques to estimate the maximum gravitational radiation
emitted by high energy head-on collisions of nonspinning, equal-mass black holes. Our simulations include
improvements in the construction of initial data, subsequent full numerical evolutions, and the computation
of waveforms at infinity. The new initial data significantly reduce the spurious radiation content, allowing
for initial speeds much closer to the speed of light, i.e., v ∼ 0.99c. Using these new techniques, we estimate
the maximum radiated energy from head-on collisions to be Emax=MADM ¼ 0.13� 0.01. This value differs
from the second-order perturbative (0.164) and zero-frequency-limit (0.17) analytic computations but is
close to those obtained by thermodynamic arguments (0.134) and by previous numerical estimates
ð0.14� 0.03Þ.
DOI: 10.1103/PhysRevD.94.104020

I. INTRODUCTION

The study of the high energy collision of two black holes
is of interest from both the theoretical point of view, to
understand gravity in its most extreme regime, and exper-
imentally, since increasingly high energy particle collisions
could eventually have a non-negligible probability for
generating black hole pairs (see Ref. [1] for a review).
The production of gravitational waves and the properties

of the final remnant after the collision of two black holes has
been the subject of theoretical study for over half a century,
with notable results such as the area theorems by Hawking
and Penrose [2,3] and their application to bounds on the
energy radiated via gravitational waves. For instance, they
find an upper bound for the maximum energy radiated from
a head-on collision of nonspinning black holes of 29% of
the total mass.
More detailed estimates of the radiated energy have

been computed by applying perturbation theory [4] to the
collision of ultrarelativistic black holes represented by
shock waves [5]. Those computations reduce the above
bound to 25% (when only including first-order corrections)
and to 16.4% (when second-order corrections are
included). A D-dimensional generalization of the first-
order computation [6] found that the proportion of energy
radiated to the initial mass scales as 1=2 − 1=D.
Fully nonlinear numerical simulations of such collisions

are now possible thanks to the breakthroughs in numerical
relativity [7–9]. The first full numerical study of the head-on
collision of black holes [10] found a maximum efficiency of
14� 3%. Those studies have been extended to grazing
collisions [11], leading to an estimate of 35% for the
maximum energy radiated at a critical impact parameter.
Further studies including boson stars [12], fluid stars [13,14],
black hole spins [15], and unequal-mass binaries [16] show

that, at high energies, the structure (i.e., matter, spins, and
mass ratios) of the holes tends to be irrelevant for the collision
outcomes.
The latest analytical computations of the energy radiated

by the head-on collision of two equal-mass, nonspinning
black holes include an estimate of 13.4% based on black
hole thermodynamics arguments [17] and 17% based on a
multipolar analysis of the zero-frequency-limit (ZFL)
approach [18].
In this paper, we revisit the full numerical head-on

computation incorporating new techniques that improve the
accuracy of the simulations. These techniques include new
initial data with reduced spurious radiation content [19],
improved extraction techniques with second-order pertur-
bative extrapolation [20], and the use of new gauges [21]
and evolution systems [22] in the moving puncture
approach [8].
We use the following standard conventions throughout

this paper. In all cases, we use geometric units whereG ¼ 1
and c ¼ 1. Latin letters (i, j, …) represent spatial indices.
Spatial 3-metrics are denoted by γij, and extrinsic curva-
tures are denoted by Kij. The trace-free part of the extrinsic
curvature is denoted by Aij. A tilde indicates a conformally

related quantity. Thus, γij ¼ ψ4 ~γij, and Aij ¼ ψ−2 ~Aij,
where ψ is some conformal factor. We denote the covariant
derivative associated with γij by Di and the covariant
derivative associated with ~γij by ~Di. A lapse function is
denoted by α, while a shift vector is denoted by βi.

II. NUMERICAL TECHNIQUES

A. Initial data

We use an extended version TWOPUNCTURES [23] thorn
to generate puncture initial data [19] for boosted black hole
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binary simulations. In the conformal transverse-traceless
(CTT) formalism [24–27], the constraints on the initial
spatial hypersurface Σ0 become a set of elliptic differential
equations for the conformal factor and potential vector
[see Eq. (11) below] through a conformal transformation,

γij ¼ ψ4 ~γij:

We call ~γij the conformally related metric tensor.
All objects with a tilde are associated with ~γij.
As in Ref. [19], to calculate the spatial metric and

extrinsic curvature associated with a boosted black hole of
mass m and arbitrary linear 3-momentum Pi, we Lorentz
boost the four-dimensional Schwarzschild line element in
isotropic Cartesian coordinates. We then extract from the
transformed metric the spatial metric γ�ij, the lapse function
α�, and the shift vector βi� (a super-/subscript � indicates
that this is a single black hole quantity). We then obtain the
extrinsic curvature K�

ij on Σ0 using the evolution equation
for the spatial metric

K�
ij ¼

1

2α�
ðD�

i β
�
j þD�

jβ
�
i − ∂t0γ

�
ijÞ:

CTT separates this into trace and trace-free parts,

K�
ij ¼ ψ−2� ~A�

ij þ
1

3
ψ4� ~γ�ijK

�;

where K� ¼ γij�K�
ij. For the conformal factor, we make the

standard choice

ψ� ¼ 1þ m
2r

; ð1Þ

where r is the unboosted isotropic radius.
For example, if the boosted coordinates are given by

t0 ¼ γtþ γvy; ð2Þ

x0 ¼ x; ð3Þ

y0 ¼ γyþ γvt; ð4Þ

z0 ¼ z; ð5Þ

then the conformal spatial line element on Σ0 (defined by
t0 ¼ const) is given by

d ~l2 ¼ dx02 þ γ2
�
1 −

16ðm − 2rÞ2r4v2
ðmþ 2rÞ6

�
dy02 þ dz02; ð6Þ

where v is the magnitude of the local velocity vector

vi ¼ Piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ PjPj

q ð7Þ

(here, the boost is along the y axis), γ ¼ ð1 − v2Þ−1=2,
and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ γ2ðy0 − vt0Þ2 þ z02

p
.

Our black hole binary initial data are constructed using a
superposition of metric and extrinsic curvature terms
derived from the above expressions. To distinguish con-
tributions for the two black holes, we replace the � super-/
subscript above with a þ or −.
The trace-free part of the extrinsic curvature is split into

background terms ~Mij and a longitudinal correction term
obtained from a vector bi. Here,

~Mij ¼ ~AðþÞ
ij þ ~Að−Þ

ij ; ð8Þ

where ~AðþÞ
ij and ~Að−Þ

ij are the trace-free part of the conformal
extrinsic curvature of a single boosted black hole located at
~r ¼ ~rþ and ~r ¼ ~r−. Note that the trace-free part of the
single boosted black hole extrinsic curvature will have a
small trace with respect to a metric constructed by super-
imposing two different background metrics. We remove
this extra trace term prior to solving the initial data
equations, i.e., ~Mij → ~Mij − 1

3
~γij ~γ

lm ~Mlm (where ~γij is the
superimposed background metric). The complete trace-free
part of the extrinsic curvature for the superimposed
spacetime is given by

~Aij ¼ ~Mij þ
1

~α
ð ~LbÞij; ð9Þ

where α ¼ ψ6 ~α and ð ~LbÞij ≡ ~Dibj þ ~Djbi − 2
3
~γij ~Dkbk is

the longitudinal vector gradient. As part of the freely
specifiable parameters, we set ~α ¼ 1.
In the puncture approach, we write the conformal factor

as singular parts plus a finite correction, u,

ψ ¼ ψ ðþÞ þ ψ ð−Þ − 1þ u; ð10Þ

where ψ ð�Þ are the conformal factors (1) associated with the
individual, isolated black holes located at positions labeled

as ðþÞ and ð−Þ, with spatial metric tensors ~γð�Þ
ij .

Given these choices, the Hamiltonian and momentum
constraints become equations for the correction functions u
and bi,

~D2u −
ψ ~R
8

−
ψ5K2

12
þ

~Aij
~Aij

8ψ7
þ ~D2ðψ ðþÞ þ ψ ð−ÞÞ ¼ 0;

ð11aÞ

~ΔLbi þ ~Dj
~Mij −

2

3
ψ6 ~γij ~DjK ¼ 0; ð11bÞ
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where ~ΔLbi ≡ ~Djð ~LbÞij is the vector Laplacian and ~R is the
scalar curvature associated with ~γij. The solutions are
required to obey Dirichlet conditions at infinity,

lim
r→∞

u ¼ 0 and lim
r→∞

bi ¼ 0:

To deal with the puncture singularities, we introduce
attenuation functions to both modify the background metric
and mean curvature as well as modify the singular source
terms inside the horizons themselves. The first type of
attenuation, which is consistent with the constraints every-
where, is used in the superposition of the background
conformal metrics and has the form

~γij ¼ δij þ fðþÞð~γðþÞ
ij − δijÞ þ fð−Þð~γð−Þij − δijÞ;

where

fð�Þ ¼ 1 − e−ðrð∓Þ=ωð�ÞÞp

and rð�Þ is the coordinate distance from a field point to the
location of puncture ð�Þ. The parameters ωð�Þ control the
steepness of the attenuation. We take the smallest possible

power index p ¼ 4 to achieve convergence of the solutions
to the constraints.
The second attenuation function is used to modify the

background mean curvature and the source term in the
momentum constraint equations. This takes the form

K ¼ fðþÞgKðþÞ þ fð−ÞgKð−Þ;

~Di
~Mij ¼ g ~Di

~Aij
ðþÞ þ g ~Di

~Aij
ð−Þ;

where

g ¼ gþ × g−;

g� ¼

8>><
>>:

1 if r� > rmax

0 if r� < rmin

Gðr�Þ otherwise;

;

Gðr�Þ ¼
1

2

�
1þ tanh

�
tan

�
π

2

�
−1þ 2

r� − rmin

rmax − rmin

����
;

and the parameters rmin < rmax are chosen to be within the
horizon. Note that the g attenuation function is used to
modify the constraint equations themselves inside the
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FIG. 1. The L2 norms of the Hamiltonian and momentum constraints for the standard data over the full grid extending to 400M (top
left), over a small volume centered on ðx; y; zÞ ¼ ð5.0; 0.35; 0.75Þ (top-right), over a small volume containing the x axis centered on
(4.5,0,0) (bottom-left). The number of collocation points is given by N × N × 32 in the A, B, and ϕ dimensions, respectively.
The bottom-right plot shows the constraint violation over the full grid with the approximate data instead.
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horizon. We will refer to the above data as the standard
data in the sections below.
In addition, we consider a second type of initial data

closely related to the above approach. For this, which we
shall refer to as approximate data in the sections below, we
analytically remove the singularity associated with ~Di

~Mij

by making the following two approximations. First, we
take ~Mij to be the sum of the two Kerr trace-free extrinsic
curvatures without correcting for the fact that the back-
ground metric is now a superimposed metric. Second, in
the source term of Eq. (11b), we replace ~Di

~Aij
� with

ð ~Di − ~D�
i Þ ~Aij

� þ ~D�
i
~Aij
�, where ~D�

i and ~Aij
� are the covar-

iant derivative and extrinsic curvature associated with the
two background conformal Kerr metrics. The former term
contains no derivatives of ~Aij

�, while the latter is evaluated
analytically. This is an additional approximation because
we neglect the fact that indices in ~Aij

� are actually raised
using the full superposed metric, rather than the associated
Kerr metric. The net result of these approximations is that
the initial data solution converges (relatively) rapidly with
collocation points, but the resulting constraints converge to

a small nonzero value. We use a subsequent conformal and
covariant formulation of the Z4 (CCZ4) evolution to
remove this residual violation. This allows us to quantify
the effects of small violations of the initial constraints and
to control them.

B. Convergence of initial data

As shown in Fig. 1, we verified the exponential
convergence of the constraint violations of the initial data
(with collocation points) using the L2 norm (rms). We find
that volume-averaged constraint violation (i.e., L2 over
the entire simulations domain) converges to levels of
∼5 × 10−10. The constraint violations are largest near the
x axis (see Fig. 2). To verify the convergence of the data
there, we calculated the L2 norm over a small box of width
0.5M centered on the x axis. This box is chosen so that it
lies just outside one of the horizons. The momentum
constraints converge exponentially, but at a relatively
slow rate, in this volume. The Hamiltonian converges
exponentially to a level of ∼10−7. The source of the
relatively large violations is a high-frequency component
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FIG. 2. The Hamiltonian constraint in the xy plane of the standard data for P=mirr ¼ 1 with initial separation d=M ¼ 10 in the region
around the black holes for N ¼ 192 collocation points (top left). For comparison, we also show the violations of the Hamiltonian
constraint for BY data for N ¼ 48 collocation points (top right). In the lower panels, we show the violation of the Hamiltonian constraint
along the axis containing the black holes and perpendicular to it for our data and for BY data for a different number of colocation points
N ¼ 32, 48, 64.

HEALY, RUCHLIN, LOUSTO, and ZLOCHOWER PHYSICAL REVIEW D 94, 104020 (2016)

104020-4



in the initial data induced by the scale of the attenuation
function. Note that the convergence of the approximate data
is much faster with collocation points but also converges to
a nonzero value.
Figure 2 shows the initial data Hamiltonian constraint

violation on the xy plane for a configuration with
P=mirr ¼ 1 and initial separation d=M ¼ 10. Note the
high-frequency residual. By increasing the width of the
attenuation function g above, we were able to partially
mitigate the high-frequency noise in the constraint resid-
uals using N ¼ 1922 × 4 collocation points. For compari-
son, we also show the same configuration with P=mirr ¼ 1

and initial separation d=M ¼ 10 but for N ¼ 482 × 4

collocation points, which represents a medium resolution
for Bowen-York (BY) data. The choice of a lower number
of collocation points (N ¼ 482 × 4) for BY is because the
BY system is algebraically simpler than the new data
(among others, the momentum constraints are solved
exactly, and the background is flat). We thus expect that
for a given number of collocation points BY data will have
a much smaller constraint violation, which is indeed what
we see (see the bottom panels of this figure). From the
figure, we see that we can reach acceptable levels of
constraint violations with our data but require a much
larger number of collocation points than for BY.

C. Evolution

We evolve black hole binary initial data sets using the
LAZEV [28] implementation of the moving punctures
approach for both the BSSNOK formalism [29–31] and
the CCZ4 system (Ref. [22]) which includes stronger
damping of the constraint violations than the BSSNOK
system. For the runs presented here, we use centered,
eighth-order accurate finite differencing in space [32] and
a fourth-order Runge-Kutta time integrator. Our code uses
the CACTUS/EINSTEINTOOLKIT [33,34] infrastructure. We
use the CARPET mesh refinement driver to provide a
“moving boxes” style of mesh refinement [35]. Fifth-order
Kreiss-Oliger dissipation is added to evolved variables
with dissipation coefficient ϵ ¼ 0.1. Note that when using
CCZ4 we choose damping parameters κ1 ¼ 0.1, κ2 ¼ 0,
and κ3 ¼ 0 (see Ref. [22]).
We locate the apparent horizons using the

AHFINDERDIRECT code [36] and measure the horizon
spins using the isolated horizon (IH) algorithm [37]. To
compute the radiated angular momentum components, we
use formulas based on “flux linkages” [38], explicitly
written in terms of Ψ4 [39,40]. We then extrapolate those
extractions to an infinite observer location using formulas
accurate to Oð1=r2obsÞ [20].
We obtain accurate, convergent waveforms and horizon

parameters by evolving this system in conjunction with a
modified 1þ log lapse and a modified Gamma-driver shift
condition [8,41,42]. The lapse and shift are evolved with

ð∂t − βi∂iÞα ¼ −α2fðαÞK; ð12aÞ

∂tβ
a ¼ 3

4
~Γa − ηβa; ð12bÞ

where η ¼ 2.
We have found that the choice fðαÞ ¼ 8=ð3αð3 − αÞÞ

(approximate shock avoiding [21]) proves to be more stable
and convenient when dealing with highly boosted moving
punctures at relatively short separations, ≈100M (this
proved particularly useful for the CCZ4 simulations
described below). This is due to the fact that the shock
avoiding gauge suppresses a large amplitude gauge wave
that would otherwise be focused by the black holes and
subsequently trigger a Courant violation when the lapse
gets too big. For the initial form of the lapse, we use
αðt¼ 0Þ¼ 1=ð2ψBL−1Þ, where ψBL¼ 1þmðþÞ=ð2rðþÞÞþ
mð−Þ=ð2rð−ÞÞ. This proved to produce more accurate
evolutions for highly spinning black holes [19], and we
will also adopt it for the highly boosted cases in this paper.
For both sets of evolutions, CCZ4 and BSSNOK, there

are between 11 and 13 levels of mesh refinement depending
on the momentum of the black holes. Since we start the
initial separations of the CCZ4 simulations much farther
apart than the BSSNOK evolutions, the coarsest levels of
the grid structure differ between the two sets of evolution.
The CCZ4 evolutions have an outer boundary of 800M,
while the BSSNOK evolutions have an outer boundary of
400M. The finest levels are the same for both sets of
evolutions. We label the different resolution runs by nX
where X is a global grid factor. For all evolution runs, we

TABLE I. Table of grid structure for case n120. For P=mirr up
to 2, we use up to mesh level 10. For P=mirr ¼ 3, we include an
additional level, and for P=mirr ¼ 4, we use all 13 mesh refine-
ment levels. Whether the refinement level’s grid is centered on the
origin or around the black holes (BHs) is given in column 2. The
radius of the box is given in column 3. For meshes with two
values, the first is for the BSSNOK evolution of the standard data,
and the second is for the CCZ4 evolutions of the approximate
data.

Mesh number Centered on Radius Resolution

0 Origin 400,800 M=0.3
1 Origin 200,500 M=0.6
2 Origin 140,300 M=1.2
3 BHs 32 M=2.4
4 BHs 16 M=4.8
5 BHs 8 M=9.6
6 BHs 4 M=19.2
7 BHs 2 M=38.4
8 BHs 1.2 M=76.8
9 BHs 0.6 M=153.6
10 BHs 0.3 M=307.2
11 BHs 0.15 M=614.4
12 BHs 0.08 M=1228.8
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use a grid of n120. For this case, the finest resolution for
the P=mirr ¼ 0.3 case isM=307.2, and the finest resolution
for the P=mirr ¼ 4.0 case is M=1228.8. Full details of
the n120 grid structure are given in Table I.
Figure 3 shows the constraint violations vs time for a

P=mirr ¼ 2 simulation using BSSNOK evolutions of stan-
dard data for three resolutions ðn100; n120; n144Þ. During
most of the run, after the initial settling of gauges, the
constraint violations are convergent. We observe a hyper-
convergent (fourth–eighth) order for the merger phase and
then a slower convergence (due to residual grid interboun-
dary radiation) of nearly first order aftermerger. This ismore
clearly shown in the lower panel of the figure that averages
the exponent of convergence vs time (it is a noisy plot
otherwise). We see a high convergence rate, approximately
eighth order, during the merger phase excluding the initial
part where the large gauge wave settles. Then at merger
around t ¼ 100M, once the final black hole forms, the
convergence rate drops to approximately first order. We
expect that at this phase the constraint violation is dominated
by errors from the large gauge wave bouncing between
adaptive mesh refinement (AMR) grid refinement levels.
Note also that our evolution codes includes spatial finite
difference terms up to eighth order, while the time evolution

is given by the fourth-orderRunge-Kutta integration, and the
initialization of the data use second-order prolongation in
time. In a highly dynamical problem like that studied here, at
different stages, the error can be dominated by different
pieces of our finite difference implementation.

III. RELATIVISTIC HEAD-ON COLLISIONS

A major difference between our work here and previous
studies, see Refs. [10,11,15,16], is that we use nonconfor-
mally flat initial data. The Bowen-York initial data used
previously are limited to representing black holes moving
at speeds v < 0.9c, as shown in Fig. 4. The reason for this
is that the assumption of conformal flatness introduces a
Brill wave that gets stronger as the momentum parameter is
increases. Most of this wave is absorbed by the black holes,
leading them to increase in mass proportional to the
momentum parameter. The net effect is that the ratio of
momentum to mass of each black hole can never be larger
than P=mirr ∼ 2 (i.e., v=c ∼ 0.9). Note that here we use the
irreducible mass of each black hole in place of the particle
rest mass.
The situation is similar to that observed in highly

spinning black holes, where the conformally flat ansatz
for the 3-metric leads to a limitation [43–45] in the
maximum intrinsic spin of the black hole of around
S=m2 ≈ 0.93.
On the other hand, Fig. 4 shows that the new data we use

here are not limited by this condition and can reach
velocities closer to the speed of light, i.e., v ∼ 0.99c.
This is due to the much lower initial radiation content of
the data. Wewill exploit this characteristic of the initial data
to obtain a more accurate estimate of the maximum
gravitational radiation produced by head-on collision of
two equal-mass, nonspinning, black holes.
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To explore the dependence of the radiated energy on the
magnitude of initial momentum of the two black holes, and
then extrapolate the results to the ultrarelativistic limit, we
set up a series of simulations with P=mirr ranging from 0.3
to 4.03 (see Tables II and III). We have chosen a relatively
large initial separation of the black holes in order to ensure
that the isolated horizon formalism can be used to accu-
rately measure the mass of the black holes and to ensure
that the momentum parameter used in the simulations
corresponds closely to the momentum of the black holes
at infinite separation.
In Fig. 5, we show the ðl ¼ 2; m ¼ 2Þ mode of ψ4 for a

typical simulations (here, P=mirr ¼ 2) as seen by an
observer at r ¼ 130M. The spurious radiation is evident
in the burst near t ∼ 150M, well before the merger signal.
As can be seen from the figure, for the new data, the
spurious radiation contains about 4% of the total energy
radiated for the standard data. On the other hand, the
Bowen-York spurious radiation content is 24% of the total.
To extrapolate the energy radiated to infinite observer

location, we use seven finite observers and extrapolate
using a first-order and second-order polynomial.
For the standard data simulations (which were all

evolved using BSSNOK), the extraction radii extended
to robs ¼ 130M. The error in the extrapolation is estimated
by the difference between the two fits and is labeled the
“Inf Radius” error in Fig. 6.
For the simulations of the approximate data (which were

all evolved using CCZ4), we needed to use larger initial
separations than for the standard data in order to reduce the
constraint violations on the initial slice. We therefore
extracted the radiation at correspondingly large distances.
For example, for the largest separation run d ¼ 400M, the

largest extraction radius was 275M (note the black holes
were initially located at x ¼ �200M).
In all of the CCZ4 cases, the extrapolation formula of

Ref. [20] to Oð1=r2obsÞ gives a very robust set of values for
the radiated energy. To provide a generous bound, we used
those two radii as estimates of the infinite radius energy
radiated.
The other source of error we seek to keep under control is

the initial, unphysical radiation content. We checked this
spurious radiation for all of the Lorentz-boosted runs. To do
this, we compare the radiated energy of the full waveform
with that obtained by removing the initial transient. The
effect of the initial transient is to change the total radiated
energy by ∼1.6% (relative to the total radiated energy).
The effect of this spurious radiation on the accuracy of the
total radiated energy is shown in Fig. 6 under the label
“Spurious.”
It is worth noting here that the waveforms are extracted

by a multipole decomposition at the observer location.
In practice, a few of the lower modes are necessary for
an accurate account of the total radiation. For instance, the
l-mode contributions to the CCZ4 simulations for a
P=mirr ¼ 3 run (with initial separation d ¼ 100M) at
robs ¼ 275M gives that l ¼ 2 contains 90%, l ¼ 4 con-
tains 8.3%, and l ¼ 6 contains 1.68% of the total energy
radiated. Thus, our results will include modes up to
l ¼ 6.
To test the accuracy and consistency of our simulations,

we performed a convergence study of the radiated energy,
the main physical quantity studied here, for six runs (all
with initial P=mirr ¼ 0.5). We increased the resolution in
step sizes of 1.2 between each run. The results of evaluation
of the final mass of the black hole from the measurement

TABLE II. Table of initial parameters and energy radiated for the standard initial data evolved with BSSNOK.

P=MADM MADM=M mirr=MADM P=mirr γ d=M Erad=MADM δErad=MADM

0.1437 1.0008 0.4804 0.30 1.0438 100 0.0011 4.8e-5
0.2238 1.0028 0.4488 0.50 1.1174 100 0.0031 1.3e-6
0.3547 1.0093 0.3555 1.00 1.4126 100 0.0182 2.6e-4
0.4510 1.0177 0.2583 2.00 2.2336 100 0.0585 1.3e-3
0.4792 1.0268 0.1597 3.00 3.1630 100 0.0858 1.8e-3
0.4886 1.0250 0.1220 4.00 4.1272 150 0.0957 1.3e-4

TABLE III. Table of initial parameters and energy radiated for the approximate data evolved with CCZ4. For each system, the initial
ADM mass is normalized to 1.

P=MADM MADM=M mirr=MADM P=mirr γ d=MADM Erad=MADM δErad=MADM

0.1439 1.0000 0.4807 0.30 1.0440 100 0.0011 6.8e-7
0.2245 1.0000 0.4498 0.50 1.1180 100 0.0030 6.1e-6
0.3558 1.0000 0.3559 1.00 1.4142 200 0.0183 1.2e-4
0.4530 1.0000 0.2263 2.00 2.2361 200 0.0592 4.7e-4
0.4800 1.0000 0.1594 3.01 3.1717 300 0.0859 1.1e-3
0.4908 1.0000 0.1217 4.03 4.1231 400 0.0988 9.7e-4
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of the gravitational radiation losses is shown in Fig. 7.
While the differences with resolution are small, they are
compatible with the expected fourth-order convergence of
the evolution system. In this figure, we fit the data to the
form y ¼ a0 þ a1xp, where a0 and a1 are fitting constants
and p is taken to be 2, 4, and 6.
Also, for runs with initial P=mirr ¼ 2, the agreement

between the radiated energies, as measured from the
waveforms (extrapolated to observer location to infinity
via [20]) and those inferred from the initial ADM mass
minus the remnant horizon mass, provides a consistency
measure for the numerical simulation (here, we increased
the resolution by factors of 1.1). Assuming the differences
scales like ahb, the b power of convergence for the three
highest-resolution h runs is found to be 4.17697� 1.139.
In addition, we fit the same data to the form ahb þ c, where
b was fixed to 1, 2, 3, 4, and 5, and for each choice of b, we
fit to a and c. The results are summarized in Fig. 8, which
shows different orders of extrapolation to infinite resolu-
tion. The best results are near the expected fourth-order
convergence. Here, we find consistency in the final mass to
within 5 × 10−5M.
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Another interesting aspect to explore is how appropriate
the standard moving puncture gauges (12) are for evolving
highly boosted black holes. We found that at relatively short
initial distances the BSSNOK formalism generates a gauge
wave focused by the two black holes that then induces a large
change in the lapse. This can drive the lapse beyond α ¼ 1
and trigger a Courant violation. This problem was resolved
by starting the black holes at larger initial separations,
allowing the large gauge waves to sufficiently dissipate
before the collision. We also found it beneficial to use an
initial lapse of the form α0 ¼ 1=ð2ψBL − 1Þ and the approxi-
mate shock avoiding gauge profile fðαÞ ¼ 8=ð3αð3 − αÞÞ
(which we used for all CCZ4 simulations).
When fitting the radiated energy as a function of the initial

momentum, we assume a relative error of 1% in each
computed energy to determine its weight in the fit. We fit
these energyvalues as a function of thevariablemirr=P, where
mirr stands for the irreducible mass of each initially boosted
black hole with momentum�P. The upper panels in Figs. 9
and 10 display the results of the fitting, assuming the
dependence of the energy radiated is given by the ZFL
behavior [10,46],

FIG. 8. The difference between the final horizon mass as
calculated using the IH formalism and as inferred from the
radiated energy for a P=mirr ¼ 2 simulation as a function of
resolution. The three highest resolution runs are shown. The data
points themselves appear to be convergent. We estimate the
infinite resolution limit by assuming second-, third-, fourth-, and
fifth-order convergence. The agreement between the horizon-
derived mass and radiation-inferred mass at infinite resolution is
5 × 10−5M for the expected fourth-order convergence.
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E
M

¼ E∞

�
1þ 2γ2

2γ2
þ ð1 − 4γ2Þ log ðγ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
Þ

2γ3
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
�
; ð13Þ

where γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðP=mirrÞ2

p
and the only fitting parameter is

E∞. The relative deviations are mostly below 10% and, in
particular, are around 2% for the most energetic simulated
collision.
To assess the dependence with the chosen fitting func-

tion, we have assumed a fit of the form ðy ¼ A exp½−Bx�Þ
with two fitting parameters (A and B), y and x being the
independent and dependent variables, i.e., Erad=MADM and
mirr=P, respectively. The results of this fit are displayed in
the lower panels of Figs. 9 and 10. Despite introducing two
fitting parameters, we observe that the residuals are larger
than the fit using the ZFL form (13), thus rendering further
support to this behavior. We have also experimented with
fittings of the form ðy ¼ A exp½−BxC�Þ, introducing a third
parameter C in the fitting function and also assuming
C ¼ 2, but none of these options displayed better behavior
than the ZFL choice.
In either case of the fits shown in Fig. 10, the estimated

maximum radiated energy is around 13%, which provides
a robust estimate, all errors considered, of the
form Emax=MADM ¼ 0.13� 0.01.

IV. CONCLUSIONS AND DISCUSSION

Using improved full numerical techniques, we have been
able to provide a more accurate determination of the
maximum gravitational radiation produced in the head-
on collision of nonspinning black holes. These techniques
utilize initial data for highly boosted black holes [19] with
much less radiation content than the Bowen-York counter-
parts and reach near the ultrarelativistic regime with speeds
much closer to c. We have successfully extrapolated the

extracted waveforms to infinite observer locations with the
techniques of Ref. [20] and added up to l ¼ 6 modes in
the computation of the radiated energy. The evolutions of
the initial data have been carried out using the moving
punctures approach using both the BSSNOK and CCZ4
systems.
We find a maximum radiated energy of 13� 1% of the

total mass of the system, with most of the errors coming
from the functional fitting and subsequent extrapolation to
infinite boost. This result is in close agreement with the
analytic estimates of 13.4% of Ref. [17] using thermody-
namic arguments and the previous numerical estimate of
14� 3% in Ref. [11]. However, they seem to be in conflict
with the analytic estimates of 16.4% from second-order
perturbations [4] and 17% from the multipolar analysis of
the ZFL [18].
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