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Motivated by statements in the literature which contradict two general theorems, the static and
spherically symmetric Brans solutions of scalar-tensor gravity are analyzed explicitly in both the Jordan
and the Einstein conformal frames. Depending on the parameter range, these solutions describe wormholes
or naked singularities but not black holes.
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I. INTRODUCTION

Brans-Dicke theory [1] is the prototypical theory of
gravity alternative to Einstein’s general relativity (GR).
Not long after its introduction, it was generalized to
scalar-tensor theories [2] and, with the advent of string
theories, new interest was generated by the fact that the
simple bosonic string theory reduces to a Brans-Dicke
theory with coupling parameter ω ¼ −1 [3]. The original
Brans-Dicke theory contains a massless scalar field ϕ
(acting approximately as the inverse of the gravitational
coupling strength ϕ ¼ G−1

eff ) and a dimensionless param-
eter ω which would naturally be of order unity, but is
constrained by Solar System experiments to satisfy jωj >
40000 [4]. For this reason, theorists have moved on to
more sophisticated versions of Brans-Dicke theory, such
as scalar-tensor gravities [2] in which ω becomes a
function of the Brans-Dicke scalar field, which also
acquires a mass or a self-interaction potential. In cosmol-
ogy,1 fðRÞ theories of gravity, which are ultimately
classes of scalar-tensor theories with Brans-Dicke-like
scalar degree of freedom ϕ ¼ f0ðRÞ, have become
extremely popular for explaining the current acceleration
of the Universe without invoking an ad hoc dark energy
(see the reviews [5–7]). It is natural, in this context, to
search for analogs of the Schwarzschild solution of GR.
Shortly after Brans-Dicke theory was introduced [1],
Brans presented four families of geometries which are
static, spherically symmetric, vacuum solutions of the
Brans-Dicke field equations [8]. Although there is legiti-
mate suspicion that these solutions may not be very
significant from the physical point of view (but the
literature has contradictory statements about this point),

it is often necessary to pick some simple (i.e., static,
spherical, and asymptotically flat) solutions of an alter-
native theory of gravity as toy models for theoretical
purposes or as physical solutions to test a theory exper-
imentally. Currently a large amount of work is devoted to
testing deviations from GR in black hole environments
(see, e.g., [9]). The Brans solutions, being the first of their
kind discovered in scalar-tensor or dilaton gravity, are a
natural choice. However, they are surrounded by some
ambiguity. According to a theorem by Agnese and La
Camera [10], all static and spherically symmetric solu-
tions of the (Jordan frame) Brans-Dicke theory are either
naked singularities if the post-Newtonian parameter

γ ¼ ωþ 1

ωþ 2
ð1:1Þ

satisfies γ < 1, or wormholes if γ > 1. The Brans classes
I–IV solutions fall into this category and, therefore, they
can only describe naked singularieties or wormholes. This
result seems to be missed by several authors since there
are claims in the literature that certain static, spherical
classes of solutions of Brans-Dicke theory describe black
holes, which would contradict the Agnese-La Camera
theorem. For example, the Campanelli-Lousto solutions
[11] have been believed to be black holes for a long time
until it was shown recently that they indeed describe either
wormholes or naked singularities [12]. Similarly, reading
the existing literature, because of explicit or implicit
statements one is left with the impression that Brans
solutions can describe black holes for some range of their
parameters [13–16]. Similar statements about “cold black
holes” similar to the Campanelli-Lousto solutions are
found in the literature [14,15,17,18]. If Brans geometries
were black hole ones, they would also contradict a
theorem by Hawking [19] (recently extended to general
scalar-tensor gravity [20,21]) stating that all Brans-Dicke
black holes are the same as in GR.
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Naked singularities are of little interest from the physical
point of view because they correspond to the breakdown of
the Cauchy problem. Wormholes are completely specula-
tive objects [22], but there is plenty of astrophysical
evidence for, and interest in, black holes. It is of some
interest, therefore, to clarify the confusion existing in the
literature about the Brans geometries, which we set out
to do.
The Brans-Dicke action in the absence of matter is

SBD ¼
Z

d4x
ffiffiffiffiffiffi−gp

16π

�
ϕR −

ω

ϕ
∇aϕ∇aϕ

�
; ð1:2Þ

where ϕ is the Brans-Dicke scalar field (approximately
equivalent to the inverse of the gravitational coupling),R is
the Ricci scalar, and g is the determinant of the spacetime
metric gab. We follow the notation of Ref. [23]. The Brans-
Dicke field equations in vacuo derived from the action (1.2)
are [1]

Rab −
R
2
gab ¼

ω

ϕ2

�
∇aϕ∇bϕ −

1

2
gab∇cϕ∇cϕ

�

þ 1

ϕ
∇a∇bϕ; ð1:3Þ

□ϕ ¼ 0: ð1:4Þ

By performing the conformal transformation of the metric

gab → ~gab ¼ ϕgab; ð1:5Þ

and the scalar field redefinition

ϕ → ~ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ωþ 3j
16πG

r
ln

�
ϕ

ϕ�

�
; ð1:6Þ

where ϕ� is a constant (Einstein frame quantities are
denoted by a tilde), the Brans-Dicke action (1.2) assumes
its Einstein frame form

SBD ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
~R

16π
−
1

2
~gab∇a

~ϕ∇b
~ϕ

�
: ð1:7Þ

This action formally looks like the Einstein-Hilbert action
of GR in the presence of a matter scalar field endowed with
canonical kinetic energy. The Einstein frame vacuum field
equations are

~Rab −
1

2
~gab ~R ¼ 8πG

�
∇a

~ϕ∇b
~ϕ −

1

2
~gab ~gcd∇c

~ϕ∇d
~ϕ

�
;

ð1:8Þ

~gab ~∇a
~∇b

~ϕ ¼ 0: ð1:9Þ

We now proceed to analyze the four classes of Brans
solutions in the Jordan and in the Einstein conformal
frames. We will examine the behavior of the areal radius
R, which is a geometric (i.e. coordinate-invariant) quantity
in spherical symmetry. The horizons correspond to the
roots of the equation

∇cR∇cR ¼ 0 ð1:10Þ

when they exist. If there is a single (real and positive) root
RH of this equation, then the areal radius is spacelike
outside the horizon and becomes a timelike coordinate
inside of it (i.e., for R < RH), with ∇cR becoming null at
the horizon. This situation is familiar from the study of
Schwarzschild space and a single root of Eq. (1.10)
corresponds to a black hole horizon. If instead there is a
double (real and positive) root RH of Eq. (1.10) (or a root of
even order n ¼ 4; 6;…), then the areal radius is always a
spacelike coordinate outside of the horizon, with ∇cR
becoming null at RH. The areal radius increases as one
moves away from this horizon, in both directions, i.e., it is
always R > RH at points which do not lie on the surface
R ¼ RH itself. In this case two spacetime regions join at the
horizon and the areal radius cannot assume values R < RH.
This situation describes a wormhole throat.

II. BRANS CLASS I SOLUTIONS

Class I Brans solutions have been discussed in several
papers [13,15,24–31]. It is found that these metrics can
describe wormholes, which is not surprising since a Brans-
Dicke-like scalar field in scalar-tensor gravity has a
noncanonical kinetic energy and its effective stress-energy
tensor on the right-hand side of Eq. (1.3) can violate all of
the energy conditions. More recent solutions proposed in
the literature [32] have been identified as special limits of
Brans I solutions [15,33].

A. Jordan frame

In the Jordan frame representation, the Brans class I line
element and scalar field are, respectively,

ds2ðIÞ ¼ −
�
1 − B=r
1þ B=r

�
2=λ

dt2

þ
�
1þ B

r

�
4
�
1 − B=r
1þ B=r

�2ðλ−C−1Þ
λ ðdr2 þ r2dΩ2

ð2ÞÞ;

ð2:1Þ

ϕðIÞ ¼ ϕ0

�
1 − B=r
1þ B=r

�
C=λ

; ð2:2Þ

in polar coordinates ðt; r; θ;φÞ, where r is an isotropic
radius and dΩ2

ð2Þ ¼ dθ2 þ sin2 θdφ2 is the line element on
the unit 2-sphere. It must be r ≥ 0 and [8]
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λ2 ¼ ðCþ 1Þ2 − C

�
1 −

ωC
2

�
> 0: ð2:3Þ

Here ω is a parameter of the theory and B, C, and λ
are parameters of this family of solutions. B plays the
role of a mass parameter and, in analogy with the
Schwarzschild geometry of GR, it makes sense to
consider only non-negative values of this parameter.
There are actually two other reasons why we restrict our
study here to non-negative values of B. The first reason
is that one can still include the case B ¼ 0, but then
class I solutions simply reduce to the trivial Minkowski
space. The second reason is that one can also include
the case B < 0, but then, as we will shortly see, one just
recovers the case of positive B by taking the mass
parameter of the theory to be −B instead of B.
Therefore, we shall hereafter assume B > 0.
Once the Brans-Dicke coupling parameter ω of the

theory is fixed, one has two independent parameters
ðB;CÞ or ðB; λÞ, since Eq. (2.3) relates λ and C. It is
useful to restrict the parameter space and, to this end,
we note that, according to our assumption that B > 0,
only positive values of λ will be relevant here. In fact,
consider as an example the simple case C ¼ 0, in which
the Brans-Dicke scalar ϕ reduces to a constant and
Eq. (2.3) yields λ ¼ �1. When ϕ is constant, Brans-
Dicke theory reduces to GR and the Schwarzschild
solution, which is the unique vacuum, static, and
spherically symmetric solution of the Einstein equations
must be recovered. By setting λ ¼ 1 the line element
(2.1) reduces to

ds2ðþ1Þ ¼ −
�
1 − B=r
1þ B=r

�
2

dt2

þ
�
1þ B

r

�
4

ðdr2 þ r2dΩ2
ð2ÞÞ ð2:4Þ

which is the Schwarzschild metric in isotropic coordi-
nates [13]. If instead λ ¼ −1, one obtains

ds2ð−1Þ ¼ −
�
1þ B=r
1 − B=r

�
2

dt2 ð2:5Þ

þ
�
1 −

B
r

�
4

ðdr2 þ r2dΩ2
ð2ÞÞ: ð2:6Þ

This is again just the Schwarzschild solution provided
that, either r → −r which we do not consider here [13],
or that B < 0 and, hence, as alluded to above, one then
has just to interpret −B as the mass parameter instead of
B; a case we have already chosen to exclude. Therefore,
we also assume λ > 0 in the following.
We can now study the limit of Brans I solutions to GR.

When ω → ∞, it is λ2 ≃ ωC2=2 → ∞ and, if C ≠ 0

(the case C ¼ 0 having already been discussed), the line
element (2.1) reduces to

ds2ð∞Þ ¼ −dt2 þ
�
1 −

B2

r2

�
2

ðdr2 þ r2dΩ2
ð2ÞÞ; ð2:7Þ

while the Brans-Dicke scalar becomes constant. If C ≠ 0,
the corresponding solution of GR is not recovered from
Brans I solutions in the ω → ∞ limit. Instances in which
solutions of scalar-tensor theories do not reduce to the
corresponding GR limit have been discussed in [34] and
possible reasons for this behavior have been identified
in the anomalous asymptotic dependence of ϕ on ω as
ω → ∞ [34–36].
The condition (2.3) amounts to imposing that C is

such that points on the parabola of equation λ2ðCÞ ¼
ðω
2
þ 1ÞC2 þ Cþ 1 lie in the λ2 > 0 half-plane. The roots

of the equation λ2ðCÞ ¼ 0 are

C� ¼ −1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð2ωþ 3Þp

ωþ 2
ð2:8Þ

and they are real only if ω ≤ −3=2. By looking at the sign
of the coefficient ð1þ ω=2Þ of this parabola, it is easy to
establish the following:

(i) If ω < −2, the parabola has concavity facing down-
ward and intersects the C axis at C� > 0. It must
be C− < C < Cþ.

(ii) If ω ¼ −2, then the parabola degenerates into the
straight line λ2 ¼ Cþ 1 and it must be C > −1.

(iii) If −2 < ω < −3=2, the parabola has concavity
facing upward and it must be C < C− or C > Cþ,
where C− < Cþ < 0.

(iv) If ω ¼ −3=2, then λ2 ¼ ½ðCþ 2Þ=2�2 and the
parabola has concavity facing upward and touches
the C axis only at C ¼ −2; therefore the only
restriction is C ≠ −2.

(v) If ω > −3=2, the concavity still faces upward but
there are no intersections between the C axis and the
parabola, which always lies above it. There is no
restriction on the values of C.

Let us consider now the Ricci scalar R: by contracting
the Brans-Dicke field equations (1.3) and using Eq. (2.2),
one obtains

R¼ ω

ϕ2
∇cϕ∇cϕ

¼ 4ωB2C2

λ2r4

��
1þB

r

�
−2−ðCþ1Þ

λ

�
1−

B
r

�
−2þðCþ1Þ

λ

�2
: ð2:9Þ

If ω ≠ 0 and C ≠ 0, then the Ricci scalar is singular at
r ¼ B when ðCþ 1Þ=λ < 2. Whether this value of the
isotropic radius is physically significant is discussed case-
by-case below.
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The areal radius is read off the line element (2.1)
and is

RðrÞ ¼
�
1þ B

r

�
1þðCþ1Þ

λ

�
1 −

B
r

�
1−ðCþ1Þ

λ

r; ð2:10Þ

and its derivative is

dR
dr

¼
�
1þ B=r
1 − B=r

�Cþ1
λ

�
r2 −

2BðCþ 1Þ
λ

rþ B2

�
1

r2
:

ð2:11Þ

In the following it is useful to know the roots of the
equation dR=dr ¼ 0, which are

rð�Þ ¼
BðCþ 1Þ

λ

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
λ

Cþ 1

�
2

s !
: ð2:12Þ

In order to make our discussion of the various regions of the
parameter space more compact, we focus on the possible
values of the parameter combination ðCþ 1Þ=λ, which is
relevant for both the roots of the equation dR=dr ¼ 0 and
in the search for horizons. The horizons (which, when
existing, are both apparent and event horizons), are located
by the roots of the equation [37,38]

∇cR∇cR ¼ 0; ð2:13Þ

which is equivalent to�
r2 − 2B

ðCþ 1Þ
λ

rþ B2

�
2

¼ 0: ð2:14Þ

Its roots coincide with those of the equation dR=dr ¼ 0
and, when they exist in the real domain, they are always
double roots. Let us consider separately the various
relevant cases.

1. Parameter range ðCþ 1Þ=λ < 1

In this case

dR
dr

¼
�
1þ B=r
1 − B=r

�Cþ1
λ

�
r2 − 2B

ðCþ 1Þ
λ

rþ B2

�
1

r2

>

�
1þ B

r

�Cþ1
λ

�
1 −

B
r

�
−Cþ1

λ ðr − BÞ2 > 0; ð2:15Þ

for all values of r > B. Moreover,

RðrÞ ¼
�
1þ B

r

�
1þCþ1

r
�
1 −

B
r

�j1−Cþ1
λ j
r; ð2:16Þ

shows that r ¼ B corresponds to areal radius R ¼ 0, hence
the range 0 < r < B is unphysical. The Ricci scalar (2.9) is

singular at R ¼ 0. In this parameter range the spacetime
always hosts a naked central singularity if ω ≠ 0. The
details of the geometry near this singularity vary with the
value of ðCþ 1Þ=λ as described below.

(i) If 0 < ðCþ 1Þ=λ < 1 then dR=dr → þ∞ as the
spacetime singularity is approached (R → 0þ or
r → Bþ).

(ii) If ðCþ 1Þ=λ ¼ 0, then

RðrÞ ¼
�
1 −

B2

r2

�
r → 0; ð2:17Þ

dR
dr

¼ 1þ B2

r2
→ 2; ð2:18Þ

as the singularity at R ¼ 0 is approached.
(iii) If ðCþ 1Þ=λ < 0, then

dR
dr

¼ ð1−B=rÞjCþ1
λ j

ð1þB=rÞjCþ1
λ j

�
r2−2B

Cþ1

λ
rþB2

�
ð2:19Þ

tends to zero at the singularity R ¼ 0 or r ¼ B.

2. Parameter range ðCþ 1Þ=λ = 1
We have RðrÞ ¼ rð1þ B=rÞ2 and RðBÞ ¼ 4B > 0;

therefore the range 0 < r < B of the isotropic radius is
now physically meaningful. Note that RðrÞ → þ∞ as
r → 0þ and that

dR
dr

¼
�
1þ B

r

��
1 −

B
r

�
; ð2:20Þ

therefore the function RðrÞ decreases if 0 < r < B, has the
absolute minimum RðBÞ ¼ 4B > 0, and increases for
r > B. The equation ∇cR∇cR ¼ 0 locating the horizons
is equivalent to ð1 − B=rÞ2 ¼ 0, with r ¼ B a double root.
If ω ≠ 0, there is a would-be wormhole throat at r ¼ B (or,
at R ¼ 4B) where, however, the Ricci scalar is singular.
This finite radius singularity separates two disconnected
spacetimes.
If ω ¼ 0, λ > 0, and 0 < C < 1, also the Brans-Dicke

scalar diverges at r ¼ B, which means that the effective
gravitational constant vanishes. If C < 0 or C ≥ 1, then ϕ
vanishes and the gravitational coupling strength diverges.
The case C ¼ 0 has already been discussed for all values of
ω. In the context of black holes, the divergence or the
vanishing of the Brans-Dicke scalar denotes “maverick”
black holes which are contrived, unstable, or pathological
and are usually discarded as unphysical (e.g., [20]) and the
same criterion should be adopted for wormholes (naked
singularities are already unphysical).
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3. Parameter range ðCþ 1Þ=λ > 1

In this case the equation

dR
dr

¼
�
1þ B=r
1 − B=r

�jCþ1
λ j�

r2 −
2BðCþ 1Þ

λ
rþ B2

�
·
1

r2
¼ 0

ð2:21Þ

has the two roots (2.12), which are both positive. It is
straightforward to see also that

0 < rð−Þ < B < rðþÞ: ð2:22Þ

The areal radius

RðrÞ ¼ ð1þ B=rÞj1þCþ1
λ jr

ð1 − B=rÞjCþ1
λ −1j → þ∞ ð2:23Þ

as r → Bþ, hence the range r < B of the isotropic radius is
unphysical and we ignore the root rð−Þ < B. The apparent
horizons are located at the roots of the equation

�
1 −

B
r

�
−2
�
r2 −

2BðCþ 1Þ
λ

rþ B2

�
2

¼ 0: ð2:24Þ

Ignoring the root r ¼ B, which corresponds to R ¼ þ∞,
r ¼ rðþÞ > B is a double root and we have a wormhole
throat at rðþÞ. As seen earlier, the Ricci scalar (2.9) is
singular at r ¼ B if ðCþ 1Þ=λ < 2 and ω ≠ 0, but this
singularity is actually pushed to infinity since r → Bþ
corresponds to infinite physical radius R; hence this is an
acceptable solution. The Ricci scalar is regular for
ðCþ 1Þ=λ ≥ 2.

B. Einstein frame class I solutions

The Einstein frame metric and free scalar field are

d~s2ðIÞ ¼ ϕðIÞds2ðIÞ ¼ −
�
1 − B=r
1þ B=r

�Cþ2
λ

dt2

þ
�
1þ B

r

�
2þCþ2

λ

�
1 −

B
r

�
2−ðCþ2Þ

λ ðdr2 þ r2dΩ2
ð2ÞÞ

ð2:25Þ

~ϕðIÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ωþ 3j
16πG

r
C
λ
ln

�
1 − B=r
1þ B=r

�
þ const: ð2:26Þ

The areal radius and its derivative are

~RðrÞ ¼ ϕR ¼
�
1þ B

r

�
1þCþ2

2λ

�
1 −

B
r

�
1−Cþ2

2λ

r; ð2:27Þ

d ~R
dr

¼
�
1þ B=r
1 − B=r

�Cþ2
2λ

�
1 −

�
Cþ 2

λ

�
B
r
þ B2

r2

�
; ð2:28Þ

while the Einstein frame Ricci scalar [obtained by con-
tracting the field equations (1.8)] is

~R¼ 8πG~grr
�
d ~ϕ
dr

�2

¼ 2B2C2j2ωþ3j
λ2r4

�
1þB

r

�
−4−Cþ2

λ

�
1−

B
r

�Cþ2
2λ −4

: ð2:29Þ

If ðCþ 2Þ=λ < 4, the Ricci scalar is singular at r ¼ B (and
it is always singular at r ¼ 0 unless C ¼ 0, in which case it
is ~R ¼ 0).
The equation ∇c ~R∇c

~R ¼ 0 locating the horizons is

�
1 −

B2

r2

�−2�
1 −

�
Cþ 2

λ

�
B
r
þ B2

r2

�
2

¼ 0 ð2:30Þ

and has the same roots

rð�Þ ¼
BðCþ 2Þ

2λ

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4λ2

ðCþ 2Þ2

s !
ð2:31Þ

as the equation d ~R=dr ¼ 0. When these roots exist and are
real and positive, they are always double roots and, there-
fore, the solutions always contain either wormhole throats
or naked singularities. Assuming that B > 0 and λ > 0 as in
the Jordan frame, if ½ðCþ 2Þ=λ�2 < 4 there are no real roots
and no horizons. If ðCþ 2Þ=λ ¼ �2 there is a quadruple
root r0 ¼ B. If instead ½ðCþ 2Þ=λ�2 > 4, there are two
double roots rð�Þ. Further, if C > −2 the two double roots
rð�Þ are both positive; if C ¼ −2 the only (quadruple) root
vanishes and, if C < −2, there are no horizons. Let us
examine the situation in more detail.

1. Parameter range ðCþ 2Þ=λ < −2
In this case it is

~RðrÞ ¼
�
1þ B

r

�
1þCþ2

2λ

�
1 −

B
r

�j1þCþ2
2λ j
r ð2:32Þ

and ~RðrÞ → 0þ as r → B; hence the range 0 < r < B is
unphysical, while ~RðrÞ → 0þ as r → þ∞. The roots rð�Þ
are negative and the Ricci scalar diverges at ~R ¼ 0, where
there is a naked singularity.

2. Parameter range ðCþ 2Þ=λ= − 2

In this case

~RðrÞ ¼ ðr − BÞ2
r

ð2:33Þ
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vanishes as r → B and diverges in both limits r → 0þ and
r → þ∞. It could seem that there is a wormhole throat at
r ¼ B but the Ricci scalar diverges there. Also this
geometry hosts a naked singularity at ~R ¼ 0.

3. Parameter range −2 < ðCþ 2Þ=λ < 2

Then

~RðrÞ ¼
�
1þ B

r

�
1þCþ2

2λ

�
1 −

B
r

�j1−Cþ2
2λ j 1

r
ð2:34Þ

and ~RðrÞ → 0þ as r → B while ~RðrÞ → þ∞ as r → þ∞.
There are no real roots rð�Þ and no horizons. The Ricci

scalar diverges at ~R ¼ 0, where we have again a naked
singularity.

4. Parameter range ðCþ 2Þ=λ = 2
r ¼ B is a quadruple root and

~RðrÞ ¼
�
1þ B

r

�
2

r ð2:35Þ

has the limits ~R → þ∞ as r → 0þ and ~R → þ∞ as
r → þ∞. There is a wormhole throat at ~R ¼ 4B, the
minimum value of ~R.

5. Parameter range ðCþ 2Þ=λ > 2

Both double roots rð�Þ are positive and

~RðrÞ ¼
�
1þ B

r

�
1þCþ2

2λ

�
1 −

B
r

�
−j1−Cþ2

2λ j
r ð2:36Þ

diverges in both limits r → Bþ and r → þ∞; hence the
range 0 < r < B is unphysical. In this parameter range it is
0 < rð−Þ < B < rðþÞ and there is a wormhole throat at rðþÞ.

III. BRANS CLASS II SOLUTIONS

A. Jordan frame class II solutions

There is a duality relating class II and class I solutions
[14,15], so these two classes are not independent. We shall
come back to this duality in Sec. VI below. The Jordan
frame Brans class II line element and scalar field are

ds2ðIIÞ ¼ −e4
Λ arctan ðr=BÞdt2

þ e
−4ðCþ1Þ

Λ arctan ðr=BÞ
�
1þ B2

r2

�
2

ðdr2 þ r2dΩ2
ð2ÞÞ;

ð3:1Þ

ϕðIIÞ ¼ ϕ0e
2C
Λ arctan ðr=BÞ; ð3:2Þ

where

Λ2 ¼ C

�
1 −

ωC
2

�
− ðCþ 1Þ2 > 0: ð3:3Þ

This implies thatC ≠ 0; hence this value of the parameterC
will not be considered in the following even though it is
clear that it would play a role if the inequality (3.3) is
forgotten. Indeed, note that if Λ and B are allowed to take
simultaneously imaginary values, then setting C ¼ 0 will
just turn the metric (3.1) into the Schwarzschild metric (2.4)
written in isotropic coordinates. We shall come back to this
remark in Sec. VI.
Let us examine the possible range of the parameters B,

C, and Λ. The points of the parabola Λ2ðCÞ ¼
−ðω

2
þ 1ÞC2 − C − 1 must lie in the positive Λ2 half-plane.

This parabola has concavity facing downwards and it
intersects the C axis at

C� ¼ −1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð2ωþ 3Þp

ωþ 2
: ð3:4Þ

There are no such intersections if ω > −3=2 and two
coincident intersections if ω ¼ −3=2; we conclude that it
must be ω < −3=2 for class II solutions to exist in the
Jordan frame. Assuming this condition, it is easy to
see that:

(i) If−2<ω<−3=2 [corresponding to −ð1þω=2Þ<0],
the parameter C must lie in the range C− < C <
Cþ.

(ii) If ω ¼ −2, the parabola degenerates into the straight
line Λ2ðCÞ ¼ −ðCþ 1Þ and it must be C < −1.

(iii) If ω < −2, it must be C < C− or C > Cþ.
The Ricci scalar is

R ¼ ω

ϕ2
∇cϕ∇cϕ

¼ 4ωB2C2r4e
4ðCþ1Þ

Λ arctan ðr=BÞ

Λ2ðr2 þ B2Þ4

¼ 4ωB2C2

Λ2

e
4ðCþ1Þ

Λ arctan ðr=BÞ

R4
: ð3:5Þ

The only possible singularity of the Ricci scalar R can
occur as R → 0. The areal radius is

RðrÞ ¼
�
1þ B2

r2

�
e
−2ðCþ1Þ

Λ arctan ðr=BÞr ð3:6Þ

and its derivative is

dR
dr

¼ e
−2ðCþ1Þ

Λ arctan ðr=BÞ
�
r2 − 2B

ðCþ 1Þ
Λ

rþ B2

�
: ð3:7Þ

Note that R > 0 for all values of r and that R → þ∞ as
r → þ∞ and also as r → 0þ. Since the Ricci scalar (3.5)
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can only diverge as R → 0þ, there are no singularities of
the Ricci scalar in Brans class II spacetimes.
The roots of the equation dR=dr ¼ 0 are

rð�Þ ¼
B
Λ

�
Cþ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCþ 1Þ2 þ Λ2

q �
: ð3:8Þ

Let us examine their sign, keeping in mind that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCþ 1Þ2 þ Λ2

q
þ Cþ 1 > 0; ð3:9Þ

Cþ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCþ 1Þ2 þ Λ2

q
< 0: ð3:10Þ

(i) If ΛB > 0, the parabola ψðrÞ≡ r2 − 2B ðCþ1Þ
Λ r − B2

has concavity facing upwards and crosses the r axis
at rð−Þ and rðþÞ, with rð−Þ < 0 < rðþÞ. Therefore
dR=dr < 0 and the function RðrÞ decreases if
0 < r < rðþÞ, it has an absolute minimum at rðþÞ,
and increases for r > rðþÞ.

(ii) If ΛB < 0, the parabola ψðrÞ still has concavity
facing upward but now rðþÞ < 0 < rð−Þ and the
discussion is the same as in the previous case
provided that the switch rðþÞ ↔ rð−Þ is made.

The equation ∇cR∇cR ¼ 0 locating the horizons
becomes

�
1 −

B2

r2
−
2BðCþ 1Þ

Λ
rþ B2

�
2

¼ 0: ð3:11Þ

The roots are the same as for the equation dR=dr ¼ 0 and,
when they are real and positive, they are always double
roots. This fact implies that there are no black hole horizons
and that class II solutions do not describe black holes but
only wormhole throats or naked singularities. Further, the
roots rð�Þ can be written as

rð�Þ ¼
B
Λ

 
Cþ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

�
1 −

ωC
2

�s !
ð3:12Þ

and the inequality (3.3) implies that Cð1−ωC
2
Þ>ðCþ1Þ2≥0;

hence there are always two real roots rð�Þ of the equation
∇cR∇cR ¼ 0 locating the horizons in the allowed
range of parameters. Are these roots positive? In order to
answer this question, note that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCþ1Þ2þΛ2

p
þCþ1>

jCþ1jþCþ1≥ 0; hence

signðrðþÞÞ ¼ signðΛBÞ; ð3:13Þ

while Cþ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCþ 1Þ2 þ Λ2

p
< Cþ 1 − jCþ 1j ≤ 0

yields

signðrð−ÞÞ ¼ −signðΛBÞ: ð3:14Þ

We can now analyze all the possibilities for the two
parameters B and Λ.

1. Parameter range B > 0, Λ > 0

When B > 0 and Λ > 0, it is rð−Þ < 0 < rðþÞ and there is
a double root rðþÞ marking the location of a wormhole
throat. The same situation occurs when B < 0 and Λ < 0.

2. Parameter range B > 0, Λ < 0

When B > 0 and Λ < 0, it is rðþÞ < 0 < rð−Þ and there is
a wormhole throat at rð−Þ. The same situation occurs when
B < 0 and Λ > 0.

3. Limit to GR

Finally, let us consider the limit to GR of Brans II
solutions. Since ω < −3=2, the limit should be ω → −∞,
which implies that Λ2 ≈ −ωC2=2 → þ∞ (remember that
C ≠ 0). In this limit the Brans-Dicke scalar (3.2) becomes
constant but the line element reduces to

ds2ð∞Þ ¼ −dt2 þ
�
1þ B2

r2

�
2

ðdr2 þ r2dΩ2
ð2ÞÞ: ð3:15Þ

The areal radius is

RðrÞ ≈ rþ B2

r
; ð3:16Þ

by inverting this relation one obtains r2 − Rrþ B2 ¼ 0 and
there are the two values of the isotropic radius

r1;2 ¼
1

2

�
R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 4B2

p �
ð3:17Þ

for each value of the physical areal radius R, which implies
that it must be R ≥ 2jBj. The equation locating the apparent
horizons

∇cR∇cR ¼ grr
�
dR
dr

�
2

¼
�
1 − B2=r2

1þ B2=r2

�
2

¼ 0 ð3:18Þ

has the double root r ¼ jBj (corresponding to R ¼ 2jBj).
There is always a wormhole throat in this spacetime,
which is not the spherically symmetric, static, asymptoti-
cally flat, vacuum solution of GR (i.e., Schwarzschild
space). Therefore, the limit ω → −∞ fails to reproduce the
GR limit even though the Brans-Dicke scalar becomes
constant.

B. Einstein frame class II solutions

The Einstein frame class II line element and scalar
field are
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d~s2ðIIÞ ¼ ϕðIIÞds2ðIIÞ ¼ −e6CΛ arctan ðr=BÞdt2

þ e
−2ðCþ2Þ

Λ arctan ðr=BÞ
�
1þ B2

r2

�
2

ðdr2 þ r2dΩ2
ð2ÞÞ;

ð3:19Þ

~ϕðIIÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ωþ 3j
16πG

r
2C
Λ

arctan

�
r
B

�
þ const: ð3:20Þ

The areal radius and its derivative are

~RðrÞ ¼
�
1þ B2

r2

�
2

e
−ðCþ2Þ

Λ arctan ðr=BÞr; ð3:21Þ

d ~R
dr

¼ e
−ðCþ2Þ

Λ arctan ðr=BÞ
�
1 −

ðCþ 2Þ
Λ

B
r
−
B2

r2

�
; ð3:22Þ

while the Ricci scalar is

~R ¼ 2B2C2j2ωþ 3j
Λ2r4ð1þ B2=r2Þ4 e

2ðCþ2Þ
Λ arctan ðr=BÞ ð3:23Þ

and is never singular. The equation ∇c ~R∇c
~R ¼ 0 locating

the horizons is

�
r2 −

BðCþ 2Þ
Λ

r − B2

�
2

¼ 0 ð3:24Þ

and, when its roots

rð�Þ ¼
BðCþ 2Þ

Λ

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2Λ

Cþ 2

�
2

s #
ð3:25Þ

are real and positive they are always double roots; hence
there can only be either wormhole throats or naked
singularities.

1. Parameter range BðCþ 2Þ=Λ < 0

rðþÞ < 0 < rð−Þ and ~RðrÞ → þ∞ as r → 0þ, while
~RðrÞ → þ∞ as r → þ∞. There is a wormhole throat
at rð−Þ.

2. Case C= − 2

rð�Þ ¼ �B and ~RðrÞ ¼ ð1þ B2=r2Þr has the limits
~RðrÞ → þ∞ as r → 0þ and ~RðrÞ → þ∞ as r → þ∞.
There is a wormhole throat at r ¼ jBj (corresponding to
physical radius ~R ¼ 2jBj).

3. Parameter range BðCþ 2Þ=Λ > 0

In this case we have rð−Þ < 0 < rðþÞ and ~RðrÞ → þ∞ in
both limits r → 0þ and r → þ∞. There is a wormhole
throat at rðþÞ.

IV. BRANS CLASS III SOLUTIONS

Although it is claimed that the class III family does not
admit wormholes [24], this is not the case, as shown below.

A. Jordan frame class III solutions

The line element and Brans-Dicke scalar of Jordan frame
class III Brans solutions are, respectively,

ds2ðIIIÞ ¼ −e−2r
Bdt2 þ B4

r4
e
2ðCþ1Þ

B rðdr2 þ r2dΩ2
ð2ÞÞ; ð4:1Þ

ϕðIIIÞ ¼ ϕ0e−Cr=B; ð4:2Þ

where

C ¼ −1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð2ωþ 3Þp

ωþ 2
ð4:3Þ

and, clearly B ≠ 0, ω ≤ −3=2, ω ≠ −2. The areal radius
and its derivative are

RðrÞ ¼ B2

r
e
ðCþ1Þ

B r; ð4:4Þ

dR
dr

¼ BðCþ 1Þ
r2

e
ðCþ1Þ

B r

�
r −

B
Cþ 1

�
: ð4:5Þ

We can rewrite the line element (4.1) using the areal
radius R instead of the isotropic radius r by means of
the substitution

dr ¼ r2

BðCþ 1Þðr − B
Cþ1

Þ e
−ðCþ1Þ

B rdR; ð4:6Þ

which yields

ds2ðIIIÞ ¼ −e−2r
Bdt2 þ B2

ðCþ 1Þ2ðr − B
Cþ1

Þ2 dR
2

þ R2dΩ2
ð2Þ: ð4:7Þ

The horizons, when they exist, are located by the equation
∇cR∇cR ¼ 0, which becomes simply gRR ¼ 0, or

�
Cþ 1

B

�
2
�
r −

B
Cþ 1

�
2

¼ 0: ð4:8Þ

There is a double root
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rH ¼ B
Cþ 1

ð4:9Þ

when this quantity is positive, with corresponding areal
radius

RH ¼ eBðCþ 1Þ: ð4:10Þ

Therefore, there are either zero or two coincident real roots
and there cannot be black holes: Brans class III solutions
always describe naked singularities or wormholes.
The Ricci scalar is

R ¼ ω

ϕ2
∇cϕ∇cϕ ¼ ωC2

B6
e−

2ðCþ1Þ
B rr4: ð4:11Þ

Let us examine the various possibilities for the range of
parameters B and C.

1. Parameter range C < −1, B > 0

In this case we have

RðrÞ ¼ B2

r
e−j

Cþ1
B jr; ð4:12Þ

dR
dr

¼ −
B2

r2
e−j

Cþ1
B jr
�
1þ
				 B
Cþ 1

				r
�
; ð4:13Þ

and the function RðrÞ is monotonically decreasing with
RðrÞ → 0 as r → þ∞ and RðrÞ → þ∞ as r → 0þ.
Since RH ¼ eBðCþ 1Þ < 0 there are no horizons and there
are no wormholes. The Brans-Dicke scalar ϕ ¼ ϕ0ej

C
Bjr → 0

as R → 0 (corresponding to r → þ∞) and the Ricci
scalar

R ¼ ωC2

B6
e2j

Cþ1
B jrr4 → þ∞ ð4:14Þ

as R → 0þ. Therefore, there is a naked singularity at R ¼ 0.

2. Parameter range C > −1, B > 0

In this case the areal radius RðrÞ → þ∞ as r → þ∞ and
RðrÞ → þ∞ as r → 0þ. Its derivative dR=dr is negative,
and RðrÞ decreases, for 0 < r < rH. RðrÞ has the absolute
minimum RH ¼ eBðCþ 1Þ > 0 at rH, and increases for
r > rH. The double root rH of the equation∇cR∇cR ¼ 0 is
positive and there is a wormhole throat at rH, where the
Brans-Dicke field (4.2) assumes the finite value ϕH ¼
ϕ0e

− C
Cþ1 and it becomes constant if C ¼ 0 (the C ¼ 0

solution is treated below in the discussion of the limit
to GR).
Special subcases are as follows:
(i) C > 0, B > 0, in which the Brans-Dicke scalar is a

finite and decreasing function of r for all values of

this coordinate. Its derivative with respect to the
areal radius is

dϕ
dR

¼ dϕ
dr

dr
dR

¼ dϕ
dr

�
dR
dr

�
−1

¼ −ϕ0Cr2

B2ðCþ 1Þðr − rHÞ
e−

ð2Cþ1Þ
B r → ∞ ð4:15Þ

as r → rH. Therefore, for r < rH (or R > RH in
the “left branch” of R), it is dϕ=dR > 0, with
dϕ=dR → þ∞ as r → r−H. For r > rH (or R > RH
in its “right branch”), instead, it is dϕ=dR < 0 with
dϕ=dR → −∞ as r → rþH. The Brans-Dicke scalar
has a cusp, but remains finite, at the horizon RH
where it attains its maximum value, which means
that the effective gravitational couplingGeff ∼ ϕ−1 is
maximum there.

(ii) −1 < C < 0, B > 0: in this case the Brans-Dicke
scalar

ϕ ¼ ϕ0ej
C
Bjr ð4:16Þ

is an increasing function of the isotropic radius r and
its derivative with respect to the areal radius is

dϕ
dR

¼ jCjr2
B2ðCþ 1Þðr − rHÞ

e
−2ðCþ1Þ

B r: ð4:17Þ

We need to further distinguish the situation
−1 < C ≤ −1=2, in which

dϕ
dR

¼ jCjr2
B2jCþ 1jðr − rHÞ

ej
2ðCþ1Þ

B jr → ∞ ð4:18Þ

as the wormhole throat is approached when r → rH.
In this case dϕ=dR is negative for 0 < r < rH,
vanishes at rH, and is positive for r > rH. The
Brans-Dicke scalar is minimum and finite but has
a cusp (and Geff is maximum) at the wormhole
throat.

3. Parameter range C > −1, B < 0

In this case it is RH ¼ eBðCþ 1Þ < 0 and there are no
horizons and no wormhole throats. Since dR=dr is always
negative the areal radius is the decreasing function of the
isotropic radius

RðrÞ ¼ B2

r
e−j

Cþ1
B jr: ð4:19Þ

The limit r → 0þ corresponds to R → þ∞, while r → þ∞
corresponds to R → 0þ. The Ricci scalar is
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R ¼ ωC2

B6
e2j

Cþ1
B jr → þ∞ ð4:20Þ

as R → 0þ. Therefore, there is a central naked singularity
for these parameter values.

4. Parameter range C= − 1, B ≠ 0

In this case we have R ¼ B2=r and the line element
becomes

ds2ðIIIÞ ¼ −e−2r=Bdt2 þ B4

r4
ðdr2 þ r2dΩ2

ð2ÞÞ
¼ −e−2r=Bdt2 þ dR2 þ R2dΩ2

ð2Þ: ð4:21Þ

The spatial sections are flat and there are no horizons. The
limits r → 0þ and r → þ∞ correspond to R → þ∞ and
R → 0þ, respectively. Both the Ricci scalar and the Brans-
Dicke scalar field

R ¼ ωB2

R4
; ð4:22Þ

ϕ ¼ ϕ0eB=R; ð4:23Þ
diverge as R → 0þ: there is a naked singularity at R ¼ 0.

5. Parameter range C < −1, B < 0

This situation is identical to the case C > −1, B > 0.

6. Limit to GR

Finally, let us discuss the limit to GR ω → −∞,
which yields C → 0. In this limit the Brans-Dicke
scalar (4.2) becomes constant and the line element
reduces to

ds2ð∞Þ ¼ −e−2r=Bdt2 þ
�

B
r − B

�
2

dR2 þ R2dΩ2
ð2Þ: ð4:24Þ

There is a wormhole throat at the horizon R ¼ RH ¼ eB.
Also for Brans III solutions, the limit in which ϕ becomes
constant does not reproduce the corresponding solution
of GR.

B. Einstein frame class III solutions

In the Einstein frame the line element and scalar of class
III solutions are, respectively,

d~s2ðIIIÞ ¼ ϕðIIIÞds2ðIIIÞ

¼ −e−
ðCþ2Þr

B dt2 þ B4

r4
e
ðCþ2Þr

B ðdr2 þ r2dΩ2
ð2ÞÞ; ð4:25Þ

~ϕðIIIÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ωþ 3j
16πG

r
Cr
B

þ const: ð4:26Þ

The areal radius and its derivative are

~RðrÞ ¼ B2

r
e
ðCþ2Þr

2B ; ð4:27Þ

d ~R
dr

¼ B2

r2
e
ðCþ2Þr

2B

�
Cþ 2

2B

��
r −

2B
Cþ 2

�
; ð4:28Þ

while the Einstein frame Ricci scalar is

~R ¼ j2ωþ 3jC2r4

2B6
e−

ðCþ2Þr
B : ð4:29Þ

The equation ∇c ~R∇c
~R ¼ 0 becomes

ðCþ 2Þ2
�
r −

2B
Cþ 2

�
2

¼ 0 ð4:30Þ

and has the double root

r� ¼
2B

Cþ 2
ð4:31Þ

(if C ¼ −2 there are no roots).

1. Parameter range B=ðCþ 2Þ > 0

In this range of parameters the double root r� is positive
and the areal radius ~RðrÞ diverges in both limits r → 0þ and
r → þ∞. There is a wormhole throat at r�, corresponding
to ~R� ¼ eBðCþ 2Þ=2.

2. Parameter range B=ðCþ 2Þ < 0

In this case there are no horizons, the areal radius ~RðrÞ
tends to zero value as r → þ∞, where the Ricci scalar
diverges, and to infinity as r → 0þ. There is a naked central
singularity.

3. Case C= − 2

In this case there are no horizons and the areal radius
~RðrÞ ¼ B2=r behaves as in the previous case. The Ricci
scalar diverges again at ~R ¼ 0 and there is a naked central
singularity.

V. BRANS CLASS IV SOLUTIONS

There is another duality relating class III and class IV
solutions [15]. We shall come back again to this duality in
Sec. VI. Brans IV solutions were examined, for a restricted
range of parameters,2 in the recent Ref. [39] in both the
Jordan and Einstein frames. There it is shown that, for a
certain range of parameters, the formal solution is a
wormhole in the Jordan frame and a naked singularity in

2Specifically, for the situations B > 0; and B > 0, C > −1.
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the Einstein frame, and the detailed reason why this
happens was pointed out [39]. For completeness, we briefly
revisit also those cases.

A. Jordan frame class IV solutions

The Jordan frame line element and Brans-Dicke scalar
field for Brans class IV solutions are, respectively,3

ds2ðIVÞ ¼ −e−2B
r dt2 þ e

2BðCþ1Þ
r ðdr2 þ r2dΩ2

ð2ÞÞ ð5:1Þ

ϕðIVÞ ¼ ϕ0e−
BC
r ; ð5:2Þ

where

C ¼ −1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð2ωþ 3Þp

ωþ 2
: ð5:3Þ

Clearly, the Brans-Dicke parameter is limited to the range
ω ≠ −2, ω < −3=2. The parameter B has the dimensions
of a length and r > 0. The areal radius and its derivative
are

RðrÞ ¼ e
BðCþ1Þ

r r; ð5:4Þ

dR
dr

¼ e
rH
r

�
1 −

rH
r

�
; ð5:5Þ

where

rH ¼ BðCþ 1Þ ð5:6Þ

is the root of the equation dR=dr ¼ 0 and RH ¼ erH is
the corresponding value of the areal radius. The isotropic
radius (5.6) is also the double root of the equation
locating the horizons ∇cR∇cR¼0, which becomes
ð1−rH=rÞ2¼0. When rH is real and positive the solution
describes a wormhole, otherwise there are no horizons
and no black holes. The Ricci scalar is

R ¼ ω

ϕ2
∇cϕ∇cϕ ¼ ωB2C2

r4
e−

2BðCþ1Þ
r : ð5:7Þ

1. Parameter range B > 0, C > −1
In this case rH ¼ jBðCþ 1Þj > 0 and the areal radius

RðrÞ ¼ ej
BðCþ1Þ

r jr diverges as r → 0þ and as r → þ∞; it
decreases for 0 < r < rH, assumes its minimum value at rH
and increases for r > rH. We have a wormhole throat at
RH ¼ eBðCþ 1Þ, at which ϕ and R are finite (see [39] for
further discussion).

2. Parameter range B < 0, C > −1
The root rH ¼ −jBðCþ 1Þj is negative and there are no

horizons. The areal radius RðrÞ increases monotonically
from zero value as r → 0þ reaching infinity as r → þ∞.
The Ricci scalar

R ¼ ωB2C2

r4
e2j

BðCþ1Þ
r j ð5:8Þ

diverges as r → 0þ (or R → 0þ), signaling a central naked
singularity.

3. Parameter range B < 0, C < −1
The double root rH¼ jBðCþ1Þj is positive, RðrÞ→þ∞

as r → 0þ and as r → þ∞. There is a wormhole throat at
rH, with ϕ and R finite.

4. Parameter range B > 0, C < −1
It is rH ¼ −jBðCþ 1Þj < 0 and there are no horizons.

The areal radius RðrÞ increases monotonically from zero
value at r ¼ 0 to infinity as r → þ∞. The Ricci scalar

R ¼ ωB2C2

r4
e2j

BðCþ1Þ
r j ð5:9Þ

diverges as r → 0þ (i.e., as R → 0þ), signaling again a
central naked singularity.

5. Parameter range C= − 1, B ≠ 0

This situation corresponds to ω ¼ −2, which is excluded
by Eq. (5.3). However, one could think of considering the
formal line element (5.1) without reference to its derivation
in [8], that is,

ds2ðIVÞ ¼ −e−2B
r dt2 þ dr2 þ r2dΩ2

ð2Þ; ð5:10Þ

for which areal and isotropic radius coincide, and which
has flat spatial sections. The Ricci scalar

R ¼ ωB2C2

R4
ð5:11Þ

diverges as R → 0 and there is a naked singularity.

3Note that in the original Brans class IV metric and the
corresponding scalar field, introduced in Ref. [8], the param-
eter B appears in the denominator of the exponents and,
hence, has there the dimensions of inverse length. We chose
here to put B in the numerators in order for it to have the
same dimensions of length as it does within the other three
classes. Furthermore, it is only under these forms of the
metric and the scalar field that the dualities we are going to
discuss in Sec. VI appear to be more than just mathematical
transformations of the label r.

REVISITING THE BRANS SOLUTIONS OF SCALAR- … PHYSICAL REVIEW D 94, 104019 (2016)

104019-11



6. The GR limit

The GR limit should correspond to ω → −∞, which
implies that C → 0 and rH → B. The scalar field becomes
constant in this limit, the line element reduces to

ds2ð∞Þ ¼ −e−2Br dt2 þ e
2B
r ðdr2 þ r2dΩ2

ð2ÞÞ; ð5:12Þ

and the areal radius is RðrÞ ¼ re
B
r . The Ricci scalar is

R ¼ ωB2C2

r4
e−

2BðCþ1Þ
r ≈

−2B2

r4
e−

2B
r : ð5:13Þ

If B > 0, it is rH > 0, RðrÞ → þ∞ as r → 0þ and as
r → þ∞. The Ricci scalar is finite at R ¼ 0 and the
solution describes a wormhole.
If B < 0, it is rH < 0 and there are no horizons. The areal

radius RðrÞ → 0 as r → 0þ and RðrÞ → þ∞ as r → þ∞.
The Ricci scalar diverges at R ¼ 0: there is a central naked
singularity.
In either case the limit in which ϕ becomes constant fails

to reproduce the corresponding GR solution.

B. Einstein frame class IV solutions

The Einstein frame line element and scalar field for class
IV solutions are

d~s2ðIVÞ ¼ ϕðIVÞds2ðIVÞ

¼ −e−
BðCþ2Þ

r dt2 þ e
BðCþ2Þ

r ðdr2 þ r2dΩ2
ð2ÞÞ; ð5:14Þ

~ϕðIVÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ωþ 3j
16πG

r
BC
r

þ const: ð5:15Þ

The areal radius is simply

~R ¼ e
BðCþ2Þ

2r ð5:16Þ

and the Ricci scalar is

~R ¼ j2ωþ 3jB2C2

2r4
e
−BðCþ2Þ

r : ð5:17Þ

The equation ∇c ~R∇c
~R ¼ 0 becomes ðr − r�Þ2 ¼ 0, where

r� ¼
BðCþ 2Þ

2
ð5:18Þ

is the only root and a double root.

1. Parameter range BðCþ 2Þ < 0

In this case r� < 0 and there are no horizons. The areal
radius has the limits ~RðrÞ → 0þ as r → 0þ, where the Ricci
scalar diverges, and ~RðrÞ → þ∞ as r → þ∞. There is a
naked central singularity.

2. Parameter range BðCþ 2Þ > 0

In this case r� > 0, and ~RðrÞ → þ∞ in both limits
r → 0þ and r → þ∞. There is a wormhole throat at
physical radius ~R� ¼ eBðCþ 2Þ=2.

3. Case C= − 2

In this case areal radius and isotropic radius coincide and
the Ricci scalar diverges as ~R → 0þ. There is a naked
central singularity.

VI. THE DUALITIES

As mentioned above, Brans solutions are not actually all
independent as there are dualities relating pairs of the
solution classes [14,15]. There is a duality relating classes I
and II and there is another duality relating classes III and
VI. It is therefore not surprising to find the same pattern
concerning the existence of wormholes and/or naked
singularities within a pair of solutions related by such a
duality. It is also not a coincidence that all the Brans classes
fail to recover the GR limit as ω → ∞.
Furthermore, as we shall see shortly, these dualities are

akin to the duality one finds for the Schwarzschild black
hole solution when the latter is written in isotropic
coordinates. Indeed, it is well known that the
Schwarzschild metric in isotropic coordinates is self-dual
under the inversion r ↔ B2=r, as it can easily be verified
using the metric (2.4). This fact might actually have been
expected as the Schwarzschild solution in isotropic coor-
dinates is recovered either from class I or class II when the
parameter C vanishes as we saw in Eq. (2.4) and in the
remark below Eq. (3.3), respectively, for then the Brans-
Dicke field ϕ becomes a constant. The same observation
also applies to the case of classes III and IV, as the latter
reduces to the Minkowski spacetime for B ¼ 0 while the
former reduces, for B → ∞ (C cannot vanish for these
classes), to a Minkowski spacetime whose radial coordinate
r has been inverted to 1=r. All these observations remain
valid when going to the Einstein frame.
The duality transformation that relates class III to class

IV is the following inversion:

r ↔
B2

r
: ð6:1Þ

Notice that the form of the duality transformation displayed
here is slightly different from that given in Ref. [15]. The
dimensions here are correct as the parameter B has the same
dimensions of length as r. In fact, by a straightforward
substitution, one easily recovers in the Jordan frame the
metric (4.1) from the metric (5.1), and vice versa, thanks to
this transformation of the coordinate r. In the Einstein
frame one also recovers the metric (5.14) from the metric
(4.25) using such an inversion. The effect of this inversion
is easily seen by comparing the location of the would-be
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wormholes’ throats (4.9) and (5.6) in the Jordan frame and
(5.18) and (4.31) in the Einstein frame; one just being the
inverse of the other up to the factor B2 as dictated by the
inversion (6.1).
The duality transformation that relates class I to

class II is

r ↔
B2

r
; λ ↔ −iΛ; B ↔ iB: ð6:2Þ

Here also, our notation differs from that of Refs. [14,15] in
that we used B2 for the r inversion in order to get the
dimensions right. In fact, by a straightforward substitution,
one easily recovers in the Jordan frame the metric (3.1)
from the metric (2.1), and vice versa, thanks to these three
transformations. The same applies to the metrics (2.25) and
(3.19) in the Einstein frame.
In contrast to the case of classes III and IV, however, the

effect of the duality transformation (6.2) is not to make
the radii (2.12) and (3.8) of the would-be wormhole
throats in the Jordan frame inverse of each other. The
same applies to the case of the radii (2.31) and (3.25) of
the would-be wormholes in the Einstein frame. In both
cases, one is recovered from the other just by making the
substitutions (6.2) on Λ and B but the resulting radii are
not inverse of each other. This could easily be understood
by the fact that, in contrast to classes III and IV which
admit as a limit the Minkowski spacetime, classes I and II
admit as a limit the Schwarzschild metric which is already
self-dual under the inversion r ↔ B2=r in isotropic
coordinates.
Now, since the parameter B has the dimensions of length

and the parameters λ and Λ both appear in exponents inside
the metrics (3.1) and (2.1), it might seem unphysical to
change these parameters into imaginary entities. Note,
however, that the meaning we give to the parameter B
cannot be taken independently from the parameter λ in
class I or independently from the parameter Λ in class II. In
fact, as we saw in Eq. (2.4), for C ¼ 0 the parameter B
becomes the mass parameter of the Schwarzschild
solution if λ ¼ 1, whereas for λ ¼ −1 it is the parameter
−B that should be interpreted as the Schwarzschild mass
parameter in Eq. (2.6). The same applies for class II whose
metric (3.1) reproduces the Schwarzschild metric in
isotropic coordinates only when both Λ and B become
imaginary.
Finally, one might wonder at this point if there still exists

another duality transformation that might relate one pair of
classes to another pair. The answer is no and the reason is
the following. The fact that one pair of solutions (classes I
and II) reduces to the Schwarzschild metric for a specific
value of the parameter C and the other pair (classes III and
IV) reduces to the Minkowski spacetime for a specific
value of the parameter B is what forbids the existence of
any duality between the two pairs. In other words, as there

is no duality between the curved Schwarzschild spacetime
and the flat Minkowski spacetime, no duality could exist
between the first pair and the second pair either.

VII. CONCLUSIONS

We have verified explicitly that the Brans classes I–IVof
solutions [8] of Brans-Dicke theory [1] always describe
either wormholes or else horizonless geometries containing
naked singularities, and they never describe black holes, in
agreement with the Agnese-La Camera theorem [10] and
with Hawking’s theorem on Brans-Dicke black holes
[19–21].
Our conclusions are relevant also for fðRÞ theories of

gravity which, in their metric formulation, are equivalent to
an ω ¼ 0 Brans-Dicke theory which, contrary to our
situation, has a scalar field potential (a variant of
O’Hanlon theory [40]) [5–7]. In the Palatini formalism,
instead, fðRÞ gravity reduces to an ω ¼ −3=2 Brans-Dicke
theory (again, with a potential) [5–7]. The conclusions
reached here are also consistent with the failure of the
Jebsen-Birkhoff theorem in scalar-tensor gravity. In gen-
eral, this theorem does not hold and only a weak version of
it is valid which states that if, in vacuo, the Brans-Dicke
scalar ϕ is static, then the solution is static (but not
necessarily Schwarzschild or Schwarzschild-de Sitter).
Again, this result is not in contradiction with the
Hawking theorem on Brans-Dicke black holes, as dis-
cussed in detail in Ref. [41] specifically for Brans solutions.
Regarding fðRÞ gravity, the Jebsen-Birkhoff theorem does
not hold in the metric formalism, as is well known,
but holds in Palatini fðRÞ gravity with a static matter
distribution because in this case the Brans-Dicke scalar
ϕ ¼ f0ðRÞ is not a dynamical degree of freedom [41].
Ambiguity and confusion lingering in the literature about

the nature of Brans solutions and apparent contradictions
with the theorems mentioned above are thus eliminated
once and for all. Spacetimes harboring naked singularities
are unphysical since one cannot prescribe regular initial
data in the presence of a naked singularity and the initial
value problem fails, leaving the theory void of predict-
ability and wormholes as the only remaining Brans
solutions. Wormholes are exotic objects which require
the energy conditions to be violated. The Brans solutions
are vacuum solutions and the Brans-Dicke scalar acts as the
only form of effective “matter” once the field equations are
written as effective Einstein equations, as in Eq. (1.3). It is
well known that a nonminimally coupled scalar field and
the Brans-Dicke scalar can violate all of the energy
conditions; therefore it is no surprise that one can obtain
wormholes as solutions of vacuum Brans-Dicke theory, as
has already been remarked in the literature.
No Jordan frame solution of any Brans class has the

correct limit to GR, which lends a word of caution on using
these solutions as toy models, since they are rather
pathological. The reason for their failure to reproduce

REVISITING THE BRANS SOLUTIONS OF SCALAR- … PHYSICAL REVIEW D 94, 104019 (2016)

104019-13



the corresponding GR solution (i.e., the Schwarzschild
geometry) is by now well understood, as recalled
above.
The Einstein frame versions of the Brans solutions,

naturally, describe only spacetime geometries containing
either wormholes or naked singularities. It is interesting
that a wormhole can sometimes be conformally trans-
formed to a naked singularity or vice versa. These instances

and the general reasons why they occur were analyzed in
detail in the recent Ref. [39], using Brans IV solutions as an
example. The present work provides more examples.
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