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A novel approach to the effective-one-body description of gravitationally interacting two-body systems
is introduced. This approach is based on the post-Minkowskian approximation scheme (perturbation theory
in G, without assuming small velocities) and employs a new dictionary focussing on the functional
dependence of the scattering angle on the total energy and the total angular momentum of the system. Using
this approach, we prove to all orders in v=c two results that were previously known to hold only to a limited
post-Newtonian accuracy: (i) the relativistic gravitational dynamics of a two-body system is equivalent, at
first post-Minkowskian order, to the relativistic dynamics of an effective test particle moving in a
Schwarzschild metric, and (ii) this equivalence requires the existence of an exactly quadratic map between
the real (relativistic) two-body energy and the (relativistic) energy of the effective particle. The same energy
map is also shown to apply to the effective-one-body description of two masses interacting via tensor-scalar
gravity.
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I. INTRODUCTION

The effective-one-body (EOB) formalism was conceived
[1–4] with the aim of analytically describing both the last
few orbits of, and the complete gravitational-wave signal
emitted by, coalescing binary black holes. The predictions,
made as early as 2000 [2], by the EOB formalism have been
broadly confirmed by subsequent numerical simulations
[5–8]. This then led to the development of numerical-
relativity-improved versions of the EOB dynamics and
waveform (see, e.g., Refs. [9–15]), which have helped the
recent discovery, interpretation, and data analysis of the
first gravitational-wave signals by the Laser Interferometer
Gravitational-Wave Observatory [16–18].
The aim of the present paper is to introduce a novel

theoretical approach to some of the basic structures of EOB
theory. The hope is that this new approach could lead to
theoretically improved versions of the EOB conservative
dynamics, which might be useful in the upcoming era of
high signal-to-noise-ratio gravitational-wave observations.
In this work, we shall only consider the interaction of
nonspinning bodies at the first order in G. Our strategy is,
however, generalizable to higher orders in G and to
spinning bodies.
The EOB conservative dynamics is a relativistic gener-

alization of the well-known Newtonian-mechanics fact that
the relative dynamics of a two-body system (with masses
m1 and m2) is equivalent to the motion of an effective
particle of mass

μ≡ m1m2

m1 þm2

; ð1Þ

submitted to the original two-body potential VðjR1 −R2jÞ.
In the case of the Newtonian gravitational interaction

[i.e., VðjR1−R2jÞ¼−Gm1m2=jR1−R2j], the identity
m1m2 ¼ μðm1 þm2Þ implies that the effective particle of
mass μ moves in the gravitational potential of a central
mass equal to

M ≡m1 þm2: ð2Þ
The historical approach to defining the EOB

(conservative) dynamics [1,3,4] has been, so far, based
on two basic ingredients:
(1) a post-Newtonian (PN) description of the two-body

dynamics (the limit of which when c → ∞ is the
Newtonian result just recalled),

(2) a dictionary between the PN-expanded knowledge
of the two-body bound states (ellipticlike motions)
and the bound states of a test particle moving in
some external metric.
Here, these two historical ingredients will be

replaced by two other ones:
(a) The PN approximation method (which is a

combined expansion in G
c2 and in 1

c2) will be
replaced by the post-Minkowskian (PM) appro-
ximation method, i.e., by an expansion in the
gravitational constant G, which never assumes
that the velocities are small compared to the
velocity of light c. After some pioneering work
in the late 1950s [19,20], the PM approach to
gravitational motion played a useful role around
the 1980s in clarifying the computation of
retarded interactions (and associated radiation
reaction) in binary systems [21–24].

(b) The bound states of two-body systems will be
replaced by scattering states. The replacement
of bound states by scattering states will oblige us
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to replace the usual dictionary of EOB theory by
a new one (that we shall prove to be physically
equivalent). This will allow us to exploit the
fully relativistic results on gravitational scatter-
ing motions [22,23,25–29] obtained by PM
calculations.

Before expounding our new strategy, we shall briefly
recall some of the basic features of the current approach to
EOB theory.

II. REMINDER OF THE EOB DICTIONARY
FOR BOUND STATES

The construction of the EOB dynamics [1–4,30] has
been so far based on a dictionary between the bound states
(ellipticlike motions) of a gravitationally interacting two-
body system, considered in the c.m. frame, and the bound
states of an effective particle moving in an effective metric
geffμν . Inspired by the Bohr-Sommerfeld quantization con-
ditions of bound states (Ii ¼ niℏ), the latter dictionary
requires the identification between the action integrals Ii ¼
1
2π

H
PidQi (no sum on i) of the real and effective dynamics,

i.e., (considering, for simplicity, the reduction of the
dynamics to the plane of the motion)

IeffR ¼ IrealR ; Ieffφ ¼ Irealφ : ð3Þ

On the other hand, EOB theory allows for an arbitrary
(a priori undetermined) energy map f between the real c.m.
energy Ereal and the effective one Eeff :

Ereal→
f
Eeff : ð4Þ

When dealing with bound states (which can be treated
within PN theory, i.e., at successive orders in an expansion
in 1

c2), one parametrizes the unknown energy map f by a PN
expansion of the type

Eeff

m0c2
¼ 1þ Ereal

μc2

�
1þ α1

Ereal

μc2
þ α2

�
Ereal

μc2

�
2

þ α3

�
Ereal

μc2

�
3

þ α4

�
Ereal

μc2

�
4

þ � � �
�
; ð5Þ

where m0 denotes the mass of the effective particle and
where Ereal denotes the “nonrelativistic” real energy, i.e.,
the difference

Ereal ≡ Ereal − ðm1 þm2Þc2: ð6Þ

In EOB theory, the energy map f is determined, at any
given PN approximation, by the basic EOB bound-state
requirement

EeffðIR; IφÞ ¼ f½ErealðIR; IφÞ�; ð7Þ

in which both energies are expressed in terms of the
common values of the action variables Ii ¼ Ieffi ¼ Ireali .
The so-determined energy map turns out to exhibit, so

far, a very simple (and natural [31,32]) structure, described,
at the presently known order, by the following coefficients
in the PN expansion (5),

α1 ¼
ν

2
; 0 ¼ α2 ¼ α3 ¼ α4; ð8Þ

where ν denotes the symmetric mass ratio,

ν≡ μ

M
¼ m1m2

ðm1 þm2Þ2
: ð9Þ

More precisely, the first two results α1 ¼ ν
2
;, α2 ¼ 0, which

refer to the first post-Newtonian (1PN) and second post-
Newtonian (2PN) levels, respectively, were derived in
Ref. [1]. At the third post-Newtonian (3PN) level, and
under the assumption already made in Ref. [1] that the
effective metric coincides, at linear order in Newton’s
constantG, with the Schwarzschild metric, Ref. [3] derived
the next term in the energy map and found it simply to be
α3 ¼ 0. Recently, the extension of the EOB formalism to
the fourth post-Newtonian (4PN) level [30] again found an
uncorrected energy map, i.e., α4 ¼ 0. These results suggest,
without, however, proving it, that the energy map f will
remain uncorrected by higher-order PN corrections and is
exactly quadratic.
One of the main motivations for the present extension of

EOB theory to scattering states (i.e., hyperboliclike
motions) is to bypass the need to determine the energy
map in the form of the PN expansion (5). This will allow us
to prove, for the first time, that all the higher-order PN
coefficients αn in the PN expansion (5) actually vanish, so
that the energy map Eeff ¼ fðErealÞ is exactly quadratic. We
shall also prove what was assumed before, namely that the
effective metric must coincide, at linear order in G, with the
Schwarzschild metric. [Reference [1] explicitly assumed
that the coefficient b1 parametrizing the spatial part of the
effective metric to order G1 was equal to its Schwarzschild
counterpart. The attempt of Ref. [3] (see Appendix A there)
to relax this assumption did not lead to a convincing result,
so Ref. [3] finally kept this assumption on b1.]

III. DICTIONARY FOR SCATTERING STATES

When considering scattering states (i.e., hyperboliclike
motions), we lose the possibility of uniquely parametrizing
two-body bound states by means of the two action variables
IR; Iφ. Actually, we still can use the second action variable,
because

Iφ ≡ 1

2π

I
Pφdφ ¼ Pφ ≡ J ð10Þ
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is simply the total (c.m.) angular momentum of the binary
system (considered as moving in the equatorial plane
θ ¼ π

2
). (As we restrict our attention here to nonspinning

systems, we could indifferently denote Pφ, which is the
total orbital angular momentum, by J or L.) We then
evidently keep the second half of the bound-state dictionary
(3), namely

Jeff ¼ Jreal ¼ J; ð11Þ

within our new scattering-state dictionary.
We need, however, a replacement for the first, radial half

of the bound-state dictionary (3). This replacement is easily
found if we recall that the radial action variable IR is linked
to the evolution of the polar angle φ within the plane of the
motion. Indeed, Hamilton-Jacobi theory tells us to differ-
entiate the energy-reduced action S0ðR;φ; E; JÞ ¼ JφþR
dRPRðR; E; JÞ with respect to J to obtain the functional

link between φ and R, namely

φ ¼ −
Z

dR
∂PRðR; E; JÞ

∂J þ const: ð12Þ

In the bound-state case, the latter equation (which is gauge
dependent) yields, upon integration over a radial period, the
gauge-independent link

Φbound ¼ −
I

dR
∂PRðR; E; JÞ

∂J ¼ −2π
∂IRðE; JÞ

∂J ; ð13Þ

between the total periastron precession per orbit, Φbound,
and the J-derivative of the radial action, IR ¼ 1

2π

H
dRPR.

In the scattering case, it is very natural to replace the
consideration of Φbound, Eq. (13), by that of the total
angular change during scattering, i.e.,

Φscatt ¼ −
Z þ∞

−∞
dR

∂PRðR; E; JÞ
∂J ; ð14Þ

where the label −∞ refers to the incoming state (at −∞ in
time and þ∞ in R), while the label þ∞ refers to the
outgoing state (at þ∞ in time and þ∞ in R). The total
change Φscatt in polar angle is usually parametrized in
terms of the corresponding “scattering angle” χ defined
simply as

χ ≡ Φscatt − π; ð15Þ

so that it vanishes for free motions.
In view of the links we just recalled, it is very natural,

when considering scattering states, to replace the bound-
state dictionary (3) by the two conditions: Eq. (11) together
with

χeff ¼ χreal: ð16Þ

This leads us to replace the basic bound-state requirement
(7) by the following scattering-state requirement,

Eeffðχ; JÞ ¼ f½Erealðχ; JÞ� ð17Þ

or, equivalently,

χeffðEeff ; JÞ ¼ χrealðEreal; JÞ; ð18Þ

where it is understood that Eeff (on the left-hand side) and
Ereal (on the right-hand side) must be related by the (looked-
for, exact) energy map f, i.e.,

Eeff ¼ fðErealÞ: ð19Þ

Some comments on this scattering dictionary are in order.
First, let us note that χreal measures the gravitational two-
body scattering in the c.m. frame; it is the common value of
the scattering angles of each particle in the latter frame
(where P1 ¼ −P2 ¼ P), as well as the scattering angle of
the relative motion dynamics Q ¼ R1 −R2, which is the
dynamics we consider. We assume that we study the real
relative motion in a class of coordinate gauges which is
regular enough at infinity to ensure the gauge invariance of
χreal. The requirement (16) then amounts to assuming that
the canonical transformation (with generating function G)
linking the real phase-space (relative) variables Q, P to the
effective ones, say Q0, P0, is such that asymptotically
P0 ∝ P. It is easily seen that this is actually a consequence
of the general form of the generating function

GðQ;P0Þ ¼Q ·P0
�
1þ c11

�
P0

μc

�
2

þ c12
GM
c2R

þ� � �
�
; ð20Þ

which was assumed (and found consistent) in previous
(PN-based) EOB works. Finally, let us note that the
usefulness of considering the asymptotically defined,
gauge-invariant functional link χrealðEreal; JÞ between the
scattering angle and the (asymptotic, conserved.1) total
energy and angular momentum was emphasized in
Ref. [33], within the context of self-force studies, and
was studied in full numerical relativity in Ref. [34].

IV. GENERAL STRUCTURE OF THE
POST-MINKOWSKIAN EXPANSION
OF THE SCATTERING FUNCTION

As a warmup, and for orientation, let us recall the value
of the scattering function χrealðEreal; JÞ in the Newtonian
approximation (Rutherford scattering). It is most simply
obtained by starting from the polar-coordinate equation of a
conic, namely R ¼ p=ð1þ e cosφÞ (valid for all three
types of conics). In the hyperbolic case (i.e., when

1We recall that we focus here on the conservative dynamics of
two-body systems.
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e > 1), the branches at infinity correspond to the roots of
1þ e cosφ ¼ 0. This leads to Φscatt ¼ 2 arccos ð−1=eÞ or,
equivalently,

χNewton ¼ 2 arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 − 1
p

�
: ð21Þ

In the Newtonian approximation, the eccentricity e is
linked to the nonrelativistic energy E¼E−ðm1þm2Þc2
and the angular momentum J via

e2 ¼ 1þ 2
E
μc2

�
cJ

Gm1m2

�
2 ≡ 1þ 2Êj2; ð22Þ

where we have introduced the dimensionless versions of E
and J used in most PN works, namely

Ê≡ E
μc2

; j≡ cJ
Gm1m2

¼ cJ
GμM

: ð23Þ

This leads to the following explicit form of the Newtonian
scattering function,

χNewtonðE; JÞ ¼ 2 arctan

�
1ffiffiffiffiffiffiffiffiffiffi
2Êj2

p �

¼ 2 arctan

 
Gm1m2

cJ

ffiffiffiffiffiffiffi
μc2

2E

r !
; ð24Þ

or

tan

�
1

2
χNewtonðE; JÞ

�
¼ Gm1m2

cJ

ffiffiffiffiffiffiffi
μc2

2E

r
: ð25Þ

Note that the velocity of light c cancels between Ê and j2,
as expected for a Newtonian-level result.
While the PN expansion is an expansion in powers of 1

c2,
the PM expansion is an expansion in powers of G. We see
on Eq. (24) or (25) that χ starts (as expected) at orderG in a
PM expansion. As χ is a dimensionless quantity that is a
function of the two dimensionless quantities Ê and j (and of
the symmetric mass ratio, ν≡ μ=M) and as the definitions
(23) show that G enters only via j ¼ cJ=ðGm1m2Þ ∝ c=G,
we see that the PM expansion of (half) the scattering
function will be equivalent to an expansion in powers of
1=j ∝ G, say

1

2
χðE; JÞ ¼ 1

j
χ1ðÊ; νÞ þ

1

j2
χ2ðÊ; νÞ þ

1

j3
χ3ðÊ; νÞ þ � � �

ð26Þ
Here, χ1ðÊ; νÞ=j is the first post-Minkowskian (1PM)
approximation of (half) the scattering function,
χ2ðÊ; νÞ=j2 is its second post-Minkowskian (2PM)
approximation, etc.
Note that each term in the PM expansion of the scattering

function is a function of the energy (defined for E > 0).

Our main tool here will be to compute and exploit the exact
form of the 1PM function χ1ðÊ; νÞ. As the latter function is,
again, a dimensionless function of the dimensionless
quantity Ê ∝ 1

c2, we see that the reexpansion of χ1ðÊ; νÞ
in powers of Ê will correspond to the part of the PN
expansion of the scattering function that is proportional to
1=J. More precisely, remembering that 1

j ∝
G
c , and para-

metrizing the nonrelativistic energy E > 0 by a correspond-
ing squared velocity vE, defined via

E≡ 1

2
μv2E; vE ≡

ffiffiffiffiffiffi
2E
μ

s
; ð27Þ

so that Ê ¼ v2E
2c2, we see that the structure of the PN

expansion of (half) the scattering function must be of
the form

1

2
χðE; JÞ ∼ Gm1m2

cJ

�
c
vE

þ vE
c
þ
�
vE
c

�
3

þ � � �
�

þ
�
Gm1m2

cJ

�
2
�
0

�
c
vE

�
2

þ 1þ
�
vE
c

�
2

þ � � �
�

þ
�
Gm1m2

cJ

�
3
��

c
vE

�
3

þ c
vE

þ vE
c
þ � � �

�
þ � � � ð28Þ

where the first line sketches the form of the PN expansion
of the 1PM term χ1ðÊ; νÞ, say (now with coefficients)

χ1ðÊ;νÞ ¼ 1
c
vE

þ χ11ðνÞ
vE
c
þ χ13ðνÞ

�
vE
c

�
3

þ� � � ; ð29Þ

the second line [where, as indicated, the term ∝ ðc=vEÞ2 is
missing] sketches the form of the PN expansion of the 2PM
term χ2ðÊ; νÞ, say

χ2ðÊ; νÞ ¼ χ20ðνÞ þ χ22ðνÞ
�
vE
c

�
2

þ χ24ðνÞ
�
vE
c

�
4

þ � � � ;

ð30Þ

and the third line sketches the form of the PN expansion of
the third post-Minkowskian (3PM) term χ3ðÊ; νÞ, say

χ3ðÊ; νÞ ¼ χ3;−3ðνÞ
�
c
vE

�
3

þ χ3;−1ðνÞ
c
vE

þ χ31ðνÞ
vE
c
þ � � �

ð31Þ

Note the presence of inverse powers of the velocity vE,
especially in the terms odd in J (and inG). [Such terms will
also appear in the even contributions χ2nðÊ; νÞ, where they
start at order ðc=vEÞ2n−2.] Note also that the coefficients of
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all the contributions ∝ ðGm1m2=cJÞnðc=vEÞn will vanish
for n > 1 if one considers the function tanðχ=2Þ instead
of χ=2.
Each term in the usual PN expansion of χ=2 is obtained

from the expansion (28) above by collecting all the
contributions ∼ðGm1m2=cJÞnðvE=cÞk carrying a given
power of 1

c, i.e., having a given value of the PN order
1
2
ðnþ kÞ. The presence of negative powers of vE (up to

∼v−nE or ∼v−nþ2
E in χn) implies that each term of the PN

expansion (generally) collects an infinite number of con-
tributions of the PM expansion. [This infinite number of
contributions corresponds to the eccentricity dependence of
a given PN contribution to χ=2. Indeed, in view of Eq. (22),
the eccentricity is of order zero in 1

c2 but of order j
1 when

considering the large j expansion (26) which defines the
PM expansion of the scattering function.] For instance, the
1PN [i.e., Oð 1c2Þ] contribution to the scattering function
would read

1

2
χðE; JÞ1PN ¼ χ11ðνÞ

Gm1m2

cJ
vE
c
þ χ20ðνÞ

�
Gm1m2

cJ

�
2

þ χ3;−1ðνÞ
�
Gm1m2

cJ

�
3 c
vE

þ � � � ð32Þ

The coefficients χnkðνÞ are polynomials in ν of which the
degrees linearly increase with (and seem to be generally
equal to) the PN order 1

2
ðnþ kÞ of ðGm1m2=cJÞnðvE=cÞk.

(See below for examples of these polynomials.)
Let us mention in this respect that the PN expansion of

the scattering function has been computed to 2PN accuracy
in Sec. V.C of Ref. [35]. From the results there, one can
then deduce [by collecting the coefficient of the first power
of 1=j in 1

2
χðE; JÞ1PN] the beginning of the vE expansion of

the 1PM term χ1ðÊ; νÞ. One then finds

χ1ðÊreal;νÞ ¼
c

vrealE
þ 15− ν

8

vrealE

c
þ 35þ 30νþ 3ν2

128

�
vrealE

c

�
3

þO

��
vrealE

c

�
5
�
: ð33Þ

Here, we have specified that the energy used in this result to
express the PN-expanded 1PM contribution to the scatter-
ing angle is the dimensionless μc2-rescaled real non-
relativistic energy

Êreal ¼
Ereal

μc2
¼ Ereal −Mc2

μc2
; ð34Þ

the auxiliary “velocity” entering (33) denoting simply

vrealE ≡ c
ffiffiffiffiffiffiffiffiffiffiffi
2Êreal

q
≡

ffiffiffiffiffiffiffiffiffiffiffi
2Ereal

μ

s
: ð35Þ

[In the above discussion, we had left unspecified whether
we were dealing with χreal as a function of Ereal or with χeff
as a function of Eeff .]
The result (33) illustrates in advance the complemen-

tarity between the PM-expansion approach used in the
present paper and the PN expansions used in previous
works. Each term of the PM expansion collects an infinite
number of contributions of the PN expansion2. Therefore,
the exact computation of a certain term in the PM
expansion of χ (as we shall report below) represents
information about the two-body dynamics which goes
beyond all the present PN knowledge (which is limited
to the 4PN level [30,36]), though it evidently misses some
of the information contained in the PN computations of χ.

V. REAL, TWO-BODY SCATTERING FUNCTION
AT THE FIRST POST-MINKOWSKIAN

APPROXIMATION

The relativistic gravitational two-body scattering func-
tion 1

2
χrealðEreal; J;m1; m2Þ [now expressed in terms of the

total relativistic energy, Ereal ¼ ðm1 þm2Þc2 þ Ereal] has
been computed at the first post-Minkowskian approxima-
tion (i.e., first order in G) by several authors [25–29]. We
recall that Ereal and J are both evaluated in the c.m. frame of
the two-body system. In the following, it will often be
convenient to use units where c ¼ 1.
The results for χ1PM given in the articles cited above are

not written in a way which highlights the basic physics
underlying the two-body scattering. We shall therefore give
a novel, more transparent derivation of χ1PM, which also
exhibits the link between the classical scattering function
χrealðEreal; J;m1; m2Þ and the quantum scattering two-body
amplitude hp0

1p
0
2jp1p2i. Both results will appear to be

directly deducible from the diagram displayed in Fig. 1.
The gravitational equation of motion of, say, particle 1 is

most simply written as

dp1μ

dσ1
¼ 1

2
∂μgαβðx1Þpα

1p
β
1: ð36Þ

Here, p1μ ¼ gμνðx1Þpν
1 denotes the (curved spacetime)

covariant components of pμ
1 ¼ m1dx

μ
1=ds1, where ds1

denotes the proper time along the worldline xμ1 ¼ xμ1ðs1Þ
of m1. (We use a mostly positive signature with, e.g.,
gμνp1μp1ν ¼ −m2

1.) We have also introduced the rescaled
proper time σ1 defined as σ1 ¼ s1=m1 so that
pμ
1 ¼ dxμ1=dσ1. Integrating (36) with respect to σ1 (between

−∞ and þ∞) yields the total change Δp1μ ≡ p0
1μ − p1μ in

the asymptotic 4-momentum of particle 1,

2This is the reciprocal of the fact mentioned above that each
term of the PN expansion collects an infinite number of
contributions of the PM expansion.
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Δp1μ ¼
Z þ∞

−∞
dσ1

1

2
pα
1p

β
1∂μhαβðx1Þ; ð37Þ

where hαβ ≡ gαβ − ηαβ.
At linearized order in G, pα

1 on the rhs of (37) can be
replaced by the constant incoming 4-momentum of particle
1, while the metric perturbation can be replaced by the
solution of the linearized Einstein equations, namely (in
four spacetime dimensions and in harmonic gauge)

□hαβ ¼ −16πG
�
Tαβ −

1

2
Tηαβ

�
: ð38Þ

Here and below, all index operations are performed in the
flat Minkowski background (e.g., T ¼ ηαβTαβ). At order G,
only the metric perturbation generated by the (flat space-
time) stress-energy tensor of particle 2,

Tαβ
2 ðxÞ ¼

Z þ∞

−∞
dσ2pα

2p
β
2δ

4ðx − x2ðσ2ÞÞ; ð39Þ

needs to be inserted in the computation (37) of Δp1μ.
In order to exhibit the link between the classical

scattering and the usual Feynman diagram corresponding
to Fig. 1, let us work in (four-dimensional) Fourier space
(k:x≡ kμxμ ≡ ημνkμxν),

hαβðxÞ ¼
Z

d4k
ð2πÞ4 hαβðkÞe

ik:x: ð40Þ

The m2-generated metric perturbation reads

h2αβðxÞ ¼ 16πG
Z

d4k
ð2πÞ4 e

ik:x Pαβ;α0β0

k2
Tα0β0
2 ðkÞ; ð41Þ

where Pαβ;α0β0=k2, with Pαβ;α0β0 ≡ ηαα0ηββ0 − 1
2
ηαβηα0β0 and

k2 ≡ ημνkμkν, is the Fourier-space gravitational propagator.
[At this order, it does not matter whether one considers a

retarded or a time-symmetric propagator (with 1=k2 then
denoting a principal value kernel).]
The k-space stress-energy tensor of m2 reads

Tα0β0
2 ðkÞ ¼

Z
d4xe−ik:xTα0β0

2 ðxÞ

¼
Z þ∞

−∞
dσ2e−ik:x2ðσ2Þpα0

2 p
β0
2 : ð42Þ

Inserting, successively, Eq. (42) into (41) and Eq. (41) into
(37) leads to the following explicit expression for the total
change of the 4-momentum of particle 1:

Δp1μ ¼ 8πG
Z

d4k
ð2πÞ4 ikμp

α
1p

β
1

Pαβ;α0β0

k2
pα0
2 p

β0
2

×
Z

dσ1

Z
dσ2eik:ðx1ðσ1Þ−x2ðσ2ÞÞ: ð43Þ

(By changing p1 → p2; x1 → x2; k → −k, one immediately
sees that one would have Δp2μ ¼ −Δp1μ.) On the first line,
we recognize all the ingredients of the quantum scattering
amplitude of Fig. 1: the two matter-gravity vertices pα

1p
β
1

and pα0
2 p

β0
2 (computed in the approximation p0

1 ≈ p1,
p0
2 ≈ p2), connected by the gravitational propagator

Pαβ;α0β0=k2. At first order in G, all the ingredients entering
the rhs of (43) can be replaced by their zeroth-order (free
motion) approximations, i.e., constant momenta (as already
used) and straight (incoming) worldlines:

xμ1ðσ1Þ ¼ xμ1ð0Þ þ pμ
1σ1;

xμ2ðσ2Þ ¼ xμ2ð0Þ þ pμ
2σ2: ð44Þ

Inserting the straight-worldlines expressions (44) into
Eq. (43) allows one to explicitly compute the σ1 and σ2
integrals on the second line, with the result

ð2πÞ2eik:ðx1ð0Þ−x2ð0ÞÞδðk:p1Þδðk:p2Þ: ð45Þ

The crucial point is that the σ1 and σ2 integrals have
generated two (one-dimensional) delta functions involving
two different linear combinations of the four Fourier-space
variables kμ. This restricts the four-dimensional integral
over kμ appearing on the first line of Eq. (43),

Z
d4k
ð2πÞ4

ikμ
k2

ð� � �Þ; ð46Þ

to a two-dimensional linear subspace of k-space.
We can explicitly deal with this two-dimensional reduc-

tion of the k-integral by choosing an adapted (Lorentz)
coordinate frame. More precisely, it is convenient to choose
four (Lorentz-orthonormal) 4-vectors e0, e1, e2, e3 such
that, say, e0 and e3 span the (timelike) 2-plane defined by

FIG. 1. Diagram displaying the physical ingredients of both the
classical and the quantum two-body scattering.
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the two 4-vectors p1 and p2. This will be, in particular, the
case if we work in a c.m. frame with the time axis defined
by e0 ∝ p1 þ p2 and a third axis e3 in the common
direction of the c.m. spatial momenta, say pc:m: ≡ p1

c:m: ¼
−p2

c:m:. In this frame, the incoming 4-momenta have the
following components,

p1 ¼ Ec:m:
1 e0 þ pc:m:e3;

p2 ¼ Ec:m:
2 e0 − pc:m:e3; ð47Þ

where pc:m: is the magnitude of pc:m: and where Ec:m:
1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
1 þ p2

c:m:

p
and Ec:m:

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ p2
c:m:

p
are the relativistic

c.m. energies of the two (incoming) particles. In terms of
these quantities, the total relativistic (incoming, center-of-
mass) energy reads

Ereal ¼ Ec:m:
1 þ Ec:m:

2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ p2
c:m:

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ p2
c:m:

q
: ð48Þ

Among the four components of k in the frame e0, e1, e2, e3,
only k0 and k3 appear in the two delta functions of Eq. (45).
More precisely, they appear in the combinations

k:p1 ¼ −k0Ec:m:
1 þ k3pc:m:;

k:p2 ¼ −k0Ec:m:
2 − k3pc:m:: ð49Þ

As a consequence, we can write

δðk:p1Þδðk:p2Þ ¼
δðk0Þδðk3Þ

D
; ð50Þ

where D is the absolute value of the Jacobian
∂ðk:p1; k:p2Þ=∂ðk0; k3Þ. We can immediately give two
different expressions for the Jacobian D. First, from
Eq. (49), we get

D ¼ ðEc:m:
1 þ Ec:m:

2 Þpc:m: ¼ Erealpc:m:: ð51Þ

Second, we can write a covariant expression for D by
thinking geometrically within the two-dimensional
Lorentzian space spanned by p1 and p2 and realizing that
D is simply the magnitude of the wedge product (anti-
symmetric bivector) p1∧p2 of p1 and p2. This yields the
manifestly covariant expression (with a minus sign linked
to the timelike character of the p1 − p2 plane)

D2 ¼ jp1∧p2j2 ¼ −
1

2
ðpμ

1p
ν
2 − pν

1p
μ
2Þðp1μp2ν − p1νp2μÞ

¼ ðp1:p2Þ2 − p2
1p

2
2: ð52Þ

Note in passing that the (so-proven) equality between
Erealpc:m: and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1:p2Þ2 − p2

1p
2
2

p
is not evident when using

the explicit c.m. expression (48) of the c.m. energy Ereal in
terms of pc:m:.
Inserting our various partial results in the integral

expression (43), we get a result of the form

Δp1a ∝ G
pα
1p

β
1Pαβ;α0β0pα0

2 p
β0
2

D

Z
d2k

ika
k2

eik:b; ð53Þ

where k and b denote the projections, onto the two-
dimensional (Euclidean-signature) space spanned by e1
and e2, of k and x1ð0Þ − x2ð0Þ. (The index a ¼ 1, 2 on
Δp1a and ka spans this two-dimensional space, e.g.,
kaea ¼ k1e1 þ k2e2.) Clearly, b represents the vectorial
c.m. impact parameter of the two incoming worldlines, and
its Euclidean magnitude b≡ jbj measures the scalar c.m.
impact parameter. As a consequence, the c.m. total angular
momentum is simply given by

J ¼ bpc:m:: ð54Þ

From dimensional analysis and symmetry considerations
(or by an explicit calculation, using a frame where, say,
b2 ¼ 0), the remaining two-dimensional integral in (53) is
simply found to be proportional to −b=b2. [The vector b ¼
x1ð0Þ − x2ð0Þ is directed from 2 toward 1.]
Putting together all the numerical factors, one finally gets

a vectorial deflection (within the e1-e2 2-plane, i.e., the
orthogonal complement of the p1-p2 2-plane) given by

Δp1 ¼ −4G
pα
1p

β
1Pαβ;α0β0pα0

2 p
β0
2

D
b
b2

: ð55Þ

The (absolute value of the) corresponding c.m. scattering
angle χ is related to the magnitude of Δp1 ¼ −Δp2 via

sin
χ

2
¼ jΔp1j

2jp1j
¼ jΔp1j

2pc:m:
: ð56Þ

As we work to first order in G, we have sin χ
2
≈ χ

2
so that

1

2
χreal1PM ¼ 2

G
bpc:m:

pα
1p

β
1Pαβ;α0β0pα0

2 p
β0
2

D

¼ 2
G
J

pα
1p

β
1Pαβ;α0β0pα0

2 p
β0
2

D
: ð57Þ

In the nonrelativistic limit, pα
1p

β
1Pαβ;α0β0pα0

2 p
β0
2 ¼

ðp1:p2Þ2 − 1
2
p2
1p

2
2 tends to 1

2
m2

1m
2
2, where the factor 1

2

cancels the prefactor 2 on the rhs of (57). [In agreement
with the Newtonian-level result (24).]
The expression (57) (and its derivation above) exhibits

a simple, and manifestly covariant, link between the

(Fourier-space) quantum scattering amplitude M ¼
Gpα

1p
β
1Pαβ;α0β0pα0

2 p
β0
2 =k

2 and the classical scattering angle.
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The explicit form of Eq. (57) reads

1

2
χreal1PM ¼ G

J
2ðp1:p2Þ2 − p2

1p
2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp1:p2Þ2 − p2
1p

2
2

p : ð58Þ

This result naturally features the following dimensionless
energy variable (already used in Ref. [32]):

ϵðsÞ≡ s −m2
1 −m2

2

2m1m2

¼ −
p1:p2

m1m2

: ð59Þ

Here, s denotes the usual Mandelstam variable

s≡ E2
real ¼ −ðp1 þ p2Þ2; ð60Þ

where we recall that Ereal is evaluated in the c.m.
In terms of ϵðsÞ, the result (58) reads

1

2
χreal1PMðs; JÞ ¼

Gm1m2

J
2ϵ2ðsÞ − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2ðsÞ − 1

p : ð61Þ

Our explicit final result (58) [or (61)] is simpler than the
corresponding results derived (in x-space) in Refs. [25–29].
It is, however, equivalent to them. [We note in passing that
the equivalence with Eq. (12) in Ref. [29] is rather hidden.]
The expression (61) is also simpler than the corresponding
2PN-expanded result (33), but is straightforwardly checked
to be consistent with it, when remembering the definitions
(34), (35).

VI. EFFECTIVE ONE-BODY SCATTERING
FUNCTION AT THE FIRST POST-MINKOWSKIAN

APPROXIMATION

In this section, we shall consider the (effective) scattering
angle χeff computed from the dynamics of one particle of
mass m0 moving in some effective metric geffμν . At linear
order in G (and still setting c ¼ 1), we parametrize the
looked-for spherically symmetric effective metric as

geffμν ðM0; β1Þdxμdxν ¼ −
�
1 −

Rg

R

�
dt2 þ

�
1þ β1

Rg

R

�
dR2

þ R2ðdθ2 þ sin2 θdφ2Þ; ð62Þ
where the dimensionless parameter β1 enters in the radial
component of the metric and where

Rg ≡ 2GM0 ð63Þ
denotes the (gravitational) mass of the effective back-
ground. Below, we shall set m0 to the reduced mass μ
andM0 to the total massM ¼ m1 þm2, but it is useful not
to assume it from the start.
Let us compute the scattering angle χeff from the

Hamilton-Jacobi equation for the geodesic dynamics in
geffμν ðM0Þ, namely

gμνeff∂μSeff∂νSeff ¼ −m2
0; ð64Þ

with

Seff ¼ −E0tþ J0φþ SeffR ðRÞ: ð65Þ

For simplicity, we denote the effective energy and angular
momentum Eeff and Jeff as E0 and J0, respectively.
To linear order in G, the Hamilton-Jacobi equation reads

−
�
1þ Rg

R

�
E2
0 þ

J20
R2

þ
�
1 − β1

Rg

R

��
dSeffR

dR

�
2

¼ −m2
0:

ð66Þ

Computing PR ¼ dSeffR =dR from this equation, we obtain
(still to linear order in G) the radial effective action in the
form

SeffR ðR; E0; J0Þ ¼
Z

dRPRðR; E0; J0Þ; ð67Þ

with

PRðR; E0; J0Þ ¼ �
�
1þ 1

2
β1

Rg

R

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0

�
1þ Rg

R

�
−
�
m2

0 þ
J20
R2

�s
; ð68Þ

where the sign� is − (respectively,þ) during the incoming
(respectively, outgoing) part of the scattering motion.
As already explained in Sec. III, the J0 derivative of the

radial action directly yields the scattering angle as

π þ χeff ¼ −
Z þ∞

−∞
dR

∂PRðR; E0; J0Þ
∂J0 : ð69Þ

Let us formally expand PR in powers of G, i.e., of Rg:

PRðR; E0; J0;RgÞ ¼ Pð0Þ
R ðR; E0; J0Þ þ Pð1Þ

R ðR; E0; J0Þ
þOðR2

gÞ: ð70Þ

Here, Pð0Þ
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − ðm2

0 þ J2
0

R2Þ
q

corresponds to a free mo-
tion and therefore contributes the no-scattering value π to
the integral (69). We then get the following expression for
the (effective) scattering angle:

χeff ¼ −
Z þ∞

−∞
dR

∂Pð1Þ
R ðR; E0; J0Þ

∂J0 : ð71Þ

Actually, this expression is formal because, when explicitly
written, it involves divergent integrals linked to the singular

nature of the expansion of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − ðm2

0 þ J2
0

R2Þ þ ε
q

in powers
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of ε at the turning point where PR, i.e., the square root,
vanishes. However, as explained in Ref. [37], the correct
result is obtained by taking the Hadamard partie finie (Pf),
at the unperturbed turning point, of these formally diver-
gent integrals. This yields

χeff ¼
RgJ0
2

Pf

�Z
� dR

R3
ðβ1A−1=2 − E2

0A
−3=2Þ

�
; ð72Þ

where A≡ E2
0 − ðm2

0 þ J20=R
2Þ.

The integrals entering this expression of χeff are elemen-
tary to compute when replacing R by A as an integration
variable [using Pf

R
out
in �dAAp ¼ 1

pþ1
ðApþ1

out þ Apþ1
in Þ

because of the two signs of the square root of A]. A
simple computation then yields

1

2
χeff1PMðE0; J0Þ ¼

GM0

J0

�
β1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 −m2

0

q
þ E2

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 −m2

0

p �

¼ GM0

J0

ð1þ β1ÞE2
0 − β1m2

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 −m2

0

p : ð73Þ

Factoring m0 out of the effective energy E0 yields the
equivalent expression

1

2
χeff1PMðE0; J0Þ ¼

GM0m0

J0

ð1þ β1ÞðE0=m0Þ2 − β1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0=m0Þ2 − 1

p : ð74Þ

We recall that, in the expressions above, E0 denotes the
relativistic effective energy Eeff and J0 denotes the effective
angular momentum Jeff .

VII. COMPARING THE REAL AND THE
EFFECTIVE SCATTERING FUNCTIONS

We have recalled above that the EOB formalism is a
relativistic generalization of the Newtonian fact that the
relative dynamics of a two-body system is (after separation
of the center-of-mass motion) equivalent to the motion of a
particle of mass μ submitted to the original two-body
potential VðjR1 −R2jÞ. Therefore, in the nonrelativistic
limit c → ∞, we require that the effective mass m0

coincides with μ and that, as already indicated in
Eq. (5), the nonrelativistic effective energy Eeff ¼ Eeff −
m0c2 coincides with the nonrelativistic real c.m. energy
Ereal ¼ Ereal − ðm1 þm2Þc2. In this nonrelativistic limit,
the real and effective scattering functions, evaluated for the
same values of their arguments, Ereal ¼ Eeff , and Jreal ¼
Jeff [see Eq. (11)], must coincide: χeffðE; JÞ ¼ χrealðE; JÞþ
Oð 1c2Þ. Applying this requirement to Eqs. (61) and (74)
simply tells us that

M0m0 ¼ m1m2 þO

�
1

c2

�
: ð75Þ

Though other possibilities have been explored in Ref. [1], it
was concluded that it is most natural to work with effective
masses m0 and M0 which are energy independent. The
requirements m0 ¼ μþOð 1c2Þ and (75) then imply that

m0 ¼ μ≡ m1m2

m1 þm2

; M0 ¼ M ≡m1 þm2: ð76Þ

Then, the application of our basic scattering-state dic-
tionary (17) [or (18)] to our scattering results (61), (74)
implies that the a priori unknown energy map f, Eq. (4)
[such that E0 ¼ fðErealÞ≡ fðsÞ], as well as the a priori
unknown effective metric parameter β1 [see Eq. (62)]
should be such that

ð1þ β1ÞðfðsÞ=m0Þ2 − β1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfðsÞ=m0Þ2 − 1

p ¼ 2ϵ2ðsÞ − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2ðsÞ − 1

p ; ð77Þ

where the function ϵðsÞ of the real c.m. energy was defined
in Eq. (59).
The requirement (77) contains both an unknown param-

eter, β1, and an unknown function, fðsÞ. It would a priori
seem that this is not enough to determine all the unknowns.
One could think that one can choose an arbitrary value of β1
and then determine the corresponding energy map fðsÞ by
solving Eq. (77) for fðsÞ. Let us show, however, that the
exact, relativistic structure of (77) is such that it uniquely
determines both the value of β1 and that of the energy
map fðsÞ.
Indeed, denoting ueff ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfðsÞ=m0Þ2 − 1

p
and, corre-

spondingly, ureal ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2ðsÞ − 1

p
, the left-hand side of

Eq. (77) has the structure

ð1þ β1Þðu2eff þ 1Þ − β1
ueff

¼ ð1þ β1Þueff þ
1

ueff
; ð78Þ

while its rhs has the structure

2ðu2real þ 1Þ − 1

ureal
¼ 2ureal þ

1

ureal
: ð79Þ

However, the variable ureal runs over the full half-line 0 ≤
ureal ≤ þ∞ (with the limit ureal → 0 corresponding to the
nonrelativistic limit), while ueff ≥ 0 must also start at zero
in the nonrelativistic limit. Now, a remarkable feature of the
function grealðurealÞ ¼ 2ureal þ 1

ureal
(which describes the

energy dependence of the product χJ) is that, after initially
decreasing with increasing energy in the nonrelativistic

regime (ureal ≈ vE ≪ 1 implying greal ≈ 1=vE ¼ 1=
ffiffiffiffiffiffi
2Ê

p
;

Rutherford scattering), it ultimately starts to increase
with increasing energy in the relativistic energy domain
(greal ∼ ureal ∝ s ¼ E2

real). Therefore, the function grealðurealÞ
is easily found to have a (unique) minimum. The minimum
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value of grealðurealÞ ¼ 2ureal þ 1
ureal

is reached for ureal ¼ 1ffiffi
2

p

and is equal to 2
ffiffiffi
2

p
.

By comparison, a general function of the type
ð1þ β1Þueff þ 1

ueff
, where the variable ueff lives on the

positive half-real-line, must have 1þ β1 ≥ 0 to remain
always positive and will then reach the minimal value
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β1

p
for ueff ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β1

p
.

In order for the requirement (77) to be globally satisfied,
in the relativistic regime, we must identify the two mini-
mum values 2

ffiffiffi
2

p
and 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β1

p
. We therefore conclude

that the value of β1 is uniquely determined to be

β1 ¼ 1; ð80Þ

which corresponds to the linearized Schwarzschild metric.
Inserting the information (80) in the requirement (77),

one can now conclude that there exists a unique energy map
which is positive, continuous, and monotonic and that it is
given by

fðsÞ
m0

¼ ϵðsÞ≡ s −m2
1 −m2

2

2m1m2

; ð81Þ

i.e., using (76),

Eeff

μ
¼ ðErealÞ2 −m2

1 −m2
2

2m1m2

ð82Þ

or, equivalently,

Eeff ¼
ðErealÞ2 −m2

1 −m2
2

2ðm1 þm2Þ
: ð83Þ

The PN expansion (5) of this map yields α1 ¼ ν
2
and αn ≡ 0

for all higher n’s.

VIII. OðGÞ TENSOR-SCALAR GENERALIZATION

To further illustrate the usefulness of the post-
Minkowskian scattering approach, let us briefly consider
the modifications of the EOB results brought by consid-
ering a gravitational interaction combining massless spin-2
exchange and massless spin-zero exchange. In diagram-
matic language, this amounts to considering the sum of two
one-particle-exchange diagrams of the form of Fig. 1. At
first order in the interaction (and therefore neglecting self-
field effects), the scattering angle is then simply the sum of
two contributions:

χ ¼ χ2 þ χ0: ð84Þ

The spin-2 contribution χ2 can be written in terms of
the 4-velocities u1 ≡ p1=m1 and u2 ≡ p2=m2 [with D̂≡
D=ðm1m2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1:u2Þ2 − 1

p
] as

1

2
χ2 ¼

G2m1m2

J

2uα1u
β
1Pαβ;α0β0uα

0
2 u

β0
2

D̂
: ð85Þ

The spin-zero contribution χ0 is then simply obtained by
omitting the (Newtonian-limit normalized) spin-2 vertex
contraction factor, 2uα1u

β
1Pαβ;α0β0uα

0
2 u

β0
2 , so that

1

2
χ0 ¼

G0m1m2

J
1

D̂
: ð86Þ

Here, G2 denotes the spin-2 contribution to the Cavendish
constant, and G0 denotes its spin-zero contribution. Let us
parametrize (in keeping with the notation of Ref. [38]) the
admixtion of scalar exchange to the gravitational interac-
tion by the fraction

α2 ≡G0

G2

: ð87Þ

This notation means that each scalar-matter vertex carries
an extra factor α, with respect to a tensor-matter one.
The total observable Cavendish constant then reads

G ¼ G2 þ G0 ¼ ð1þ α2ÞG2; ð88Þ
while the total scattering function χ ¼ χ2 þ χ0 reads [using
Eqs. (52), (58), and (59), i.e., ϵðsÞ ¼ −u1:u2]

1

2
χðs; JÞ ¼ m1m2

JD̂
½G2ð2ðu1:u2Þ2 − 1Þ þ G0�

¼ Gm1m2

J
ð1þ γÞϵ2ðsÞ − γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ2ðsÞ − 1
p ; ð89Þ

where 1þ γ ¼ 2G2=G ¼ 2=ð1þ α2Þ, i.e.,

γ ¼ 1 − α2

1þ α2
: ð90Þ

Comparing with Eq. (74) and going through the reasoning
used in the previous section, we can then conclude that, to
first post-Minkowskian order, the two-body interaction in a
theory of gravity combining (massless) tensor and scalar
fields can be described by the following modifications of
the usual EOB theory: (i) the energy map f is (to all orders
in v=c) again given by the result (82), while (ii) the
(linearized) effective metric differs from the (linearized)
Schwarzschild metric by the presence of a coefficient
β1 ¼ γ, Eq. (90), in the spatial metric, i.e.,

geffμνdxμdxν ¼ −
�
1 −

2GM
R

�
dt2 þ

�
1þ γ

2GM
R

�
dR2

þ R2ðdθ2 þ sin2 θdφ2Þ þOðG2Þ: ð91Þ
This modification of the linearized Schwarzschild
metric is equivalent [modulo the first-order coordinate
change R ¼ R0 þ γGM þOðG2Þ] to the G-linearization of
the usual 1PN-accurate Eddington, parametrized-post-
Newtonian metric
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ds2PPN ¼ −
�
1 − 2

GM
R0 þ 2β

�
GM
R0

�
2
�
dt2

þ
�
1þ 2γ

GM
R0

�
ðdR02 þ R02ðdθ2 þ sin2 θdφ2ÞÞ:

ð92Þ

The result (90) then agrees with the expression of the
Eddington parameter γ in terms of the linear scalar coupling
α, often also written as (see, e.g., Eq. (4.12c) in Ref. [38])

γ̄ ≡ γ − 1 ¼ −2
α2

1þ α2
: ð93Þ

To see the OðG2Þ Eddington parameter β≡ 1þ β̄,
one would have to introduce a nonlinear vertex
− 1

2
β0
R
maϕ

2ðxaÞdsa coupling the scalar field ϕðxÞ to
the worldlines (a ¼ 1, 2) and to go beyond the G-linear
approximation. (In the 1PN approximation, this yields the
link β̄ ¼ þ 1

2
β0α

2=ð1þ α2Þ2 [39].)

IX. CONCLUSIONS

A new approach to the effective-one-body description of
gravitationally interacting two-body systems has been
introduced. This approach is not based, as was previous
work, on the post-Newtonian approximation scheme (com-
bined expansion in G

c2 and in 1
c2) but rather on the post-

Minkowskian approximation scheme (perturbation theory
in G, without assuming small velocities). It uses a new
dictionary based on considering the functional dependence

of the scattering angle χ on the total energy and total
angular momentum of the system (all quantities being
considered in the center-of-mass frame). By explicitly
calculating (in a novel way, analogous to quantum-scatter-
ing-amplitude computations) the first post-Minkowskian
[OðGÞ] scattering function, we have proven to all orders in
v=c two results that were previously only known to a
limited post-Newtonian accuracy: (i) to order G1, the
relativistic dynamics of a two-body system (of masses
m1, m2) is equivalent to the relativistic dynamics of an
effective test particle of mass μ ¼ m1m2=ðm1 þm2Þ mov-
ing in a Schwarzschild metric of mass M ¼ m1 þm2, and
(ii) this equivalence requires the existence of an exactly
quadratic map f between the real (relativistic) two-body
energy Ereal and the (relativistic) energy Eeff of the effective
particle given (to all orders in 1=c) by

Eeff ¼
ðErealÞ2 −m2

1c
4 −m2

2c
4

2ðm1 þm2Þc2
: ð94Þ

The latter energy map was also proven to apply to the
effective-one-body description of two masses interacting in
tensor-scalar gravity [for which one must use an OðGÞ
effective metric modified by Eddington’s γ parameter].
We leave to future work the generalization of our

approach to higher orders in G and to spinning bodies.
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