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We consider a charged scalar field in a D-dimensional de Sitter spacetime and investigate pair creation
by a Schwinger mechanism in a constant electric field background. Using a semiclassical approximation
the current of the created pairs has been estimated. We find that the semiclassical current of the created pairs

in the strong electric field limit responds as E
D
2 . Going further but restricting toD ¼ 3 dimensional de Sitter

spacetime, the quantum expectation value of the spacelike component of the induced current has been
computed in the in-vacuum state by applying an adiabatic subtraction scheme. We find that, in the strong

electric field limit, the current responds as E
3
2. In the weak electric field limit the current has a linear

response in E and an inverse dependence on the mass of the scalar field. In the case of a massless scalar
field, the current varies with E−1 which leads to a phenomenon of infrared hyperconductivity. A new
relation between infrared hyperconductivity, tachyons, and conformality is discussed, and a scheme to
avoid an infrared hyperconductivity regime is proposed. In D dimension, we eventually presented some
first estimates of the backreaction of the Schwinger pairs to the gravitational field, and we find a decrease of
the Hubble constant due to the pair creation.
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I. INTRODUCTION

The purpose of this paper is to look at Schwinger pair
creation in D ¼ 1þ d dimensional de Sitter spacetime
(dSD), with special emphasis on the case of D ¼ 3
dimension. The Schwinger effect, i.e., pair production by
a strong electric field, is a nonperturbative effect of
quantum field theory in flat spacetime which was initially
discovered in the pioneers’ works [1]; for a recent review
see, e.g., [2]. Despite tremendous efforts on the exper-
imental point of view, it has never been detected so far. The
main reason is that the number of pairs created is
exponentially damped before a critical value for the electric
field Ecritical ≃ 1018V=m [3]. New laser facilities [4–7] are
planned to be operational in the next ten years and might
approach this critical electric field. In the meantime,
another proposal is to change the perspective: whereas
all the experiments aiming at detecting the Schwinger effect
are conducted on Earth, one could look for the Schwinger
effect in astrophysical and cosmological systems. The
review [8] describes some of these ideas, and the stress
is on the backreaction of the created pairs and its appli-
cation to astrophysics. During inflationary magnetogenesis

strong electric fields are also produced [9], which provides
motivation for considering Schwinger pair production in
this context. Furthermore, pairs can also be created by
gravitational fields, e.g., in dS [10] and quasi-dS [11],
which is sometimes referred to as the cosmological
Schwinger effect [12]. These effects can also be essential
for the interaction and balance between matter-field and
cosmological constant in the Universe evolution [13,14].
Recently, the combination of electrical and gravitational

pair creation was studied in depth for various types of
particles and spacetime dimension [15–21]. In [15] and
[16], the authors computed the Schwinger effect for a
charged scalar test field in dS2 and dS4, respectively. In [18]
and [19], the generalization to dS2 and dS4, respectively, for
fermionic particles was performed aiming at checking if the
known equivalence in flat spacetime between boson and
fermion for a constant electric field still holds. The answer
was that there was a difference between boson and fermion.
To see that, it was necessary to compute the induced current
which turns out, as also noted in [15,16], to be the right
quantity to describe the Schwinger effect in curved space-
time. Indeed, it is not plagued by the need of the notion of
particle in the adiabatic future which allows one to explore
a broader parameter space.
But to cure infinities arising from momentum integra-

tion, this current needs to be renormalized. The adiabatic
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subtraction is the most used method. The Pauli-Villars
method was implemented in [15] and can be shown to agree
with the adiabatic subtraction.1 In [20], the point-splitting
method was shown to agree with the adiabatic subtraction
in dS4 for the boson. In [16,18], an adiabatic subtraction
method was used to regularize the current. To further
explore the validity of the use of the adiabatic subtraction, it
is legitimate to look at dS3 and see which kinds of
divergences arise and how they are cured.
In [22], the Schwinger effect in dS3 has been investigated

as an example of odd dimensional dS, and it has been shown
that no particle production occurs in odd dimensional global
dS. However, in our study on the Poincaré patch together
with an electric field, we report particle production. One
more motivation to look in depth at an odd dimensional
quantum field theory is that those theories sometimes exhibit
strange behaviors. For instance, dimensional regularization
shows no one-loop ultraviolet divergences because it only
registers logarithmic divergences and all the divergences are
power law in an odd dimension. For D ¼ 3 in curved
spacetime with an electric field, we will, however, report a
linear divergence arising from the electromagnetic side of the
theory. Regarding infrared phenomena, we will also report a
different behavior than in an even dimension which is also
the case in flat spacetime. Our work aims at completing the
picture of the Schwinger effect in dS3 by computing the
induced current.
All the works so far describing pair creation in dS under

the influence of a strong electric field [15–21] assumed two
backgrounds, i.e., electromagnetic and gravitational. In
[16] and [23], the backreaction effects due to the created
Schwinger pairs on the electromagnetic field background
have been investigated, while in this case, there is no report
on the backreaction to the gravity sector. In order to
investigate the backreaction to the gravitational background
one needs the energy-momentum tensor of the created
particles. In the absence of the electromagnetic back-
ground, i.e., in the presence of a purely gravitational field,
the energy-momentum tensor of the created scalar
[10,24–29] and fermion [30] particles in a spatially flat
Friedmann-Lemaitre-Robertson-Walker universe (consid-
ering dS4 as a special case) have been computed. In [10],
the author examined backreaction to the gravitational field
and found that the particle creation leads to a decrease of
the cosmological constant, whereas in [24–26,30], the
authors mainly developed the renormalization theory. In
the last part of this article, we will present some preliminary
results on backreaction to the gravitational field, namely, an
estimate of the variation of the Hubble constant due to the
influence of the gravitational field. We hope to come back
to this issue in the future by solving fully the Einstein
equation.

The article is organized as follows: in Sec. II, solutions of
the Klein-Gordon equation are obtained. The pair creation
is examined in Sec. III. In Sec. IV the quantum vacuum
expectation value of induced current is investigated.
Section V is devoted to a discussion about the phenomenon
of infrared hyperconductivity. In Sec. VI, we present some
first results on backreaction of the created pairs in D
dimension to the gravity sector of theory. Eventually, in
Sec. VII, we give some concluding remarks. For the sake of
clarity, we relegated some of the technical calculations to
the appendixes. In Appendix A, an alternative method to
derive the main result of Sec. III is given. In Appendix B,
some useful properties of mathematical functions are
represented. In Appendix C the computation of the current
integral is reviewed.

II. SOLUTIONS OF THE
KLEIN-GORDON EQUATION

To study the vacuum expectation value of the current
operator of a charged scalar field coupled to a constant electric
field background in a dSD, the field operator is needed. The
field operator containsmode functions which are obtained by
solving the Klein-Gordon equation. The dSD metric can be
read from the line element in the half of dSD manifold

ds2 ¼ dt2 − e2Htdx2; t ∈ ð−∞;þ∞Þ; x ∈ Rd: ð1Þ
It corresponds to the line elementof the flatRobertson-Walker
universe with its scale factor aðtÞ ¼ expðHtÞ, t is the proper
time, andH is the Hubble constant. In terms of the conformal
time

τ ¼ −
1

H
e−Ht; τ ∈ ð−∞; 0Þ; ð2Þ

the line element (1) takes the form

ds2 ¼ Ω2ðτÞðdτ2 − dx2Þ; ð3Þ

where

ΩðτÞ ¼ −
1

τH
; ð4Þ

revealing that this portion of dS is conformal to a portion of
Minkowski spacetime.

A. The Klein-Gordon equation

In order to obtain solutions of the Klein-Gordon equation
in the presence of a constant electric field background in
dSD, we consider the action of scalar QED,

S ¼
Z

dDx
ffiffiffiffiffi
jgj

p �
gμνð∂μ þ ieAμÞφð∂ν − ieAνÞφ�

− ðm2 þ ξRÞφφ� −
1

4
FμνFμν

�
; ð5Þ1Private communication between Eckhard Strobel and

Clément Stahl.
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where φðxÞ is a complex scalar field with mass m and
electrical charge e. The dSD metric gμν reads from Eq. (3),
jgj is the absolute value of its determinant, R is the scalar
curvature, and ξ is the dimensionless conformal coupling.
The introduction of the conformal coupling is done to make
the theory more general and arises naturally in string
inflation framework [31,32]. The vector potential describ-
ing a constant electric field background is

AμðτÞ ¼ −
E
H2τ

δμ1; ð6Þ

where E is constant. Our convention for indices is that we
label the spatial dimension with arabic-persian numerals,
e.g., 1; 2;…, and that letters, e.g., x; y;…, are reserved for
Fourier space. Then, the only nonzero components of the
electromagnetic field strength tensor are

F01 ¼ −F10

¼ ∂0A1 − ∂1A0 ¼ Ω2ðτÞE: ð7Þ
We derive the equation of motion for the scalar field φ by
using the Euler-Lagrange equation for the Lagrangian
coming from the action (5). We then obtain the Klein-
Gordon equation

1ffiffiffi
g

p ∂μð
ffiffiffi
g

p
gμν∂νφÞ þ 2iegμνAν∂μφ − e2gμνAμAνφ

þm2
dsφ ¼ 0; ð8Þ

where we defined

m2
ds ≔ m2 þ ξR: ð9Þ

After substituting explicit expressions of the dSD metric
and the vector potential given in Eqs. (3) and (6),
respectively, Eq. (8) takes the form
�
∂2
0 − δij∂i∂j þ ðD − 2ÞHΩðτÞ∂0 −

2ieE
H

ΩðτÞ∂1

þ
�
e2E2

H2
þm2

ds

�
Ω2ðτÞ

�
φðxÞ ¼ 0: ð10Þ

If we define

~φðxÞ ≔ ΩD−2
2 ðτÞφðxÞ; ð11Þ

it can be shown that Eq. (10) leads to

�
∂2
0 − δij∂i∂jþ

2ieE
τH2

∂1 þ
1

τ2

�
e2E2

H4
þm2

ds

H2
þ 1−d2

4

��
~φðxÞ

¼ 0: ð12Þ
Based on the invariance of Eq. (12) under translations along
the spatial directions, let

~φðτ;xÞ ¼ e�ik·xf�ðτÞ; ð13Þ
where the superscript � denotes the positive and negative
frequency solutions, respectively. Substituting (13) into
Eq. (12) leads to

d2

dz2�
f�ðz�Þ þ

�
−
1

4
þ κ

z�
þ 1=4 − γ2

z2�

�
f�ðz�Þ ¼ 0; ð14Þ

where the variables zþ and z− are defined by

zþ ≔ þ2ikτ; z− ≔ eiπzþ ¼ −2ikτ; ð15Þ

with k ¼ jkj. In terms of dimensionless parameters

λm ≔
mds

H
; λ ≔ −

eE
H2

; ρ ≔ þðλ2m þ λ2Þ12; r ≔
kx
k
;

ð16Þ

the coefficients κ and γ read

κ ¼ −iλr; ð17Þ

γ2 ¼ d2

4
− λ2m − λ2: ð18Þ

In Secs. II and III of this article we consider that γ2 < 0,
and then the coefficient γ becomes purely imaginary; in
this case, we use the convention γ ¼ þijγj. Equation (14) is
the Whittaker differential equation, and its most general
solution in terms of the conventions of [33] can be
written as

f�ðz�Þ ¼ C1Wκ;�γðz�Þ þ C2Mκ;�γðz�Þ; ð19Þ

where C1 and C2 are arbitrary constant coefficients. In
view of Eqs. (11), (13), and (19) the corresponding
solutions of Eq. (10) for positive and negative frequency
solutions are

UkðxÞ ¼ Ω2−D
2 ðτÞeþik·xðC1Wκ;γðzþÞ þ C2Mκ;γðzþÞÞ; ð20Þ

VkðxÞ ¼ Ω2−D
2 ðτÞe−ik·xðC1Wκ;−γðz−Þ þ C2Mκ;−γðz−ÞÞ;

ð21Þ

where the choice of the sign for the γ parameter will follow
without ambiguity from the discussion in Sec. II B.

B. Mode functions

We need mode functions that determine the creation and
annihilation operators and hence the vacuum state of the
quantum field theory. This vacuum will be determined by
specifying the asymptotic form of the mode functions
[34,35]. In order to determine the mode functions at early
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times, which is approached as t → −∞, we impose that the
functions f�ðz�Þ, given by Eq. (19), asymptotically take
the form f�ðz�Þ ∼ e∓ikτ as τ → −∞. A comparison with
the Minkowski spacetime mode functions shows that the
functions fþðzþÞ and f−ðz−Þ are positive and negative
frequency mode functions, respectively. By the virtue of
asymptotically expansions of the Whittaker functions
Wκ;γðzÞ and Mκ;γðzÞ as jzj → ∞ [see Eqs. (B4) and
(B5), respectively], the normalized positive and negative
frequency mode functions are [36], respectively,

UinkðxÞ ¼ ð2kÞ−1
2e

iπκ
2 Ω2−D

2 ðτÞeþik·xWκ;γðzþÞ; ð22Þ

V inkðxÞ ¼ ð2kÞ−1
2e−

iπκ
2 Ω2−D

2 ðτÞe−ik·xWκ;−γðz−Þ: ð23Þ

A similar discussion is possible in the asymptotic future
(t → ∞). The desired asymptotic form is f�ðz�Þ ∼ e∓ijγjHt,
leading with Eqs. (B6) and (B7) to the mode functions [36]

UoutkðxÞ ¼ ð4jγjkÞ−1
2e

iπγ
2 Ω2−D

2 ðτÞeþik·xMκ;γðzþÞ; ð24Þ

VoutkðxÞ ¼ ð4jγjkÞ−1
2e

iπγ
2 Ω2−D

2 ðτÞe−ik·xMκ;−γðz−Þ: ð25Þ

The subscripts in=out denote that these mode functions
have the desired asymptotic form at early/late times, and the
corresponding vacuum state is referred to as the in vacuum
and out vacuum, respectively.
Since the orthonormality of the mode functions should

be independent of time, there exists a conserved scalar
product. Between two scalar functions u1ðxÞ and u2ðxÞ it is
defined in D ¼ 1þ d dimension by

ðu1; u2Þ ¼ i
Z

ddx
ffiffiffiffiffi
jgj

p
g0νðu�1∂νu2 − u2∂νu�1Þ; ð26Þ

where the integral is taken over a constant x0 hypersurface
[34,35]. If u1ðxÞ and u2ðxÞ are solutions of the field
equation (8) which vanish at spacial infinity, then
ðu1; u2Þ is conserved [35]. The mode functions (22)–(25)
will be orthonormal with respect to the scalar product (26)
integrated over a constant τ hypersurface. Then, subsequent
orthonormality relations are satisfied

ðUinðoutÞk; UinðoutÞk0 Þ ¼ −ðV inðoutÞk; V inðoutÞk0 Þ
¼ ð2πÞdδðdÞðk − k0Þ;

ðUinðoutÞk; V inðoutÞk0 Þ ¼ 0: ð27Þ

III. PARTICLE CREATION

In Sec. II, two complete sets of orthonormal mode
functions were obtained, i.e., fUink; V inkg given by
Eqs. (22) and (23) and fUoutk; Voutkg given by Eqs. (24)
and (25). In this section, we will derive a first result
describing the Schwinger pair creation rate: the decay rate

that we will derive via a Bogoliubov transformation; see
also [36]. Analogous methods were used to compute the
pair creation rate in time-dependent field in Minkowski
spacetime [37] and without an electric field for bosons in
dS in [38]. In [39] the connection of this Bogoliubov
technique to kinetic theory was shown. We will then
compute the semiclassical conduction current. The con-
duction current will be computed in the full generality in
Sec. IV, and a comparison with the semiclassical expression
will be performed.
The scalar field operator ϕðxÞ may be expanded in terms

of the fUink; V inkg set in the form

ϕðxÞ ¼
Z

ddk
ð2πÞd ½UinkðxÞaink þ V inkðxÞb†ink�; ð28Þ

where aink annihilates particles described by the mode
function Uink, and b†ink creates antiparticles described by
the mode function V ink. The quantization of the theory is
implemented by adopting the commutation relations

½aink; a†ink0 � ¼ ½bink; b†ink0 � ¼ ð2πÞdδðdÞðk − k0Þ: ð29Þ

The vacuum state is defined as

ainkj0iin ¼ 0; ∀ k; ð30Þ

and then the construction of the Fock space can be done
similarly to the Minkowski spacetime case. However, there
is no ∂=∂x0 Killing vector to define positive frequency
mode functions, and consequently a unique mode decom-
position of the scalar field operator ϕðxÞ does not exist.
Therefore, ϕðxÞ may be expanded in terms of a second
complete set of orthonormal mode functions in the form

ϕðxÞ ¼
Z

ddk
ð2πÞd ½UoutkðxÞaoutk þ VoutkðxÞb†outk�; ð31Þ

where aoutk annihilates particles described by the mode
function Uoutk, and b†outk creates antiparticles described by
the mode function Voutk. In this case, the commutation
relations are

½aoutk; a†outk0 � ¼ ½boutk; b†outk0 � ¼ ð2πÞdδðdÞðk − k0Þ: ð32Þ

The decomposition of ϕðxÞ in Eq. (31) defines a new
vacuum state

aoutkj0iout ¼ 0; ∀ k; ð33Þ

and a new Fock space. Since both sets are complete, the
orthonormal mode functions Uoutk can be expanded in
terms of the first complete set of orthonormal mode
functions. Hence
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UoutkðxÞ ¼
Z

ddk0

ð2πÞd ½αk;k0Uink0 ðxÞ þ βk;k0V ink0 ðxÞ�: ð34Þ

Byvirtue of the orthonormality relations (27) theBogoliubov
coefficients αk;k0 and βk;k0 will be determined by

αk;k0 ¼ ðUoutk; Uink0 Þ; βk;k0 ¼ −ðUoutk; V ink0 Þ; ð35Þ

where the Bogoliubov coefficients satisfy the relations

Z
ddk
ð2πÞd ½α

�
k;k0αk;k00 − βk;k0β�k;k00 � ¼ ð2πÞdδðdÞðk0 − k00Þ;

Z
ddk
ð2πÞd ½α

�
k;k0βk;k00 − βk;k0α�k;k00 � ¼ 0: ð36Þ

As a consequence of Eqs. (28), (31), and (34) the late time
annihilation operator aoutk is related to the early time
annihilation operator aink by a Bogoliubov transformation

aoutk ¼
Z

ddk0

ð2πÞd ½α
�
k;k0aink0 − β�k;k0b†ink0 �: ð37Þ

Using aoutk and the vacuum state j0iin we can calculate the
expectation value of the particle number operator2

inh0jNoutkj0iin ¼ inh0ja†outkaoutkj0iin ¼
Z

ddk0

ð2πÞd jβk;k0 j2:

ð38Þ

Therefore, if jβk;k0 j2 ≠ 0, then particles are created.

A. Density of created pairs

In order to obtain the density of the created pairs an
explicit expression of the Bogoliubov coefficients is
needed. To identify the Bogoliubov coefficients, the ortho-
normal mode functions, given by Eqs. (22)–(25), should be
substituted into Eq. (35). We then obtain

αk;k0 ¼ ð2πÞdδðdÞðk − k0Þαk;

αk ¼ ð2jγjÞ12 Γð−2γÞ
Γð1

2
− γ − κÞ e

iπ
2
ðκ−γÞ; ð39Þ

βk;k0 ¼ ð2πÞdδðdÞðkþ k0Þβk;

βk ¼ −ið2jγjÞ12 Γð−2γÞ
Γð1

2
− γ þ κÞ e

iπ
2
ðκþγÞ; ð40Þ

and the normalization condition jαkj2 − jβkj2 ¼ 1 is sat-
isfied. The expected number of the created pairs, with a
given comoving momentum k, in the in vacuum is given by
Eq. (38). After a short calculation, Eq. (40) results in

jβk;k0 j2 ¼ ðð2πÞdδðdÞðkþ k0ÞÞ2jβkj2;

jβkj2 ¼
e−2πjγj þ e2πiκ

2 sinhð2πjγjÞ : ð41Þ

For convenience we normalize the d volume of dSD in a
box with dimensions Ld. Then, the number of created pairs
per comoving d volume, with given comoving momentum
k is

1

Ld ×
Z

ddk0

ð2πÞd jβk;k0 j2 ¼ jβkj2: ð42Þ

Using the mathematical formulas (B17), (B23), and (B24),
the number of created pairs per unit d volume is

Z
ddk
ð2πÞd jβkj

2¼ 1

ð4πÞd2 sinhð2πjγjÞ

×

�
e−2πjγj

Γðd
2
Þ þðπλÞ1−d

2Id
2
−1ð2πλÞ

�Z
∞

0

kd−1dk;

ð43Þ

where Iν is the modified Bessel function; see Appendix B 2.
This integral is not finite, since it takes into account the
total number of created pairs from the infinite past to the
infinite future. However, the number of created pairs per
unit of time is finite. Thus, we convert the k integral in
Eq. (43) into a τ integral.
To have physically acceptable particles states, one needs

to have particle states well defined in the asymptotic past
and future; that is, the background gravitational and electric
fields vary slowly. This is called the adiabatic condition and
is a semiclassical approximation. In the case of positive
frequencies, the mode equation (14) can be rewritten

d2fðτÞ
dτ2

þ ω2fðτÞ ¼ 0; ð44Þ

where the momentum dependent frequency is

ω2¼ k2−
2eEkx
H2τ

þ 1

τ2

�
m2

H2
þe2E2

H4
þ1−d2

4
þ ξDðD−1Þ

�
;

ð45Þ

and we have used R ¼ DðD − 1ÞH2. The adiabatic con-
dition requires that at all times, the frequency ω satisfies the
relations

_ω2

ω4
≪ 1;

ω̈

ω3
≪ 1; ð46Þ

where dots refer to the partial derivative with respect to the
conformal time τ. In the infinite past τ → −∞ the fre-
quency approaches ω → k, and hence the adiabatic con-
dition (46) is satisfied. In the infinite future τ → 0 we have2One can verify that inh0ja†outkaoutkj0iin ¼ outh0ja†inkainkj0iout.
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_ω2

ω4
∼
1

2

ω̈

ω3
∼
�
λ2m þ λ2 þ 1 − d2

4

�
−1
; ð47Þ

under the condition that

λ2m þ λ2 ≫
d2 − 1

4
; ð48Þ

the adiabatic condition is satisfied. In our investigation, the
spacetime dimension is not too large, i.e., d ∼ 1. Hence, the
condition (48) implies

ρ2 ¼ λ2m þ λ2 ≃ jγj2 ≫ 1: ð49Þ
The condition (48) justifies our assumption about the range
of parameters λm and λ which leads to γ2 < 0. Observe that
assuming (48) implies that, if one does not want to have
trivial flat spacetime results, one needs to assume as well

λ2m ≫
d2 − 1

4
: ð50Þ

The proof of the previous statement is that if one assumes
λm ≪ 1, together with the semiclassical condition (49), it
will be equivalent to assume λ ≫ 1. In this limit the
scalar field, the electromagnetic field, and the de Sitter
spacetime are conformally invariant, leading to flat space-
time results; see the discussion in Sec. III B 1. Two regimes
can be discussed then under the semiclassical approxima-
tion: strong electric field, λ ≫ maxð1; λmÞ which will
give the flat spacetime results, and heavy scalar field,
λm ≫ maxð1; λÞ.
Under (49), i.e., ρ ≫ 1, it can be verified [15] that the

extremum of j _ω=ω2j occurs around the time

τ ∼ −
ρ

k
: ð51Þ

More on converting momentum to the time integral, in the
context of Schwinger pair creation, can be found in
[37–39]. As a consequence of Eq. (51), the k integral in
Eq. (43) can be converted into a τ integral

Z
ddk
ð2πÞd jβkj

2¼ 1

ð4πÞd2 sinhð2πρÞ

�
e−2πρ

Γðd
2
Þ þðπλÞ1−d

2Id
2
−1ð2πλÞ

�

×HDρd
Z

0

−∞
ΩDðτÞdτ: ð52Þ

The number of created pairs per unit ofD volume of dSD or
the decay rate is then given by

Γ ≔
1

ΔV
×
Z

ddk
ð2πÞd jβkj

2

¼ HDρd

ð4πÞd2 sinhð2πρÞ

�
e−2πρ

Γðd
2
Þ þ ðπλÞ1−d

2Id
2
−1ð2πλÞ

�
; ð53Þ

where

ΔV ¼ ΩDðτÞΔτ ð54Þ
is the slice of D volume in the conformal time interval Δτ.
Using Eqs. (B15) and (B16), it can be shown that in the
cases D ¼ 2 and D ¼ 4, Eq. (53) gives the same result as
[15] and [16], respectively. The decay rate (53) is inde-
pendent of time, and as a consequence the number density
in the comoving frame at time τ reads

n ¼ Ω−dðτÞ
Z

τ

−∞
dτ0ΩDðτ0ÞΓ ¼ Γ

Hd
: ð55Þ

It is constant with respect to time; therefore, the number of
pairs created by the background electric and gravitational
fields is exactly balanced by the expansion of the dS.
Provided that Eq. (49) is satisfied, then the Bogoliubov

coefficient (41) is approximated as

jβkj2 ≃ e−4πρ þ e−2πðρ−λrÞ: ð56Þ
From the definitions in Eq. (16), jrj ≤ 1 implying ρ ≥ λr,
so the first term in the right-hand side of Eq. (56) is smaller
than the second one. Then, to leading order, we find

jβkj2 ≃ exp

�
−2π

��
m2

ds

H2
þ ðeEÞ2

H4

�1
2 þ eE

H2

kx
k

��
: ð57Þ

Therefore, under the semiclassical condition (49), βk is
nonzero for both kx > 0 and kx < 0 [40]. In the language
of nucleation of bubbles, considering E > 0 and taking the
particle with charge jej to the right of the particle with
charge −jej, the pairs can nucleate in both the screening
and the antiscreening orientations (corresponding to
kx < 0 and kx > 0, respectively) because of the gravita-
tional effects [41]. Hence, creating charges in the screen-
ing orientation tends to decrease the background electrical
field while creating them in the antiscreening orientation
tends to increase it. Usually screening and antiscreening
orientations are referred to as downward and upward
tunneling [15].
The Minkowski spacetime limit is obtained in the limit

H → 0. The decay rate (53) in this limit approaches

lim
H→0

Γ ¼ jeEjD2
ð2πÞd e

−πm2

jeEj ; ð58Þ

which is the same result with the Schwinger pair production
rate in D-dimensional Minkowski spacetime [37]. In dSD,
the pair production rate is higher than in flat spacetime, due
to the gravitational pair production contribution.

B. Semiclassical current

Because of the electrical field, the newly created pairs
start to move and hence create a conductive current. In this
subsection we present a first semiclassical expression for it,
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following similar steps as in [15,16]. In general, the relation
between the current Jsem and the density n of the semi-
classical particles with charge e and velocity v is
Jsem ¼ 2evn. The density of created pairs can be read
from Eqs. (53) and (55). Hence, the semiclassical current is
determined by

Jsem ¼ 2eΓ
Hd

v

¼ 2evHdρd

ð4πÞd2d sinhð2πρÞ

�
e−2πρ

Γðd
2
Þ þ ðπλÞ1−d

2Id
2
−1ð2πλÞ

�
:

ð59Þ
For a semiclassical particle with a comoving momentum ki
that interacts with the background vector potential (6), the
components of the physical momentum vector pμ

k can be
written as

p0
k ¼ Ω−1ðτÞðm2

ds þ Ω−2ðτÞδijðki þ eAiÞðkj þ eAjÞÞ12;
pi
k ¼ Ω−2ðτÞδijðkj þ eAjÞ; i ¼ 1;…; d; ð60Þ

and then the magnitude of the velocity reads v ¼ jpkj=p0
k.

1. Strong electric field regime

In the strong electric field regime, the relation λ ≫
maxð1; λmÞ is satisfied. Using Eqs. (51) and (60) one can
show that

p0
k ¼ Ω−1ðτÞHλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ cos θ1Þ

p
;

p1
k ¼ −Ω−1ðτÞHλð1þ cos θ1Þ;

pi
k ¼ −Ω−1ðτÞHλωi; i ¼ 2;…; d; ð61Þ

where ωi is given by Eq. (B20), and consequently v ∼ 1.
Hence, in the strong electric field regime the created
particles are ultrarelativistic. Using an asymptotic expan-
sion of the modified Bessel function (B14), it can be shown
that in the strong electric field regime, λ ≫ maxð1; λmÞ,
Eq. (59) is approximated as

Jsem ≃ 2ejeEjD2
Hð2πÞdd e

−
πm2

ds
jeEj : ð62Þ

An explicit comparison to the flat spacetime is possible in
the strong electric field regime. Indeed, under the same
assumptions, the flat spacetime limit inD dimensions reads

Jsem;flat ≃ 2etjeEjD2
ð2πÞdd e−

πm2

jeEj ; ð63Þ

with t being the Minkowski time [38,42]. In the expanding
dS, accounting for the spacetime dilution in the comoving
frame can be done by substituting t → H−1. In the limit
jλj → ∞, the exponential factor in Eq. (62) approaches
unity; then Jsem becomes independent of the scalar field

mass and responds as E
D
2 . The result corresponds to the

result of massless scalar fields in flat spacetime.

2. Heavy scalar field regime

In the heavy scalar field regime, the relation
λm ≫ maxð1; λÞ is satisfied. It was shown in [15] that
due to the background electric field, the charged particles
have a terminal physical momentum at late times which is
determined as

pi
k ¼ Ω−1ðτÞlim

τ→0

�
−Hτki þ

eE
H

δi;1

�
¼ −Ω−1ðτÞHλδi;1;

i ¼ 1;…; d: ð64Þ
In the heavy scalar field regime, we consider the terminal
value for the physical momentum that leads to

p0
k ≃Ω−1ðτÞHλm; ð65Þ

and consequently the terminal velocity becomes v ∼ jλj=λm
[15]. Hence, in the heavy scalar field regime, λm ≫
maxð1; λÞ, the leading order term of the expansion of
Eq. (59) is obtained as

Jsem ≃ 2eHd−3m3
ds

ð2πÞd−1d
				 eEm2

ds

				
4−d
2

Id
2
−1ð2πλÞe−2πλm : ð66Þ

Thus, for heavy, i.e., nonrelativistic charged particles the
semiclassical current is exponentially suppressed.
We will give a more rigorous derivation of these results

in D ¼ 3 dimension below: we will see that, in the strong
electric field regime, the semiclassical current Jsem agrees
with the expectation value of the current operator, whereas
in the heavy scalar field regime, they are exponentially
different from each other.

IV. INDUCED CURRENT AND CONDUCTIVITY
IN D= 3 DIMENSION

In this section, we confine ourselves to the case of dS3
and compute the induced current and the conductivity
without imposing the condition indicated in Eq. (49).
Whereas the particle number has no meaning when the
adiabatic future does not exist, the current is well defined
and is indeed the right quantity to describe the Schwinger
effect in this context. It can be shown that the current
operator of the charged scalar field

jμðxÞ ¼ ie
2
gμνðfð∂νϕþ ieAνϕÞ;ϕ�g

− fð∂νϕ
� − ieAνϕ

�Þ;ϕgÞ ð67Þ
is conserved, i.e., ∇μjμ ¼ 0 [35]. Using Eqs. (28)–(33) it
can be shown that in the in vacuum and out vacuum,
hj0i ¼ 0. However, in the in-vacuum state, the expectation
of the spacelike component of the current operator is
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hj1iin ¼ inh0jj1j0iin
¼ 2eΩ−3ðτÞ

Z
d2k
ð2πÞ2 ðkx þ eA1ðτÞÞ

eκπi

2k
jWκ;γðzþÞj2: ð68Þ

In order to compute the vacuum expectation value of the current operator (67) we choose the in-vacuum state because this
state is Hadamard [15,40]. Hence, the expectation value has a UV behavior similar to the flat spacetime. Substituting
explicit expressions, the integral (68) can be rewritten as

hj1iin ¼
e
2π2

H2Ω−1ðτÞ lim
Λ→∞

Z
1

−1

drffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
Z

Λ

0

dpðrp − λÞeλrπjW−iλr;γð−2ipÞj2; ð69Þ

where Λ ¼ −Kτ and K is an upper cutoff on momentum k introduced for convenience and that will be taken to infinity at
the end of the calculation. We also have introduced

p ¼ −kτ: ð70Þ
The details of computation of the integral (69) are reviewed in Appendix C. The final result is

hj1iin ¼
e
2π2

H2Ω−1ðτÞ
�
−
π

2
λ lim
Λ→∞

Λþ π

4
λγ cotð2πγÞ þ γ

4 sinð2πγÞ ð3I1ð2πλÞ − 2πλI0ð2πλÞÞ

þ i
2 sinð2πγÞ

Z
1

−1

drffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p br

�
ðe2πλr þ e−2πiγÞψ

�
1

2
þ iλr − γ

�
− ðe2πλr þ e2πiγÞψ

�
1

2
þ iλrþ γ

���
; ð71Þ

where ψ denotes the digamma function and the coefficient
br is defined as

br ¼ −
3

2
λ2r3 þ

�
1

8
−
γ2

2
þ λ2

�
r: ð72Þ

A. Adiabatic subtraction

In order to remove the UV divergence term from the
expression (71) we need to apply a renormalization
scheme. In the context of quantum field theory in
curved spacetime various regularization and renormali-
zation methods have been developed [34,35]. The
adiabatic subtraction or regularization method is
achieved by subtracting terms computed in the limit
of slowly varying backgrounds to obtain a finite
expression. The idea of slow varying backgrounds is
implemented by introducing adiabatic orders which in
our problem will be nothing but counting time deriv-
atives in a given quantity. More details about adiabatic
substraction in the context of Schwinger pair creation in
curved spacetime are given in Ref. [18]. We will hence
perform the adiabatic expansion of the mode functions
up to the minimal order which makes the original
expression (71) finite. To do so, we express the solution
of the mode equation (44) as a Wentzel-Kramers-
Brillouin (WKB) type solution

fAðτÞ ¼ ð2WðτÞÞ−1
2 exp

�
−i

Z
τ
Wðτ0Þdτ0

�
; ð73Þ

where in order to fulfill Eq. (44), the function W
satisfies the equation

W2ðτÞ ¼ ω2ðτÞ þ 3

4

_W2

W2
−
1

2

Ẅ
W

: ð74Þ

Provided that the adiabatic condition (46) holds, deriva-
tive terms in Eq. (74) will be negligible compared to ω2

terms. As we will see in this subsection, the zeroth order
of the adiabatic expansion is enough to remove the UV
divergent term from (71). The zeroth order adiabatic
expansion of W is

Wð0ÞðτÞ ¼ ω0ðτÞ; ð75Þ

where the superscript denotes the adiabatic order. The
last term in ω2 [see Eq. (45)] can be rewritten in the
form

6

τ2

�
ξ −

1

8

�
¼ 6

�
ξ −

1

8

�
_Ω2

Ω2
; ð76Þ

revealing that this term is of adiabatic order 2.
Therefore, ω0 in Eq. (75) is given by

ω0ðτÞ ¼ þ
�
k2 −

2eE
H2τ

kx þ
m2

H2τ2
þ e2E2

H4τ2

�1
2

: ð77Þ

By virtue of Eqs. (11), (13), (73), (75), and (77), the
zeroth order adiabatic expansion of the positive
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frequency UA and of the negative frequency VA mode
functions are

UA;kðxÞ ¼ Ω−1
2ðτÞð2ω0Þ−1

2 exp

�
ik · x − i

Z
τ
ω0ðτ0Þdτ0

�
;

VA;−kðxÞ ¼ Ω−1
2ðτÞð2ω0Þ−1

2 exp

�
ik · xþ i

Z
τ
ω0ðτ0Þdτ0

�
:

ð78Þ

We use this complete set of orthonormal mode functions
to expand the charged scalar field operator, then sub-
stituting into Eq. (67) leads to the zeroth order adiabatic
expansion of the current operator

hj1iA ¼ −
eH2

4π
λΩ−1ðτÞ lim

Λ→∞
Λ: ð79Þ

We emphasize that in the expression (79) there is no
finite term or Λ-independent contribution. Applying the
adiabatic subtraction scheme,

hj1ireg ¼ hj1iin − hj1iA
¼ Ω−1ðτÞJ; ð80Þ

gives the regularized current as

J ¼ eH2

8π2
γ

sinð2πγÞ
�
πλ cosð2πγÞ þ 3I1ð2πλÞ − 2πλI0ð2πλÞ

þ 2i
γ
×
Z

1

−1

brdrffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
�
ðe2πλr þ e−2πiγÞψ

�
1

2
þ iλr − γ

�

− ðe2πλr þ e2πiγÞψ
�
1

2
þ iλrþ γ

���
: ð81Þ

By virtue of the modified Bessel function property given
in Eq. (B12), one can show that J is an odd function
under the transformation λ → −λ, illustrating that if one
inverts the electrical field sense, the particles move in
the opposite direction.

B. Regularized current and conductivity

After computing the renormalized current, we consider
the conductivity defined as

σ ≔
J
E
: ð82Þ

We present a plot of the current (81) and of the conductivity
(82) in Figs. 1 and 2, respectively. The general features
of these figures are that in the strong electric field regime
λ ≫ maxð1; λmÞ all the curves have the same asymptotic
behavior, and in the weak electric field regime λ ≪
minð1; λmÞ the current and conductivity are suppressed
for increasing scalar field mass. For the case of a massless

FIG. 1. For different values of λm, the normalized quantum vacuum expectation value of the induced current J=eH2 and the
semiclassical current Jsem=eH2 in D ¼ 3 dimension are plotted as a function of λ with solid and dashed lines, respectively.
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minimally coupled scalar field, i.e., λm ¼ 0, for λ≲ 1,
the current and conductivity are increasing as the electric
field is decreasing. This phenomenon was dubbed infrared-
hyperconductivity (IR-HC) in [15]. In the following sub-
sections, we analytically investigate the limiting behaviors
of the current and the conductivity. In this analysis, for
simplicity, we use the sign conventions λ ¼ jλj and J ¼ jJj.

1. Strong electric field regime

Taking λ → ∞ in the current expression (81) with λm
fixed, the leading order term is

J ≃ e2

4π2
jeEj12
H

E; σ ≃ e2

4π2
jeEj12
H

: ð83Þ

The results (83) analytically describe the behaviors of the
current and conductivity shown by Figs. 1 and 2, respec-
tively. As illustrated in the figures, in this limit, the current
and conductivity become increasing functions of electric
field E and independent ofmds. In the cases of dS2 [15] and
dS4 [16], the authors showed that the current responds as E1

and E2, respectively, in this regime. Indeed, in this limit the
semiclassical computation is a good approximation, and as
we found in Sec. III B, the current responds as E

D
2 in this

regime.
To compare the quantum vacuum expectation value of

the induced current (81) with the semiclassical current (59),

in D ¼ 3 dimension, we plot Jsem as a function of the
electric field in Fig. 1. This figure illustrates that in the
strong electric regime λ ≫ maxð1; λmÞ, the semiclassical
current approaches the induced current. However, as one
decreases λ and goes away from the strong electric regime,
there is a large discrepancy between the semiclassical
current and the induced current due to the exponential
mass suppression factor in Jsem; see Eq. (66) and the
discussion in Sec. IV B 3.

2. Weak electric field regime

The behavior of the current (81) in the weak electric field
regime λ ≪ minð1; λmÞ is obtained by a series expansion
around λ ¼ 0 with λm fixed. In the case of heavy particles,
i.e., λm ≫ 1, the leading order terms are

J ≃ e2H
24πmds

E; σ ≃ e2H
24πmds

; ð84Þ

and in the case of light particles, i.e., λm ≪ 1, leading order
terms are given by

J ≃ e2H2

π2m2
ds

E; σ ≃ e2H2

π2m2
ds

: ð85Þ

The results given by Eqs. (84) and (85) are in agreement
with the curves shown in Figs. 1 and 2. As illustrated in

FIG. 2. For different values of λm, the normalized conductivity σ=e2 is plotted as a function of λ. The phenomenon of infrared
hyperconductivity appears for λm <

ffiffiffiffiffiffiffiffi
3=4

p
.
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Fig. 1 the current monotonically increases for increasing
electric field E. Figure 2 shows that the conductivity is
independent of the electric field E. For both the current and
the conductivity, the general feature is an inverse depend-
ence on the scalar field mass parameter mds. In the case of
dS2 the authors [15] showed that the current responds as
J ∝ mE expð−2πm=HÞ for heavy particles and behaves as
J ∝ E=m2 for light particles, in this regime. In the case of
dS4, it has been shown that for the cases of heavy and light
particles, the current behaves as J ∝ E=m2 [16].

3. Heavy scalar field regime

The behavior of the current (81) in the heavy scalar field
regime λm ≫ maxð1; λÞ is obtained by taking the limit
λm → ∞with λ held fixed. We then obtain the leading order
terms as

J ≃ e2H
24πmds

E; σ ≃ e2H
24πmds

; ð86Þ

which are the same as the result (84). In Fig. 3, the current
(81) and its limiting form (86) are plotted together. This
figure illustrates a good agreement between the exact and
the approximated results.
The semiclassical current (66), as it is exponentially

suppressed, cannot appear in the plot of the Fig. 3 and
exponentially disagrees with the current (81). The

comparison of the results, in this regime, shows
that in the D ¼ 2 dimension for heavy scalar [15] and
for heavy fermion [18] fields, the current scales as
J ∝ m sinhð2πλÞ expð−2πm=HÞ, i.e., is suppressed expo-
nentially. InD ¼ 4 dimension, for heavy scalar [16] and for
heavy fermion [19] fields, the current scales as J ∝ E=m2.
Therefore, in the heavy scalar field regime, due to an
exponentially mass suppression factor, the semiclassical
current does not agree with the induced current.

4. Massless minimally coupled scalar field case

In the case of a massless minimally coupled scalar field,
i.e., λm ¼ 0, we now examine the behavior of the current in
two limiting regimes. In the limit λ → ∞, the current and
conductivity are approximated by Eq. (83), whereas in the
limit λ → 0 we find the leading order terms

J ≃ H4

π2E
; σ ≃ H4

π2E2
: ð87Þ

The results (87) agree with the asymptotic behavior of
the red curves corresponding to λm ¼ 0 in Figs. 1 and 2.
In the regime λ ≪ 1 the current and the conductivity are not
bounded from above and increase as λ decreases, as
illustrated in Figs. 1 and 2, respectively. This divergence
signals that the framework used to derive this result is not
valid anymore and backreaction to the reservoir fields

FIG. 3. For different values of λ, the normalized current (81) and its approximation (86) are plotted as a function of λm with dashed and
dotted lines, respectively.
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needs to be taken into account. More about that regime will
be given in Sec. V.

5. Light scalar field case

We now study the behavior of the current (81) for a
light scalar field case, i.e., λm ≪ 1 and more specifically
λm <

ffiffiffiffiffiffiffiffi
3=4

p
. In the regime λ ≫ 1, the current and conduc-

tivity scale as indicated by Eq. (83). Numerical analyses
show that in the regime 0≲ λ≲ 1 the current and conduc-
tivity behave as

J ≃ eH2

π2

�
λ

λ2 þ λ2m

�
; σ ≃ e2

π2

�
1

λ2 þ λ2m

�
: ð88Þ

In Sec. V we will derive Eq. (88) analytically. In Fig. 4, we
plot the current (88) together with the current (81), in the
IR-HC regime. This figure illustrates the quite good
agreement between the numerical and analytical results.
The current has a local minimum in λmin ≃

ffiffiffiffiffiffiffiffi
3=4

p þ ϵ,
where ϵ is a small positive parameter, and a local maximum
in λmax ≃ λm. In the interval λ ∈ ðλmax; λminÞ the phenome-
non of IR-HC occurs; i.e., the current increases for
decreasing λ. Beyond λmax, in the interval ð0; λmaxÞ, the
current has a linear response for λm ≠ 0 which agrees with
Eq. (85). From this and Sec. IV B 4, we can conclude that
for decreasing λ, if γ becomes real, then there would be a
period of IR-HC; if one keeps decreasing λ, it will be

followed by a linear behavior for λm ≠ 0 or continued
unbounded for λm ¼ 0.
In this section, we computed the current and described it

in different limiting cases. Especially a IR-HC regime has
been reported, and we propose a discussion and a summary
of what is known about IR-HC in Sec. V.

V. DISCUSSION ABOUT IR-HC IN D DIMENSIONS

IR-HC is a regime where for a given interval of the
electric field, a decreasing electric field gives an increas-
ing conductivity. IR-HC was first reported in [15]. The
authors showed there, in the case of dS2 that the current
responds as J ∼ E−1 for small electric fields and IR-HC
was present for m=H < 1=2. In the case of dS4 the
renormalization scheme introduces a term of the form
logðm=HÞ [16] in the regularized current expression
which arises from the second order adiabatic expansion.
Therefore, it signals this renormalization method was not
applicable for the case of exactly massless scalar field in
dS4 [16]; see also discussions in [24,25]. Hence it was not
possible to discuss IR-HC for the massless case but it was
present for m=H <

ffiffiffiffiffiffiffiffi
5=4

p
. In [20], the point-splitting

method was shown to agree with the adiabatic subtraction
in dS4 for boson. In dS3, we report the same behavior
J ∼ E−1 in the regime of small electric field and massless
minimally coupled charged particles and report IR-HC
for mds=H <

ffiffiffiffiffiffiffiffi
3=4

p
.

FIG. 4. The normalized current (81) (in the blue dashed line) and its approximation (88) (in the red dotted line) are plotted as a function
of λ with λm ¼ 0.01.
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These results lead us to propose a procedure to avoid an
IR-HC regime by setting the value of the conformal
coupling to a specific range. In dSD, the nonrenormalized
in-vacuum state expectation of the spacelike component of
the current operator is

hj1iin ¼ inh0jj1j0iin
¼ 2eΩ−DðτÞ

Z
ddk
ð2πÞd ðkx þ eA1ðτÞÞ

eκπi

2k
jWκ;γðzþÞj2:

ð89Þ
Generalizing to D dimensions the step performed between
Eq. (68) and Eq. (69), the integral (89) can be conveniently
rewritten as

hj1iin ¼
eHd

ð2πÞd Ω
−1ðτÞ

Z
dΣd−1eλrπ lim

Λ→∞

×
Z

Λ

0

dppd−2ðrp − λÞjWκ;γðzþÞj2; ð90Þ

where dΣd−1 is given by Eq. (B22). As pointed out in
[15,16], in a IR-HC regime, the population of created pairs
is dominated by IR contribution and no longer by the pairs
created within a Hubble time. Hence the asymptotic
behavior of the wave function, in the limit p → 0 will
give the dominant term in a IR-HC regime. The Whittaker
function Wκ;γðzÞ as z → 0 has an asymptotic form [33]
given by

Wκ;γðzÞ ∼ z
1
2
−γ; ð91Þ

and in this regime γ is real and by convention is positive.
As a consequence, the integral (90) in the limit p → 0
behaves as

λ

Z
0

dppD−2−2γ: ð92Þ

Then power counting shows that in the regime

γ >
D − 2

2
; ð93Þ

the current integrand diverges in the limit p → 0. However,
since γ ≤ D−1

2
, the total current integral remains finite. From

Eq. (93) and the definition of γ, given by Eq. (18), we find
first that

hj1iin ∝
eHdλ

ρ2
¼ eHdλ

λ2 þ λ2m
; ρ ≪ d: ð94Þ

Observe that setting λm ¼ 0, one recovers the behavior
J ∝ E−1. Figure 4 shows a plot of the current in the IR-HC
regime together with the analytical result of (94), and the
curves agree reasonably well. Similar plots could be
produced for D ¼ 2 or D ¼ 4. Second, again from
Eqs. (18) and (93) it is also possible to deduce that IR-
HC occurred when

λ2m þ λ2 <
2D − 3

4
: ð95Þ

Therefore, a sufficient condition to avoid IR-HC is

λ2m ≥
2D − 3

4
; ð96Þ

and we define thus λm;min ¼
ffiffiffiffiffiffiffiffiffi
2D−3

p
2

. The previous condition
implies also a minimal bound to avoid IR-HC for the
conformal coupling ξ which in the case of a massless scalar
field reads

ξmin ¼
2D − 3

4DðD − 1Þ : ð97Þ

We see that in nonconformally coupled theories, a con-
formal coupling with values larger than ξmin can be used to
avoid the IR-HC regime. Conversely, ∀ξ < ξmin, IR-HC
would appear for m2=H2 ∈ I IR−HC, with

I IR−HC ≔
�
0;
2D − 3

4
−DðD − 1Þξ

�
: ð98Þ

These results are summarized in Table I. In D ¼ 2 and
D ¼ 3, Eq. (96) agrees very well with numerical inves-
tigations. However, in the case of D ¼ 4, to avoid IR-HC
one needs to have λm ≳ 1.25 [16]; in this case, a small
variation from condition (96), comes from a term also
dominant in the IR regime but not taken into account in the
previous calculation: the one coming from the renormal-
ization in “logðm=HÞ.”
Table II presents the results of the numerical investiga-

tions for the value of λmin and λmax for dimensionsD ¼ 2, 3,
4. Numerical investigations indicate that λmax ¼ λm and

TABLE I. Minimum values of λ2m and ξ to avoid IR-HC. The
interval I IR−HC is the range of m2=H2 for which IR-HC would
appear after turning on the conformal coupling.

λ2m;min ξmin I IR-HC

In dS2 1
4

1
8

ð0; 1
4
− 2ξÞ

In dS3 3
4

1
8

ð0; 3
4
− 6ξÞ

In dS4 5
4

5
48

ð0; 5
4
− 12ξÞ

In dSD 2D−3
4

2D−3
4DðD−1Þ ð0; 2D−3

4
−DðD − 1ÞξÞ

TABLE II. Numerically found values of λmin and λmax for
different values of λm and D. IR-HC occurs for λ ∈ ðλmax; λminÞ.
Those results point toward the idea that λmax ¼ λm and

λmin ¼ λm;min þ ϵ ¼
ffiffiffiffiffiffiffiffiffi
2D−3

p
2

þ ϵ, ϵ > 0.

D 2 3 4

λm 0.1, 0.01, 0.001 0.1, 0.01, 0.001 0.1, 0.01, 0.001
λmin 0.54, 0.59, 0.59 0.92, 0.95, 0.95 1.27, 1.54, 1.68
λmax 0.1, 0.01, 0.001 0.1, 0.01, 0.001 0.1, 0.01, 0.001
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λmin ¼ λm;min þ ϵ with ϵ > 0. Recall that λm;min ¼ 0.5,
0.87, 1.12 for D ¼ 2, 3, 4, respectively. ϵ reaches an
asymptotic value for λm → 0 in D ¼ 2, 3, whereas it is
unbounded for D ¼ 4. This difference comes again from
the renormalization term in “logðm=HÞ.”
Looking at the fermionic induced current in dS2 [18]

and dS4 [19], no IR-HC was reported. In dS2, the
only difference between the fermion and the boson
was effectively a translation of the mass squared, i.e.,
m2

fermion ¼ m2
boson −H2=4. It is furthermore known that a

massless fermion is conformally invariant and gives, as in
flat spacetime, a linear behavior for the current. In the
bosonic case this conformal behavior was found for
m2=H2 ¼ 1=4 and the IR-HC for 0 ≤ m2=H2 < 1=4.
Hence, conformality plays an important role to understand
IR-HC. Note that for a fermionic particle in D ¼ 2, to have
a regime of IR-HC one needs to let the mass parameters
m2=H2 < 0, that is, to allow for tachyonic propagation. In
parallel to tachyon, IR-HC is a regime where decreasing
one source (the electrical field) increases the consequence
(the produced pairs). Therefore, it is against physical
intuition and for massless cases leads even to a current
unbounded from above. The links between tachyonic field,
conformality, and IR-HC remain to be explored.

VI. DISCUSSION ABOUT GRAVITATIONAL
BACKREACTION

In this last section, we present our first results on the
gravitational backreaction. More specifically, our main goal
is to naively estimate the variation of the Hubble constant in
the heavy scalar field regime. The numerous works on the
Schwinger effect in dS [15–21] always assumed that the
created pairs do not backreact to the background metric.
This assumption holds as far as the energy density of the
pairs is much smaller than the background Hubble energy
[13,14]. For this paper, we will focus on a semiclassical
computation of the stress energy-momentum tensor. We
assume that the effects of the pair creation to the Einstein
equation are small; they give rise to an effective cosmo-
logical constant Λeff in the Einstein equation. Then, the
Einstein equation can be written as

Rμν −
1

2
Rgμν þ Λeffgμν ¼ −8πGDT

μν
sem; ð99Þ

where Rμν is the dSD Ricci tensor andGD ¼ H4−DM−2
P [43]

is the gravitational constant in D dimensions, with MP
being the Planck mass. Now, we wish to compute the
semiclassical energy-momentum tensor on the right-hand
side of the Einstein equation (99). Similar to, e.g., [44] the
semiclassical energy-momentum tensor of the Schwinger
pairs can be defined as

Tμν
sem ≔ jgj−12

Z
ddk
ð2πÞd

pμ
kp

ν
k

p0
k

jβkj2; ð100Þ

where jβkj2 (41) is the distribution function and pμ
k (60) is

the physical momentum vector of the created particle. To
perform the integral on the right-hand side of Eq. (100), we
follow the same integration procedure used in Sec. III A:
impose the relation (51) to convert the k integral into a τ
integral. In the heavy scalar field regime, λm ≫ maxð1; λÞ,
we consider a terminal value of the physical momentum.
Hence, substituting expressions (64) and (65) into
Eq. (100) leads to

T00
sem ≃ Ω−2ðτÞE; T01

sem ≃ −
λ

λm
T00
sem; T11

sem ≃ λ2

λ2m
T00
sem;

T0i
sem ¼ Tij

sem ¼ 0; i ¼ 2;…; d; ð101Þ

where E is given by

E ¼ HD

ð2πÞD−2ðD − 1Þ λ
3−D
2 ID−3

2
ð2πλÞλDme−2πλm : ð102Þ

The Hubble parameter is defined as

HðτÞ ≔ Ω−2ðτÞ dΩðτÞ
dτ

: ð103Þ

Considering the metric (3), in terms of the Hubble
parameter HðτÞ, the components of the Ricci tensor are
obtained

R00 ¼ ðD − 1ÞðH2ðτÞ þΩ−1ðτÞ _HðτÞÞΩ2ðτÞ;
Rij ¼ −ððD − 1ÞH2ðτÞ þΩ−1ðτÞ _HðτÞÞΩ2ðτÞδij;
R0i ¼ 0; i ¼ 1;…; d; ð104Þ

and the Ricci scalar is

R ¼ ðD − 1ÞðDH2ðτÞ þ 2Ω−1ðτÞ _HðτÞÞ: ð105Þ

The trace of the Einstein equation (99) gives

Λeff ¼
ðD − 2ÞR

2D
−
8πGDE

D
; ð106Þ

and in the heavy scalar field regime, we find that the
leading order terms for the Einstein equation (99) involve
T00
sem: using Eqs. (104)–(106) it leads to

Ω−1ðτÞ dHðτÞ
dτ

¼ −
8πGDE
ðD − 2Þ : ð107Þ

The above equation determines the evolution of the Hubble
parameter with respect to the conformal time τ. In order to
compare with the existing literature, we now work in
cosmic time t: using Eqs. (1) and (3), it can be shown
that the evolution of the Hubble parameter with respect to
the cosmic time t is
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dHðtÞ
dt

¼ −
8πGDE
ðD − 2Þ ; ð108Þ

which agrees with [10,29,45]. Thus, the Schwinger pair
creation leads to a decay of the Hubble constant and, as
consequence of Eq. (106), a decay of the cosmological
constant. This decay of the cosmological constant begins
with the pair creation and continues until Λeff ¼ 0. In this
picture, as a classical black hole being evaporated into
Hawking radiation or the coherent energy of an electric
field being dissipated into eþ e− pairs, the coherent vacuum
energy is dissipated into a cloud of scalar pairs. The decay
of the Hubble constant affectsGD forD ≠ 4. ForD < 4 the
gravitational constant decays until it reaches zero and for
D > 4 the gravitational constant increases. Similar to [10],
the time scale for evolution of the Hubble constant can be
estimated by

tB ≔ −
H

dHðtÞ
dt

¼ ð2πÞD−3ðD − 1ÞðD − 2ÞM2
P

4H3

× ðλ3−D
2 ID−3

2
ð2πλÞÞ−1λ−Dm e2πλm : ð109Þ

A series expansion of the time scale expression (109)
around λ ¼ 0, with λm fixed, leads to the leading order term

tB ≃ ð4πÞD−3
2 ΓðD−1

2
ÞðD − 1ÞðD − 2ÞM2

P

4H3
λ−Dm e2πλm ; ð110Þ

which is independent of λ. In [10], the time scale has been
computed in the global patch of dS4, without electric field,
and the author showed there, in the limit m ≫ H, the
time scale behaves as Hm−4 expðπm=HÞ. Hence, in D ¼ 4
dimension, the result (110) agrees with the time scale
obtained in the Ref. [10] up to a factor of 2 in the exponent.
This factor could come from the different definitions for the
energy-momentum tensor.
Observe that the calculation carried out in this section is

not valid for D ¼ 2 as there is no Einstein gravity in 1þ 1
dimension. Observe beside that under our working
assumption, i.e., heavy scalar field regime, λm≫maxð1;λÞ,
we find tB ≫ tH ¼ H−1 which still allow for a long
inflation. Furthermore, we argue that this decay of the
Hubble constant presents similarities with generic models
of slow roll inflation where a scalar field sees its potential
energy slowly decaying into kinetic energy to ultimately
exhibit coherent oscillations around the minimum of its
potential which unleash a reheating phase. We want to
explore further this issue in a future paper [46]. The next
step is to consider the expectation value of the energy-
momentum operator, which as the current will present
divergences. The computation of this tensor is much more
involving and is beyond the scope of this paper. We have
seen in Sec. IV B that the semiclassical estimates agreed in
the strong field regime, but were exponentially different in

the heavy scalar regime, so we argue that those results have
to be checked by further study, mainly the exact compu-
tation of the energy-momentum tensor in order to see if
those first estimates agree with the general case. For
instance, a very recent work [29], without electric field,
in D ¼ 4 dimension, with a slightly different method,
discovered an enhancement of the Hubble constant. The
same exponential behavior as in Eq. (109) was also found
but with a different prefactor. We argue that those changes
are due to the renormalization procedure they carried out
which gives different results than the replacement of the k
integral into a τ integral we performed here.

VII. CONCLUSION

We have investigated pair creation by the Schwinger
mechanism in dSD. Specifically, we considered a charged
massive scalar field coupled to a constant background
electric field in dSD. After the canonical quantization,
Bogoliubov coefficients were obtained, and then the decay
rate and the density of created pairs were computed; see
these main results in Eqs. (53) and (55). Also, using a
semiclassical method the decay rate and the density were
computed; see Appendix A. Both methods agree to say that
in the semiclassical approximation, the screening orienta-
tion stays and the antiscreening ordination is suppressed.
The density of created pairs is constant with respect to time.
It signals that the pair creation in dSD from electric and
gravitational fields exactly balances the dilution from the
expansion of the universe. Under the semiclassical con-
dition we computed the conduction current of the created
particles in any dimension. We find that in the strong
electric field regime, λ ≫ maxð1; λmÞ, the semiclassical
current becomes independent of the scalar field mass and
responds as E

D
2 , and in the heavy scalar field regime,

λm ≫ maxð1; λÞ, due to the presence of a Boltzmann mass
suppression factor it exponentially damped. Our main goal
has been to study the induced quantum vacuum expectation
value of the conduction current of the created pairs. Thus,
in the case of a D ¼ 3 dimensional dS, the expectation
value of the spacelike component of the current operator
has been computed in the in-vacuum state. As expected, a
linear UV divergence appeared. Applying an adiabatic
subtraction regularization scheme the divergent term was
removed and a finite expression was obtained for the
current and the corresponding conductivity. They have
been plotted in Figs. 1 and 2, respectively. The current
and conductivity have been also analytically investigated.
We find that in the strong electric field regime,
λ ≫ maxð1; λmÞ, the current responds as E

3
2 and becomes

independent of scalar field mass parameter mds (9). In the
weak electric field regime, λ ≪ minð1; λmÞ, the current has
a linear response in E and is inversely proportional to mds.
For the case of a massless minimally coupled scalar field,
i.e., λm ¼ 0, for λ≲ 1, the current varies as E−1.

SCALAR CURRENT OF CREATED PAIRS BY SCHWINGER … PHYSICAL REVIEW D 94, 104011 (2016)

104011-15



Consequently, in this regime, the current and conductivity
are increasing unbounded for decreasing electric field,
which leads to the phenomenon of IR-HC. The regime
of IR-HC has been extensively discussed in Sec. V from
both numerical and analytical points of view. It has been

shown that IR-HC happens for λ ∈ ðλm;
ffiffiffiffiffiffiffiffiffi
2D−3

p
2

þ ϵÞ with
0 < ϵ ≪ 1 for D ¼ 2, 3 and ϵ positive but unbounded in
D ¼ 4. This difference comes from the renormalization
scheme used inD ¼ 4. The behavior of the current has also
been derived in the IR-HC regime for any dimension in
Eq. (94) up to the renormalization factors. A proposed
relation of IR-HC with conformality and tachyonicity
remains also to be further explored but is beyond the scope
of this paper.
Until Sec. VI, the gravitational and electric fields were

treated as an external fields, and one important next step is
to take into account backreactions of the created pairs to
those two fields. Indeed, as soon as the energy of the
population of the Schwinger created pairs becomes of the
order of the energy carried by the constant electric field or
of the gravitational energy, backreaction effects become
unavoidable. Investigating these effects could be used to
find specific forms of electric fields or specific classes of
spacetimes which favor or disfavor pair creation.
Furthermore, it could also be a fruitful way to make
cosmological statements about magnetogenesis, matter-
antimatter asymmetry, primordial gravitational waves, or
the way inflation is driven and ends. Those issues are
currently under investigation [46]. Our first results on
gravitational backreaction effects were depicted in Sec. VI.
Using a semiclassical approach the energy-momentum
tensor of the Schwinger pairs has been computed in the
heavy scalar field regime; see Eq. (101). We showed that
creation of particles leads to a decay of the Hubble
constant. In the limit of zero electric field, our result is
consistent with a previous study [10] up to a factor of 2 in
the exponent but disagrees with a very recent work [29]. A
more consistent calculation of this effect must dynamically
study the evolution of the Hubble constant H through
Einstein equations, and this will explicitly break de Sitter
invariance by introducing a preferred time slicing. We
argue that it should be possible to compute it together with
the corrections from the Schwinger effect and the presence
of an electric field to the vacuum fluctuation during an
inflationary phase. This could in turn affect the power
spectrum at the end of inflation, as it was already suggested
in the conclusion of [47]. After the evolution of the
primordial power spectrum through the reheating and the
radiation dominated era, in principle it could be measured
by cosmic microwave background experiments.
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APPENDIX A: SEMICLASSICAL
SCATTERING METHOD

In this appendix we compute the pair creation rate using
the semiclassical scattering method. Starting from Eq. (44),
it is possible to write the equation of motion for the scalar
particles as a harmonic oscillator one with a time dependent
frequency given by Eq. (45). From here it is possible to do a
Bogoliubov transformation and reformulate the equation of
motion (44) in term of the Bogoliubov coefficients αkðτÞ
and βkðτÞ. This technique is inspired from well known flat
spacetime techniques (see, e.g., [48]) and was already
applied to the equivalent problem inD ¼ 4 dimension [49].
The result will be similar up to dimensional factors. The
semiclassical scattering method was usually referred to as
the WKB method, but as detailed in [50], it is more precise
to call it the scattering semiclassical method to differentiate
with other WKB inspired methods [51]. The starting point
is to implement the Bogoliubov transformation using an
ansatz inspired by a WKB expansion,

fkðτÞ ¼
αkðτÞffiffiffiffiffiffiffiffiffiffi
ωðτÞp e−iKðτÞ þ βkðτÞffiffiffiffiffiffiffiffiffiffi

ωðτÞp eiKðτÞ; ðA1Þ

_fkðτÞ ¼ −iωðτÞ
�
αkðτÞffiffiffiffiffiffiffiffiffiffi
ωðτÞp e−iKðτÞ −

βkðτÞffiffiffiffiffiffiffiffiffiffi
ωðτÞp eiKðτÞ

�
; ðA2Þ

where

KðτÞ ¼
Z

τ

−∞
ωðτ0Þdτ0: ðA3Þ

To preserve the commutation relation, it is necessary to
impose the Wronskian condition jαkðτÞj2 − jβkðτÞj2 ¼ 1.
In this basis, the momentum spectrum of the pair creation
rate reads

nk ¼ lim
τ→0

jβkðτÞj2; ðA4Þ

with the boundary conditions being plane waves in the
positive frequency direction as the past asymptotic behav-
ior of Eq. (44) suggests

βkð−∞Þ ¼ 0; αkð−∞Þ ¼ 1: ðA5Þ
It is possible to find a first order coupled differential
equation for the Bogoliubov coefficients

_αkðτÞ ¼
_ωðτÞ
2ωðτÞ e

2iKðτÞβkðτÞ; ðA6Þ

_βkðτÞ ¼
_ωðτÞ
2ωðτÞ e

−2iKðτÞαkðτÞ: ðA7Þ
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Note that at this point, the equations derived are still exact.
Aiming at finding the momentum spectrum (A4), it is
possible to integrate formally Eqs. (A6) and (A7) by using
the boundary condition (A5). One finds [52]

βkð0Þ ¼
X∞
m¼0

Z
0

−∞
dτ0

_ωðτ0Þ
2ωðτ0Þ

e−2iKðτ0Þ

×
Ym
n¼1

Z
τn−1

−∞
dtn

_ωðtnÞ
2ωðtnÞ

e2iKðtnÞ

×
Z

tn

−∞
dτn

_ωðτnÞ
2ωðτnÞ

e−2iKðτnÞ: ðA8Þ

Each of these integrals can be calculated using a saddle
point approximation. Those integrals are dominated by the
regions around the turning point, i.e., ωðτ�p Þ ¼ 0, where
the superscript � denotes the two conjugate pairs in the
complex plane of τ. More precisely, by deforming the
contour of integration, we consider the singularities for
the turning point for which

ℑ½KðτpÞ� < 0: ðA9Þ

From now on, the subscript � will be dropped, and we will
consider τp the turning point which corresponds to (A9).
Following [52], it is possible to describe the behavior of
ω2ðτÞ near the turning point assuming first order singularity
which is the case contemplating Eq. (45),

ω2ðτÞ≃ Aðτ − τpÞ; ðA10Þ

with A being a constant which can be calculated. One can
find then an expression for KðτÞ near the turning point

KðτÞ≃ KðτpÞ þ
2

3
Aðτ − τpÞ32; ðA11Þ

_ωðτÞ
ωðτÞ≃

1

3ðKðτÞ − KðτpÞÞ
dKðτÞ
dτ

: ðA12Þ

Changing variables to ξn ¼ KðτpÞ − KðτnÞ and ηn ¼
KðτpÞ − Kðτ0nÞ one gets an approximate expression for
the integrals

βkð0Þ≃ −2iπe−2iKðτpÞ
X∞
m¼0

ð−1Þm
6mþ1

Im; ðA13Þ

where

Im ¼ 1

2iπ

Z
∞

−∞
dξ0

eiξ0

ξ0

Ym
n¼1

Z
ξn−1

−∞
dηn

e−iηn

ηn

Z
∞

ηn

dξn
eiξn

ξn

¼ π2m

ð2mþ 1Þ! : ðA14Þ

The final results read then

nk ¼ je−2iKðτpÞj2: ðA15Þ
For the semiclassical approximation to hold, one needs the
notion of adiabatic vacuum in the asymptotic future. Hence,
the semiclassical approximation holds if the relation (49) is
satisfied. The remaining step is to compute the integral
(A3). The turning point is given by

τp ¼ 1

k
½iκ − iðρ2 þ κ2Þ12�; ðA16Þ

where the coefficients ρ and κ have been defined in
Eqs. (16) and (17), respectively. Then one can find the
imaginary part of KðτÞ

ℑ½KðτpÞ� ¼ −πðρþ λrÞθð−λrÞ; ðA17Þ
where the Heaviside step function θ is there to ensure
that the condition (A9) holds. Recall our convention
λ ¼ −eE=H2, and hence Eq. (A17) implies that, e.g., a
particle with charge e > 0 is only created with a momen-
tum kx > 0. Again, we see that in the semiclassical limit,
the upward tunneling is suppressed and only the screening
direction or downward tunneling stays. The number of
pairs in the semiclassical limit is eventually given by

nk ¼ exp½−2πðρþ λrÞ�θð−λrÞ: ðA18Þ
The pair creation rate is defined as

Γ ¼ 1

ΔV

Z
ddk
ð2πÞd nk; ðA19Þ

where ΔV is defined by Eq. (54). As before, the procedure
then is to transform the k integral into a τ integral by using
an estimate for the time when most of the particles are
created; see Eq. (51). Using Eqs. (B17), (B18), and (B23),
it is then possible to present the final expression for the
scalar pair creation rate in dSD under the influence of a
constant electric field,

Γ ¼ HD

ð2πÞd ρ
djλj1−d2 e−2πðρ−jλjÞ: ðA20Þ

A common feature regardless of the number of spatial
dimensions and of the bosonic or fermionic nature of the
particle is that the physical number density defined in
Eq. (55) is constant with respect to conformal time. It
signals that pair creation in dSD from electric and gravi-
tational fields exactly balances the dilution from the
expansion of the universe. This implies that the population
of scalars is always dominated by the particle created
within a Hubble time [16]. This observation is important
when it comes to study the backreaction to the electric field
[23]. It is interesting to note that when one changes the
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space dimension, what changes is the prefactor before the
exponential. Indeed, the semiclassical approximation is an
expansion in ℏ to first order. The exponential factor is
the classical trajectory which is not a function of the
dimension d. However, the one loop integration depends
on d, and hence the prefactor to the classical trajectory is a
function d. Before concluding, we should remark that
under the semiclassical condition (49) the result (53)
obtained using standard methods reduced to the semi-
classical result (A20). Therefore, the flat spacetime limit of
the semiclassical pair creation rate (A20) is equal to the
result presented in Eq. (58).

APPENDIX B: USEFUL MATHEMATICAL
FUNCTIONS

In this appendix, we have represented some useful
relations and properties of mathematical functions needed
in this article. More relations can be found in, e.g., [33].

1. Whittaker functions

The Whittaker differential equation is

d2

dz2
FðzÞ þ

�
−
1

4
þ κ

z
þ

1
4
− γ2

z2

�
FðzÞ ¼ 0: ðB1Þ

It has the two linearly independent solutions, namely,
Wκ;γðzÞ and Mκ;γðzÞ. The needed connection formulas are

Wκ;γðzÞ ¼ Wκ;−γðzÞ; ðB2Þ

Mκ;γðe�iπzÞ ¼ �ie�γiπM−κ;γðzÞ: ðB3Þ

The asymptotical expansion of the Whittaker functions as
jzj → ∞ are given by

Wκ;γðzÞ ∼ e−
z
2zκ; ðB4Þ

Mκ;γðzÞ∼
Γð1þ 2γÞ
Γð1

2
þ γ− κÞe

z
2z−κ þ Γð1þ 2γÞ

Γð1
2
þ γþ κÞe

−z
2
�ð1

2
þγ−κÞπizκ;

−
1

2
πþ δ≤�phðzÞ≤ 3

2
π− δ; ðB5Þ

where δ is an arbitrary small positive constant. In the limit
jzj → 0, the asymptotically expansions are given by

Mκ;γðzÞ ∼ z
1
2
þγ; ðB6Þ

Wκ;γðzÞ ∼
Γð2γÞ

Γð1
2
þ γ − κÞ z

1
2
−γ þ Γð−2γÞ

Γð1
2
− γ − κÞ z

1
2
þγ;

0 ≤ ℜðγÞ < 1

2
; γ ≠ 0: ðB7Þ

Finally, some useful Wronskians are

WfWκ;γðzÞ;W−κ;γðe�iπzÞg ¼ e∓iπκ; ðB8Þ

WfMκ;γðzÞ;Mκ;−γðzÞg ¼ −2γ; ðB9Þ

WfWκ;γðzÞ;Mκ;γðzÞg ¼ Γð1þ 2γÞ
Γð1

2
þ γ − κÞ : ðB10Þ

2. Modified Bessel functions

The modified Bessel function has integral representation
along the real line

IνðzÞ ¼
zν

2νπ
1
2Γðνþ 1

2
Þ

Z
π

0

ðsin θÞ2νe�z cos θdθ: ðB11Þ

If n is an integer, then

IνðenπizÞ ¼ enνπiIνðzÞ: ðB12Þ

When ν is fixed and z → 0,

IνðzÞ ∼
zν

2νΓð1þ νÞ ; ν ≠ −1;−2;−3;…: ðB13Þ

When ν is fixed and z → ∞,

IνðzÞ ∼
ezffiffiffiffiffiffiffiffi
2πz

p ; jphðzÞj ≤ π

2
− δ: ðB14Þ

In the cases ν ¼ − 1
2
and ν ¼ 1

2
, the relations

I−1
2
ðzÞ ¼

ffiffiffiffiffi
2

πz

r
coshðzÞ; ðB15Þ

I1
2
ðzÞ ¼

ffiffiffiffiffi
2

πz

r
sinhðzÞ ðB16Þ

are satisfied. The following mathematical formulas can be
shown:

Z
π

0

ðsin θÞ2νdθ ¼
ffiffiffi
π

p
Γð1þ νÞΓ

�
1

2
þ ν

�
; ðB17Þ

lim
jλj→∞

Z
π

π
2

ðsin θÞνe−2πjλj cos θdθ ¼ Γðνþ1
2
Þ

2ðπλÞνþ1
2

e2πjλj: ðB18Þ

3. Spherical coordinates

In order to evaluate the integrals (43) and (A19), we
make use of the spherical coordinates to decompose the
momentum vector k in the flat d-dimensional Euclidean
space. Hence, in this space the volume element is

ddk ¼ dΣd−1kd−1dk; ðB19Þ
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where dΣd−1 is the area element of the unit sphere in the
d-dimensional Euclidean space. Convenient coordinates on
this sphere are specified by

ω1 ¼ cos θ1;

ω2 ¼ sin θ1 cos θ2;

..

.

ωd−1 ¼ sin θ1 � � � sin θd−2 cos θd−1;
ωd ¼ sin θ1 � � � sin θd−2 sin θd−1; ðB20Þ

where 0 ≤ θi < π for 1 ≤ i ≤ d − 2 and 0 ≤ θd−1 < 2π.
Then, the metric on the sphere is

dϖ2
d−1 ¼

Xd
i¼1

ðdωiÞ2

¼ dθ21þ sin2 θ1dθ22þ�� �þ sin2 θ1 � � �sin2 θd−2dθ2d−1;
ðB21Þ

and consequently, the area element is

dΣd−1 ¼ ðsin θ1Þd−2 � � � sin θd−2dθ1 � � � dθd−1: ðB22Þ

Therefore the area of the sphere is

Z
dΣd−1 ¼

2π
d
2

Γðd
2
Þ : ðB23Þ

Using Eqs. (B11), (B17), (B22), and (B23) the following
formula can be shown:

Z
dΣd−1e2πλ cos θ1 ¼ 2πλ1−

d
2Id

2
−1ð2πλÞ: ðB24Þ

APPENDIX C: COMPUTATION OF THE
INTEGRAL FOR THE CURRENT

In this appendix, the computation of the current integral
(69) is reviewed. We follow the same integration procedure
as performed in [15] for a one-dimensional and [16] for a
three-dimensional momentum integral. We deal with the
following integral:

J ≔ lim
Λ→∞

Z
1

−1

drffiffiffiffiffiffiffiffiffiffiffi
1−r2

p
Z

Λ

0

dpðrp−λÞeλrπjW−iλr;γð−2ipÞj2:

ðC1Þ

We will use the Mellin-Barnes representation of the
Whittaker function

Wκ;γðzÞ¼e−
z
2

Z þi∞

−i∞

ds
2πi

Γð1
2
þγþsÞΓð1

2
−γþsÞΓð−κ−sÞ

Γð1
2
þγ−κÞΓð1

2
−γ−κÞ z−s;

jphðzÞj<3π

2
;

1

2
�γ−κ≠0;−1;−2;…; ðC2Þ

where the contour of integration separates the poles of
Γð1

2
þ γ þ sÞΓð1

2
− γ þ sÞ from those of Γð−κ − sÞ [33].

Based on the definition (18), it depends on the range of the
involved parameters whether γ is real or purely imaginary.
However, by virtue of the relation (B2), in the integral (C1)
we have ðW−iλr;γð−2ipÞÞ� ¼ Wiλr;γð2ipÞ. Then, the inte-
gral (C1) can be rewritten

J ¼ lim
Λ→∞

Z
1

−1

drffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p cr

Z þi∞

−i∞

ds
2πi

Γ
�
1

2
þ γ þ s

�
Γ
�
1

2
− γ þ s

�
Γðiλr − sÞ

×
Z þi∞

−i∞

dt
2πi

Γ
�
1

2
þ γ þ t

�
Γ
�
1

2
− γ þ t

�
Γð−iλr − tÞeiπ

2
ðs−tÞ2−s−t

Z
Λ

0

dpðrp − λÞp−s−t; ðC3Þ

where cr is defined as

cr ¼ eπλr
�
Γ
�
1

2
þ γ þ iλr

�
Γ
�
1

2
− γ þ iλr

�
Γ
�
1

2
þ γ − iλr

�
Γ
�
1

2
− γ − iλr

��
−1
: ðC4Þ

If we choose both s and t integration contours to run in a similar way as Ref. [16], then we obtain the final result

J ¼ −
π

2
λ lim
Λ→∞

Λþ π

4
λγ cotð2πγÞ þ γ

4 sinð2πγÞ ð3I1ð2πλÞ − 2πλI0ð2πλÞÞ

þ i
2 sinð2πγÞ

Z
1

−1

drffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p br

�
ðe2πλr þ e−2πiγÞψ

�
1

2
þ iλr − γ

�
− ðe2πλr þ e2πiγÞψ

�
1

2
þ iλrþ γ

��
; ðC5Þ

where br is given by Eq. (72).
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