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The expressions for the quasinormal modes (QNM) of black holes with nonlinear electrodynamics,
calculated in the eikonal approximation, are presented. In the eikonal limit QNM of black holes are
determined by the parameters of the circular null geodesics. The unstable circular null orbits are derived
from the effective metric that is the one obeyed by light rays under the influence of a nonlinear
electromagnetic field. As an illustration we calculate the QNM of four nonlinear electromagnetic black
holes, two singular and two regular, namely, from Euler-Heisenberg and Born-Infeld theories, for singular
ones, and the magnetic Bardeen black hole and the one derived by Bronnikov for regular ones. Comparing
with the QNM of the linear electromagnetic counterpart, their Reissner-Nordström black hole is done.
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I. INTRODUCTION

When a black hole (BH) undergoes perturbations, the
resulting behavior can be described in three stages. The first
stage corresponds to radiation due to the initial conditions of
the perturbations. The second stage corresponds to damped
oscillations with complex frequencies. The modes of such
oscillations are called quasinormal modes (QNM). The
frequencies ofQNMare independent of initial perturbations,
since they are the intrinsic imprint of the response of the
black hole to external perturbations. The third stage in
general corresponds to a power law decay of the fields.
Besides the importance of QNM in the analysis of black

hole stability, they play an outmost role in characterizing
gravitational wave signals, as the ones recently detected at
LIGO, as well as the promised ones jointly with VIRGO
collaboration and the planned space antenna project LISA
[1]. QNM resonances, being the characteristic “sound” of
the BH itself, are crucial to identify the spacetime param-
eters, especially themass and angular momentumof the BH,
but are also important in identifying additional physical
parameters arising from more realistic BH models. In fact
precise observations of the late-time ringdown signal show
the differences in the QNM spectrum [2] and they can be
used to rule out bizarreBHs.QNMfromBHs is a thoroughly
studied subject; for recent reviews [3–6] can be consulted
and references therein.
There are also theoretical reasons that justify the study

of QNM, one of them from loop quantum gravity. It has
been observed that for asymptotically flat BHs, the real
part of the high overtones of QNM coincides with the

Barbero-Immirzi parameter [7]; this parameter measures
the size of the quantum area in Planck units in relation to
the counting of microstates in the mentioned theory.
Since early studies on Schwarzschild BH perturbations [8]

gravitational waves coming from the “vibrations of a BH”
were identified as gravitational waves in spiral orbits close to
the unstable circular orbits, the BH being not a source but a
temporal storage of high-frequency gravitational radiation
[9]. Mashhoon and Ferrari [10,11] have suggested an
analytical technique of calculating the QNM in the
geometric-optics (eikonal) limit. The basic idea is to interpret
theBHfree oscillations in termsofnull particles trapped at the
unstable circular orbit and slowly leaking out. The real part of
theQNMfrequencies is determined by the angular velocity at
the unstable null geodesic; the imaginary part is related to the
instability time scale of the orbit in such a way that QNMcan
be determined from the unstable null geodesics that are the
orbits attached to the maximum of the effective potential
barrier felt by light rays on their interaction with the BH. In
this sense Cardoso [12] showed the relationship among
unstable null geodesics, Lyapunov exponents, and quasinor-
mal modes in a stationary spherically symmetric spacetime.
It is well known that in situations involving strong

electromagnetic fields, the linear superposition does not
hold and nonlinear effects, for instance the creation of
electron-positron pairs or scattering of light by light, are
very likely to occur. These situations are described by
quantum electrodynamics; alternatively, classical theories
that include these nonlinear phenomena in an effective way
may be useful. Among these theories are the Euler-
Heisenberg (EH) [13] and Born-Infeld (BI) [14] theories.
Moreover, nonlinear electromagnetic theories have
attracted attention lately due to their ability to suppress
the singularity in some BH solutions. As a result of the
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nonlinear interaction, light rays do not follow the null
geodesics of the background metric, but do follow the
null geodesics of an effective metric that depends on the
nonlinear electromagnetic energy momentum tensor
[15–18]. Extensive research has been done on nonlinear
electromagnetism in curved backgrounds; see for instance
[19] and references therein.
In [20] applying the ideas of Cardoso, the QNM

frequencies of the regular magnetic BH model proposed
by Bardeen were determined; Bardeen BH is a solution
of nonlinear electrodynamics coupled to Einstein gravity.
QNM of nonlinear electromagnetic BHs were computed,
using the WKB method, for the Born-Infeld BH in [21]
and for the Bronnikov BH in [22]. Our study differs from
previous ones in the fact that we use the effective metric
to determine the unstable circular orbits followed by light
rays. Otherwise the frequencies of the QNM correspond
to massless test particles that indeed follow, in the
eikonal approximation, the null geodesics of the back-
ground metric. Those QNM frequencies do not corre-
spond to light rays that in the presence of strong
electromagnetic fields do interact among themselves,
giving rise to nonlinear effects.
Using the effective metric and the corresponding effec-

tive potential, we derive the Lyapunov exponent expression
that is related to the imaginary part of the QNM frequen-
cies; as an illustration we address two examples of singular
BHs: the Born-Infeld BH and a magnetic Euler-Heisenberg
one, as well as two examples of regular BHs, the Bardeen
model for a magnetic self-gravitating BH, and one solution
derived by Bronnikov. Quasinormal modes of regular black
holes have been analyzed in [23].
The paper is organized as follows: In Sec. II we give a

brief explanation for determining the QNM frequencies
using the unstable null geodesics and the Lyapunov
exponent. In Sec. III a short summary of the nonlinear
electrodynamics for a static spherically symmetric space-
time is presented as well as the effective nonlinear
electromagnetic metric. In Sec. IV the expressions for
the real and imaginary parts of the QNM frequencies in
terms of the nonlinear Lagrangian are given. In Sec. V
we analyze the QNM frequencies of the four examples
mentioned above. In each case the QNM frequencies are
compared with the ones corresponding to the massless
test particles and light rays of the Reissner-Nordstrom
(RN) BH that is the linear counterpart of nonlinear
electromagnetic BHs. Conclusions are given in the last
section.

II. QNM AND THE LYAPUNOV EXPONENT

The connection between the QNM and bound states of
the inverted BH effective potential was pointed out in [11].
In [12] it was shown that, in the eikonal limit, the QNM of
BHs in any dimensions are determined by the parameters of
the circular null geodesics. The real part of the complex

QNM frequencies is determined by the angular velocity at
the unstable null geodesics. The imaginary part is related to
the instability time scale of the orbit, and therefore related
to the Lyapunov exponent that is its inverse. Lyapunov
exponents are a measurement of the average rate at which
nearby trajectories converge or diverge in the phase space.
A positive Lyapunov exponent indicates a divergence
between nearby trajectories, i.e., a high sensitivity to initial
conditions. In the case of stationary, spherically symmetric
spacetimes it turns out that this exponent can be expressed
as the second derivative of the effective potential evaluated
at the radius of the unstable circular null orbit. The
agreement of the so calculated QNM with the analytic
WKB approximation,

ωQNM ¼ Ωcl − i
�
nþ 1

2

�
jλj; ð1Þ

where n is the overtone number and l is the angular
momentum of the perturbation, was also shown. Ωc is the
angular velocity at the unstable null geodesic and λ is the
Lyapunov exponent, determining the instability time
scale of the orbit. From the equations of motion for a test
particle in the static spherically symmetric (SSS) space-
time, _r2 ¼ Vr, where Vr is the effective potential for radial
motion, circular geodesics are determined from the con-
ditions VðrcÞ ¼ V 0ðrcÞ ¼ 0, and rc is the radius of the
circular orbit. The Lyapunov exponent in terms of the
second derivative of the effective potential is given by

λ ¼
ffiffiffiffiffiffi
V 00
r

2_t2

r
; ð2Þ

where t is the time coordinate. The dot denotes the
derivative with respect to an affine parameter and
the prime stands for the derivative with respect to r. The
orbital angular velocity is given by

Ωc ¼
dφ
dt

¼ _φ
_t
: ð3Þ

For our purposes both expressions should be evaluated at
rc, the radius of the unstable null circular orbit. Its impact
parameter bc is related to the effective potential by
Vr ¼ 1=bc2, i.e., the energy at infinity of those orbits is
equal to the maximum of the effective potential.
For a static spherically symmetric background

ds2 ¼ fðrÞdt2 − 1

gðrÞ dr
2 − r2dΩ2; ð4Þ

the energy E and the angular momentum L of a test particle
are conserved quantities,

fðrÞ_t ¼ E ¼ const; r2 _φ ¼ L ¼ const: ð5Þ
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For equatorial orbits (θ ¼ π=2), the equation for radial
motion is _r2 ¼ Vr. For the case of a static spacetime f ¼ g
in (4), the effective potential is given by

Vr ¼ gðrÞ
�
E2

fðrÞ −
L2

r2

�
¼ E2 − f

L2

r2
: ð6Þ

Then the Lyapunov exponent, related to the imaginary
part of the QNM frequencies, from (2) is given by

λ2 ¼ fc
2r2c

½2fc − r2cf00c �; ð7Þ

while the orbital angular velocity, which is proportional to
the real part of the QNM frequencies, is given by

Ωc ¼
L
r2c

fc
E

¼
ffiffiffiffiffi
fc
r2c

s
: ð8Þ

In the previous expressions (7) and (8) the conditions for a
circular orbit, Vr ¼ 0 and V 0

r ¼ 0, that amount, respec-
tively, to

E2

L2
¼ f

r2
; and 2f − rf0 ¼ 0; ð9Þ

have been incorporated.
In the following section Eqs. (7) and (8) are determined

from the effective metric, and λ and Ωc are written in terms
of the nonlinear electromagnetic (NLEM) Lagrangian.

III. QNM OF NLEM BHS FROM
THE EFFECTIVE METRIC

The action for gravitation coupled to an electromagnetic
field is given by

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − LðFÞ�; ð10Þ

where R is the scalar curvature and L is an arbitrary
function of the electromagnetic invariant F ¼ FμνFμν, with
Fμν ¼ ∂μAν − ∂νAμ being the electromagnetic field tensor.
For the Maxwell theory the Lagrangian is directly propor-
tional to F, LM ¼ F. We note that the most general
Lagrangian can depend on both electromagnetic invariants,
F and G ¼ F μνFμν, where F μν is the dual field-strength
electromagnetic tensor. These kinds of generalizations are
also connected to Gauss-Bonnet corrections [24]. In this
work we restrict ourselves to Lagrangians depending only
on F but that are otherwise completely general. Roughly
speaking this restriction has the consequence of having
solutions with only electric or magnetic charges, but
not both.

The electromagnetic tensor compatible with spherical
symmetry has two nonzero components, F01 ¼ −F10 and
F23 ¼ −F32, corresponding to the radial electric and
magnetic fields, with

r2LFF10 ¼ qe; F23 ¼ qm sin θ; ð11Þ

where qe and qm are the electric and magnetic charges,
respectively, while the subindex F means the derivative
with respect to F. Adopting the definitions

fe ¼ 2F01F10 ¼ 2q2eL−2
F r−4 ≥ 0;

fm ¼ 2F23F23 ¼ 2q2mr−4 ≥ 0; ð12Þ

F ¼ fm − fe and the energy-momentum tensor can be
written as

Tμ
ν ¼ 1

2
diagðLþ 2feLF; Lþ 2feLF; L

− 2fmLF; L − 2fmLFÞ: ð13Þ

The nonlinearity of the electromagnetic field modifies
light trajectories that regularly are the null geodesics of the
background metric gμν. In nonlinear electromagnetism,
instead, photons do propagate along null geodesics of an
effective geometry with the metric tensor γμνeff that depends
on the nonlinear theory. The discontinuities of the electro-
magnetic field propagate by obeying the equation for the
characteristic surfaces. Then the effective metric can be
derived from the analysis of the characteristic surfaces
[15,16,25]. The corresponding equation for the gradient of
the characteristic surfaces S;μ is

ðLFgμν − 4LFFF
μ
αFανÞS;μS;ν ¼ γμνeffS;μS;ν ¼ 0: ð14Þ

Calculating the metric components γμνeff , the effective
metric of the SSS spacetime is given by

ds2eff ¼ðLFGmÞ−1

×

�
GmG−1

e

�
fðrÞdt2− 1

fðrÞdr
2

�
− r2dΩ2

�
: ð15Þ

Gm and Ge, the magnetic and electric factors that make
the difference between the linear and nonlinear electro-
magnetism, are given by

Gm ¼
�
1þ 4LFF

q2m
LFr4

�
; Ge ¼

�
1 − 4LFF

q2e
L3
Fr

4

�
;

ð16Þ

and in the linear limit become equal to 1. In determining
null geodesics conformal factors can be ignored, since they
do not modify the null geodesics. Considering the geodesic
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motion in the equatorial plane of the effective spacetime
(15), not including the conformal factor ðLFGmÞ−1, the
corresponding effective potential Vr is

Vr ¼ G−1
m Ge

�
G−1

m GeE2 −
fðrÞL2

r2

�
: ð17Þ

When we apply the first conditions for the (unstable) null
circular orbits VðrcÞ ¼ 0, we obtain

E2

L2
¼
�
Gm

Ge

�
rc

fc
r2c

; ð18Þ

and jointly with the second condition, V 0ðrcÞ ¼ 0, the
radius rc of the circular null orbit is given by one of the
roots of the following equation:

�
Ge

Gm

��
f0c
fc

−
2

rc

�
−
�
Ge

Gm

�0

rc

¼ 0: ð19Þ

Such a root should be greater than the horizon radius,
rc > rh; subscript “c”means that the quantity in question is
evaluated at the radius r ¼ rc. This radius is also known as
the radius of the photosphere, and defines the sphere of
unstable circular photon trajectories. For the Schwarzschild
BH rc ¼ 3M.
The Lyapunov exponent (2) for the effective metric takes

the form

λ2 ¼ fcr2c
2

�
fc
r2c

Gm

Ge

�
Ge

Gm

�00

c
−
�
f
r2

�00

c

�
; ð20Þ

while the angular velocity (3) changes to

Ωc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Gm

Ge

fc
r2c

s
: ð21Þ

Equations (20) and (21), the nonlinear electromagnetic
version of Eqs. (7) and (8), determine the QNM frequen-
cies, imaginary and real parts, respectively, for NLEM BHs
in the eikonal approximation.
From the expressions (16) and having determined the

sign of LFF=LF it can be defined whether Gm and Ge are
greater or less than 1. From that knowledge and the
expression of Ωc we can assert whether the real part of
the QNM frequencies is enhanced or suppressed as
compared to the linear counterpart. For instance if
LFF=LF < 0 then Gm ≤ 1 and Ge > 1 and consequently,
from (21), Ωc gets a smaller value, resulting in a suppres-
sion of the real part of the QNM frequencies ωr.
The analysis is not so straightforward for the imaginary

part, Eq. (20), since it is not obvious what the sign of the
second derivative of Ge=Gm will be. In this case we need
more specific information about the NLEM Lagrangian.

In the next section examples of different NLEM BHs are
given and the QNM frequencies due to the NLEM field are
compared with those corresponding to massless test par-
ticles as well as with the QNM frequencies originated from
the SSS solution to the Einstein-Maxwell equations, the
Reissner-Nordström BH.

IV. EXAMPLES

We calculate the QNM frequencies of four SSS BH
solutions corresponding to different NLEM theories
coupled to gravity. The first two examples of singular
NLEM BHs, the Born-Infeld and a magnetic solution for
the Euler-Heisenberg electrodynamics coupled to gravity,
are addressed. Then we analyze the QNM response of two
regular NLEM BHs: the Bardeen magnetic monopole and
one Bronnikov solution. A comparison with massless
particles and linear electromagnetism is established as
well. Only the fundamental frequency n ¼ 0 is considered,
that is, the least damped mode.

A. The QNM of the Reissner-Nordström black hole

The RN black hole is the SSS solution to the action (10)
with L ¼ F, LF ¼ 1, and LFF ¼ 0 and then the nonlinear
factors are Ge ¼ 1 and Gm ¼ 1. In what follows, the QNM
behavior of each addressed example is compared with that
corresponding to the RN BH. Now the RN case is briefly
exposed.
In the eikonal or geometric-optics limit, the QNM

frequencies are given by (1) with λ and Ωc calculated as
in (7) and (8), respectively. For the RN BH, the metric
function in the line element (4) is given by

fðrÞ ¼ gðrÞ ¼ 1 −
2M
r

þQ2

r2
; ð22Þ

while the circular null orbit radius rc is calculated from (9),
which in the RN case amounts to the quadratic polynomial

r2c − 3Mrc þ 2Q2 ¼ 0; rc ¼
3

2

	
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Q2=9

q 

;

ð23Þ

where we have used a dimensionless coordinate r → r=M
and Q → Q=M. The functions λ and Ωc are given by (7)
and (8),

λ2 ¼ 1

r6c
ðr2c − 2Q2ÞðQ2 þ r2c − 2rcÞ;

Ω2
c ¼

1

r4c
ðr2c − 2rc þQ2Þ; ð24Þ

which substituting rc from (23) gives
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λ2 ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Q2=9

p
ð1þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Q2=9

p
Þ

33ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Q2=9

p
Þ4

;

Ω2
c ¼

2ð1þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Q2=9

p
Þ

27ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Q2=9

p
Þ3
: ð25Þ

These are the expressions (also derived in [26]) that we
use in the comparisons with the NLEM cases. In the RN
case analytic solutions can be found all the way through.
Analytic solutions were not determined in any of the
following examples. Recent works on aspects of RN
QNM are [27–29].
Table I gives an idea about how accurate the eikonal

approximation is compared with other methods; the
Schwarzschild case is illustrated. The eikonal numbers are
obtained from Eqs. (25) with Q ¼ 0. A thorough discussion
on the comparison between the accuracy of different
methods of calculating the QNM can be consulted in [6].

B. Born-Infeld black hole

The BI nonlinear electrodynamics was first considered
by Born and Infeld in an attempt to cure at the classical
level the singularity of the electric field of a point charge
[14]. Born-Infeld electrodynamics possesses several inter-
esting physical features like the absence of birefringence,
the Maxwell limit for the weak electromagnetic field, as

well as the finiteness of the electric field at the charge
position. The Einstein-Born-Infeld (EBI) generalization of
the RN BH was obtained by García et al. in [30]; the
geodesic structure of the EBI BH was studied in [31] and
recently in [32]. This Einstein-Born-Infeld solution is
singular at the origin and it is characterized by three
parameters: mass, charge, and the BI parameter b that is
the maximum attainable electromagnetic field; the EBI BH
can present one, two, or zero horizons depending on the
values of the parameters. The Born proposed Lagrangian is
given by

ðLðFÞ ¼ 4b2
�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

2b2

r �
: ð26Þ

Exact BH solutions are known; see for instance Sec. VIII
in [33]. In [34] the stability and QNM of these BHs has
been analyzed in the context of the tensor-vector-scalar
theory. Here, we address the so-called BI solution that for a
line element of the form (4) is given by the metric function

fðrÞ ¼ gðrÞ ¼ 1 −
2M
r

þ 2

3
r2b2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

b2r4

s !

þ 2

3

q2

r

ffiffiffi
b
q

s
F

�
arccos

�
br2=q − 1

br2=qþ 1

�
;
1ffiffiffi
2

p
�
; ð27Þ

where F is the elliptic integral of the first kind, M is the
mass parameter, q is the electric charge (both in length
units), and b is the Born-Infeld parameter that corresponds
to the magnitude of the electric field at r ¼ 0. The non-
vanishing component of the electromagnetic field is

Frt ¼ qðr4 þ q2

b2Þ
−1=2. The nonlinear factors Gm and Ge,

in the case in which only electric charge is considered,
qm ¼ 0, are

Gm ¼ 1; Ge ¼
�
1þ q2

b2r4c

�
: ð28Þ

TABLE I. Comparison of the QNM of test particles charac-
terized by s ¼ 1, l ¼ 1, and n ¼ 0 interacting with the Schwarzs-
child BH, calculated using different methods. The eikonal
approximation underestimates the real frequencies and over-
estimates the imaginary ones.

Schwarzschild QNM

Numerical 0.2483 − 0.092i
Third order WKB 0.2459 − 0.0931i
Sixth order WKB 0.2482 − 0.092i
Eikonal limit 0.19245 − 0.096225i

0.2 0.4 0.6 0.8 1.0

0.090

0.095

0.100

0.105
i

q

RN

b 0.75

b 0.3

0.2 0.4 0.6 0.8 1.0
0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25
r

q

RN

b 0.75

b 0.3

FIG. 1. The behavior of ωi and ωr for the BI and RN BHs is shown as a function of the charge. Two values of b were considered,
b ¼ 0.3 and b ¼ 0.75; the other parameters are fixed: M ¼ 1 and n ¼ 0.
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Hereafter we consider ωr=l ↦ ωr for our analysis. In
Fig. 1 the behavior of the QNM frequencies ωi and ωr of
the BI BH for two different values of the parameter b is
shown; those are then compared with RN BHs. The
imaginary part of QNM frequencies ωi, for the RN case,
increases as q augments and presents a maximum then
decreases; for the RN BH the value of q cannot exceed
q ¼ 1, which corresponds to the extreme BH, q ¼ M. The
BI BH does not have this constraint, and ωi increases
without bound for small values of b. Therefore BI-ωi is
enhanced as compared with the RN BH. The opposite
occurs with the real part of the QNM frequencies, BI-ωr,
that is suppressed as compared with the RN BH. Both
frequencies approach the RN limit as b increases.
The QNM frequencies coming from massless particles

and photons (ph) are compared in Fig. 2. For the imaginary
part, ωi, the previous behavior is enhanced even more for
photon trajectories, while ωr-massless particle values are
greater than the photon’s. Massless test particle QNM
frequencies were analyzed in [21] using the WKB approxi-
mation up to sixth order. Our results definitively agree
qualitatively, and the same tendency is observed: imaginary
frequencies are enhanced as the BI parameter decreases
while the real ones are suppressed in the same limit.

Quantitatively there is no agreement, first because we
are in the eikonal approximation, and second because
the discrepancy is precisely the nonlinear effect that is
not present for massless particles (gravitational perturba-
tions). In Table II the QNM frequencies calculated in the
eikonal limit are compared with the ones for massless test
particles obtained using a sixth order WKB in [21]. As the
charge grows the difference narrows for the imaginary
frequencies while the opposite occurs for the real frequen-
cies. Table II illustrates the discrepancy in QNM between
the electromagnetic and gravitational perturbations, which
is shown in Fig. 2 as well.

C. Euler-Heisenberg black hole

The effective action for electrodynamics due to one-loop
quantum corrections was calculated by EH. For the low-
frequency limit ω ≪ mec2=h2 the effective Lagrangian
with magnetic charge [35] takes the form

LðFÞ ¼ Fð1 − aFÞ; ð29Þ

with a ¼ he2=ð360π2m2
eÞ, where h, e, and me are the

Planck constant, electron charge, and electron mass,
respectively. BI theory applies for fields even stronger
than the ones in QED, because it turns out that a Lagrangian
very similar to (29) can be obtained in the weak field limit
of the BI Lagrangian: expanding the square root in (26) up
to second order, ð1þ xÞ1=2 ¼ 1þ x=2 − x2=8þ � � �, we
obtain

LðFÞ ¼ 4b2
�
−1þ 1þ F

4b2
þ F2

32b4
þ � � �

�
¼ F −

F2

8b2
:

ð30Þ

From the comparison with (29) a relationship between
the EH and BI parameters is obtained, 8b2 ¼ a−1. For the
previous reasons we expect a very similar behavior for the
EH-QNM frequencies and the BI-QNM frequencies. This
is the case indeed.

0.2 0.4 0.6 0.8 1.0

0.092

0.094

0.096

0.098

0.100 i

q

ph

massless

0.2 0.4 0.6 0.8 1.0
0.19

0.20

0.21

0.22

0.23

0.24

0.25

r

q

massless

ph

FIG. 2. Comparison between ωi and ωr of the BI BH for massless particles and photon (ph) frequencies is shown. The rest of the
parameters are M ¼ 1, b ¼ 0.75, and n ¼ 0. As q → 0 both BHs approach the Schwarzschild case.

TABLE II. Behavior of the QNM frequencies for the BI BH as
calculated for massless particles using a sixth order WKBmethod
and for photons using the eikonal approximation. The parameters
are fixed as n ¼ 0, l ¼ 2, b ¼ 0.4, and M ¼ 1.

BI BH WKB method Effective metric

q ωr ωi ωr ωi

0.2 0.481698 0.068375 0.386888 0.0965409
0.4 0.498791 0.069957 0.393042 0.097527
0.6 0.530753 0.072592 0.40396 0.0993303
0.7 0.554740 0.074309 0.411548 0.100636
0.8 0.586874 0.076306 0.420782 0.102317
0.9 0.631678 0.078624 0.43188 0.104523
1 0.699423 0.081372 0.445116 0.107521
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In [35] a solution of the EH field coupled to gravity
equations was found (see also [36]). It corresponds to a SSS
magnetic BH with metric elements in (4) given by

fðrÞ ¼ gðrÞ ¼ 1 −
2M
r

þ q2

r2
−
2

5
a
q4

r6
; ð31Þ

where M is the mass parameter and q is the magnetic
charge. One or two horizons may occur: if ðM=qÞ2 ≤
24=25 a single horizon exists but for ðM=qÞ2 > 24=25 a
second and a third horizon occurs. Extremal solutions exist

only for a2 ≤ a2crit ¼ ð8=27Þq2. The electromagnetic invari-
ant is F ¼ 2q2=r4. Since qe ¼ 0, the Ge and Gm factors are

Ge ¼ 1; Gm ¼
�
1þ 8aq2

4aq2 − r4c

�
: ð32Þ

The behavior of QNM frequencies ωi and ωr for the EH
BH resembles the BI ones (see Fig. 3), taking into account
that the nonlinear parameters b and a are inversely propor-
tional. For small a’s we obtain an effect similar to large b’s,
i.e., the behavior approaches the RN one when a ↦ 0,
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FIG. 3. The behavior of ωi and ωr in terms of the charge q is shown for the EH and RN BHs; the rest of the parameters are fixed as
M ¼ 1 and n ¼ 0
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FIG. 4. Comparison of photon vs massless particle QNM frequencies is shown, with imaginary and real parts, ωi and ωr, of the EH BH
varying the magnetic charge. In this plot M ¼ 1, a ¼ 0.2, and n ¼ 0
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FIG. 5. The behavior of ωi and ωr of the Bardeen BH as functions of the charge g, keeping fixed M ¼ 1 and n ¼ 0.
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while for larger a’s the departure from RN behavior is clear,
enhanced for ωi and suppressed for ωr. Regarding the
massless-photon comparison, ωi is enhanced and ωr is
suppressed for photons with respect to massless particle
trajectories as can be seen in Fig. 4. As far as we know a
QNM study of this BH has not been presented previously.

D. Bardeen black holes

This model was proposed by Bardeen in the 1960s as an
example of a regular BH; later on Ayón-Beato and García
[37] found a nonlinear electromagnetic source for such a
BH. Accordingly, the Bardeen BH can be interpreted as a
self-gravitating nonlinear magnetic monopole with massM
and magnetic charge qm ¼ g, derived from Einstein gravity
coupled to the nonlinear Lagrangian

LðFÞ ¼ 6

sg2
ðg2F=2Þ54

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2F=2

p
Þ52
; ð33Þ

where s ¼ jgj=2M. It has been shown that this Lagrangian
does not have the correct weak field limit [38], [26]. The
solution for the coupled Einstein and NLEM Lagrangian
(33) for a static spherically symmetric space is given by

fðrÞ ¼ gðrÞ ¼ 1 −
2Mr2

ðr2 þ g2Þ32 : ð34Þ
In [39] is presented a study on the scattering and

absorption cross section as well as the quasinormal modes
of the Bardeen BH. In [40] the geodesic motion is
addressed. The solution (34) presents horizons only if
2s ¼ g=m ≤ 0.7698. The electromagnetic invariant is
F ¼ 2g2=r4 and the Ge and Gm factors are given by

Ge ¼ 1; Gm ¼ 1 −
4ð6g2 − r2Þ
8ðr2 þ g2Þ : ð35Þ

Note that for g ↦ 0 the correct limit Gm ¼ 1 is not
achieved; instead Gmðg ↦ 0Þ ¼ 3=2. The radius of the
unstable circular orbit rc is found numerically from (19)
with (34) and (35) and care must be taken so that such a
root is greater than the horizon radius, rc > rh.
The behavior of the QNM from light rays impinging

upon the Bardeen BH is shown in Fig. 5. ωi decreases when
g increases for both massless particles and photons. This
behavior is in contrast with the two previously analyzed
examples; the resemblance with RN ωi occurs only when
the charge approaches zero. Regarding ωr the behavior for
massless particles is indistinguishable from the RN one.
The one corresponding to photons is odd in the sense that
even in the limit that charge goes to zero the RN behavior is
not recovered; one possible explanation may be the nature
of the solution because charge and mass parameters are not
independent, and in fact when charge turns off, so does the
mass whose origin is purely electromagnetic. Moreover, as
it was pointed out before, the Lagrangian (33) does not
have the appropriate weak field limit. QNM frequencies for
massless particles have been determined in [20]; in a
similar fashion as for the BI BH, our results are in good
qualitative agreement; as for the quantitative agreement
some discrepancies exist, attributable to nonlinear electro-
magnetic effects felt by photons and not by massless test
particles. Table III shows some comparative values to get
insight into the discrepancy between the respective
frequencies.

TABLE III. Comparison of the QNM frequencies from test
fields with n ¼ 0, l ¼ 2, andM ¼ 1 using a sixth order WKB for
the bardeen BH [20] and the effective metric for photons in the
eikonal approximation. As the charge grows the differences are
enhanced for both real and imaginary frequencies,

Bardeen BH WKB method Effective metric

g ωr ωi ωr ωi

0.1 0.484470 0.0966541 0.47158 0.0960758
0.2 0.48699 0.0963019 0.47304 0.0956186
0.3 0.491380 0.0956563 0.472984 0.0948243
0.4 0.497895 0.0946064 0.47422 0.0936395
0.5 0.507037 0.0929337 0.475814 0.091981
0.6 0.519668 0.0901727 0.477752 0.091981
0.7 0.537388 0.0851340 0.479982 0.0867285
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FIG. 6. QNM frequencies ωi and ωr of the Bronnikov BH are shown as functions of the charge g; the other parameters are fixed to
M ¼ 1 and n ¼ 0.
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E. Bronnikov magnetic black hole

In [38] NLEM Lagrangians coupled to gravity were
analyzed focusing on the properties that lead to nontrivial
regular metrics. No-go theorems forbid regular electric
BHs, but magnetic ones can be found. One example is
presented in the same reference, with the Lagrangian

LðFÞ ¼ Fsech2½aðF=2Þ1=4�; ð36Þ
where a is a constant. The metric function in the line
element of the form (4) is

fðrÞ ¼ gðrÞ ¼ 1 −
g3=2

ar

�
1 − tanh

�
a
ffiffiffi
g

p
r

��
; ð37Þ

where the constant a is related to the mass m and the
magnetic charge g by a ¼ g3=2=ð2MÞ. The solution corre-
sponds to a BH if M=g > 0.96. The electromagnetic
invariant is F ¼ 2g2=r4. For a purely magnetic charge
Ge ¼ 1 and

Gm ¼ g2sinh2ð g2

2MrÞð−2g2þg2 coshð g2

2MrÞ−5Mrsinhð g2

2MrÞÞ
4Mrð−4Mr3þg2 tanhð g2

2MrÞÞ
:

ð38Þ

The QNM frequency behavior when the charge is
varying is shown in Fig. 6. The imaginary part of the
QNM frequencies ωi for massless particles as well as for
photons reproduces the RN behavior, and slight departure
is observed only when the charge approaches its upper
limit. As for the real part of the QNM frequencies, ωr, for
massless particles it is coincident with RN for any charge,
while a small difference occurs for photons. From all of the
examined examples the Bronnikov BH is the one in which
the nonlinear effects are the least.
Table IV compares the QNM frequencies calculated for

the effective metric in the eikonal approximation with the
ones obtained in [22] with WKB. Definitively there is a
qualitative agreement, and the same tendency is observed.

The discrepancies diminish in the imaginary frequencies
when the charge increases while the opposite happens for
the real parts.

V. CONCLUSIONS

We have studied the QNM frequencies of NLEM BHs
through the Lyapunov exponent in the optical approxima-
tion. QNM frequencies were calculated from the unstable
null geodesics of the effective metric. The effective metric
is obtained from the background metric but taking into
account the NLEM effects. From the expressions of the real
and imaginary parts of the QNM frequencies and Eqs. (20)
and (21), it is clear that the NLEM effects modify QNM
frequencies, enhancing or suppressing them depending on
the sign of the quotients LFF=LF and of the second
derivative of Ge=Gm. The NLEM effects manifest on the
dynamics of the light perturbations modifying the oscil-
lation periods as well as the damping times.
The obtained QNM frequencies, in the eikonal approxi-

mation, are calculated to four SSS BH solutions corre-
sponding to different NLEM theories coupled to gravity. In
all cases comparison is done with the QNM frequencies of
the linear counterpart, the RN back hole. In three of the
examples (the BI, EH, and Bronnikov solution), the NLEM
effect when the charge is varied consists in suppressing the
real part while increasing the imaginary one, i.e., oscillation
periods are larger and relaxation occurs faster.
Comment apart deserves the Bardeen BH. In this case

the effect is the opposite: the real part of the QNM
frequencies is enhanced while the imaginary part is sup-
pressed; notoriously the real frequency is not recovered
when the charge approaches zero. Several explanations
come to mind; among them is that mass and charge
parameters are not independent in this solution and the
limit to zero of the charge cannot be taken separately from
the value of the mass, since the origin of the mass is
magnetic; this is a self-gravitating magnetic structure.
Additionally, the comparison between the behavior of
massless particles and photons was done.
A thorough analysis is needed to know how the

modifications introduced by NLEM effects influence the
BH stability; steps in this direction are given in [26].
Another point of interest would be checking if there is any
consequence to introducing NLEM related to the conjec-
tured relationship between the real part of the QNM
frequencies and the BH area quantization.
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TABLE IV. The QNM frequencies for the Bronnikov magnetic
BH with n ¼ 0, l ¼ 2, and M ¼ 1 comparing the eikonal limit
with a WKB approximation given in [22].

Bronnikov BH WKB method Effective metric

g ωr ωi ωr ωi

0.1 0.458758 0.0951121 0.385544 0.0962784
0.2 0.461174 0.0952761 0.387518 0.0964377
0.3 0.465284 0.0955432 0.390938 0.0966995
0.4 0.471218 0.095901 0.39603 0.0970555
0.5 0.479186 0.096326 0.403162 0.0974872
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