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We study the evolution of black hole entropy and temperature in collapse scenarios in asymptotically
anti–de Sitter spacetime, finding three generic lessons. First, entropy evolution is extensive. Second, at
large times, entropy and temperature ring with twice the frequency of the lowest quasinormal mode. Third,
the entropy oscillations saturate black hole area theorems in general relativity. The first two features are
characteristic of entanglement dynamics in “democratic”models. Solely based on general relativity and the
Bekenstein-Hawking entropy formula, our results point to democratic models as microscopic theories of
black holes. The third feature can be taken as a prediction for microscopic models of black hole physics.
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I. INTRODUCTION

One of the most influential results in black hole physics
is the discovery of black hole entropy [1,2]:

SBH ¼ A
4
; ð1Þ

where A is the area of the event horizon in natural units.
This relation is believed to be a fundamental equation
in quantum gravity, and a huge amount of effort has
been dedicated to understanding its origin and nature.
Approaches might be divided into two classes. The first
class comprises those effective approaches which relate (1)
to some entropy of quantum fields, such as counting the
thermal entropy of near horizon degrees of freedom [3], or
computing different notions of entanglement entropy (total
or renormalized) of quantum fields [4–7]. The second class
comprise those fundamental approaches relating (1) to
some type of entropy in an exact microscopic description
of quantum gravity, such as microstate counting [8–10], or
entanglement entropy in AdS/CFT [11]. It is interesting to
observe that the effective approaches do not use any notion
of quantum gravity, just quantum mechanics and classical
general relativity, while the second approach obviously
rests in the knowledge of the microscopic theory.
A natural question arises as to which are the bridges

connecting the effective approaches with the microscopic
ones. In this vein, it is interesting to ask for novel generic
implications of (1) within potential theories of quantum
gravity. In this article, we give evidence that by considering
black hole entropy in time-dependent scenarios, one can
obtain valuable information about the microscopic structure
of the theory.
Conceptually, the problem is that of entropy production

in thermalization processes. Entropy production is a macro-
scopic quantity directly related to the microscopic inter-
action structure. The reason is that entropy is always
generated by some coarse graining, defined as a practical
inability of measuring certain types of information

(correlators). During a thermalization process, determinis-
tic evolution distributes information evenly over all corre-
lators [12,13], increasing the entropy of the coarse-grained
description of the system. Entropy growth is then directly
related to the ability of the system to create correlations
between the coarse-grained variables and the rest, and these
correlations are controlled by the microscopic interaction
structure.
Technically, since black hole entropy is a geometric

quantity (1), the problem is that of studying scenarios with
dynamical geometry. Considering general relativity coupled
to a scalar field, we choose an initial state containing
a black holewith entropy Si ¼ Ai=4 and a scalar field profile
containing enough energy to backreact on the geometry.
As time evolves, the scalar field collapses towards the black
hole, increasing its entropy to Sf ¼ Af=4. We will examine
concrete examples of spacetimes with different dimensions
and scalar fields with different masses; see Sec. II. We will
arrive at three generic lessons, contained in Eqs. (7), (10),
and (12).
In Sec. III we argue that those lessons contain informa-

tion about the microscopic interaction structure of black
hole dynamics. By reviewing Ref. [14], we will show
that the dynamics of black hole entropy perfectly matches
the dynamics of entanglement entropy in democratic
models. By democratic models we mean the strongest
type of nonlocal models, in which every degree of freedom
interacts with every other degree of freedom. The impor-
tance of such nonlocal physics for black holes was first
pointed out in [15].
Our results fit well in the context of large-N matrix

models and the AdS/CFT conjecture [16–18]. They provide
further evidence of the claims presented in [14] concerning
both the entanglement dynamics of large-N matrix models
and the fast scrambling conjecture [15]. For the same
reasons our results nicely connect with the model of black
hole dynamics proposed in [10], and therefore they might
have implications for strange metals. Finally, from a
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different perspective, we also expect our results to con-
tribute to the understanding of the connection between
geometry and entanglement (see [6,7,11,19–21] and refer-
ences therein).

II. ENTROPY PRODUCTION IN BLACK HOLES

To study entropy production in black hole collapse
scenarios we consider Einstein gravity coupled to a scalar
field. The action reads

I ¼ 1

8π

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
Rþ Λ −

1

2
ð∂ϕÞ2 − 1

2
m2ϕ2

�
; ð2Þ

where Λ ¼ dðd − 1Þ is the cosmological constant and the
scalar has mass m. This means we will be looking at
asymptotically anti–de Sitter (AdS) solutions. This choice
is taken to make direct contact with the AdS/CFT corre-
spondence [18]. In the discussion we comment on what
would change in the asymptotically flat case.
The equations of motion are given by

0 ¼ Rμν −
1

2
gμνR −

1

2
gμνΛþ 1

2
gμν

�
1

2
ð∂ϕÞ2 þ 1

2
m2ϕ2

�

−
1

2
∂μϕ∂νϕ; ð3aÞ

0 ¼ ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ −

ffiffiffiffiffiffi
−g

p
m2ϕ: ð3bÞ

In what follows we take the system to be homogeneous and
isotropic at all times. Any such spacetime can be described
with the ansatz

ds2 ¼ −fðr; tÞdt2 þ 2dtdrþ Σðr; tÞ2d~x2d−1; ð4aÞ
ϕ ¼ ϕðr; tÞ; ð4bÞ

which we choose to simplify the numerical solution later.
The equilibrium solution is a planar AdS-Schwarzschild

black hole with temperature Tf and entropy Sf, and with
vanishing scalar ϕ ¼ 0. Out of equilibrium, the geometry is
asymptotically AdS and the scalar behaves as

ϕðr; tÞ ¼ ϕ0ðtÞ
rΔ

þ � � � ; ð5Þ

where m2 ≡ Δðd − ΔÞ and dots denote higher order cor-
rections in 1=r.
To compute entropy production we assume that (1)

generalizes to time-dependent scenarios [22]. Later on,
we give some evidence of the validity of this assumption.
Notice that time dependence brings a troubling ambiguity:
we can consider many possibilities for the area appearing
in (1) which all coincide in the equilibrium case. In this
article, we will study two interesting cases, namely, the
event horizon area and the area of the apparent horizon
[23]. This is the area of an outermost trapped surface [26]
and it can be defined locally in time (a feature which seems

necessary if we want to equate it to some entanglement
entropy at the boundary). Below we will study the time
evolution of both choices. Although the main features will
be shared by both of them, we find more compelling results
for the apparent horizon area. Aside from entropy, we will
also associate a temperature to the surface gravity of both
horizons; see [27].

A. Extensivity of black hole entropy evolution

From (4), the area of a surface A at fixed t and r is
given by

Area ðAÞ ¼
Z
A
dd−1x

ffiffiffiffiffiffi
−γ

p
; ð6Þ

with
ffiffiffiffiffiffi−γp ¼ Σðr; tÞd−1 the determinant of the spatial part of

the metric. Quite strikingly, just from the assumption that
the entropy is given by the area of the horizon (apparent or
event), it follows directly that given any two disconnected
horizon patches A and B:

SA∪BðtÞ ¼ SAðtÞ þ SBðtÞ: ð7Þ
Black hole entropy is thus extensive at all times. This
implies that the mutual information between different
horizon patches vanishes at all times:

IA∪BðtÞ≡ SAðtÞ þ SBðtÞ − SA∪BðtÞ ¼ 0: ð8Þ
Both previous relations are trivial observations from the
point of view of gravity, but we will argue in Sec. III that
they are nontrivial from a putative microscopic point of
view. Notice that even though we will focus on a homo-
geneous system, the previous equations (7) and (8) hold
generally.
An immediate consequence of (7) is that the character-

istic time scale for the stabilization of the entropy evolution
of a certain horizon patch does not depend on the size of the
chosen patch. By entropy stabilization we mean the time
by which the entropy evolution enters the plateau regime,
where near equilibrium physics hold. We study the physics
of the plateau in the next section.

B. Quasinormal ringing of geometric quantities

Given the extensive behavior of black hole entropy
evolution (7), we would like to find the characteristic time
scale of near equilibrium relaxation as well as the specific
law governing the evolution of geometric quantities at the
plateau.
First, we recall that close to equilibrium the scalar field is

well described by a sum of quasinormal modes. These are
solutions to the linearized equations of motion with ingoing
boundary conditions at the event horizon and vanishing
Dirichlet conditions at the boundary [28]. These solutions
behave as damped harmonic oscillators,
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ϕðr; tÞ ¼ Ae−ωItðcosðωRtþ δÞϕIðrÞ þ sinðωRtþ δÞϕRðrÞÞ:
ð9Þ

There is a discrete spectrum of these modes, with higher
modes decaying more quickly, so that at late times only the
lowest ω ¼ ωR þ iωI contributes. In our setup, the only
quasinormal modes that can be excited with the ansatz (4)
are those of ϕ, which we obtain by solving the generalized
eigenvalue problem associated to Eq. (3b) [29,30].
Following methods developed in [31], one can study the

backreaction produced by (9) on the geometry. We first
expand the scalar and geometry around the equilibrium,
ϕ ¼ ðϕ0 ¼ 0Þ þ ϵδϕð1Þ þ ϵ2δϕð2Þ þ � � � and similar for f
and Σ. Plugging this into the equations of motion (3), at first
order in ϵ we obtain the quasinormal mode equation, there
is no backreaction at this order. At second order, δfð2Þ and
δΣð2Þ are induced by ðδϕð1ÞÞ2. This implies that at late
times, when δϕð1Þ is the lowest quasinormal mode (9), the
geometry will decay to equilibrium with frequency 2ωI,
twice as fast as the scalar.
Inspired by this and by the results of [14], we consider

the following ansatz for the black hole entropy at the
plateau:

δSðtÞ≡ Sf − SðtÞ ¼ Ae−2ωItðcosð2ωRtþ δÞ þ BÞ; ð10Þ

where again ω is the lowest quasinormal mode of the scalar
field. Here A and δ parametrize the initial amplitude and
phase. The parameter B, which we term the damping shift,
suppresses (B > 1) or enhances (B < 1) the oscillations
around the decaying exponential. We consider the same
ansatz for the temperature and apply both to the apparent
and event horizon.
Notice that entropy evolution is special in one regard. By

Hawking’s area theorem [32,33] [34], we have

S0ðtÞ ≥ 0; ð11Þ
implying the following constraint on the damping shift:

B ≥ Bmin ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
I þ ω2

R

p
ωI

: ð12Þ

We stress that in the following we do not assume Eqs. (11)
and (12). This is merely what we expect and indeed what
we will confirm.
To determine whether the ansatz (10) provides a good

description of the time evolution, and to find the parameters
in the ansatz, we must solve the full nonlinear equations of
motion (3). We do this numerically following the methods
of [36]. This approach requires a choice of an initial profile
for the scalar, which we take to be ϕðt ¼ 0; rÞ ¼ T=rΔ, but
we stress that our results do not depend on this choice.
During the evolution, we keep track of the constraint
equation, which is not used to obtain the solution but

should be satisfied automatically provided it is solved at the
boundary, and thus provides a good check on the numerics.
We make sure this constraint remains well below any of the
other quantities we present, in all cases considered.
The results are shown in Fig 1, where we show the

evolution of the entropy and temperature derived from both
event and apparent horizons for d ¼ 4 and Δ ¼ 3. Dashed
lines are fits of the form (10) to each of these quantities,
showing that this ansatz accurately describes the evolution.
Actually we find that the full geometry, δfðr; tÞ and
δΣðr; tÞ, is described by the ansatz of Eq. (10), where now
the parameters A, B, δ depend on r.
By studying different initial profiles we see that the

parameters A and δ depend on the initial conditions, but the
damping shift B does not. We repeat the same process for a
range of different dimensions and masses, obtaining in each
case a picture which is qualitatively the same as Fig 1.
In Table I the damping shift B is shown for each quantity in
all the studied cases.
Remarkably, the evolution of the apparent horizon area

saturates the bound of Eq. (11) at each period of oscillation,
as can be seen qualitatively from the blue line in Fig 1 and
quantitatively for each case by the equality BSAH ¼ Bmin
from Table I. The oscillations around the decaying expo-
nential are maximal and saturate the area theorem in
general relativity. Notice that the saturation associated
with the apparent horizon cannot be inferred by the area
theorems themselves. These theorems are inequalities and,
indeed, in the case of the event horizon we find no
saturation, the growth of entropy being strictly greater
than zero at all times.

FIG. 1. Logarithmic plot of the near equilibrium evolution of
the geometry in response to a small scalar perturbation, for d ¼ 4
and Δ ¼ 3. Shown, from top to bottom, are the scalar field
(green), the areas of the apparent and event horizon (blue,
orange), and the temperatures (surface gravities) of the event
and apparent horizon (red, purple). The δ always refers to the
final value minus the current value, and the last two quantities are
shifted down by 10−1 and 10−3, respectively, for display
purposes. Through each of these quantities a fit of the form of
Eq. (10) is plotted as a dashed line.
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On the other hand, the oscillations of the temperature
are generally enhanced with respect to the scalar field,
i.e., BT < 1. Here again, the temperature of the apparent
horizon oscillates more strongly than that of the event
horizon, with the difference becoming much more pro-
nounced for larger dimensions.
Finally, we would like to note that by adding a constant

source for the scalar, backreaction occurs at first order. This
changes the factor 2ωI in (10) to ωI, but we check that the
apparent horizon still saturates the bound (11), the damping
shift being given by (12).
Summarizing, we arrived at three generic lessons. First,

the evolution of black hole entropy is extensive (7). This
implies that the evolution of any subsystem enters the near
equilibrium regime in a time scale which is independent of
the system size, just dependent on the lowest quasinormal
mode. Second, the evolution at the plateau is accurately
described by the ansatz (10). Third, when measured by the
apparent horizon, black hole entropy evolution saturates
area theorems, allowing us to extract an analytical formula
for the damping shift B appearing in (10).

III. ENTROPY EVOLUTION
IN DEMOCRATIC MODELS

In the previous section we studied the evolution of black
hole entropy in general relativity, arriving at three generic
lessons. As for the static Bekenstein-Hawking formula (1),
we expect these lessons to contain information about the
microscopic structure of quantum gravity.
The first question we want to ask is: what entropy is the

horizon area computing in time-dependent scenarios?
A natural proposal is the following:

ΔSðtÞ≡ SðtÞ − Si ¼ ΔSBHin
ðtÞ þ ΔSφðtÞ; ð13Þ

where ΔSBHin
ðtÞ accounts for the change in entropy of the

degrees of freedom conforming the initial black hole and
ΔSφðtÞ accounts for the change in entropy of the micro-
scopic degrees of freedom supporting the scalar field.
Notice that the previous relation must hold at stationarity,
and it is certainly natural to assume it in the time-dependent
scenario. Given that entropy in unitary quantummechanical

scenarios emerges as entanglement entropy [37–40], the
variation ΔSφðtÞ should account for the entanglement
entropy between the scalar field and the degrees of freedom
supporting the initial black hole. Writing δSBHin

ðtÞ≡
ΔSBHin

ðtfÞ − ΔSBHin
ðtÞ and δSφðtÞ≡ ΔSφðtfÞ − ΔSφðtÞ,

relation (13) can be written as

δSðtÞ ¼ Sf − SðtÞ ¼ δSBHin
ðtÞ þ δSφðtÞ: ð14Þ

Since both terms in the right-hand side are positive, δSðtÞ is
an upper bound for both terms separately. Therefore, black
hole entropy production should bound the approach of the
entanglement entropy between the scalar field and the black
hole:

δSðtÞ > δSφðtÞ: ð15Þ

Before continuing let us remark that this interpretation and
result nicely connects with the derivation of the Bousso
bound using entanglement techniques [7]. It also connects
with the recent proposal connecting vacuum entanglement
with the Einstein equations [6]. But notice that here we are
considering entropy variations in collapse scenarios, using
the full nonlinear Einstein theory. Also, our objective will be
to provide a tentative connection of suchmacroscopic results
with some putative microscopic quantum dynamics.We also
want to remark that computing the entropy difference is a
necessary step towards computing the relative entropy [41]
between the thermal state and the time evolving state. Notice
that given that known modular Hamiltonians in conformal
field theory (CFT) and AdS/CFT are integrals of the local
energy-momentum tensor, and that our process conserves the
energy density at the boundary, it might be the case that the
entropy difference gives directly the relative entropy, an
interesting path which we leave for future work, and which
connects with the questions raised in [43].
Coming back to the bound (15), notice that the deviation

from stationarity of black hole entropy is controlled by
the time scales associated to the scalar field, and not
by any internal properties. This observation suggests that
the classical gravitational description misses δSBHin

ðtÞ,
providing

TABLE I. Fit results of the damping shift B of Eq. (10) for the entropy and temperature as defined by the apparent
horizon and event horizon, for a range of different dimensions d and scaling dimensions Δ.

ðd;ΔÞ ω=πT Bmin BSAH BSEH BTAH BTEH

(3, 2) 1.6372þ 2.0444i 1.281134 1.281134 1.4547 0.464 0.464
(3, 3) 2.4659þ 3.5518i 1.217376 1.217377 1.3845 0.532 0.532
(4, 3) 2.1988þ 1.7595i 1.600513 1.60051 2.0465 0.194 0.236
(4, 4) 3.1195þ 2.7467i 1.513227 1.51323 1.97 0.196 0.285
(5, 3) 1.6165þ 0.8419i 2.164801 2.1648 2.880 0.0314 0.640
(5, 4) 2.4574þ 1.4855i 1.933039 1.9330 2.718 0.0108 0.905
(5, 5) 3.3087þ 2.1547i 1.832485 1.8325 2.7 0.00994 1.10
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δSðtÞ ¼ Ae−2ωItðcosð2ωRtþ δÞ þ BÞ ¼ δSφðtÞ: ð16Þ

It seems that to get δSBHin
ðtÞ we have to resort to the

microscopic theory, an interesting observation worth
exploring further.
To avoid possible confusion, we remark that our results

are not in contradiction with the known evolution of spatial
entanglement entropy in AdS/CFT; see [44–46]. Here we
are not considering “spatial” entanglement entropy of a
putative dual field theory. The claim is that we are bounding
the entanglement between the initially out of equilibrium
fields and the black hole.
The second question we would like to ask is the

following: what is the class of models satisfying such
entropy dynamics? A specific class of many body quantum
theories displaying the scaling behavior (7) and quasinor-
mal decay (10) for the dynamics of their entanglement
entropies has recently been found in [14]. This is the class
of democratic theories, in which every oscillator interacts
with every other oscillator. For these theories the entangle-
ment entropy evolution of a set A of oscillators, labeled by
i ¼ 1;…;M was found to satisfy

SAðtÞ ¼
XM
i¼1

SiðtÞ; ð17Þ

where

SiðtÞ ¼ ðniðtÞ þ 1Þ logðniðtÞ þ 1Þ − niðtÞ logniðtÞ; ð18Þ

and ni ¼ ha†i aii is the average occupation number of the ith
oscillator. The previous result is valid up to subleading
corrections in the thermodynamic limit. It mirrors (7) and
it again implies that mutual information vanishes in the
thermodynamic limit at all times as in (8). Besides, on
general grounds the behavior of the occupation number is
that of the square of the corresponding oscillator, since we
need to construct a product of creation and annihilation
operators. Therefore, it was argued in [14] that ni would
ring at the plateau with twice the quasinormal frequency of
the lowest quasinormal mode of subset A:

niðtÞ≃ nβi þ Ae−2ωItðcosð2ωRtþ δÞ þ 1Þ; ð19Þ
implying an analogous behavior for the entropy evolution.
The behavior found in [14] for democratic systems per-
fectly matches the black hole results (10) and (16) at late
times. But the black hole results add new physics, predict-
ing a damping shift given by (12).

IV. DISCUSSION

In the first part of this article we studied black hole
entropy production. Since black hole entropy is a geometric
quantity (1) we considered scenarios with dynamical
geometry. We found three general lessons:

(i) Black hole entropy evolution is extensive (7). The
characteristic time scale for entering the near equi-
librium regime is independent of the system size.

(ii) At the entropy plateau, black hole entropy and
temperature ring with twice the frequency of the
lowest quasinormal mode (10).

(iii) For the apparent horizon area, the damping shift
BSAH is the maximal one compatible with area
theorems in general relativity (12).

These universal macroscopic lessons are interesting in their
own right.
In the second part of the article, we provided a coherent

microscopic interpretation of the first two macroscopic
results. First, we argued on general grounds that the
deviation from stationarity of black hole entropy should
bound the deviation from stationarity of the entanglement
between the out of equilibrium modes associated to the
classical scalar field and the initial black hole degrees of
freedom. Second, we presented a class of systems with
such highly nontrivial entanglement dynamics. This is the
class of democratic systems; see Sec. III and [14]. Given
this connection, the fact that the damping shift BSAH
saturates area theorems in general relativity is an unex-
pected prediction from black hole physics to the physics of
democratic systems, and might turn into a prediction for the
physics of strange metals [10].
We end this article with some remarks. The first is that

these results have been obtained from a purely macroscopic
perspective. We have not invoked any specific microscopic
theory of quantum gravity, such as string theory [47]. It is
tempting to conclude that any putative theory of quantum
gravity should show such democratic behavior, whether at a
microscopic or at an emergent level. On the other hand,
string theory complies with such requirements [15]. Indeed,
within matrix models and AdS/CFT [16–18] our results
fit remarkably well. In this context, the deviation from
stationarity of black hole entropy bounds the entanglement
dynamics between different subsectors of the large-N
matrix model. In the field theory, this type of entanglement
dynamics were studied in [14], where the behavior (10) was
found. This unexpected agreement between both compu-
tations provides further evidence of the claims made in [14]
concerning the fast dynamics of entanglement growth in
large-N matrix models, and deserves further consideration.
For the same reasons, our results might also be interesting
for the microscopic approach to black hole dynamics
presented in [10].
While in this article we focused on homogeneous, iso-

tropic, scalar-driven evolution of an asymptotically AdS
black brane, we would like to comment on several gener-
alizations. First, the case of a massless scalar corresponds
exactly to that of an anisotropy in the metric, generalizing
away from just scalars, and from isotropy. As to homo-
geneity, while this was an assumption, this is not a strict
requirement, since the entropy evolution (10) applies to late
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times it is sufficient that any present inhomogeneous mode
dies out faster than the homogeneous part. Finally regarding
the asymptotics, we focused on an asymptotically AdS black
hole, but we note that the extensivity (7) applies also to the
asymptotically flat case, and so does the factor 2 in (10) [48].
Whether or not the saturation of the damping shift general-
izes is an open question. We did confirm, although not
presented here, that in the anisotropic asymptotically Lifshitz
setup of [49] the damping shift is also saturated.
We also want to remark that the observed damping shift

B deserves further consideration. It would be interesting
to obtain analytical control over it in the case of other
geometric quantities like the temperature and also obtain a
microscopic understanding of the mechanism that gives rise
to the saturation (12).
Another interesting application of our results concerns

the dynamics of spatial entanglement entropy in AdS/CFT
[45,46]. Given that at sufficiently large times the minimal
area surface has a contribution coming from the area of the
event horizon, we expect to see the quasinormal oscillations
in such a quantity as well. These oscillations were missed in
those references due to the specific nature of the Vaidya

metric, and we expect to see them in more realistic collapse
scenarios.
Lastly, we hope that the relation between horizon area,

quasinormal ringing, and entanglement dynamics uncov-
ered in this article will contribute to a better understanding
of the puzzle of deriving geometry from the properties of
entanglement (see [11,19–21,35] and references therein),
and also to the connection between entanglement and the
Bousso bound [7]. Potentially, it might also be of interest to
approaches of emergent general relativity based on entropy
densities of holographic screens [6,50].
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