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We drastically simplify the problem of linearizing a general higher-order theory of gravity. We reduce it
to the evaluation of its Lagrangian on a particular Riemann tensor depending on two parameters, and the
computation of two derivatives with respect to one of those parameters. We use our method to construct a
D-dimensional cubic theory of gravity which satisfies the following properties: (1) it shares the spectrum of
Einstein gravity, i.e., it only propagates a transverse and massless graviton on a maximally symmetric
background; (2) it is defined in the same way in general dimensions; (3) it is neither trivial nor topological
in four dimensions. Up to cubic order in curvature, the only previously known theories satisfying the first
two requirements are the Lovelock ones. We show that, up to cubic order, there exists only one additional
theory satisfying requirements (1) and (2). Interestingly, this theory is, along with Einstein gravity, the only
one which also satisfies (3).
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I. INTRODUCTION

Higher-order gravities play a prominent role in different

areas of high-energy physics.
In cosmology, they have been countlessly considered in

the search for a coherent picture of the history of the
universe which can account for the observational evidence
currently associated to early-time inflation, late-time accel-
eration or dark matter—see e.g., [1–4].
In the holographic context, [5–7], they are used to study

different aspects of strongly coupled conformal field
theories (CFTs) and, in some occasions, they have been
crucial in unveiling certain universal properties of general
CFTs—see e.g., [8–13]. In fact, holography itself has
motivated the construction of new higher-derivative theo-
ries like quasitopological (QT) gravity [14–16].
Along different lines, certain classes of higher-order

gravities have been considered as quantum gravity toy
models [17,18]. Popular examples of this are topologically
massive gravity [19] and new massive gravity [20] in three
dimensions, and critical gravity in four [21].
A particularly relevant aspect of a given higher-order

gravity is its linearized spectrum, i.e., the set of physical
degrees of freedom propagated by metric perturbations on
the vacuum. For example, in the context of holography, the
linearized equations of a given higher-order gravity provide
useful information about the corresponding holographic
CFT stress-tensors, since these are dual to the metric
perturbation—see e.g., [9,12,22,23].
As we will see, there are certain higher-order gravities

which are equivalent to Einstein gravity at the linearized
level in the vacuum, i.e., the only physical mode propagated
by the metric perturbation is a transverse and massless
graviton. Some known examples include QT gravity [14],

and certain f(Lovelock) theories [24,25]. However, most of
these theories have the inconvenience that the couplings of
the different curvature invariants depend on the spacetime
dimension D. Hence, they are actually different theories in
different dimensions. The only known theories with
dimension-independent couplings which share spectrum
with Einstein gravity are Lovelock theories [26–29].
We will show that, up to cubic order in curvature, there is

one only additional theory which satisfies this criterium.
Furthermore, as opposed to the quadratic and cubic
Lovelock ones, this theory is nontrivial in four dimensions.
In the construction of this Einsteinian cubic gravity, we

make use of a new method for linearizing general higher-
order gravities which we also present here. We will argue
that this procedure is much faster than all the previous
methods available in the literature.

II. LINEARIZATION PROCEDURE

Let us consider a general D-dimensional theory of
gravity involving arbitrary contractions of the Riemann
tensor and the metric, i.e.,

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
LðRμνρσ; gαβÞ: ð1Þ

The field equations of this theory can be written as

Eμν ¼ PμσρλRν
σρλ −

1

2
gμνL − 2∇α∇βPμαβν ¼ 0; ð2Þ

where we defined Pμνσρ ≡ ½∂L=∂Rμνσρ�jgαβ . Our aim is to
linearize the equations (2) around a maximally symmetric
spacetime (m.s.s.) ðM̄; ḡμνÞ with Riemann tensor
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R̄μναβ ¼ 2Λḡμ½αḡβ�ν. Hence, we consider a metric of the
form gμν¼ ḡμνþhμν, where hμν≪1 for all μ;ν¼0;…;D−1.
The goal is now to expand the field equations (2) to linear
order in the perturbation hμν and its derivatives. In the
process, it is convenient to define L̄≡ LjB and the objects

P̄μαβν ≡ ∂L
∂Rμαβν

����
B
; C̄μαβν

σρλη ≡ ∂Pμαβν

∂Rσρλη

����
B
; ð3Þ

where jB denotes evaluation on the background. Now, the
explicit form of tensors P̄μαβν and C̄μαβν

σρλη depends on the
particular Lagrangian L under consideration. However,
since P̄μαβν and C̄μαβν

σρλη are defined on a m.s.s., they can
only contain terms involving products and contractions of
the metric ḡμν, its inverse ḡμμ and δνμ. Besides, as it is
evident from their definitions (3), they inherit the sym-
metries of the Riemann tensors involved in such defini-
tions. These constraints are so strong that P̄μαβν and C̄μαβν

σρλη

must be necessarily given by

P̄μαβν ¼ 2eḡμ½βḡν�α;

C̄σρλη
μαβν ¼ a½δ½σμ δρ�α δ½λβ δη�ν þ δ½λμ δ

η�
α δ

½σ
β δ

ρ�
ν �

þ b½ḡμβḡαν − ḡμνḡαβ�½ḡσλḡρη − ḡσηḡρλ�
þ 4cδ½σðτḡ

ρ�½λδη�ϵÞδ
τ
½μḡα�½βδ

ϵ
ν�; ð4Þ

where the only theory-dependent quantities are the con-
stants a, b, c and e. Interestingly, these constants fully
characterize the linearized equations of any theory of the
form (1).
Imposing the background metric ḡμν to be a solution of

the field equations (2) gives rise to a relation between the
constant e introduced in (4), the background scale Λ, and
all the other possible couplings present in the general
higher-order Lagrangian. It reads L̄ðΛÞ ¼ 4eðD − 1ÞΛ.
Using the chain rule and Eqs. (4) one can obtain
another relation involving e and Λ, namely dL̄ðΛÞ=dΛ ¼
2eDðD − 1Þ. These two equations together give rise to the
beautiful expression

Λ
dL̄ðΛÞ
dΛ

¼ D
2
L̄ðΛÞ: ð5Þ

This is the relation between the scales and couplings
appearing in the higher-derivative Lagrangian (1) and the
background curvature Λ which must be satisfied in order
for ḡμν to be a solution of (2).
The information gathered so far is all what we need in

order to linearize (2). After a remarkably long computation,
we obtain the following result for the linearized equations
of (1)

1

2
EL
μν ¼ ½e − 2ΛðaðD − 1Þ þ cÞ þ ð2aþ cÞ□̄�GL

μν

þ ½aþ 2bþ c�½ḡμν□̄ − ∇̄μ∇̄ν�RL

− Λ½aðD − 3Þ − 2bðD − 1Þ − c�RLḡμν; ð6Þ

where the linearized Einstein tensor, Ricci tensor and Ricci
scalar read, respectively

GL
μν ¼ RL

μν −
1

2
ḡμνRL − ðD − 1ÞΛhμν; ð7Þ

RL
μν ¼ ∇̄σ∇̄ðμhνÞσ −

1

2
□̄hμν −

1

2
∇̄μ∇̄νh; ð8Þ

RL ¼ ∇̄μ∇̄νhμν − □̄h − ðD − 1ÞΛh: ð9Þ

The problem is now that obtaining the values of a, b, c and e
for a given theory using (3) and (4) is a rather tedious task in
general, which involves computing first and second deriv-
atives of the Lagrangian with respect to the Riemann tensor.
However, these parameters can actually be computed in a
much simpler way for any theory. Let us leave for the
moment the framework of linearized gravity and consider an
auxiliary symmetric tensor kμν whose indices—as usual—
are raised with the inverse metric gμν, and which by
definition satisfies the following properties

kμμ ¼ χ; kμαkαν ¼ kμν: ð10Þ

Here, χ is an arbitrary integer number smaller than D that
can be fixed at will, but which we will just leave unde-
termined throughout the calculation. Now let us define the
following “Riemann tensor”

~RμνσρðΛ; αÞ ¼ 2Λgμ½σgρ�ν þ 2αkμ½σkρ�ν; ð11Þ

where Λ and α are two parameters. Observe that while
~RμνσρðΛ; αÞ has the right symmetries of a Riemann tensor, it
is not—or rather, it does not need to be—the Riemann
tensor of any actual metric in general. Note nevertheless that
when α ¼ 0, ~RμνσρðΛ; αÞ reduces to the Riemann tensor of a
m.s.s. of curvatureΛ. The next step is to evaluate our higher-
derivative Lagrangian (1) on ~RμνσρðΛ; αÞ, i.e., we substitute
all Riemann tensors appearing in L by the object defined in
(11). This gives rise to a function of Λ and α,

LðΛ; αÞ ¼ LðRμνρσ ¼ ~RμνρσðΛ; αÞ; gαβÞ: ð12Þ

Note that in this evaluation, indices are still raised and
lowered with gμν, and not with some combination of gμν and
kμν. Now, it turns out that a, b, c and e can all be read off
from partial derivatives of LðΛ; αÞ with respect to α and
evaluated at α ¼ 0. Such partial derivatives are of course
trivial to compute. Indeed, using the chain rule along with
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Eqs. (3) and (4), we find that the following equations are
satisfied for any theory,

∂L
∂α

����
α¼0

¼ 2eχðχ − 1Þ; ð13Þ

∂2L
∂α2

����
α¼0

¼ 4χðχ − 1Þðaþ bχðχ − 1Þ þ cðχ − 1ÞÞ: ð14Þ

The crucial observation is that a, b, c and e do not depend on
χ. Hence, since these constants appear multiplied by factors
involving different combinations of χ, the above expres-
sions allow us to identify them immediately for a given
theory. Once we evaluate LðΛ; αÞ, we just need to compute
the two partial derivatives above and compare the resulting
expressions with the right-hand side of (13) and (14) in
order to obtain a, b, c and e.
We have verified that our linearization procedure cor-

rectly accounts for all the results available in the literature
corresponding to: quadratic gravities [21,31–34], general
f(Lovelock) theories [24] and QT gravity [14,15].
Our method is remarkably simpler than computing P̄μνρσ

and C̄μναβ
ληστ explicitly using their definitions (3). The hardest

part of the calculation is the evaluation of the function
LðΛ; αÞ, which exclusively involves trivial contractions of
gμν and kμν and which, in the sense we have just explained,
contains all the information necessary for the linearization
of any theory of the form (1) on a m.s.s..

III. PHYSICAL MODES

In order to identify the physical degrees of freedom
propagated by the metric perturbation in a general theory of
the form (1), we further simplify the linearized equations (6)
by imposing the transverse gauge condition, ∇̄μhμν ¼ ∇̄νh.
A careful analysis suggests the following decomposition of
the metric perturbation [35],

hμν ¼ tðmÞ
μν þ tðMÞ

μν þ ½∇̄μ∇̄ν − 1
D ḡμν□̄�h

ðm2
s þDΛÞ þ 1

D
ḡμνh; ð15Þ

wherem2
s will be defined in a moment. It is now possible to

show that the traceless tensors tðmÞ
μν and tðMÞ

μν , and the trace h
satisfy, respectively,

−
1

2κeff
½□̄−2Λ�tðmÞ

μν ¼0;

1

2κeff
½□̄−2Λ−m2

g�tðMÞ
μν ¼0;

−
�ðD−1ÞðD−2ÞΛðm2

g−ðD−2ÞΛÞ
4κeffm2

gðm2
sþDΛÞ

�
½□̄−m2

s �h¼0; ð16Þ

where κeff , m2
g and m2

s are defined in terms of a, b, c
and e as

κ−1eff ¼ 4e − 8ΛðD − 3Þa; ð17Þ

m2
g ¼ ð−eþ 2ΛðD − 3ÞaÞ=ð2aþ cÞ; ð18Þ

m2
s ¼

eðD − 2Þ − 4Λðaþ ðbDþ cÞðD − 1ÞÞ
2aþDcþ 4bðD − 1Þ : ð19Þ

Notice also that we have made explicit the overall coef-
ficients which would appear in the left-hand side of
Eqs. (16) had we coupled the theory to matter. In that
case, an effective stress-tensor would appear in the right-

hand side of Eqs. (16) [36]. From (16), it is clear that tðmÞ
μν is

the usual massless graviton. h is in turn a scalar field of

mass ms. Finally, t
ðMÞ
μν is a spin-2 field of mass mg whose

coupling to matter would have the wrong sign, which is a
manifestation of its ghostlike behavior. Also, κeff ¼ 8πGeff
is the effective Einstein constant of the theory. Using
(17)–(19), we can obtain the relevant physical parameters
in terms of the constants characterizing a given theory as
explained in the previous section.
There exist different special classes of theories depend-

ing on the values of ms and mg—see e.g., [32,33] for
previous classifications. For example, if we demand
jm2

gj ¼ þ∞, the massive graviton is absent, and the theory
has a chance to be unitary. The family of f(Lovelock)
gravities [24] is the prototypical example of this class—
including fðRÞ [12], R2 [32,37], etc. If we set jm2

s j ¼ þ∞
instead, the scalar disappears and we are left with the two
spin-2 fields. This is the case, e.g., of quadratic conformal
gravity [21,38]. Within this class, we can further impose
m2

g ¼ 0, which leads to theories with two zero-energy
gravitons. These are usually referred to as critical gravities
[21]. The case of theories with jm2

gj ¼ jm2
s j ¼ þ∞ will be

treated in a moment.

IV. LINEARIZATION OF CUBIC GRAVITIES

Let us now apply our linearization procedure to a general
D-dimensional cubic gravity. The Lagrangian of such a
theory can be written as

L ¼ 1

2κ
½−2Λ0 þ R� þ

X3
i¼1

αiL
ð2Þ
i þ κ

X8
i¼1

βiL
ð3Þ
i : ð20Þ

In this expression, κ ≡ 8πG and Λ0 are the Einstein and
cosmological constants respectively, αi and βi dimensionless
parameters, and Lð2Þ and Lð3Þ are complete sets of quadratic
and cubic invariants, which we choose to be Lð2Þ ¼
fR2; RμνRμν; RμνρσRμνρσg and Lð3Þ ¼ fRμ

ρ
ν
σRρ

γ
δ
βRγ

μ
δ
ν;

Rμν
ρσRρσ

γβRγβ
μν; RμνρσRμνρ

γRσγ;RμνρσRμνρσR;RμνρσRμρRνσ;
Rν
μR

ρ
νR

μ
ρ; RμνRμνR; R3g respectively.
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Following the linearization procedure explained in the
first section, we obtain: a ¼ α3 − κΛ

2
½3β1 − 12β2 −

2ðD − 1Þβ3 − 2DðD − 1Þβ4�, b ¼ α1
2
þ κΛ

2
½4β4 þ β5 þ

2ðD − 1Þβ7 þ 3DðD − 1Þβ8�, c ¼ α2
2
þ κΛ

2
½3β1 þ 4β3 þ

ð2D − 3Þβ5 þ 3ðD − 1Þβ6 þDðD − 1Þβ7� and e¼ 1
4κþ

Λ½DðD−1Þα1þðD−1Þα2þ2�þ κΛ2

2
· ½3ðD−2Þβ1þ12β2 þ

6ðD−1Þβ3 þ 6DðD−1Þβ4 þ 3ðD−1Þ2ðβ5 þ β6þDβ7þ
D2β8Þ�. Plugging these values in (6), we obtain the
linearized equations of the general cubic theory (20).

V. EINSTEINIAN CUBIC GRAVITY

The theories which only propagate a massless graviton
on the vacuum are those for which the additional modes are
infinitely heavy, i.e., those for which jm2

gj ¼ jm2
s j ¼ þ∞.

These conditions translate into 2aþ c ¼ 4bþ c ¼ 0. At
quadratic order, they impose α1 ¼ α3 ¼ −α2=4. Hence, the
only quadratic theory whose spectrum coincides with that
of Einstein gravity is nothing but Gauss-Bonnet,
X4 ¼ R2 − 4RμνRμν þ RμνρσRμνρσ. For the cubic case, the
two constraints would leave us with six independent
parameters. Hence, there exists a six-parameter family of
cubic theories whose spectrum is identical to that of
Einstein gravity. Note however that most of those theories
will be such that the values of the couplings βi will change
with the spacetime dimension. Hence, they are actually
different theories in different dimensions. This is the
case, for example, of QT gravity [14,15] and of certain
f(Lovelock) theories [24,25].
Another aspect to be considered is the following.

Consider a theory with dimension-dependent couplings
μðDÞ which only propagates the usual graviton in ðAÞdSD,
for some D. If, in the same number of dimensions,
we linearize its equations on ðAÞdSD0 ×RD−D0 instead
and consider configurations constant on the transverse
factor, the equations will actually be identical to the ones
that we would find for the theory—with the same μðDÞ
couplings—in D0 dimensions. But these will in general
involve the spin-2 ghost field. Of course, this problem does
not occur if the theory is the same in all dimensions.
Along similar lines, for an action involving some

gravitational term, if we compactify some of the dimen-
sions, the resulting effective action on the noncompact
dimensions will involve the same gravitational term only if
this is defined in a dimension-independent way. This
feature is relevant as it prototypically occurs for the
Einstein-Hilbert term in string theory compactifications.
For example, the 10-dimensional type-IIA effective action
gives rise to a particular D ¼ 4, N ¼ 2 supergravity when
we compactify 6 of the dimensions on a Calabi-Yau
threefold—see e.g., [39]. Interestingly, the leading term
in the type-IIA action for the metric is the 10-dimensional
Einstein-Hilbert one, Rð10Þ. When we compactify, this
produces the four-dimensional term Rð4Þ, plus others

involving additional fields. Clearly, this feature happens
only for theories defined in a dimension-independent
fashion.
Interestingly, if we demand the parameters βi to be

independent of D, the number of constraints is six instead
of two. This is because both 2aþ c and 4bþ c are
polynomials of order D2, so we need to impose that the
coefficients of the terms proportional to D0, D and D2

vanish independently. This leaves us with a two-parameter
family of theories. In particular, we find

β1 ¼ γ; β2 ¼
γ

12
þ14ζ

3
; β3 ¼−24ζ; β4 ¼ 3ζ;

β5 ¼−γþ16ζ; β6 ¼
2γ

3
þ64ζ

3
; β7 ¼−12ζ; β8 ¼ ζ;

ð21Þ

where γ and ζ are the free parameters. Now we have the
freedom to choose a basis of two cubic invariants satisfying
the above constraints. The first element is somewhat
canonical, and corresponds to the dimensionally-extended
Euler density X6, which one finds for γ ¼ −8ζ. Any other
choice produces another invariant. A particularly simple
one corresponds to setting γ ¼ 12, ζ ¼ 0, for which we get
the following cubic term:

P ¼ 12Rμ
ρ
ν
σRρ

γ
σ
δRγ

μ
δ
ν þ Rρσ

μνR
γδ
ρσR

μν
γδ

− 12RμνρσRμρRνσ þ 8Rν
μR

ρ
νR

μ
ρ: ð22Þ

Hence, we find that the most general theory of the form (20)
possessing dimension-independent couplings which shares
spectrum with Einstein gravity reads

L ¼ 1

2κ
½−2Λ0 þ R� þ αX4 þ κ½βX6 þ λP�; ð23Þ

where X4 and X 6 are the quadratic and cubic Lovelock
terms respectively [40]. The linearized equations of (23) are
almost identical to those of Einstein gravity, namely

EL
μν ¼

1

2κeff
GL

μν; ð24Þ

the only signature of the higher-derivative theories
being an effective Einstein constant given by κ−1eff ¼ κ−1½1þ
4ðD−3ÞðD−4ÞαðΛκÞþ6ðD−3ÞðD−6ÞððD−4ÞðD−5Þ×
β−4λÞΛ2κ2�.
Observe that if we restrict ourselves to four dimensions,

X6 ¼ 0 identically, and X4 is topological. However, P is
neither trivial nor topological in D ¼ 4. In fact, the
embedding equation on a maximally symmetric spacetime
(5) for this theory reads
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8λðD−3ÞðD−6ÞðκΛÞ3− κΛþ 2κΛ0

ðD−1ÞðD−2Þ¼ 0: ð25Þ

As we can see, P contributes to this equation in all
spacetime dimensions but D ¼ 3 and D ¼ 6. [42].
Similarly, the effective Einstein constant reads κ−1eff ¼
κ−1½1 − 24λðD − 3ÞðD − 6ÞðκΛÞ2� which, once the
vacuum has been determined using (25), can be rewritten
as κ−1eff ¼ κ−1½6Λ0=ðΛðD − 1ÞðD − 2ÞÞ − 2�. The unitarity
of the theory requires κeff to be positive, which in
particular implies that the energy of the massless graviton
is positive: E ¼ κE=κeff · EE > 0, where the label E stands
for Einstein gravity [21]. Using this condition, we
observe that the allowed vacua are constrained to
satisfy 0 < ðD − 1ÞðD − 2ÞΛ=ð6Λ0Þ < 1=2. For D < 6,
this puts a bound on the coupling value, λ >
−ðD − 1Þ2ðD − 2Þ2=ð216ðD − 3Þð6 −DÞκ2Λ2

0Þ. If this is
satisfied, then there is always at least one stable vacuum. If,
in addition, λ > 0, it follows from (25) that this is unique.

VI. CONCLUSIONS

We have notably simplified the problem of linearizing a
general higher-order gravity of the form (1) on a m.s.s.. Our
method only involves the evaluation of the gravitational
Lagrangian on a particular Riemann tensor ~RμνρσðΛ; αÞ—
defined in terms of two parameters in (11)—and of
two derivatives of the resulting function with respect to
one of the parameters. Previous methods ranged from the
brute-force linearization of the corresponding full nonlinear
equations, to more refined techniques—see e.g., [32,33,43]

—which incorporated decompositions analogous to the one
performed in (4), but which still relied on the tedious
computation of first and second derivatives of the
Lagrangian with respect to the Riemann tensor.
We have shown that, up to cubic order in curvature, there

are only two theories with dimension-independent cou-
plings which propagate a transverse, massless and positive-
energy graviton on a m.s.s. and which are nontrivial in
four dimensions. The first is of course Einstein gravity, and
the second—which we have coined Einsteinian cubic
gravity—is given in (22). For positive values of the
coupling constant λ, this theory has a unique vacuum.
There are of course many aspects of the theory that

have not been covered here and which should be studied
elsewhere. For example, preliminary results suggest
that it admits spherically symmetric black hole solutions
of the form ds2 ¼ −fðrÞdt2 þ dr2=gðrÞ þ r2dΩ2

D−2, where
fðrÞ ¼ gðrÞ, i.e., characterized by a single function. We
would also like to explore holographic applications—e.g.,
along the lines of [16,23].
More generally, it would be very desirable to understand

to what extent the analogy with Einstein gravity provided
here extends to other aspects of the theory.
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