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Black holes that have nearly evaporated are often thought of as small objects, due to their tiny exterior
area. However, the horizon bounds large spacelike hypersurfaces. A compelling geometric perspective on
the evolution of the interior geometry was recently shown to be provided by a generally covariant definition
of the volume inside a black hole using maximal surfaces. In this article, we expand on previous results and
show that finding the maximal surfaces in an arbitrary spherically symmetric spacetime is equivalent to a
1þ 1 geodesic problem. We then study the effect of Hawking radiation on the volume by computing the
volume of maximal surfaces inside the apparent horizon of an evaporating black hole as a function of time
at infinity: while the area is shrinking, the volume of these surfaces grows monotonically with advanced
time, up to when the horizon has reached Planckian dimensions. The physical relevance of these results for
the information paradox and the remnant scenarios are discussed.
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I. INTRODUCTION

Since the mid-1970s, the information-loss paradox [1]
has been at the center of a heated debate. The fate of the
large amount of information fallen inside the hole is the
main topic of several resolution proposals in the literature
(for a nonexhaustive review see [2] and the references
therein).
In the setting in which the semiclassical approximation

behind Hawking’s computation remains valid up to the very
late stages of the evaporation, and quantum gravitational
effects play an important role only in the strong curvature
regime by “smoothing out” the singularity [3], a natural
possible outcome is the formation of a remnant: a final
minuscule object that stores all the information needed to
purify the external mixed state [4,5] (see [6] for a recent
review).
The tiny mass and external size of such objects are

central to objections against both the existence of remnants
(infinite pair production—see [7] and the references
therein) and their impossibility of storing inside a large
amount of information. The naive intuition of “smallness,”
however, can be very misleading since a remnant contains
spatial hypersurfaces of very large volume, see for in-
stance [8,9].
Once a horizon forms, surfaces of increasingly large

volume start to develop. This characteristic is naturally
captured by themanifestly coordinate independent definition
of volumeemployingmaximal surfaces recently proposed by
Carlo Rovelli together with one of the authors in [10], where
it was applied to the interior of static black holes.;1

For asymptotically flat geometries, this volume can be
parametrized with the advanced Eddington-Finkelstein
time v and is denoted as VðvÞ. In the interior of a static
spherically symmetric black hole of mass m0 formed by
collapsing matter, the volume grows monotonically with v
and is given at late times v ≫ m0 by

VðvÞ ≈ Cm2
0v; ð1Þ

where C ¼ 3
ffiffiffi
3

p
π for the uncharged case.2

In this article, we expand upon the results in [10] and
show that the conclusions in that work extend to the case of
an evaporating black hole. The volume of maximal surfaces
bounded by the shrinking apparent horizon monotonically
increases up to when its area has reached Planckian
dimensions. Specifically, we show that, at any time, there
exists a spacelike maximal surface with proper volume
approximately given by (1) (where m0 is now the initial
mass) that connects the sphere of the apparent horizon at
that time to the center of the collapsing object before the
formation of the singularity.3 The final remnant hides inside
its external Planckian area a volume of order ðm0=mPÞ5lP3.
We first review and clarify some aspects of the dis-

cussion given in [10] and generalize the results presented
there so that they may be used in an arbitrary spherically
symmetric spacetime. In Sec. II and the Appendix, we
prove the technical result that finding the spherically
symmetric maximal surfaces is equivalent to solving a
two-dimensional geodesic problem. In Sec. III we review
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1Other definitions for the volume have been proposed else-

where [11–17].

2The Reissner-Nordström spacetime, in which case C depends
on the charge Q, was studied in the Appendix of [10] and similar
results hold also for anti–de Sitter black holes [18]. The Kerr case
is considered in [19].

3An argument for the persistence of the large volume in the
evaporating case was discussed in [20].
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the definition of volume and discuss the analogy between
the Minkowski and the Schwarzschild case in order to
illustrate its geometric meaning. In Sec. IV we examine the
evaporating case and calculate the volume enclosed in the
horizon as a function of time at infinity. We close with a
discussion on the physical relevance of our result with
respect to the debate on the fate of information in
evaporating black holes.

II. MAXIMAL SURFACES AS A 1þ 1
GEODESIC PROBLEM

A general spherically symmetric spacetime can be
described by a line element

ds2 ¼ gαβdxαdxβ ¼ gABdxAdxB þ r2dΩ2; ð2Þ

with dΩ2 ¼ sin2 θdϕ2 þ dθ2. We use the notation xα ¼
fx0; r; θ;ϕg and xA ¼ fx0; rg.
Spherically symmetric hypersurfaces Σ can be para-

metrically defined via a coordinate λ:

ds2Σ ¼ ðgAB _xA _xBÞdλ2 þ r2dΩ2; ð3Þ

where xA ¼ xAðλÞ and _xA ≡ d
dλ x

AðλÞ. We have Σ ∼ γ × S2,
with γ∶λ → xAðλÞ being a curve in the x0 − r plane. We
denote as ya ¼ fλ;ϕ; θg and hab ¼ eαae

β
bgαβ the coordinates

and the induced metric on Σ respectively, where eαa ¼ ∂xα
∂ya

provides a basis of tangent vectors on Σ.
We look for the stationary points of the volume func-

tional:

V½Σ� ¼
Z
Σ
dy3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det hab

p

¼ 4π

Z
γ
dλðr4gAB _xA _xBÞ1=2

¼ 4π

Z
γ
dλð~gAB _xA _xBÞ1=2; ð4Þ

where Σ are spherically symmetric surfaces bounded by a
given sphere ∂Σ.
Thus, the extremization of V½Σ� is equivalent to the 2D

geodesic problem for the auxiliary metric ~gAB ¼ r4gAB.
That is, γ is a solution of

_xA ~∇A _xB ¼ eAλ
~∇AeBλ ¼ 0; ð5Þ

where ~∇ is the covariant derivative in ~gAB and λ has been
chosen to be an affine parameter on γ with respect to ~gAB.
The stationary points of V½Σ� solve the “Plateau’s

problem” or “isoperimetric problem” for ∂Σ. In a
Euclidean context these are local minima, while in the
Lorentzian context they are local maxima. It is simple to
show that if the trace K ¼ Kαβgαβ of the extrinsic curvature
of a hypersurface vanishes, the variation of the volume

functional is automatically zero (see for instance [21]). For
this reason, in the Lorentzian context, surfaces with K ¼ 0
are called maximal surfaces.
It is the authors’ understanding that a general proof of the

opposite statement, namely that for arbitrary spacetimes
extremizing V½Σ� for a given ∂Σ yields K ¼ 0 surfaces, is
missing. Several precise proofs exist in the mathematical
relativity literature (see for instance the seminal papers
[22,23]) that typically rely on energy conditions or other
restrictions on the metric or on the surfaces. “Physicist”
demonstrations can be found in the 3þ 1 literature [21,24].
For completeness, we prove in the Appendix that, for an

arbitrary metric gAB, any surface Σ ∼ γ × S2, with γ being a
solution of (5), has K ¼ 0. From well-known theorems
about the geodesic equation, this also guarantees the local
existence of maximal surfaces, see also [25].
The physical relevance of maximal surfaces has long

been recognized in diverse disciplines ranging from prob-
lems in mathematical physics [26] to architecture and the
beautiful tensile structures of Frei Otto [27]. In general
relativity, their usefulness for numerically solving
Einstein’s equations is reflected in the popular “maximal
slicing”4 (see for instance [24] and the references therein),
which in a sense generalizes the slicing of a Newtonian
spacetime by constant (absolute) time surfaces.
Common notions of volume implicitly use maximal

surfaces. These include the everyday meaning of volume,
the special relativistic proper volume and the volume of the
Universe, where the latter habitually refers to the proper
volume of the t ¼ const. surfaces of the Friedmann-
Robertson-Walker metric: spherically symmetric maximal
surfaces.

III. REVIEW OF THE VOLUME DEFINITION

The volume definition given in [10] can be stated as
follows: the volume inside a sphere S is defined as the
proper volume of the maximal spherically symmetric
surface Σ bounded by S, which has the largest volume
amongst all such Σ. Note that this is a geometric statement
and as such it is manifestly generally covariant.
In order to illustrate its geometric meaning, we examine

in the rest of this section the analogy between the maximal
surfaces of Minkowski spacetime and those of the
Schwarzschild solution. The discussion is summarized in
Figs. 1 and 2.
Using the advanced time v ¼ tþ R

dr
fðrÞ, the geometry of

the two spacetimes is described by

4The family of surfaces discussed in the next section includes
the surfaces used for maximal slicing, but keep in mind that we do
not restrict ourselves to surfaces satisfying the “singularity
avoidance” or the “nowhere-null” condition. In fact, half of each
family of K ¼ 0 surfaces we will study end at the singularity and
become null there.
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ds2 ¼ −fðrÞdv2 þ 2dvdrþ r2dΩ2; ð6Þ

with fðrÞ ¼ 1 and fðrÞ ¼ 1 − 2m=r respectively. Consider
the sphere Sv defined as the intersection of r ¼ 2m and the
ingoing radial null ray of constant v. It bounds a family of
maximal surfaces, the solutions of (5) for different initial
speeds.
In Minkowski, these are the simultaneity surfaces of

inertial observers, which are straight lines in the t − r plane.
The onewith the biggest volume,Σv, is thatwhichdefines the
inertial frame of Sv. Its proper volume is what we call the
proper volume in special relativity; that is, VΣv

¼ 4
3
πð2mÞ3.

In Schwarzschild geometry, the maximal surfaces start-
ing from Sv approach the surface r ¼ 3=2m (because of this
behavior, r ¼ 3=2m will be called “limiting surface”), and
become null either when they reach the singularity or when
they asymptotically approach the horizon, except for one
that asymptotically becomes r ¼ 3m=2.5 The proper vol-
ume of this surface is infinite.

FIG. 1. (Left panel) Maximal surfaces (blue lines) inside a two-sphere in flat Minkowski spacetime. The largest is the t ¼ const. (bold
black lines) defining its inertial frame. (Right panel) Maximal surfaces (blue lines) inside a two-sphere on the horizon of a static black
hole. Apart from the transient part connecting it to the horizon, the largest surface (bold black lines) lies on the limiting surface
r ¼ 3=2m. The volume difference between the spheres Sv and Sv0 is finite and given by (7).

FIG. 2. Penrose diagram illustrating the surface defining the
volume (black curve) in the case of a black hole formed by
collapse. The details of the surface in the interior of the collapsing
object (dotted curve) will depend on the specific metric use to
describe the latter. For Oppenheimer-Snyder and null massive
shell collapses, this contribution to the volume is of the order m3.

5The existence of the limiting surface r ¼ 3=2m was first
pointed out in [28]. It is crucial for the singularity avoidance
property of the maximal slicing, which is in fact comprised by the
Σv extended to infinity. Similar elongated surfaces are studied in
numerical relativity [29,30] and have been dubbed “trumpet
geometries” [31].
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This is a characteristic difference between the two
geometries which underlines the common understanding
that space and time exchange roles inside the hole. Inside
the sphere containing flat space, there are radial timelike
curves of infinite length, while all radial spacelike curves
have a proper length at most equal to the radius of the
sphere. Inside a black hole this is reversed: there are radial
spacelike curves of infinite length, while radial timelike
curves have a proper time at most equal to πm.
In the physical case of noneternal black holes formed by

collapse, the surface Σv does not have infinite volume since
it does not extend infinitely along r ¼ 3=2m. In fact, it
connects the sphere at the horizon Sv with the center of the
collapsing object before the formation of the singularity,
see Fig. 2. The surface in its interior will be given by
solving (5) for the interior metric. For a collapse modeled
by a null massive shell or à la Oppenheimer-Snyder [32],
the contribution to VðvÞ will be of the order of that of the
flat sphere ∼m3. At late times v ≫ m, this contribution is
negligible with respect to the one given by the main part
lying on r ¼ 3=2m, and the volume is given by (1).
This characteristic monotonic behavior is perhaps best

understood by extending the definition to the case of an
eternal black hole. In this case we consider the volume
difference ΔVðv; v0Þ between two spheres Sv and Sv0
labeled by different times at infinity, in analogy to con-
sidering the proper time between any two points on a
timelike curve that otherwise extends to arbitrary values of
its affine parameter.
In Minkowski, this difference is zero: the proper volume

of the sphere of a fixed radius remains constant. In
Schwarzschild, by the translation invariance inside the
horizon, ΔVðv; v0Þ is given by the volume of the part of
Σv0 that lies on the limiting surface r ¼ 3m=2 and does not
overlap with Σv. Thus, this difference is finite, monoton-
ically increasing and given by

ΔVðv; v0Þ ¼ 3
ffiffiffi
3

p
πm2ðv0 − vÞ: ð7Þ

Notice that the result for a black hole formed by collapse,
Eq. (1), is nothing but the approximate version of the above
equation with v ¼ 0.
The analysis presented in this section can be nicely

extended to the case of an evaporating black hole, to which
we now turn our attention.

IV. THE VOLUME OF AN EVAPORATING
BLACK HOLE

The spacetime of an evaporating spherically symmetric
black hole can be described by the Vaidya metric [33],
given by replacing fðrÞ in (6) with fðr; vÞ ¼ 1–2mðvÞ=r.
For our purposes it is sufficient to model the formation of
the hole by the collapse of an ingoing null shell at the
retarded time v ¼ 0, and the loss of mass due to evapo-
ration by integrating the thermal power emission law [34].
The resulting mass function is

mðvÞ ¼ ΘðvÞðm3
0 − 3BvÞ1=3; ð8Þ

where ΘðvÞ is the step function, B ∼ 10−3 a parameter that
corrects for backreaction [35] and m0 the mass of the shell.
The spacetime has a shrinking timelike apparent horizon
given by rHðvÞ ¼ 2mðvÞ.
By numerically solving (5), we can draw the family of

maximal surfaces for the spheres at the apparent horizon for
different v’s. The situation, depicted in Fig. 3, is in direct
analogy to the nonevaporating case. There is again a
limiting surface, persisting up to very late stages of the
evaporation. Thus, as in the static case, the volume of the
biggest maximal surface Σv inside Sv is the one connecting
the latter to the center of the collapsing shell.
We may get an estimate for the volume as a function of

time and the initial mass as follows: we compute the
volume of a surface r ¼ αmðvÞ and find the α for which
this is maximized:

α ¼ 3

2
−
45B
8m2

0

þO

�
1

m4
0

�
: ð9Þ

Indeed, the limiting surface is very well approximated by
r ¼ αmðvÞ even for low masses, see Fig. 4.
Expanding the volume of r ¼ αmðvÞ to leading order in

1=m0 we get

VðvÞ ≈ 3
ffiffiffi
3

p
πm2

0v

�
1 −

9B
2m2

0

�
: ð10Þ

Thus, for large masses, we have again recovered (1).

FIG. 3. Eddington-Finkelstein diagram of the two families of
extremal volume surfaces (blue lines) inside an evaporating black
hole formed by a collapsing object. The surface defining the
volume is in bold black. Note the close analogy with the static
case, compare with Fig. 1.
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A direct calculation shows that the surface rðvÞ ¼ αmðvÞ
ceases to be spacelike when the mass function takes the
value

m ≈
�
3

ffiffiffiffi
B

p
−
225B3=2

8m2
0

�
mP < mP=10: ð11Þ

This provides an estimate for the regime of validity of
Eq. (10). Interestingly, the nonexistence of large spacelike
maximal surfaces appears to coincide with the regime in
which the mass has become Planckian. These estimates
agree with the numerical investigation of the actual
surfaces, see Fig. 4. We conclude that the volume increases
monotonically, following the approximate behavior given
in (10), up to when its external area becomes Planckian. At
this very late time, the internal volume is of order m5

0 in
Planck units.
Intuitively, the picture is the following: from the per-

spective of the maximal surfaces, collapse and horizon at
any subsequent exterior time are simultaneous, see Fig. 4.
The exterior elapsed time corresponds inside the hole to the
stretching of space, as given by (1).

A. A few numbers

Before closing this section, let us put the above in
perspective: when a solar mass (1030 kg) black hole
becomes Planckian (it needs 1055 times the actual age of
the Universe), it will contain volumes equivalent to 105

times our observable Universe, hidden behind a Planckian
area (10−70m2).
Perhaps more pertinent is to consider small primordial

black holes with masses less than 1012 kg. Their initial
horizon radius and volume are of the order of the proton
charge radius (10−15m) and volume (10−45m3) respectively.
They would be in the final stages of evaporation now,
hiding volumes of about one liter (10−3m3).

V. REMNANTS AND THE INFORMATION
PARADOX

As was briefly discussed in the Introduction, the results
presented above can be relevant in the discussion about the
loss-of-information paradox, particularly in the context of
scenarios that assume the semiclassical analysis of quantum
field theory on curved spacetimes to be valid in regions of
low curvature and until near-complete radiation of the
initial mass.6 Such scenarios disregard the possibility of
having information being carried out of the hole by the late
Hawking photons [37,38], avoiding the recent firewall and
complementarity debate [39]. Another alternative that has
recently aroused interest and is not considered here is that a
black hole may end its lifetime much earlier than near-
complete evaporation by tunneling to a white-hole geom-
etry. This is possible thanks to quantum gravitational
effects that, due to the long times involved, can become
important in low-curvature regions outside the horizon
[40–42].7
Consider then the setting in which the semiclassical

approximation behind Hawking’s computation remains
valid up to the very end of the evaporation. The hole will
completely evaporate and the information will unavoidably
be lost, as originally suggested by Hawking [1]. While it
seems intuitively reasonable for what appears to be a tiny
object to decay away and disappear, it is compelling to ask
what became of the macroscopic region inside.
Conversely, consider the additional hypothesis that

quantum gravitational effects play an important role
in the strong curvature regime by smoothing out the
singularity [3]. When the mass becomes Planckian, the
semiclassical approximation underlying Hawking’s com-
putation fails and the evaporation stops (see for instance
[45]). The hole does not completely disappear and one can
consider the possibility of having a minuscule object that
stores all the information needed to purify the external
mixed state: a remnant [4–6].
Standard objections against the remnant scenario such as

the infinite pair production [7] and their impossibility in

FIG. 4. The surfaces defining the volume enclosed in spheres at
the apparent horizon of an evaporating black hole at different
times (blue lines). The limiting surface lies close to r ¼ αmðvÞ,
with α given by (9) (dashed line). Here m ¼ 10 in Planck units.

6Another potential application of this result is in black hole
thermodynamics in view of recent results on the von Neumann
entropy associated with volumes [36].

7An alternative scenario in which this process happens must
faster by assuming faster-than-light propagation of a shock wave
from the bounce region is considered in [43,44].
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storing inside a large amount of information rely on
considering the remnant as a small object. Our result
shows that the remnant is instead better understood as
the small throat of an immense internal region, with a
volume of the order ofm5

0. General relativity naturally gives
a “bag of gold”–type description of the interior of a
remnant, without the need of ad hoc spacetimes that
involve some “gluing” of geometries [46,47]. Notice that
the result of the previous section is insensitive to the details
of the would-be-singularity region since the limiting
surface is in a relatively low-curvature region.
In [2,8,9] the authors suggest that a large available

internal space could store a sufficient amount of very long
wavelength modes that carry all the information needed to
purify the external mixed state, albeit the available energy
being of the order of a few Planck masses. The surfaces
studied here are good candidates on which this idea could
be tested.8 The details of the mechanism by which
information would be stored have not, to our knowledge,
been made precise; demonstrating this possibility is beyond

the aim of this work and, in what follows, we assume this to
be possible.
We can identify two characteristically distinct possibil-

ities for the evolution of the large interior region. The bulk
of these large surfaces is causally disconnected from their
bounding sphere on the horizon [19]. They can remain
causally disconnected from the rest of the spacetime, which
may lead to a baby universe scenario [49,50].
On the contrary, quantum gravitational effects can

modify the (effective) metric and bring these regions back
to causal contact with the exterior, while deflating their
volume, allowing for the emission of the purifying infor-
mation to infinity (the information could also be coded in
correlations with the fundamental pregeometric structures
of quantum gravity, as proposed in [9]). This scenario,
where the inflating phase is followed by a slow deflating
phase of the remnant, is sketched in Fig. 5.
We expect this deflating process to be slow, in accor-

dance with bounds on the purification time [51,52] and the
lifetime of long-lived emitting remnants, estimated to be of
order m4

0. The latter scenario can be made precise by
constructing an effective metric describing this process
through the evolution of maximal surfaces in the sense of
Fig. 5. It then suffices to numerically solve Eq. (5) in order
to study the evolution.

ACKNOWLEDGMENTS

The authors thank Carlo Rovelli, Alejandro Perez and
Thibaut Josset for the many discussions on this subject,
Abhay Ashtekar for private communications that clarified
aspects of the ideas in [8] and Thomas Baumgart for
exchanges on maximal surfaces and their use in numerical
relativity. We would like to thank Marina Konstantatou for
pointing us towards applications of maximal surfaces in
engineering and to the inspiring work of Frei Otto. M. C.
acknowledges support from the Educational Grants
Scheme of the A. G. Leventis Foundation for the academic
years 2013–14, 2014–15 and 2015–16 as well as from the
Samy Maroun Center for Space, Time and the Quantum.

APPENDIX: MAXIMAL IMPLIES K = 0

In the notation of Sec. II, the mean extrinsic curvature is
defined by

K ¼ ∇αnα ¼ habeαae
β
b∇αnβ; ðA1Þ

where ∇ is the covariant derivative in gαβ and nα is the
normal to Σ. The Levi-Civita connections of gAB and ~gAB
are related by

ΓB
AC ¼ ~ΓB

AC −
2

r
ðδCrδBA þ δArδ

B
C − gBrgACÞ: ðA2Þ

For the calculation that follows, keep in mind the following:
eαϕ ¼ δαϕ, e

α
θ ¼ δαθ , h

ϕϕ¼ gϕϕ, hθθ ¼ gθθ, hλλ¼ðgABeAλ eBλ Þ−1,

FIG. 5. Speculative evolution of maximal surfaces in the case of
a long-lived remnant scenario. The volume acquired during the
evaporation process (continuous surfaces) deflates back to flat
space (dotted surfaces). This is expected to happen in a time of
orderm4

0, during which all the information stored can be released.

8In [48] it is argued that these surfaces do not store enough
information for purification. However, in that work the Hawking
temperature is assumed constant. The computed information is
therefore the one stored in a static black hole, and it is not
pertinent to this discussion.
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nαeαa ¼ 0. Also, notice that nα and eαλ can be replaced by nA and eAλ when contracted since they have vanishing angular
components.
We then have

−K ¼ −habeαae
β
b∇αnβ ¼ nBðhabeAa∇αeBb Þ ¼ nBðgϕϕΓB

ϕϕ þ gθθΓB
θθ þ hλλeAλ∇AeBλ Þ

¼ nB

�
gϕϕΓB

ϕϕ þ gθθΓB
θθ þ 2

r
hλλgBrgACeAλ e

C
λ

�

¼ nBgBr
�
−gϕϕ

gϕϕ;r
2

− gθθ
gθθ;r
2

þ 2

r

�

¼ nBgBr
�
−
1

r
−
1

r
þ 2

r

�

¼ 0; ðA3Þ

where we used ΓB
ϕϕ ¼ − 1

2
gBrgϕϕ;r, ΓB

θθ ¼ − 1
2
gBrgθθ;r and that the surfaces are defined as Σ ∼ γ × S2 with γ a solution

of Eq. (5).
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