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Modeling the large-scale structure of the universe on nonlinear scales has the potential to substantially
increase the science return of upcoming surveys by increasing the number of modes available for model
comparisons. One way to achieve this is to model nonlinear scales perturbatively. Unfortunately, this
involves high-dimensional loop integrals that are cumbersome to evaluate. Trying to simplify this, we show
how two-loop (next-to-next-to-leading order) corrections to the density power spectrum can be reduced to
low-dimensional, radial integrals. Many of those can be evaluated with a one-dimensional fast Fourier
transform, which is significantly faster than the five-dimensional Monte-Carlo integrals that are needed
otherwise. The general idea of this fast fourier transform perturbation theory method is to switch between
Fourier and position space to avoid convolutions and integrate over orientations, leaving only radial
integrals. This reformulation is independent of the underlying shape of the initial linear density power
spectrum and should easily accommodate features such as those from baryonic acoustic oscillations. We
also discuss how to account for halo bias and redshift space distortions.

DOI: 10.1103/PhysRevD.94.103530

I. INTRODUCTION

Observations of the large-scale structure (LSS) of the
universe are becoming increasingly precise and abundant,
with many large surveys planned in the near future, includ-
ing e.g. DES [1], eBOSS [2], DESI [3], Euclid [4], WFIRST
[5], LSST [6], and SPHEREx [7]. It is exciting to use this
observational window to study fundamental physics and the
evolution and composition of the universe. This is possible
because properties of the constituents of the universe leave
characteristic fingerprints in the observed distribution of
LSS, enabling detailed studies of e.g. dark energy, the initial
conditions from the big bang, neutrinolike particles, or
modifications of general relativity. The accuracy with which
we can study these fingerprints is set by the number of
independent three-dimensional modes that we can model
and include in data analyses. This is in turn determined by
the smallest scale that we can still model. Therefore, an
important aspect of large-scale structure research is to extend
the validity of models to smaller, more nonlinear scales.
Given the immense effort put into future surveys and

the strong dependence of their science output on the
smallest scale that can be modeled, any idea for improving
LSS models on small scales is worth pursuing. This has
therefore been an area of intense study in the literature. The
two main perturbative modeling approaches are Eulerian
standard perturbation theory (SPT) (e.g. [8–12]) and

Lagrangian perturbation theory (LPT) (e.g. [13–15]); see
[16] for a review and e.g. [17–40] for a selection of more
recent developments. Higher-order perturbative corrections
to these models push their validity to smaller scales.
However these corrections involve high-dimensional, com-
putationally expensive loop integrals. For example, the
2-loop power spectrum in SPT involves five-dimensional
integrals at every wave number of interest. Accurate
numerical evaluation of the 2-loop power spectrum can
therefore take several CPU hours for a single set of
cosmological parameter values. Reducing the computa-
tional complexity can make these 2-loop integrals more
practicable for the LSS community, and simplify their use
for constraining cosmological parameters from LSS sur-
veys with Monte-Carlo chains, which often require evalu-
ating model predictions for thousands of cosmological
parameter values.
Motivated by this, we recently proposed a fast method to

evaluate the 1-loop, next-to-leading-order matter power
spectrum from an arbitrary linear input power spectrum
[41]. Reference [42] presented the same method for 2-2
contributions and an alternative method for 1-3 couplings.
Related work that separates high-dimensional integrals
into products of lower dimensional integrals includes
[36,43–50] for LSS and e.g. [51–54] for the CMB.
Our method in [41] executes 20 one-dimensional FFTs

to return the 1-loop power spectrum over several decades in
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wave number at once at machine-level precision. This
exploits spherical symmetry of large-scale structure for-
mation in real space by analytically integrating over
orientations. The linear input power spectrum can thereby
have an arbitrary functional form as long as it can be
represented on a high-resolution, one-dimensional grid that
is used for one-dimensional FFTs. In particular, the method
can easily resolve the imprint of baryonic acoustic oscil-
lations, BAO, on the initial power spectrum (see Sec. VI A).
This is crucial for providing state-of-the-art model pre-
dictions for the nonlinear evolution of BAO features in
ΛCDM models and extensions thereof.
Our goal in this paper is to generalize the fast fourier

transform perturbation theory (FFT-PT) approach intro-
duced in [41] to higher order in large-scale structure
perturbation theory, specifically to the 2-loop power spec-
trum, corresponding to next-to-next-to-leading order in the
linear mass density. This generalization is important to test
the applicability of the fast FFT-PT framework of [41]
beyond 1-loop power spectrum integrals. It should also
help to make 2-loop perturbation theory more practically
useable, for example to constrain cosmological parameters
from a given data set with only little computational cost.
While FFT-PT relies on exact analytical reformulations

of the relevant 2-loop integrals, a viable alternative to
reduce computational cost is to evaluate approximations of
those integrals. As demonstrated by Refs. [55,56], this can
be achieved by Taylor expanding around a fiducial cos-
mological model, or by precomputing integrals for a
fiducial cosmology with high precision and then computing
corrections for another cosmology with lower precision.
The accuracy level and robustness of such approximate
methods needs to be checked for every application, e.g.
when accounting for halo biasing, redshift space distortions
or extensions of the basic ΛCDM model.
Although we share the same motivation and goals with

Refs. [55,56], our exact FFT-PT method is technically
completely different and therefore complementary in prac-
tice, providing a useful path for cross-checks. It would also
be interesting to combine the ideas of [55,56] and our
method in the future, particularly if the goal is to compute the
2-loop power spectrum robustly for different cosmological
parameters at the subpercent level precision that is needed to
realize the full scientific potential of future LSS surveys.
For clarity we will focus on the standard 2-loop integrals

for the matter power spectrum in SPT. However, our
formalism can also handle halo bias, redshift space dis-
tortions (RSD), effects from the relative velocity between
dark matter and baryons [57], or corrections from the
effective field theory of large-scale structure [22,23],
because the relevant integrals have the same form as the
ones we consider here. For example, halo bias can be
included simply by modifying the perturbative Fn kernels
that enter the loop integrals (see Sec. VI E), while RSD
effects amount to including additional velocity correlators

involving velocity kernels Gn (see Sec. VI F). In principle it
should also be possible to generalize the formalism to
higher-order statistics beyond the power spectrum. Our
method should also work for cosmological models beyond
ΛCDM as long as analytical expressions for perturbative
kernels exist (see [58] for recent progress in this direction).
For models that do not allow for analytical perturbative
kernels one instead has to resort to alternative approaches,
for example computing kernels fully numerically. While this
is possible for subsets of 2-loop contributions by storing
kernels on grids [59], it is not clear if fourth or fifth order
kernels could be included efficiently in such an approach.
Our paper is organized as follows. To get intuition, we first

introduce higher-order corrections to 2-point statistics in a
simple perturbative toy model in Sec. II. In Sec. III we
generalize this to a subclass of simple 2-loop SPT power
spectrum corrections that do not involve inverse Laplacians.
We then generalize this to account for a single inverse
Laplacian in Sec. IV, and multiple inverse Laplacians in
Sec. V. In Sec. VI we comment on the applicability of the
method, and extensions to e.g. biased tracers. Finally, we
conclude in Sec. VII. Appendices provide background
material, derivations, and show how some of the general
results simplify further for the special case of scaling
universes with power law initial power spectrum.

A. Conventions and notation

Throughout our paper, k and q refer to Fourier space,
whereas r and x refer to position space. We use the
following shorthand notation for Fourier space integrals:Z

q
≡
Z

d3q
ð2πÞ3 : ð1Þ

Hats denote unit vectors, e.g. q̂ ¼ q=q, where q ¼ jqj. Plin
denotes the linear matter density power spectrum, whereas
Pl refers to Legendre polynomials. We sometimes abbre-
viate indices of spherical harmonics as l ¼ ðl; mÞ and use
the shorthand notation

Plmax
l ¼ Plmax

l¼0

P
l
m¼−l. Spherical

harmonics are normalized so that
R
dΩq̂Ylmðq̂ÞY�

l0m0 ðq̂Þ ¼
δll0δmm0 and Y00ðq̂Þ ¼ ð4πÞ−1=2. We highlight the most
important results of our paper in boxed equations.

II. PERTURBATIVE CORRECTIONS TO THE
2-POINT CORRELATION FUNCTION

In this section we introduce higher-order corrections to
the matter 2-point correlation function in a simple toy
model, which is useful to get intuition for the full
corrections discussed later.

A. Perturbative 2-point correlation function:
Overview of terms in a toy model

The approach of Eulerian standard perturbation theory
(SPT) to solve the fluid equations for the large-scale dark
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matter overdensity is to expand this overdensity and the
velocity perturbatively in the linear overdensity δ1,

δðxÞ ¼
X∞
n¼1

δnðxÞ: ð2Þ

Here, the nth order contribution δn to the full nonlinear
overdensity is of order ðδ1Þn. It has a known analytical form
that follows from the fluid equations in an expanding
universe. The 2-point correlation function or power spec-
trum of the nonlinear density is then given by summing up
contributions at different orders:

hδδi ¼ hδ1δ1i|fflffl{zfflffl}
tree-level

þ 2hδ1δ3i þ hδ2δ2i|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
1-loop

þ 2hδ1δ5i þ 2hδ2δ4i þ hδ3δ3i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2-loop

þ Oðδ81Þ|fflffl{zfflffl}
higher loops

: ð3Þ

The first term is the leading-order contribution, which is
usually called the tree-level contribution because the
corresponding Feynman diagram does not involve any
loops. The next two terms are the 1-3 correlation between
the linear and third order density, and the 2-2 correlation
between the two second order densities. These are next-to-
leading order contributions to the power spectrum. The
Feynman diagrams of these 1-loop terms involve a single
loop. The next three terms, corresponding to 1-5, 2-4 and
3-3 correlations, are next-to-next-to-leading-order terms,
corresponding to Feynman diagrams with two loops that
will be the focus of our paper.
These 2-loop integrals are typically studied in Fourier

instead of position space. This has the advantage that
differential operators like gradients or inverse Laplacians
turn into analytical expressions of Fourier wave vectors,
which are simple to write down and evaluate. However,
working in Fourier space comes at the expense of intro-
ducing convolution integrals that would be simpler prod-
ucts of fields in position space.
Since both the differential operators in position space

and the convolutions in Fourier space represent substantial
complications to typical calculations, we start with a simple
but unphysical toy model where we ignore all differential
operators to simplify position space calculations.
Specifically, let us assume for a moment that the nth order
density is just the nth power of the linear density,

δnðxÞ≡ ½δ1ðxÞ�n: ð4Þ

In this toy model, the 1-3 part of the 1-loop contribution to
the 2-point correlation function is

ð5Þ

where the position x0 ≡ xþ r is separated by a distance r
from x. We also defined ξðrÞ ¼ hδ1ðxÞδ1ðx0Þi as the
2-point correlation function of the linear density, with
ξð0Þ representing the correlation at zero lag r ¼ 0.
Similarly, we obtain for the 2-2 contribution to the 2-point
correlation function

ð6Þ

We can calculate similar expressions for 2-loop contri-
butions in this simple toy model. The 1-5 contribution is
given by a linear correlation function at nonzero separation
r multiplied by the square of the zero lag term ξð0Þ,

ð7Þ

The 2-4 contribution has two qualitatively different con-
tractions,

ð8Þ

Finally, the 3-3 contribution is

ð9Þ

In the toy model of Eq. (4), the 1- and 2-loop integrals thus
only involve products of the 2-point correlation function
ξðrÞ and the zero-lag correlation ξð0Þ. The computational
cost of evaluating 1- and 2-loop integrals is therefore trivial
in this toy model.
It is not clear, however, if such a simple form of 1- and

2-loop integrals can also be obtained if we work with the
full physical nth order density perturbations that involve
gradient and inverse Laplacian operators. While this has
recently been shown to be the case for 1-loop integrals in
[41] (also see [42–44]), it is not clear if 2-loop integrals
allow similar simplifications. Addressing this question is
the main goal of our paper.
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Note that the constant ½ξð0Þ�2 and ½ξð0Þ�3 terms in 2-2
and 2-4 correlations are not present if we consider only the
connected part of the correlation functions, hABic ¼
hABi − hAihBi, or if we enforce the density to have zero
average at each order, δn ¼ δn1 − hδn1i.

B. Eulerian fluid and equations of motion

The toy model where the nth order density perturba-
tion is just the linear density raised to the nth power is
not physical because it does not solve the equations of
motion of DM in an expanding background. We briefly
summarize here how to generalize the perturbative
expansion so that it solves these equations (see [16]
for a review).
The relevant fluid equations can be written as the Fourier

transform of the continuity equation,

_δðk; τÞ þ θðk; τÞ ¼ −
Z
k1k2

ð2πÞ3δDðk − k1 − k2Þ

× αðk1;k2Þδðk1; τÞθðk2; τÞ; ð10Þ

and the Fourier transform of the divergence of the Euler
equation,

_θðk; τÞ þHðτÞθðk; τÞ þ 3

2
HðτÞ2ΩmðτÞδðk; τÞ

¼ −
Z
k1k2

ð2πÞ3δDðk − k1 − k2Þβðk1;k2Þ

× θðk1; τÞθðk2; τÞ; ð11Þ

where δ is the matter overdensity, θ ¼ ∇ · v is the velocity
divergence, ⋅ ¼ d=dτ is the time derivative relative to
conformal time, and H is the conformal Hubble parameter.
We have also introduced the abbreviations

αðk1;k2Þ ¼
ðk1 þ k2Þ · k2

k22
¼ 1þ 1

k22
ðk1 · k2Þ;

βðk1;k2Þ ¼
ðk1 · k2Þjk1 þ k2j2

2k21k
2
2

¼ k1 · k2

2k21k
2
2

ðk21 þ k22 þ 2ðk1 · k2ÞÞ: ð12Þ

These kernels can be interpreted in position space by noting
that multiplication with a wave vector k corresponds to
taking the gradient, whereas multiplication with k=k2

corresponds to the gradient of the inverse Laplacian, i.e.
the gradient of a potential.
The equations of motion can be solved with the

perturbative ansatz

δ ¼
X∞
n¼0

δn; ð13Þ

where the nth order perturbation in Fourier space is an
n-fold convolution of the linear density δ1 filtered by a

(symmetrized) kernel FðsÞ
n ,

δnðkÞ ¼ FðsÞ
n δ1 � � � � � δ1; ð14Þ

or writing this more explicitly,

δnðkÞ ¼
Z
q1���qn

ð2πÞ3δDðk − q1 � � � − qnÞ

× FðsÞ
n ðq1;…;qnÞδ1ðq1Þ � � � δ1ðqnÞ: ð15Þ

A similar expression follows for the velocity divergence θ.

Explicit expressions for the FðsÞ
n kernels can be obtained

from recursion relations that follow from the equations of
motion; see Appendix A. For our purposes, however, we
only need to know the general form of the Fn filter kernels.
This is determined by the operators appearing in the fluid
equations of motion, involving e.g. gradients and inverse

Laplacians. Indeed, the nth order kernel FðsÞ
n ðq1;…;qnÞ

involves only sums of products of the following simple
“building block” operators:

FðsÞ
n ðq1;…;qnÞ

∼
�
jqijni ; ðq̂i · q̂jÞli ;

1

js1q1 þ � � � þ snqnj2
�
; ð16Þ

where ni are integers, li are non-negative integers, and
si ∈ f−1; 0; 1g. The last operator in Eq. (16) corresponds to
an inverse Laplacian. The velocity kernels GðsÞ

n involve the
same building blocks.
The simple toy model calculation from Sec. II A thus

needs to be refined by including these building blocks for
the nth order perturbation in Fourier space. Except for the
inverse Laplacians, which require more work and will be
discussed in a later section, this is relatively straightfor-
ward, as we will show next.

III. 2-LOOP POWER SPECTRUM
CONTRIBUTIONS WITHOUT

INVERSE LAPLACIANS

In this section we discuss contributions to the 2-loop
matter power spectrum in Eulerian standard perturbation
theory (SPT) that do not involve inverse Laplacians.
Sections IV and V will generalize the results to account
for such inverse Laplacians.
The form of the 2-loop corrections in full SPT is rather

similar to the simple toy model from the last section. The
final expressions therefore have a similar form to above,
involving zero-lag terms ξð0Þ and correlation terms ξðrÞ at
nonzero separation r. This can also be seen from the
diagrammatic representation of the 2-loop integrals in
Fig. 1, where “tadpole” subdiagrams (red dashed) lead
to zero-lag terms ξð0Þ and “connector” subdiagrams (blue)
lead to correlation terms ξðrÞ.
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A. 1-5 correlations

We start with the 1-5 contribution to the power
spectrum that arises from the correlation between the
linear and fifth-order density. From the toy model result
of Eq. (7) and the diagram in Fig. 1 we expect this to be
of the form ξðrÞ½ξð0Þ�2, or PlinðkÞ½ξð0Þ�2 in Fourier
space. Explicitly, the 1-5 correlation in Fourier space is

ð17Þ

The prefactor arises from 15 possibilities to form the
contraction multiplied by two because hδ1δ5i ¼ hδ5δ1i.
The F5 kernel consists of the building block operators
listed in Eq. (16), and its angular structure can be
parametrized by angular products between the argu-
ments of the F5 kernel, i.e. the edges attached to the F5

vertex in Fig. 1. The most general form of such 1-5
contributions, ignoring inverse Laplacians for now,
reduces to the following simple and fast-to-evaluate
form (see endnote [60])

kn0PlinðkÞ
Z
q1q2

ðq̂1 · q̂2Þl0ðk̂ · q̂1Þl1ðk̂ · q̂2Þl2

×qn11 Plinðq1Þqn22 Plinðq2Þ
¼ kn0PlinðkÞM0ðl0;l1;l2Þξ0n1ð0Þξ0n2ð0Þ: ð18Þ

As expected from the toy model Eq. (7), the linear
power spectrum PlinðkÞ is multiplied by a k-independent
product of two zero-lag correlations,

ξ0nð0Þ ¼
Z

∞

0

dq
2π2

q2þnPlinðqÞ: ð19Þ

These are fast to evaluate, either as a 1D integral over
the linear power spectrum or by selecting the r ¼ 0
entry of a 1D Hankel transform with l ¼ 0. The
coupling factor M0 in Eq. (18) is a number defined
by Eq. (B1) in Appendix B. The first few values are
given in Table I.

B. 2-4 correlations

We proceed with 2-4 correlations. From the toy model
result of Eq. (8), we expect them to be of the form
ξð0Þ½ξðrÞ�2 and ½ξð0Þ�3, where only the former depends
on the separation and contributes to the Fourier space
power spectrum at nonzero wave number. Explicitly, this
2-4 contribution to the power spectrum is

ð20Þ

Introducing q3 ≡ k − q2 with a Dirac delta, we obtain for
2-4 contributions without inverse Laplacians the following
fast expression (see endnote [61])Z

q1q2q3

ð2πÞ3δDðq3−ðk−q2ÞÞðq̂2 · q̂3Þl1ðq̂1 · q̂3Þl2

×ðq̂1 · q̂2Þl3qn11 Plinðq1Þqn22 Plinðq2Þqn33 Plinðq3Þ
¼ ξ0n1ð0Þð4πÞ3=2

Z
∞

0

drr2j0ðkrÞ

×
Xl1þminðl2;l3Þ

L¼0

M1ðl1;l2;l3;LÞξLn2ðrÞξLn3ðrÞ: ð21Þ

The right-hand side is similar to the ξð0Þ½ξðrÞ�2 structure
expected from the toy model result of Eq. (8) and the
diagram in Fig. 1. The radial integral is the result of the
angle-averaged 3D Fourier transform of ½ξðrÞ�2; see
Eq. (G12). This integral is weighted by a spherical
Bessel function jl and is therefore a 1D Hankel transform.
This can be evaluated efficiently and robustly with a 1D
FFT using FFTLOG [62].
In Eq. (21) we defined a generalized correlation function

ξln as

FIG. 1. Diagrammatic representation of nontrivial 2-loop
contributions to the dark matter power spectrum in standard
Eulerian perturbation theory. Tadpole subdiagrams (red dashed)
are evaluated at the same point, leading to zero-lag correlations
ξð0Þ. “Connector” subdiagrams (blue) are evaluated at two differ-
ent points, leading to correlations ξðrÞ at nonzero separation r.
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ξlnðrÞ ¼
Z

∞

0

dq
2π2

q2þnjlðqrÞPlinðqÞ: ð22Þ

This is related to the 2-point correlation between the linear
density and a derivative or inverse Laplacian of the linear
density [41]. Each ξlnðrÞ is a 1D Hankel transform of the
linear power spectrum and can therefore again be computed
with a 1D FFT. The right-hand side of Eq. (21) can
therefore be evaluated using only 1D FFTs. The coupling
factors M1 are defined in Eq. (B3), with some example
values given in Table I.

C. 3-3 correlations

The last contribution to the 2-loop power spectrum is the
3-3 correlation of two third-order densities. From the toy
model results of Eq. (9) we expect contributions of the
forms ½ξðrÞ�3 and ξðrÞ½ξð0Þ�2. It is well known that the latter
term reduces to a term proportional to ½P13ðkÞ�2=PlinðkÞ, i.e.
it can be obtained directly from the P13 1-loop integral. We
therefore only consider the nontrivial 3-3 term which is of
the form ½ξðrÞ�3. We expect that this part of the nontrivial
3-3 contribution to the power spectrum should become a
3D Fourier transform or 1D Hankel transform of ½ξðrÞ�3.
Indeed, the nontrivial 3-3 power spectrum is

ð23Þ

and contributions to this without inverse Laplacians reduce
to (see endnote [63])Z

dΩk̂

4π

Z
q1q2q3

ð2πÞ3δDðk−q1−q2−q3Þ

×ðq̂2 · q̂3Þl1ðq̂1 · q̂3Þl2ðq̂1 ·q̂2Þl3
Q

3
i¼1q

ni
i PlinðqiÞ

¼4π

Z
∞

0

drr2j0ðkrÞ
"Xl2þl3

L1¼0

Xl1þl3

L2¼0

Xl1þl2

L3¼0

×M3ðl1;l2;l3;L1;L2;L3ÞξL1
n1 ðrÞξL2

n2 ðrÞξL3
n3 ðrÞ

#
ð24Þ

As expected, this is a 1D Hankel transform of a finite sum
of triple products of linear correlation functions ξlnðrÞ,
which can be computed using only 1D FFTs.
The right-hand side of Eq. (24) involves the coupling

factor M3 defined by Eq. (B5). For l1 ≤ l2 ≤ l3 ≤ 1 the
only nonzero couplings to Li are listed in Table I. For
example, for ðl1;l2;l3Þ ¼ ð0; 1; 1Þ only two couplings are
nonzero, ðL1; L2; L3Þ ¼ ð0; 1; 1Þ and (2, 1, 1), so we only
need to compute ξ0n1 , ξ

2
n1 , ξ

1
n2 and ξ

1
n3 and one additional 1D

Hankel transform to go back to Fourier space, requiring five
1D FFTs in total.

IV. SINGLE INVERSE LAPLACIAN IN THE
2-LOOP POWER SPECTRUM

For simplicity, we have ignored inverse Laplacian
operators so far. In fact, however, they do appear in the
perturbative solutions for the DM fluid because the con-
tinuity equation (10) and the Euler equation (11) involve

TABLE I. The angular structure of 2-loop integrands leads to
coupling factorsMn between three angular momenta ðl1;l2;l3Þ
and n angular momenta L. The table shows all nonzero coupling
factors M0ðl1;l2;l3Þ for li ≤ 2, M1ðl1;l2;l3;LÞ for li ≤ 1,
as well as M2ðl1;l2;l3;L; L0Þ and M3ðl1;l2;l3;L1; L2; L3Þ
for l1 ≤ l2 ≤ l3 ≤ 1. See Appendix B for definitions of these
factors.

ðl1;l2;l3Þ M0

(0, 0, 0) 1
(0, 0, 2) 1=3
(0, 2, 0) 1=3
(0, 2, 2) 1=9
(1, 1, 1) 1=9
(2, 0, 0) 1=3
(2, 0, 2) 1=9
(2, 2, 0) 1=9
(2, 2, 2) 11=225

ðl1;l2;l3Þ L M1

(0, 0, 0) 0 1
(0, 1, 1) 1 −1=3
(1, 0, 0) 1 −1
(1, 1, 1) 0 1=9
(1, 1, 1) 2 2=9

ðl1;l2;l3Þ ðL; L0Þ M2

(0, 0, 0) (0, 0) 1
(0, 0, 1) (1, 0) −1
(0, 1, 1) (0, 1) −1=3
(0, 1, 1) (2, 1) −2=3
(1, 1, 1) (0, 0) 1=9
(1, 1, 1) (0, 2) 2=9
(1, 1, 1) (2, 0) 2=9
(1, 1, 1) (2, 2) 4=9

ðl1;l2;l3Þ ðL1; L2; L3Þ M3

(0, 0, 0) (0, 0, 0) 1
(0, 0, 1) (1, 1, 0) −1
(0, 1, 1) (0, 1, 1) −1=3
(0, 1, 1) (2, 1, 1) 2=3
(1, 1, 1) (0, 0, 0) 1=9
(1, 1, 1) (0, 2, 2) 2=9
(1, 1, 1) (2, 0, 2) 2=9
(1, 1, 1) (2, 2, 0) 2=9
(1, 1, 1) (2, 2, 2) −2=9
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the gradient of the velocity divergence potential,
∇i∇−2θ. When solving the equations perturbatively,
we therefore encounter expressions like the inverse
Laplacian of composite quadratic fields, e.g. ∇−2θð2Þ ∼
∇−2½δ21�. In Fourier space, this is represented by terms
like jq1 þ q2j−2 (this can also be seen from the recursion
relations for the perturbative Fourier space Fn kernels;
see Appendix A). Such Fourier space factors can render
the integrand of loop integrals nonseparable in the
integration variables q1 and q2, so that the integrand
cannot be written as a function of q1 multiplied by a
function of q2. This may seem problematic for the
approach used in the previous section, because the
2-loop integrals do not straightforwardly split into an
integral over q1 multiplied by an integral over q2. In this
section we show that it is still possible to reduce 2-loop
integrals with a single inverse Laplacian to 1D Hankel
transforms that allow fast evaluation. The more com-
plicated case involving multiple inverse Laplacians will
be discussed in Sec. V.

A. 1-5 correlations with inverse Laplacians:
Products of two correlation functions

1. Simple example

We first generalize the 1-5 correlations from Eqs. (7) and
(18) to the case with a nontrivial inverse Laplacian. To see
how the inverse Laplacian can look like in Fourier space,
consider for example

ð25Þ

where the right-hand side follows from

ð26Þ

The particular inverse Laplacian in Eq. (25) thus turns into
−jq1 þ q2j−2 in Fourier space. To evaluate the resulting
2-loop integral over q1 and q2 efficiently, we introduce
q3 ¼ q1 þ q2 with a Dirac delta, integrate out all orienta-
tions and use Eq. (G13) to obtainZ

q1q2

Plinðq1ÞPlinðq2Þ
jq1 þ q2j2

¼
Z

∞

0

dr rξ00ðrÞξ00ðrÞ: ð27Þ

This is just a radial integral over the product of two
correlation functions, which can be evaluated very
efficiently.

2. General case

The most general form of the inverse Laplacian can be
deduced from the arguments of the F5 kernel in Eq. (18)
and the form of the kernel recursion relations in
Appendix A; it is given by js0kþ s1q1 þ s2q2j−2, with
parameters si ∈ f−1; 0; 1g that parametrize on which fields
the inverse Laplacian acts. Allowing also for nontrivial
angular dependence in the integrand that arises from
gradient operators ∇i, we obtain for the most general
1-5 contribution to the power spectrum (see endnote [64]
for a derivation):

kn0PlinðkÞ
Z

dΩk̂

4π

Z
q1q2

ðq̂1 · q̂2Þl0ðk̂ · q̂1Þl1

×ðk̂ · q̂2Þl2 q
n1
1
Plinðq1Þqn22 Plinðq2Þ

js0kþs1q1þs2q2j2

¼ kn0PlinðkÞ
X

l1þl2
L0¼0

ðsgns0ÞL0

R∞
0 drrjL0

ðjs0jkrÞ

×

"Xl0þl1

L1¼0

Xl0þl2

L2¼0

M3ðl0;l1;l2;L0;L2;L1Þ

× ξL1
n1;s1ðrÞξL2

n2;s2ðrÞ
#
: ð28Þ

The right-hand side of Eq. (28) is given by 1D Hankel
transforms of products of two correlation functions ξ,
which are themselves given by 1D Hankel transforms of
the linear power spectrum. Thus, using Eqs. (18) and (28),
the calculation of the full P15ðkÞ contribution to the 2-loop
power spectrum at all k can be obtained by a sequence of
1D Hankel transforms, which are fast to compute with 1D
FFTs using FFTLOG [62].
Note that Eq. (28) is only meant to be applied for cases

with nontrivial inverse Laplacians where at least two of s0,
s1, s2 are nonzero, because otherwise there is no non-
separable denominator and Eq. (18) can be applied instead.
The right-hand side of Eq. (28) involves the coupling factor
M3 defined in Eq. (B5) and listed in Table I. It also
involves the generalized correlation functions

ξln;sðrÞ≡ ðsgnsÞl
Z

∞

0

dq
2π2

q2þnPlinðqÞjlðjsjqrÞ; ð29Þ

where s ∈ f−1; 0; 1g. They reduce to the usual correlations
ξlnðrÞ for jsj ¼ 1 and to zero-lag terms ξ0nð0Þ for s ¼ 0,
because jlð0Þ ¼ δl0. In the special case li ¼ ni ¼ s0 ¼ 0
and s1 ¼ s2 ¼ 1, Eq. (28) reduces to the simple result
of Eq. (27).

B. 2-4 correlations with inverse Laplacians

1. Simple example

We now turn to 2-4 correlations including inverse
Laplacians. Our main idea to evaluate these 2-loop integrals
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is to split them into nested 1-loop integrals that are much
simpler to evaluate. For clarity we introduce this approach
first for a simple special case in this section, discussing the
fully general case in the subsequent section and in
Appendix C.
The special case we consider is given by the first

contraction of Eq. (8) if we include an inverse Laplacian
acting on the squared linear density as

ð30Þ

where the right-hand side follows from Eq. (26). To speed
up evaluation, the main idea is now to write the 2-loop
integral (30) as an outer q2-integral over an inner tadpole
integral over q1:Z

q1q2

Plinðq1ÞPlinðq2ÞPlinðjk − q2jÞ
jq1 þ q2j2

¼
Z
q2

Plinðq2Þ
�Z

q1

Plinðq1Þ
jq1 þ q2j2

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Ptadpoleðq2Þ

Plinðjk − q2jÞ: ð31Þ

This reduces the 2-loop integral to two nested 1-loop integrals
that are easy to evaluate. In the diagrammatic representation
of Fig. 1, this corresponds to evaluating the red tadpole
subdiagram first, and then using the result to compute the
blue subdiagram connecting the F4 and F2 vertices.
To see more specifically how Eq. (31) simplifies

numerical evaluation, we write the inner tadpole integral
as (see endnote [65])

Ptadpoleðq2Þ ¼
Z

∞

0

dr rj0ðq2rÞξ00ðrÞ: ð32Þ

Then, we can evaluate the Fourier space convolution over
q2 in Eq. (31) as a product in position space, obtainingZ

q1q2

Plinðq1ÞPlinðq2ÞPlinðjk − q2jÞ
jq1 þ q2j2

¼ 4π

Z
∞

0

dr r2j0ðkrÞξ00ðrÞT ðrÞ: ð33Þ

This is a 1D Hankel transform of the product between the
linear correlation function ξ00ðrÞ and the 4-point-like
correlation T ðrÞ. The latter is defined as a 1D Hankel
transform of the product of the linear power spectrum Plin
and the tadpole integral Ptadpole:

T ðrÞ≡
Z

∞

0

dq2
2π2

q22j0ðq2rÞPlinðq2ÞPtadpoleðq2Þ: ð34Þ

Using Eq. (33), the 2-loop integral of Eq. (30) can be
computed from a given linear power spectrum with four 1D
Hankel transforms in total, which is extremely fast. Similar
reductions of 2-loop integrals to two nested 1-loop integrals
are also used in other contexts to simplify their evaluation;
see e.g. [66] for examples in quantum field theory.

2. General case

The 2-loop integral (30) from the last section is a special
case in the sense that the integrand does not contain
nontrivial angular dependence from terms like e.g.
q̂1 · q̂2. One of the main results of our paper is that the
FFT-PT approach still works if such nontrivial angular
dependence is included in the integrand. While this leads to
additional coupling factors, the general strategy is the same
as in the last section, i.e. we split the 2-loop integral into
two nested 1-loop integrals that can be evaluated as 1D
Hankel transforms. This is discussed in detail in
Appendix C. The final results for the nontrivial 2-4
correlations, given by Eqs. (C8) and (C11), involve only
1D Hankel transforms, which can be evaluated efficiently
with a finite number of 1D FFTs using FFTLOG [62].

C. 3-3 correlations with inverse Laplacians:
ξ times transformed ξ2

1. Simple example

We finally turn to the last remaining contribution to the
2-loop power spectrum arising from nontrivial 3-3 corre-
lations. These involve for example an inverse Laplacian
acting on two linear densities in Eq. (9) as follows:

ð35Þ

Again, the inverse Laplacian turns into −jq1 þ q2j−2 in
Fourier space. This 2-loop integral can be simplified to (see
Appendix E 1)Z

dΩk̂

4π

Z
q1q2

Plinðq1ÞPlinðq2ÞPlinðjk − q1 − q2jÞ
jq1 þ q2j2

¼ ð4πÞ4
Z

∞

0

dr r2j0ðkrÞξ00ðrÞTðrÞ: ð36Þ

This is the Hankel transform of the product of the linear
correlation function ξ00ðrÞ and the 4-point like quantity TðrÞ
defined by

TðrÞ¼
Z

∞

0

dq
2π2

j0ðqrÞ
Z

∞

0

dr00ðr00Þ2j0ðqr00Þ½ξ00ðr00Þ�2: ð37Þ
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The latter is obtained by squaring the linear correlation
function in position space, transforming the result to
Fourier space using a Hankel transform, dividing by q2,
and transforming back to position space with another
Hankel transform. Therefore, the 2-loop integral of
Eq. (36) is essentially given by ξ times a transform of
ξ2. This is extremely numerically efficient.

2. General case

The most general form of integrals contributing to
nontrivial 3-3 correlations follows by also including scalar
products in the integrand, and introducing k − q1 − q2 ¼
q3 (see endnote [67] and Appendix E 2):

Z
dΩk̂

4π

Z
q1q2q3

ð2πÞ3δDðk − q1 − q2 − q3Þ

×ðq̂2 · q̂3Þl1ðq̂1 · q̂3Þl2ðq̂1 · q̂2Þl3 1
jq1þq2jn4

×qn11 Plinðq1Þqn22 Plinðq2Þqn33 Plinðq3Þ

¼ ð4πÞ4
Z

∞

0

dr r2j0ðkrÞ
Xl1þl2

L3¼jl1−l2j

×ξL3
n3 ðrÞTl1l2l3;n1n2n4

L3
ðrÞ: ð38Þ

The right-hand side is a 1D Hankel transform of a sum of
products between linear correlation functions ξðrÞ and the
4-point-like quantity TðrÞ. The latter is defined by applying
two subsequent 1D Hankel transforms to a product of two
correlation functions ξðrÞ:

Tl1l2l3;n1n2n4
L3

ðrÞ

≡
Z

∞

0

dq
2π2

q2−n4jL3
ðqrÞ

�Z
∞

0

dr00ðr00Þ2jL3
ðqr00Þ

×

� Xl2þl3

L1¼jl2−l3j

Xl1þl3

L2¼jl1−l3j
M3ðl1;l2;l3;L1; L2; L3Þ

× ξL1
n1 ðr00ÞξL2

n2 ðr00Þ
��

; ð39Þ

where the coupling factor M3 from Eq. (B5) restricts the
sums to be finite.
The general 3-3 correlation of Eq. (38) can thus

be evaluated with a finite number of 1D Hankel trans-
forms. The structure is similar to the ½ξðrÞ�3 structure
obtained for 3-3 correlations without inverse Laplacians
in Eqs. (9) and (24), but the outer-most integral in
Eq. (39) effectively applies an inverse Laplacian to the
product of two correlation functions ξðrÞ as expected
from the contractions in Eq. (35) and the simple
example of Eq. (36).

V. MULTIPLE INVERSE LAPLACIANS

Unfortunately, the full 2-loop power spectrum also
involves contributions that have multiple nontrivial inverse
Laplacians, corresponding to multiple nonseparable
denominators in 2-loop integrands. Since they involve
3d wave vectors one cannot simply separate the denom-
inators using a partial fraction decomposition and then
apply the machinery laid out in the last sections. Instead,
we follow a somewhat different approach than in the rest of
the paper. This reduces contributions with multiple non-
trivial inverse Laplacians to low-dimensional radial inte-
grals. We explicitly show this for the case of trivial
numerators in the Fourier space integrals and indicate
how more complicated numerators could in principle be
generated from this.

A. 1-5 correlations

Based on explicit calculation of the F5 kernel that enters
1-5 contributions to the power spectrum, we consider
integrals of the general form

I15ðk;α; βÞ ¼
Z
q1q2

eiα·q1eiβ·q2

q2n11 jkþ q1j2n01q2n22 jkþ q2j2n02

×
Plinðq1ÞPlinðq2ÞPlinðkÞ

jq1 þ q2j2n3 jkþ q1 þ q2j2n03
; ð40Þ

where ni, n0i ≤ 2 and we introduced parameters α and β.
Nontrivial numerators can be generated by computing I15
and taking appropriate derivatives with respect to α and β
evaluated at zero, although we do not explicitly do this
here. Introducing a helper variable for kþ q1 þ q2 with a
Dirac delta, Eq. (40) reduces to

I15ðk;α; βÞ ¼ PlinðkÞ
Z

d3reik·rΞð0Þ
n0
3
n3
ðr;kÞ

× Ξð1Þ
n1n01

ðrþ α;kÞΞð1Þ
n2n02

ðrþ β;kÞ: ð41Þ

The computation is therefore reduced to calculating

Ξð0Þ
nn0 ðr;kÞ≡

Z
q

eiq·r

q2njkþ qj2n0 ; ð42Þ

Ξð1Þ
nn0 ðr;kÞ≡

Z
q

eiq·r

q2njkþ qj2n0 PlinðqÞ; ð43Þ

which we will discuss below.

B. 2-4 correlations

Similarly, 2-4 correlations with multiple inverse
Laplacians of the form
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I24ðk;α; βÞ ¼
Z
q1q2

eiα·q1eiβ·q2

q2n11 jkþ q1j2n01q2n22 jkþ q2j2n02

×
Plinðq1ÞPlinðq2ÞPlinðjkþ q2jÞ
jq1 þ q2j2n3 jkþ q1 þ q2j2n03

ð44Þ

can be reduced to

I24ðk;α; βÞ ¼
Z

d3reik·rΞð0Þ
n0
3
n3
ðr;kÞΞð1Þ

n1n01
ðrþ α;kÞ

× Ξð2Þ
n2n02

ðrþ β;kÞ: ð45Þ

Here we defined

Ξð2Þ
nn0 ðr;kÞ≡

Z
q

eiq·r

q2njkþ qj2n0 PlinðqÞPlinðjkþ qjÞ: ð46Þ

C. 3-3 correlations

For 3-3 contributions to the power spectrum with
multiple inverse Laplacians we consider the general inte-
gral

I33ðk;α; βÞ ¼
Z
q1q2

eiα·q1eiβ·q2

q2n11 jkþ q1j2n01q2n22 jkþ q2j2n02

×
Plinðq1ÞPlinðq2ÞPlinðjkþ q1 þ q2jÞ

jq1 þ q2j2n3 jkþ q1 þ q2j2n03
;

ð47Þ

which reduces to

I33ðk;α; βÞ ¼
Z

d3reik·rΞð1Þ
n0
3
n3
ðr;kÞΞð1Þ

n1n01
ðrþ α;kÞ

× Ξð1Þ
n2n02

ðrþ β;kÞ: ð48Þ

D. Evaluating ΞðnÞ integrals

It remains to compute the ΞðnÞ integrals defined in
Eqs. (42), (43) and (46). Similarly to calculations in the
rest of the paper (expanding all terms in spherical har-
monics or using Eqs. C4, C6 and C7 of [41]) we find

ΞðNÞ
nn0 ðr;kÞ ¼

X
L

ð−iÞLð2Lþ 1ÞPLðr̂ · k̂ÞQðNÞ
nn0;Lðr; kÞ;

ð49Þ

where PL are Legendre polynomials.
TheQðNÞ coefficients in Eq. (49) can be computed in two

alternative ways. One way is

QðNÞ
nn0;Lðr; kÞ ¼ 4π

Z
∞

0

ds s2jLðksÞRðNÞ
n0 ðsÞ

Z
∞

0

dq
2π2

× q2−2njLðqsÞjLðqrÞ ~RðNÞðqÞ; ð50Þ

where ~Rð0ÞðqÞ¼ 1, ~Rð1;2ÞðqÞ¼PlinðqÞ, Rð0Þ
n0 ðsÞ ¼ Rð1Þ

n0 ðsÞ ¼
Ξ0
−2n0 ðsÞ (see Eq. (G13) and [41]), and Rð2Þ

n0 ðsÞ≡ ξ0−2n0 ðsÞ.
To compute the two-dimensional radial integral in Eq. (50),
we need to integrate over q for every value of s and r, and
then perform a 1D Hankel transform for every value of r
and k to evaluate the integral over s. This procedure is
computationally much more expensive than the one-
dimensional Hankel transforms in the rest of the paper,
but should still be relatively fast compared to the commonly
used five-dimensional integrations, noting also that for-
mally related integrals have been successfully computed in
another context in [50,68].
An alternative, potentially faster way of computing the

QðNÞ coefficients in Eq. (49) follows by first expanding
1=jkþ qj2n0 in case of Ξð0Þ and Ξð1Þ or Plinðjkþ qjÞ=jkþ
qj2n0 in case of Ξð2Þ in Legendre polynomials PLðk̂ · q̂Þ.
This gives for example

Qð2Þ
nn0;Lðr; kÞ ¼

ð−1ÞL
ð2Lþ 1Þ

Z
dq
2π2

q2−2njLðqrÞað2Þn0;Lðk; qÞ

× PlinðqÞ; ð51Þ

where að2Þn0;Lðk; qÞ are coefficients in the Legendre expansion
above. For Qð1Þ, we obtain the same expression but
involving coefficients að1Þ that follow from expanding
1=jkþ qj2n0 . Qð0Þ can be obtained in the same way by
omitting PlinðqÞ in Eq. (51).
Finally, the expressions for ΞðNÞ from Eq. (49) are

collected in the In integrals in Eqs. (41), (45) and (48).
The result then simplifies by expanding expðik · rÞ in
Legendre polynomials and using Eq. (G11) for the integral
over four Legendre polynomials (assuming the special case
α ¼ β ¼ 0 with trivial numerator).
In Fig. 2 we present the test results for the integrals

I15ðk; 0; 0Þ, I33ðk; 0; 0Þ and I24ðk; 0; 0Þ, with ni ¼ n0i ¼ 1

and each term in the denominators extended by an
infinitesimally small ϵ contribution in order to remove
potential singular points, e.g. we have q2 → q2 þ ϵ and
similar for the rest of the terms. For realistic P15, P33 and
P24 terms, ϵ can be taken to zero. We compare numerically
computed results using Monte Carlo [69] integration
(points in Fig. 2) with the results computed with methods

presented above using the ΞðNÞ
nn0 functions and Eq. (51) (lines

in Fig. 2), finding good overall agreement.
The latter method is computationally much less expen-

sive since we are reducing the five-dimensional integration
to 1D integrals (computation of Legendre coefficients
aðNÞ) and two sequences of consecutive Hankel transforms
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[one to obtain QðNÞ using e.g. Eq. (51) and another one to
evaluate e.g. Eq. (41)]. Alternatively,QðNÞ can be computed
using the 2D integration in Eq. (50).
Both methods rely on the (infinite) summation over the

multipole number L, but in practice this converges rapidly
for k < 1 hMpc−1, so that the summation can be truncated,
at least for the simple test case with trivial numerator and
exponentially decaying linear power spectrum considered
in Fig. 2. Future numerical work is required to check how
well this approach works with nontrivial numerators and
realistic linear power spectrum.

VI. APPLICABILITY, EXTENSIONS
AND DISCUSSION

A. Functional form of the linear input power spectrum

Our equations are formally correct for an arbitrary linear
input power spectrum because no step of the derivations
makes any assumption about the shape of the input power
spectrum. At a practical level, the 1D integrals are 1D
Hankel transforms that are nontrivial to evaluate numeri-
cally because of highly oscillatory spherical Bessel func-
tions in integrands. Fortunately, these integrals can be
evaluated robustly and efficiently as 1D FFTs using the
FFTLOG library [62]. This does impose a weak restriction
on the shape of the input power spectrum in the sense that it
needs to be stored on a discrete 1D grid so that no features
finer than the grid resolution can be represented. However,
we can use an extremely high resolution for this grid,
because we only need to perform one-dimensional FFTs on
it, which are extremely fast. This resolution is more than
sufficient to resolve features in the power spectrum such as
BAO wiggles.

To see this more explicitly, note that the peaks and
troughs of the BAO wiggles in the power spectrum have a
typical width of Δk ∼ 0.02 hMpc−1. For our 1D FFTs, we
can easily use 10,000 grid points that are logarithmically
spaced in 10−5 hMpc−1 <k< 100 hMpc−1. This then gives
more than 100 grid points between k ¼ 0.09 hMpc−1 and
k ¼ 0.11 hMpc−1, and 40 grid points between k ¼
0.29 hMpc−1 and k ¼ 0.31 hMpc−1. Every peak and
trough of the BAO wiggles can therefore easily be
represented with dozens of grid points each, which should
indeed be sufficient to accurately model these BAO
features.
Another potential restriction is that the FFTs used by

FFTLOG may introduce ringing in the Hankel transforms.
In [41] we suppressed this by extrapolating the linear
input power spectrum with power laws at extremely large
scales k≲ 10−5 hMpc−1 and at extremely small scales
k≳ 100 hMpc−1, which do ultimately not contribute sig-
nificantly to the power spectrum on scales of practical
interest for cosmology. This is therefore just a numerical
trick to avoid ringing and should not restrict the appli-
cability of our method in practice (also noting that
numerical FFT-PT results for the 1-loop power spectrum
were shown to agree with Monte-Carlo integrals at the 10−5

level [41]).

B. Number of terms

For 2-loop power spectrum contributions with at most
one inverse Laplacian, our final expressions involve only a
finite number of terms that need to be summed up. This
follows from the fact that the angular structure of the
perturbative Fn and Gn kernels does not go beyond a
maximum multipole, which in turn follows from the
structure of the equations of motion for the DM fluid.
Concretely, the F2 and G2 kernels involve at most quadru-
pole terms like P2ðq̂i · q̂jÞ, and the recursion relations (A5)
imply that in general Fn andGn involve at most Pnðq̂i · q̂jÞ.
Therefore, 1-5 terms involve only l ≤ 5, while 2-4 and 3-3
terms involve only l ≤ 6. The total number of terms may
still be significant. While we have not checked if this would
be an issue in practice, we expect that even a potentially
large number of 1D FFTs should be faster than performing
five-dimensional Monte-Carlo integrals for every k of
interest. The number of FFTs can be reduced by exploiting
symmetries to avoid computing the same terms multiple
times. Since only a limited number of ξln are needed for all
2-loop integrals, some speedup should also follow by
computing all of them with 1D Hankel transforms from
a given linear power spectrum and storing them in memory,
which is trivial because they are defined on a 1D grid.
For contributions with two or more multiple inverse

Laplacians, we followed another approach that involves
series of infinitely many terms. For the special cases
considered in Section V, we found that they can be

FIG. 2. Numerical results for two-loop integrals I15, I24 and I33
defined in Eqs. (40), (44) and (47) for the special case where
α ¼ β ¼ 0 and the linear power spectrum has the simple form
Plin ¼ k2 expð−k2Þ. Using the radial integrals in Eqs. (41), (45)
and (48) together with Eq. (51) (red lines) is compared against the
conventionally used direct Monte Carlo evaluation of two-loop
integrals using the CUBA [69] library (black points). As men-
tioned in the text, denominators in the I15, I24 and I33 terms have
been extended, q2 → q2 þ ϵ with ϵ ¼ 0.001, in order to avoid
singular points.
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truncated after a few terms. While we expect this to be also
the case in full generality, further work is required to
check this.

C. Potential infrared divergences

While we showed how to evaluate 2-loop power spec-
trum contributions using low-dimensional radial integrals,
an important future step is to actually implement this and
test numerical performance in practice. One potential issue
might be that we do not explicitly cancel the sensitivity of
individual contributions to very large-scale infrared (IR)
modes within integrands [29], but instead we currently rely
on accurate cancellations between fully integrated contri-
butions. While this seems problematic for certain power
law initial power spectra (scaling universes), it is less
problematic for ΛCDM initial power spectra that scale as k1

on large scales k≲ keq. Since the individual contributions
should be accurate to machine level precision if evaluated
with FFTs, it should be possible to control cancellations of
large terms, but this needs to be checked numerically. If this
poses problems in practice, an alternative would be to
modify the scheme so that IR sensitivity is canceled at an
earlier stage of the algorithm. In this context it is also worth
noting that our reformulation of 2-loop integrals is by no
means unique, and other reformulations may be more
suitable for numerical evaluations (also see [41], where
vector identities were used to reformulate some 1-loop
results).

D. LPT and beyond LCDM

Throughout our paper we have worked with the standard
time-independent perturbative Fn kernels in SPT. In LPT,
the corresponding kernels have slightly different coeffi-
cients but involve the same types of terms when computing
cumulants of the displacement field perturbatively (e.g.
[15,16,28,70–73]). Our results can therefore straightfor-
wardly be applied to 2-loop integrals if LPT is evaluated
order by order, simply by changing coefficients (see [41]
for examples of this for 1-loop integrals in LPT). Mapping
from the displacement cumulants to the density power
spectrum in LPT can involve a second layer of computa-
tional complexity, but this can again be reduced to spherical
Hankel transforms [38,74].
The form of the perturbative Fn kernels is strictly

speaking only valid in an Einstein-de Sitter (EdS) universe.
In other cosmologies the kernels can be time-dependent.
The effect of this on the 1-loop matter power spectrum is
typically at a subpercent level [16,75], but can reach 1% or
more when also considering momentum statistics that are
relevant for redshift space distortions [58]. It would be
interesting to test this approximation at the 2-loop level.
While this goes beyond the scope of this paper, our
formalism should still apply to the general cosmologies
for which Ref. [58] derived separable perturbative kernels.

E. Halo bias

Tracers of the large-scale DM distribution such as halos
or galaxies are typically biased with respect to the DM. The
relation between halos and DM is often modeled with a bias
relation of the form [76,77]

δhðxÞ ¼ b1δmðxÞ þ b2δ2mðxÞ þ bs2s2mðxÞ þ b3δ3mðxÞ þ � � � ;
ð52Þ

where s2 is the square of the DM tidal tensor, and we did
not write down velocity bias and potential other biases. One
way to include this in perturbative models is to modify the
perturbative Fn kernels such that they relate the nonlinear
halo density δh to the linear DM density δ1, i.e.

δhðkÞ ¼ ~F1ðkÞδ1ðkÞ

þ
Z
q

~F2ðq;k − qÞδ1ðqÞδ1ðk − qÞ þ � � � : ð53Þ

For example for the above simple bias relation the modified
kernels would be ~F1 ¼ b1 and

~F2ðq;pÞ ¼
�
17

21
b1 þ b2

�
þ b1

2

�
q
p
þ p

q

�
q̂ · p̂

þ
�
4

21
b1 þ bs2

�
3

2

�
ðq̂ · p̂Þ2 − 1

3

�
: ð54Þ

This only changes coefficients, e.g. from 17=21 to
17=21b1 þ b2, without changing the structure of the terms
contributing to the kernels. 2-loop corrections to the halo
power spectrum can therefore be evaluated in the same way
as for the DM power spectrum if the modified coefficients
of the halo ~Fn kernels are used. The Gn velocity kernels
should be modified in a similar way.

F. Redshift space distortions

Redshift space distortions (RSD) [78–80] emerge due to
the fact that we observe redshifts of galaxies and not
directly their positions. The position inferred from the
observed redshift is distorted by the peculiar velocity and
the comoving redshift-space coordinate for a galaxy is
given by

s ¼ xþ ẑ
u∥
H

ð55Þ

where ẑ is the unit vector along the line of sight, and u∥ is
the comoving velocity parallel to the line of sight.
There have been several approaches computing the RSD

effects within PT [21,81–87]. Even though initial computa-
tional routes of these approaches might seem rather differ-
ent, the results are equivalent, as expected (assuming the
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same perturbative order, approximations and resummations
in each of the approaches).
In the distribution function (DF) approach [85–89] the

overdensity in redshift space is given as the decomposition

δsðkÞ ¼
X
L¼0

1

L!

�
ik∥
H

�
L
TL
∥ ðkÞ; ð56Þ

were TL
∥ ðkÞ is the Fourier transform of velocity moments

TL
∥ ðxÞ ¼ ð1þ δðxÞÞvL∥ ðxÞ. It follows that the redshift space

power spectrum in the plane-parallel approximation can be
written as

PssðkÞ ¼
X
L¼0
L0¼0

ð−1ÞL0

L!L0!

�
ik∥
H

�
LþL0

PLL0 ðkÞ; ð57Þ

where PLL0 ðkÞ ¼ hTL
∥ ðkÞjT�L0

∥ ðk0Þi0 are the correlations of
the different velocity moments. Using rotational symmetry,
as shown in [85,86], each of the PLL0 spectra can be further
decomposed in the form

PLL0 ðkÞ ¼
X

l¼L;L−2;…
l0¼L0 ;L0−2;…

m¼0…l

PL;L0;m
l;l0 ðkÞPm

l ðμÞPm
l0 ðμÞ; ð58Þ

where Pm
l ðμÞ are the associated Legendre polynomials, and

μ ¼ ẑ · k̂. It is important to note that the decomposed
spectra PL;L0;m

l;l0 depend only on the magnitude k of the wave
vector k. Also note that the decomposition above gives a
finite number of terms for each L and L0. Explicit PT
expression for all the 1-loop PL;L0;m

l;l0 contributions are given
in Ref. [86]. They can be constructed from InmðkÞ and
JnmðkÞ expressions given in Appendix D of Ref. [86]. It is
clear that the FFT-PT method used for the fast computation
of the P22 and P13 1-loop contributions from Ref. [41] is
straightforwardly applicable to the integrals InmðkÞ (con-
volution type integrals similar to P22) and JnmðkÞ (propa-
gator type integrals similar to P13).
It is important to note that the decomposition of the RSD

effect into the PL;L0;m
l;l0 ðkÞ spectra does not rely on PT and is

valid up to all orders. So analogous expressions as
presented up to one loop in [86] can be computed up to
two loop. For these correlations the methods presented in
this paper would be fully applicable.
As mentioned, an advantage of the DF approach lies in

the use of rotational symmetries to determine the angular
structure of RSD correlators valid regardless of the PT
order. One-loop RSD power spectrum results obtained in
some of the other references [21,81–83,90] reduce after
explicit calculation to the same angular structure, as
expected, finally reaching the same conclusion, albeit, in
a less transparent way. Our treatment of RSD corrections to
the 2-loop power spectrum is therefore not restricted to the
DF approach but applies to all the other RSD modeling

approaches mentioned above. This discussion should also
be valid at higher orders.
Similar conclusions (keeping in mind Sec. VI E) hold for

biased tracers in redshift space where the explicit decom-
positions using the DF approach can be found in [87]. From
the above it follows that equivalent conclusions hold also
for velocity statistics (pairwise velocity and pairwise
dispersion) in real and redshift space and the explicit DF
decomposition presented in [91].
As mentioned above, our methods for rapid loop

computations can also be performed in LPT (for explicit
1-loop expressions see appendices in e.g. [15]). For LPT
models of RSD effects in addition to the biasing effects see
e.g. [92,93].

VII. CONCLUSIONS

Pushing models of the large-scale structure of the
universe to nonlinear scales is a challenging problem in
cosmology. An extensively studied approach to this is
perturbation theory. Unfortunately, perturbative corrections
come in the form of high-dimensional loop integrals that
are cumbersome to evaluate. For example, the 2-loop power
spectrum involves five-dimensional integrals at every wave
number of interest.
Generalizing previous work on the 1-loop matter power

spectrum [41,42], we show in this paper how 2-loop
corrections to the density power spectrum in Eulerian
standard perturbation theory can be rewritten so that they
involve only low-dimensional radial integrals. In absence of
multiple inverse Laplacians, these take the form of one-
dimensional Hankel transforms that can be evaluated very
efficiently with one-dimensional FFTs using FFTLOG [62].
Contributions arising from multiple inverse Laplacians seem
to require a sequence of low-dimensional radial integrals,
which are computationally more challenging but may still be
faster than five-dimensional integrations (see Sec. V).
One specific application of the method is the possibility

to speed up Monte-Carlo chains when fitting cosmological
parameters from LSS observations. More generally, the fast
expressions can be useful for anyone working with the
2-loop power spectrum or higher-order loop integrals in
general.
Our reformulation of 2-loop power spectrum integrals is

based on avoiding convolution integrals by repeatedly
changing between Fourier and position space, integrating
over orientations, and performing the remaining radial
integrals using one-dimensional FFTs. This is very general
in the sense that it does not assume a specific shape for the
linear input power spectrum. This, in turn, is important to
accurately model the imprint of baryonic acoustic oscilla-
tions on LSS 2-point statistics, which is arguably the most
pristine cosmological signal measured with high precision
from modern surveys.
The result that three-dimensional loop integrals can be

reduced to one-dimensional radial integrals is not a
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coincidence, but can be understood from the fact that
structure formation only depends on distances between
objects if we assume statistical isotropy and homogeneity
and the standard fluid equations of motion with their
standard perturbative solution (also see [41]).
We show how the same method can be applied to the

2-loop power spectrum of halos or any other biased tracer
of the dark matter with known bias relation. Redshift space
distortions can also be handled with this method. This is
straightforward to see for the distribution function approach
to model redshift space distortions but also applies to many
other RSD modeling approaches (see Sec. VI F). Our
method should also apply to Lagrangian space models
as shown for the 1-loop case in [41]. For the special,
presumably only academically interesting case of scaling
universes with perfect power law initial power spectrum,
the one-dimensional FFTs can be evaluated analytically so
that all 2-loop power spectrum contributions reduce to
simple power laws (see Appendix F).
In the future, it would be interesting to numerically

implement the fast 2-loop expressions presented in our
paper, extending the 1-loop implementations of [41,42]. It
would also be useful to include effective field theory
corrections and generalize the method to higher-order
statistics like the bispectrum or trispectrum. These possible
directions of future investigation seem worthwhile pursuing
given the impressive amount of upcoming data from a
number of planned LSS surveys in the near future and the
need to analyze and model these observations beyond the
linear regime to maximize their science returns.
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APPENDIX A: PERTURBATIVE EXPANSION
AND GRAVITY KERNELS

This section provides a brief overview of the perturbative
approach to solve the equations of motion in Eulerian
standard perturbation theory (see [16] for a review).
We start form the standard ansatz for the expansion of

density and velocity divergence field

δðk; τÞ ¼
X∞
n¼0

δðnÞðk; τÞ; ðA1Þ

θðk; τÞ ¼ −fðτÞHðτÞ
X∞
n¼0

θðnÞðk; τÞ; ðA2Þ

where we have for a given order

δðnÞðk; τÞ ¼
Z
q1…qn

ð2πÞ3δDðk − q1… − qnÞ

× FðsÞ
n ðq1;…;qnÞδ1ðq1; τÞ…δ1ðqn; τÞ;

θðnÞðk; τÞ ¼
Z
q1…qn

ð2πÞ3δDðk − q1… − qnÞ

×GðsÞ
n ðq1;…;qnÞδ1ðq1; τÞ…δ1ðqn; τÞ: ðA3Þ

By definition the first order kernels are unity, i.e. FðsÞ
1 ¼

GðsÞ
1 ¼ 1. Since the linear solution δ1 is known, all

higher order nonlinearities are incorporated in the kernels

FðsÞ
n and GðsÞ

n . The upper index (s) denotes symmetrized
kernels,

FðsÞ
n ðq1;…;qnÞ ¼

1

n!

X
π

Fnðπfq1;…;qngÞ;

GðsÞ
n ðq1;…;qnÞ ¼

1

n!

X
π

Gnðπfq1;…;qngÞ: ðA4Þ

Unsymmetrized kernels satisfy recursion relations that can
be derived by substituting Eq. (A3) into the equations of
motion Eq. (11). These recursion relations are

Fnðq1;…;qnÞ ¼
Xn−1
m¼1

Gmðq1;…;qmÞ
ð2nþ 3Þðn− 1Þ

×

�
ð2nþ 1Þk · q1���m

q21���m
Fn−mðqmþ1;…;qnÞ

þ k2q1���m · qmþ1���n
q21���mq

2
mþ1���n

Gn−mðqmþ1;…;qnÞ
�

ðA5Þ

and

Gnðq1;…;qnÞ ¼
Xn−1
m¼1

Gmðq1;…;qmÞ
ð2nþ 3Þðn − 1Þ

×

�
3
k · q1���m
q21���m

Fn−mðqmþ1;…;qnÞ

þ n
k2q1���m · qmþ1���n
q21���mq

2
mþ1���n

×Gn−mðqmþ1;…;qnÞ
�

ðA6Þ

where we have introduced the notation q1���m ¼ q1 þ � � � þ
qm and qmþ1���n ¼ qmþ1 þ � � � þ qn. Also k ¼ q1 þ � � � þ
qn in the last two equations.

APPENDIX B: COUPLING FACTORS

This Appendix provides analytical expressions for the
coupling factorsMn that arise from the angular structure of
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2-loop integrands and are used throughout the paper. The
first few examples are evaluated in Table I.
1-5 correlations without inverse Laplacians in Eq. (18)

are proportional to the coupling factor M0 defined by

M0ðl0;l1;l2Þ≡
Xminðl0;l1;l2Þ

l0¼0

αl0l0αl1l0αl2l0 ð2l0 þ 1Þ:

ðB1Þ

The αll0 coefficients follow from decomposing products
between wave vectors in spherical harmonics using
Eq. (G3), and are given by [36,41]

αll0 ¼
1

2

Z
1

−1
dμμlPl0 ðμÞ

¼
� l!

2ðl−l0Þ=2½ðl−l0Þ=2�!ðlþl0þ1Þ!! ; if l≥l0 & lþl0 even;

0; otherwise:

ðB2Þ

These coefficients vanish if the second index l0 is greater
than the first index l, which helps to render sums in the
paper finite. They are normalized so that α00 ¼ 1. The M0

coupling factor in Eq. (B1) is symmetric in its arguments,
and all nonzero factors for li ≤ 2 are listed in Table I.
The coupling factor M1 between ðl1;l2;l3Þ and L that

enters in Eq. (21) is defined as

M1ðl1;l2;l3;LÞ

≡ ð−1ÞLð2Lþ 1Þ
Xl1
l0
1
¼0

αl1l01ð2l0
1 þ 1Þ

×
Xminðl2;l3Þ

l0¼0

αl2l0αl3l0 ð2l0 þ 1Þ
�
L l0

1 l0

0 0 0

�
2

: ðB3Þ

This involves a Wigner 3-j symbol, which imposes a
triangle condition that implies L ≤ l0

1 þ l0 ≤ l1 þ
minðl2;l3Þ. The range of allowed L in Eq. (21) is therefore
finite. The coupling factor is symmetric under l2 ↔ l3.
For li ≤ 1 the only nonzero couplings are shown in Table I.
In Eq. (C8) we used the coupling factor M2 between

ðl1;l2;l3Þ and ðL;L0Þ, which is defined as

M2ðl1;l2;l3;L;L0Þ

≡ ð−1ÞLþL0 ð2Lþ 1Þð2L0 þ 1Þ
Xl1
l0
1
¼0

Xl2
l0
2
¼0

Xl3
l0
3
¼0

αl1l01αl2l02αl3l03

× ð2l0
1 þ 1Þð2l0

2 þ 1Þð2l0
3 þ 1Þ

�
l0
1 L0 l0

2

0 0 0

�
2

×

�
l0
2 L l0

3

0 0 0

�
2

: ðB4Þ

The 3-j symbols impose triangle conditions on
ðL0;l0

1;l
0
2Þ and ðL;l0

2;l
0
3Þ, which make the sums over

L and L0 in Eq. (C8) finite. The coupling factor is
symmetric under simultaneously changing l1 ↔ l3 and
L ↔ L0. All nonzero couplings for l1 ≤ l2 ≤ l3 ≤ 1 are
listed in Table I.
Finally, several expressions involve the coupling M3

between ðl1;l2;l3Þ and ðL1; L2; L3Þ defined by

M3ðl1;l2;l3;L1; L2; L3Þ

≡ Xl1
l0
1
¼0

Xl2
l0
2
¼0

Xl3
l0
3
¼0

αl1l01αl2l0
2
αl3l03

�
L1 L2 L3

l0
1 l0

2 l0
3

�0
: ðB5Þ

This involves a rescaled 6-j symbol defined in
Eq. (G14). It severely restricts the allowed values for
Li so that e.g. the sum on the right-hand side of Eq. (24)
is finite. [94].

APPENDIX C: 2-4 CORRELATIONS WITH
INVERSE LAPLACIANS AND NONTRIVIAL

ANGULAR DEPENDENCE

This Appendix shows how to evaluate nontrivial 2-4
correlations with inverse Laplacians and nontrivial angular
dependence, providing details of the results summarized in
Sec. IV B 2. Additional details on the derivation of these
results will be provided in Appendix D.

1. Most general form of 2-4 correlations

As mentioned before, the loop correction to the SPT
power spectrum generated by 2-4 correlations is

P24ðkÞ ¼ 24

Z
q1q2

FðsÞ
4 ðq1;−q1;q2;k− q2ÞFðsÞ

2 ðq2;k− q2Þ

×Plinðq1ÞPlinðq2ÞPlinðjk− q2jÞ: ðC1Þ

The most general form of terms contributing to this isZ
q1q2

½q̂2 · dðk − q2Þ�l1 ½q̂1 · dðk − q2Þ�l2ðq̂1 · bq2Þl3

×
qn11 Plinðq1Þqn22 Plinðq2Þjk − q2jn3Plinðjk − q2jÞ

js1q1 þ s2q2 þ s3ðk − q2Þj2
;

ðC2Þ

where the momenta entering the denominator or inverse
Laplacian are parametrized by the parameters s1 ∈
f−1; 0; 1g and s2, s3 ∈ f0; 1g. The only cases not
already covered by Eq. (21) occur when at least two
of these si parameters are nonzero. The angular structure
in Eq. (C2) is sufficiently general because it accounts
for all scalar products that can be formed between the
arguments of F4 and between the arguments of F2

in Eq. (C1).
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2. Splitting in two nested 1-loop integrals

We now show how to evaluate the most general form of
2-4 correlations given in Eq. (C2) by splitting it into two
nested 1-loop integrals as demonstrated for a simpler case
in Eq. (33). We proceed in two steps: First, we calculate the
loop integral over the q1 momentum that connects the F4

vertex to itself, corresponding to the red tadpole subdia-
gram in Fig. 1. We then insert the result and compute the
integral over the other loop momentum q2 that connects the
F4 and F2 vertices, corresponding to the blue subdiagram
in Fig. 1.
Explicitly, to evaluate the 2-loop integral of Eq. (C2), we

write scalar products involving the tadpole momentum q1

in terms of spherical harmonics, e.g.

ðq̂1 · q̂2Þl3 ¼ 4π
Xl3
l0
3

αl3l03Yl0
3
ðq̂1ÞY�

l0
3
ðq̂2Þ; ðC3Þ

where we use the condensed notation l ¼ ðl; mÞ andPl
l0 ¼ Pl

l0¼0

Pl0
m0¼−l0 . Generalizing Eq. (31), the integral

(C2) then splits into an outer q2-integralZ
q2q1

½bq2 · dðk − q2Þ�l1 ½bq1 · dðk − q2Þ�l2ðbq1 · bq2Þl3

×
qn11 Plinðq1Þqn22 Plinðq2Þjk − q2jn3Plinðjk − q2jÞ

js1q1 þ s2q2 þ s3ðk − q2Þj2

¼ 4π

Z
q2

½bq2 · dðk − q2Þ�l1qn22 Plinðq2Þjk − q2jn3

× Plinðjk − q2jÞ
Xl2
l0
2

Xl3
l0
3

αl2l02Y
�
l0
2
ð dk − q2Þ

× P
l0
2
l0
3
s1n1

tadpole ðs2q2 þ s3ðk − q2ÞÞαl3l03Y�
l0
3
ðq̂2Þ; ðC4Þ

over an inner tadpole integral over q1,

P
l0
2
l0
3
s1n1

tadpole ðpÞ≡ 4π

Z
q1

Yl0
2
ðq̂1ÞYl0

3
ðq̂1Þ

qn11 Plinðq1Þ
js1q1 þ pj2 ; ðC5Þ

which is evaluated at the momentum p≡ s2q2 þ
s3ðk − q2Þ. Splitting the 2-loop integral in these two nested
1-loop integrals is the main trick needed for evaluating P24.

The remaining procedure to evaluate the outer and inner
tadpole 1-loop integrals in Eqs. (C4) and (C5) is similar to
Sec. IV B 1 and [41], as we show next.

3. Evaluating the tadpole 1-loop integral over q1

The only cases for the denominator in Eq. (C2) that
are not already covered by the separable case in Eq. (21)
are ðs1; s2; s3Þ ∈ fð�1; 1; 0Þ; ð�1; 0; 1Þ; ð�1; 1; 1Þg, corre-
sponding to p ∈ fq2;k − q2;kg and s1 ¼ �1. We there-
fore only consider these cases in the following. The
different cases correspond to different couplings and fields
on which the inverse Laplacian acts, generalizing Eq. (30)
from Sec. IV B 1.
In each case, the inner tadpole integral (C5) is a Fourier-

space convolution that reduces to a position space product
of Ξ0

−2ðrÞ ¼ ð4πrÞ−1 defined in Eq. (G13) and the corre-
lation ξLn1;s1ðrÞ defined in Eq. (29):

P
l0
2
l0
3
s1n1

tadpole ðpÞ ¼ 4π
X∞
L¼0

XL
M¼−L

ð−1ÞLGl0
2
l0
3
LY�

Lðp̂ÞPL
n1;s1ðpÞ

ðC6Þ

with

PL
n1;s1ðpÞ≡

Z
∞

0

dr rjLðprÞξLn1;s1ðrÞ: ðC7Þ

This follows by integrating over orientations of the
tadpole momentum q1 and expanding in multipoles of
the momentum p. For l0

2 ¼ l0
3 ¼ n1 ¼ 0, s1 ¼ 1 and

p ¼ q2, we recover the simpler result of Eq. (32) because
G000 ¼ Y�

0ðp̂Þ ¼ ð4πÞ−1=2.
To proceed with the evaluation of the outer integral over

q2 in Eq. (C4), we consider the cases p ∈ fq2;k − q2;kg
separately.

4. Evaluating the outer 1-loop integral: Case 1

We start with the case p ¼ q2 in Eq. (C5), i.e.
ðs1; s2; s3Þ ¼ ð�1; 1; 0Þ. As shown in detail in
Appendix D, using Eq. (C6) in Eq. (C4), performing
angular integrations, and exploiting orthogonality relations
of Wigner 3-j symbols leads to

Z
dΩk̂

4π

Z
q1q2

½bq2 · dðk − q2Þ�l1 ½q̂1 · dðk − q2Þ�l2ðq̂1 · q̂2Þl3
qn11 Plinðq1Þqn22 Plinðq2Þjk − q2jn3Plinðjk − q2jÞ

js1q1 þ q2j2

¼ 4π

Z
∞

0

dr r2j0ðkrÞ
Xl2þl3

L¼0

Xl1þl2

L0¼0

M2ðl1;l2;l3;L;L0ÞT s1n1n2
LL0 ðrÞξL0

n3ðrÞ: ðC8Þ

This is a 1D Hankel transform of a sum of position space products of 4-point like correlations T ðrÞ and linear correlation
functions ξðrÞ. The former is a generalization of Eq. (34), given by a 1D Hankel transform of the Fourier space product of
the linear power spectrum and the transformed linear correlation function P from Eq. (C7):
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T s1n1n2
LL0 ðrÞ ¼

Z
∞

0

dq2
2π2

qn2þ2
2 jL0 ðq2rÞPlinðq2ÞPL

n1;s1ðq2Þ:

ðC9Þ
The coupling factor M2 is defined by Eq. (B4). In the

simple special case l1 ¼ l2 ¼ l3 ¼ 0, the only nonvan-
ishing coupling isM2ð0; 0; 0; 0; 0Þ ¼ 1, so that the general
result of Eq. (C8) simplifies and we recover the simple
result of Eq. (33) derived earlier (for s1 ¼ 1).
The case p ¼ k − q2 in Eq. (C5) with ðs1; s2; s3Þ ¼

ð�1; 0; 1Þ follows by symmetry, noting that the result

above does not change if we change the integration
variable from q2 to k − q2. Indeed, if we change the
denominator on the left-hand side of Eq. (C8) to
js1q1 þ k − q2j−2, the right-hand side follows by relabel-
ing l2 ↔ l3 and n2 ↔ n3.

5. Evaluating the outer 1-loop integral: Case 2

The last case is p ¼ k in Eq. (C5), i.e. ðs2; s3Þ ¼ ð1; 1Þ.
This case is related to the following contraction of the
inverse Laplacian acting on a cubic field:

ðC10Þ

The fully general case additionally contains scalar products between wave vectors. It can be reduced to (see endnote [95])

Z
dΩk̂

4π

Z
q1q2

½bq2 · dðk − q2Þ�l1 ½q̂1 · dðk − q2Þ�l2ðq̂1 · q̂2Þl3
qn11 Plinðq1Þqn22 Plinðq2Þjk − q2jn3Plinðjk − q2jÞ

js1q1 þ kj2

¼ 4π
Xl2þl3

L¼0

PL
n1;s1ðkÞ

Z
∞

0

dr r2jLðkrÞ
Xl1þl3

L2¼0

Xl1þl2

L3¼0

M3ðl1;l2;l3;L;L2; L3ÞξL2
n2 ðrÞξL3

n3 ðrÞ: ðC11Þ

This involves the Hankel transform of a sum of products of two correlation functions, multiplied by the power spectrum-like
quantity PðkÞ from Eq. (C7). The coupling factor M3 from Eq. (B5) enforces triangle conditions for ðL;l0

2;l
0
3Þ,ðL2;l0

1;l
0
3Þ, ðL3;l0

1;l
0
2Þ and ðL;L2; L3Þ, restricting the sums over L, L2 and L3 in Eq. (C11) to be finite.

APPENDIX D: DERIVATION OF 2-4 CORRELATIONS WITH INVERSE LAPLACIAN AND
NONTRIVIAL ANGULAR DEPENDENCE

In this section we provide details for the derivation of Eq. (C8), which is a fast expression for contributions to P24 that
contain an inverse Laplacian with p ¼ q2 in Eq. (C4). We explicitly show the steps for this particular case, noting that most
other calculations in this paper proceed similarly in flavor but are typically less involved.
Introducing the auxiliary variable q3 ¼ k − q2 with a Dirac delta on the right-hand side of Eq. (C4) and using Eq. (C6)

for the tadpole integral evaluated at p ¼ q2 gives

Pl1l2l3ns1
24;nonsep ðkÞ≡

Z
dΩk̂

4π

Z
q1q2

½q̂2 · dðk − q2Þ�l1 ½q̂1 · dðk − q2Þ�l2ðq̂1 · q̂2Þl3
qn11 Plinðq1Þqn22 Plinðq2Þjk − q2jn3Plinðjk − q2jÞ

js1q1 þ q2j2

¼ ð4πÞ2
Z

dΩk̂

4π

Z
q2q3

Z
d3reir·ðq3−kþq2Þðq̂2 · q̂3Þl1qn22 Plinðq2Þqn33 Plinðq3Þ

×
Xl2
l0
2

Xl3
l0
3

Xl2þl3

L

αl2l0
2
Y�
l0
2
ðq̂3Þð−1ÞLGl0

2
Ll0

3
Y�
Lðq̂2ÞPL

n1;s1ðq2Þαl3l03Y�
l0
3
ðq̂2Þ: ðD1Þ

The angular integrals over k̂ and r̂ can be performed by noting that Eq. (G2) implies

Z
dΩk̂

4π

Z
dΩr̂eir·ðq3−kþq2Þ ¼ ð4πÞ2j0ðkrÞ

X∞
L0

ð−1ÞL0
jL0 ðq2rÞjL0 ðq3rÞYL0 ðq̂2ÞY�

L0 ðq̂3Þ: ðD2Þ

This gives
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Pl1l2l3ns1
24;nonsep ðkÞ ¼ ð4πÞ5

Z
∞

0

dr r2j0ðkrÞ
Z
q2q3

Xl1
l0
1

αl1l0
1
Yl0

1
ðq̂2ÞY�

l0
1
ðq̂3Þqn22 Plinðq2Þqn33 Plinðq3Þ

×
X∞
L0

ð−1ÞL0
jL0 ðq2rÞjL0 ðq3rÞYL0 ðq̂2ÞY�

L0 ðq̂3Þ

×
Xl2
l0
2

Xl3
l0
3

Xl2þl3

L

αl2l0
2
Y�
l0
2
ðq̂3Þð−1ÞLGl0

2
Ll0

3
Y�
Lðq̂2ÞPL

n1;s1ðq2Þαl3l03Y�
l0
3
ðq̂2Þ; ðD3Þ

where we also expressed ðq̂2 · q̂3Þl1 in the first line in terms of spherical harmonics using Eq. (G3). The integral over q̂3 is a
Gaunt integral (G4), giving Gl0

1
L0l0

2
. The integral over q̂2 follows from Eq. (G7), giving

P
L00Gl0

1
L0L00GL00Ll0

3
. Using an

orthogonality relation for Wigner 3-j symbols, Eq. (G8), the sums over m0
1 and M0 simplify toX

m0
1
M0
Gl0

1
L0l0

2
Gl0

1
L0L00 ¼ 1

2l02 þ 1
δl0

2
L00δm0

2
M00 ðHl0

1
L0l0

2
Þ2: ðD4Þ

The same applies to the sum over M and m0
3:X

Mm0
3

Gl0
2
Ll0

3
GL00Ll0

3
¼ 1

2l02 þ 1
δl0

2
L00 δm0

2
M00 ðHl0

2
Ll0

3
Þ2: ðD5Þ

The sum overm0
2 then gives 2l

0
2 þ 1. TheH factors defined in Eq. (G5) contain 3-j symbols that restrict the sums over L and

L0 to be finite. The integral over q3 gives ξL
0

n3ðrÞ. We thus arrive at

Pl1l2l3ns1
24;nonsep ðkÞ ¼ 4π

Z
∞

0

dr r2j0ðkrÞ
Xl2þl3

L¼0

Xl1þl2

L0¼0

ξL
0

n3ðrÞ
Z

dq2
2π2

q2þn2
2 jL0 ðq2rÞPlinðq2ÞPL

n1;s1ðq2Þ

× ð−1ÞLþL0 Xl1

l0
1
¼0

Xl2
l0
2
¼0

Xl3
l0
3
¼0

αl1l01
αl2l02αl3l03

ð4πÞ2
2l0

2 þ 1
ðHl0

1
L0l0

2
Hl0

2
Ll0

3
Þ2: ðD6Þ

This agrees with Eq. (C8) above.

APPENDIX E: DERIVATION OF 3-3
CORRELATIONS WITH INVERSE

LAPLACIAN

1. Simple example

In this section we derive Eq. (36), which is a simple
example of a 3-3 correlation with inverse Laplacian.
Introducing q3 ≡ k − q1 − q2 with a Dirac delta on the

left-hand side of Eq. (36), decomposing it in plane waves,
and performing the integral over q3 gives

Z
dΩk̂

4π

Z
q1q2

Plinðq1ÞPlinðq2ÞPlinðjk − q1 − q2jÞ
jq1 þ q2j2

¼
Z

dΩk̂

4π

Z
d3re−ik·rξ00ðrÞTðrÞ; ðE1Þ

where we defined the 4-point like quantity TðrÞ by

TðrÞ≡
Z
q1q2

Plinðq1ÞPlinðq2Þ
jq1 þ q2j2

eiq1·reiq2·r: ðE2Þ

To simplify TðrÞ, we introduce q4 ≡ q1 þ q2 with a Dirac
delta and perform the integrals over q1 and q2 to get

TðrÞ ¼
Z
q4

Z
d3r0

ξ00ðjr − r0jÞξ00ðjr − r0jÞ
q24

eiq4·r
0
: ðE3Þ

The integral over r0 has the form of a convolution. To solve
this, we introduce r00 ≡ r − r0 with a Dirac delta, decom-
pose this in plane waves, and integrate over r0 to get (this is
equivalent to changing integration variables r0 → r − r0)

TðrÞ ¼
Z
q4

eiq4·r

Z
d3r00

ξ00ðr00Þξ00ðr00Þ
q24

e−iq4·r00 : ðE4Þ

Using Eq. (G12), the integral over r̂00 gives 4πj0ðq4r00Þ.
Then, the integral over q̂4 gives 4πj0ðq4rÞ. We are thus left
with
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TðrÞ¼
Z

∞

0

dq4
2π2

j0ðq4rÞ
Z

∞

0

dr00ðr00Þ2j0ðq4r00Þξ00ðr00Þξ00ðr00Þ;

ðE5Þ

which agrees with Eq. (37) in the main text.
As an aside, we note that an alternative simplification of

TðrÞ follows by first integrating over q4 in Eq. (E3),

TðrÞ ¼
Z

d3r0
ξ00ðjr − r0jÞξ00ðjr − r0jÞ

4πr0
; ðE6Þ

but this 3D convolution integral does not seem suitable for
fast numerical evaluation.

2. General case

In this section we derive the right-hand side of
Eq. (38), which allows for fast evaluation of general
3-3 correlations with inverse Laplacian and nontrivial
angular structure in the integrand. The derivation pro-
ceeds similarly to the simpler example above, the only
addition being the nontrivial angular structure of the
integrand, which is taken care of by expansions in
spherical harmonics.
In detail, Eq. (38) can be derived as follows. Introducing

q4 ≡ q1 þ q2 with a second Dirac delta on the left-hand
side of Eq. (38) and expanding both Dirac deltas in plane
waves yields

Pl1l2l3;n
33;nonsepðkÞ≡ kn0

Z
dΩk̂

4π

Z
q1q2q3

ð2πÞ3δDðk − q1 − q2 − q3Þ
ðq̂1 · q̂2Þl3ðq̂2 · q̂3Þl1ðq̂1 · q̂3Þl2

jq1 þ q2jn4
Y3
i¼1

qnii PlinðqiÞ ðE7Þ

¼
Z

dΩk̂

4π

Z
d3r

Z
d3r0e−ik·r

Z
q1���q4

eiq4·r
0
eiq1·ðr−r0Þeiq2·ðr−r0Þeiq3·r

kn0

qn44
ðq̂1 · q̂2Þl3ðq̂2 · q̂3Þl1ðq̂1 · q̂3Þl2

Y3
i¼1

qnii PlinðqiÞ:

ðE8Þ

Introducing r00 ≡ r − r0 with another Dirac delta and expanding it in plane waves gives

Pl1l2l3;n
33;nonsepðkÞ ¼

Z
dΩk̂

4π

Z
d3r

Z
d3r0

Z
d3r00

Z
q

Z
q1���q4

eiq·ðr00−rþr0Þe−ik·reiq4·r0eiq1·r00eiq2·r00eiq3·r

×
kn0

qn44
ðq̂1 · q̂2Þl3ðq̂2 · q̂3Þl1ðq̂1 · q̂3Þl2

Y3
i¼1

qnii PlinðqiÞ: ðE9Þ

Using Eq. (G12), the integral over k̂ gives j0ðkrÞ, and the integral over q̂4 gives 4πj0ðq4r0Þ. Then, the integral over r̂0 yields
4πj0ðqr0Þ. Next we expand the remaining plane waves and the scalar products between wave vectors in spherical harmonics
[using Eq. (G3) for the latter]. This leads to two spherical harmonics with argument q̂, so that the integral over q̂ gives a
Kronecker delta. The same happens for the integral over r̂. Additionally, there are three spherical harmonics with argument
q̂1, so that integrating over q̂1 gives a Gaunt integral (G4). The same happens for integrals over q̂2, q̂3 and r̂00. The integral
over r0 follows from the closure relation for spherical Bessel functions, enforcing q4 ¼ q, and yielding the intermediate
result

Pl1l2l3;n
33;nonsepðkÞ ¼ kn0

ð4πÞ10
½ð2πÞ3�5

π

2

Z
∞

0

dr dr00dqdq1dq2dq3r2ðr00Þ2q2−n4
�Y3
i¼1

q2þni
i PlinðqiÞ

�
×

X
L1;2;3l01;2;3

iL1þL2þL3ð−1Þl01þl0
2
þl0

3αl1l01αl2l02αl3l03j0ðkrÞjL3
ðqrÞjL3

ðqr00ÞjL1
ðq1r00ÞjL2

ðq2r00ÞjL3
ðq3rÞ

×
X

M1;2;3m0
1;2;3

ð−1Þm0
1
þm0

2
þm0

3G
M1m0

2
m0

3

L1l02l
0
3
G
M2m0

1
−m0

3

L2l0
1
l0
3

G
M3−m0

1
−m0

2

L3l01l
0
2

GM1M2M3

L1L2L3
: ðE10Þ

The last sum of four Gaunt integrals overMi andm0
i gives a

6-j symbol (G14). Conveniently arranging the integration
order then allows to write the P33 integral as a sum over 1D
Hankel transforms as in Eq. (38) in the main text.
Some comments regarding the derivation are in order. In

this section we only consider a quadratic denominator,

n4 ¼ 2, corresponding to a single inverse Laplacian, but the
calculation above formally works for any n4, which is why
we gave the result for arbitrary n4 (noting though that some
integrals may diverge for n4 ≠ 2). In the special case
without denominator, n4 ¼ 0, the integral over q in
Eq. (39) yields a Dirac delta enforcing r ¼ r00, so that
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we recover Eq. (24). As an alternative way to simplify the
integral on the left-hand side of Eq. (38) one could split the
derivative with respect to r into radial and angular parts,
similarly to e.g. [53]. This is convenient for n4 ¼ 2 but gets
likely more complicated for larger n4, whereas the results
above apply to general n4.

APPENDIX F: SPECIALIZATION TO SCALING
UNIVERSE WITH PERFECT POWER LAW

INITIAL POWER SPECTRUM

The DM power spectrum in a ΛCDM cosmology is
scale-dependent and includes features like baryonic acous-
tic oscillations. Therefore, integrals over this power spec-
trum or Hankel transforms must be performed numerically,
e.g. using FFTLOG [62]. This is the primary use case we
envision for our method, because it allows evaluating
2-loop corrections to the matter power spectrum in an
extremely fast way for arbitrary shapes of the initial linear
power spectrum. In this section we specialize the general
results from the rest of the paper to a simpler special case in
which the transforms can actually be performed analyti-
cally, exploiting the fact that the Hankel transform of a
power law is again a power law. This may be useful for
validating numerical implementations, but we stress again
that it is not needed for our method which applies to
arbitrary linear power spectrum shapes.
For scaling universes the DM power spectrum is

assumed to have a power-law shape,

PlinðkÞ ¼
�
k
k0

�
N
; ðF1Þ

with some slopeN and pivot scale k0. The linear correlation
function ξln then reduces to

½ξlnðrÞ�scal:uni: ¼
1

kN0

Z
∞

0

dq
2π2

q2þnþNjlðqrÞ

¼ Ξl
nþNðrÞ
kN0

; ðF2Þ

where the integral over q is a Hankel transform of a power
law. This is again a power law

Ξl
nþNðrÞ ¼

2nþN

π
ffiffiffi
π

p ΓðlþnþNþ3
2

Þ
Γðl−n−N

2
Þ

1

r3þnþN ðF3Þ

if nþ N < −1, nþ N þ l > −3 and r > 0 [41,96–98]. In
the rest of this section we use this result to specialize the
fast expressions in the main text of the paper to scaling
universes, obtaining analytical solutions for all 2-loop
integrals in scaling universes.

1. 1-5 correlations in a scaling universe

For example, in a scaling universe, the fast expression
for 1-5 correlations given by the right-hand side of

Eq. (28) reduces to a simple power law in k (assuming
s0 ¼ s1 ¼ s2 ¼ 1)

½Eq: ð28Þ�scal:uni: ¼ c15
kn0þN

kN0
k4þ2Nþn1þn2 ; ðF4Þ

where the proportionality constant is

c15 ¼
ffiffiffi
π

p
ð4πÞ3ðk0Þ2N

Xl1þl2

L0¼0

ΓðL0−4−2N−n1−n2
2

Þ
ΓðL0þ7þ2Nþn1þn2

2
Þ

×
Xl0þl1

L1¼0

Xl0þl2

L2¼0

M3ðl0;l1;l2;L0; L2; L1Þ

×
Y2
i¼1

ΓðLiþniþNþ3
2

Þ
ΓðLi−ni−N

2
Þ : ðF5Þ

For N ¼ −2.6 and li ¼ ni ¼ 0, we validated Eq. (F4)
numerically by brute-force integrating the left-hand side
using the Monte-Carlo integration library CUBA [69].

2. 2-4 correlations in a scaling universe

We can also simplify the fully general 2-4 correlations of
Eq. (C8) in a perfectly scaling universe. To see this, note
that the transformed correlation PðpÞ of Eq. (C7) becomes
a power law in a scaling universe,

½PL
n1;1

ðpÞ�
scal:uni:

¼ 1

8πkN0

ΓðLþn1þNþ3
2

Þ
ΓðL−n1−N

2
Þ

×
ΓðL−n1−N−1

2
Þ

ΓðLþn1þNþ4
2

Þp
1þn1þN: ðF6Þ

Then the 4-point-like correlation T ðrÞ in Eq. (C9) also
becomes a power law,

½T 1;n1n2
LL0 ðrÞ�scal:uni: ¼

21þn1þn2þ2N ½PL
n1;1

ð1Þ�
scal:uni:

π
ffiffiffi
π

p
kN0 r

4þn1þn2þ2N

×
ΓðL0þn1þn2þ2Nþ4

2
Þ

ΓðL0−n1−n2−2N−1
2

Þ : ðF7Þ

Therefore the right-hand side of the 2-4 integral in Eq. (C8)
also turns into a simple power law in k (assuming s1 ¼ 1),

½Eq:ðC8Þ�scal:uni: ¼ c24k4þn1þn2þn3þ3N ðF8Þ

with proportionality constant
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c24 ¼
1

26þn1þn2þ2NkN0

Γð−4−n1−n2−n3−3N
2

Þ
Γð7þn1þn2þn3þ3N

2
Þ

×
Xl2þl3

L¼0

Xl1þl2

L0¼0

M2ðl1;l2;l3;L; L0Þ

× ½T 1;n1n2
LL0 ð1Þ�scal:uni:

ΓðL0þn3þNþ3
2

Þ
ΓðL0−n3−N

2
Þ : ðF9Þ

The other case of general 2-4 correlations is given by
Eq. (C11). This takes the same power law form in a scaling
universe (assuming again s1 ¼ 1)

½Eq:ðC11Þ�scal:uni: ¼ c024k
4þn1þn2þn3þ3N ðF10Þ

but the proportionality constant is now

c024 ¼
Xl2þl3

L¼0

½PL
n1;1

ð1Þ�
scal:uni:

8π
ffiffiffi
π

p
k2N0

ΓðL−n2−n3−2N−3
2

Þ
ΓðLþn2þn3þ2Nþ6

2
Þ

×
Xl1þl3

L2¼0

Xl1þl2

L3¼0

M3ðl1;l2;l3;L;L2; L3Þ

×
ΓðL2þn2þNþ3

2
Þ

ΓðL2−n2−N
2

Þ
ΓðL3þn3þNþ3

2
Þ

ΓðL3−n3−N
2

Þ : ðF11Þ

For N ¼ −2.6 and ni ¼ li ¼ 0, Eqs. (F8) and (F10) are
consistent with results obtained by Monte-Carlo integrating
the left-hand side.

3. 3-3 correlations in a scaling universe

The fast expression for 3-3 correlations without inverse
Laplacians given by the right-hand side of Eq. (24) also
reduce to a simple power law in k for scaling universes,

½Eq: ð24Þ�scal:uni: ¼ c33k6þn1þn2þn3þ3N; ðF12Þ

where the proportionality constant is

c33 ¼
1

ð4πÞ3ðk0Þ3N
Γð−n1−n2−n3−3N−6

2
Þ

Γðn1þn2þn3þ3Nþ9
2

Þ

×
Xl2þl3

L1¼0

Xl1þl3

L2¼0

Xl1þl2

L3¼0

M3ðl1;l2;l3;L1; L2; L3Þ

×
Y3
i¼1

ΓðLiþniþNþ3
2

Þ
ΓðLi−ni−N

2
Þ : ðF13Þ

We numerically validated this both for scaling universes
and for a realistic linear input power spectrum for
li ¼ ni ¼ 0.
More general 3-3 correlations with inverse Laplacians

are given in Eq. (38). For a scaling universe, the 4-point

like-quantity T ðrÞ from Eq. (39) becomes a power
law,

½Tl1l2l3;n1n2n4
L3

ðrÞ�
scal:uni:

¼ 2n1þn2−n4þ2N−2

π4k2N0 rn1þn2−n4þ2Nþ6

×
ΓðL3þn1þn2−n4þ2Nþ6

2
Þ

ΓðL3−n1−n2þn4−2N−3
2

Þ
ΓðL3−n1−n2−2N−3

2
Þ

ΓðL3þn1þn2þ2Nþ6
2

Þ

×
Xl2þl3

L1¼jl2−l3j

Xl1þl3

L2¼jl1−l3j
M3ðl1;l2;l3;L1; L2; L3Þ

×
ΓðL1þn1þNþ3

2
Þ

ΓðL1−n1−N
2

Þ
ΓðL2þn2þNþ3

2
Þ

ΓðL2−n2−N
2

Þ : ðF14Þ

The right-hand side of Eq. (38) therefore becomes

½Eq: ð38Þ�scal:uni: ¼ c033k
6þn1þn2þn3−n4þ3N; ðF15Þ

with proportionality constant

c033 ¼
1

ð2πÞ3ðk0Þ3N
Γð−n1−n2−n3þn4−3N−6

2
Þ

Γðn1þn2þn3−n4þ3Nþ9
2

Þ

×
Xl1þl2

L3¼jl1−l2j

ΓðL3þn1þn2−n4þ2Nþ6
2

Þ
ΓðL3−n1−n2þn4−2N−3

2
Þ
ΓðL3−n1−n2−2N−3

2
Þ

ΓðL3þn1þn2þ2Nþ6
2

Þ

×
Xl2þl3

L1¼jl2−l3j

Xl1þl3

L2¼jl1−l3j
M3ðl1;l2;l3;L1; L2; L3Þ

×
Y3
i¼1

ΓðLiþniþNþ3
2

Þ
ΓðLi−ni−N

2
Þ : ðF16Þ

Numerically validating this result is unfortunately not
straightforward because the brute force integration of the
left-hand side seems nontrivial for scaling universes.
Nevertheless, the predicted scaling with k does seem
consistent with brute force integration if we choose
N ¼ −2.1.

APPENDIX G: USEFUL MATHEMATICAL
IDENTITIES

For convenience we list some standard mathematical
identities that we used throughout this paper (also see
Appendix C in [41]).

1. Expansions

Some of the most frequently used relations in our paper
are the expansion of a Dirac delta in plane waves,

ð2πÞ3δDðqÞ ¼
Z

d3reiq·r; ðG1Þ
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the expansion of plane waves in spherical harmonics,

e�iak·r ¼ 4π
X∞
l¼0

Xl

m¼−l
ð�isgnðaÞÞljlðjajkrÞYlmðk̂ÞY�

lmðr̂Þ;

ðG2Þ

and the decomposition of scalar products between wave
vectors into spherical harmonics,

ðx̂ · ŷÞl ¼ 4π
Xl
l0¼0

Xl0
m0¼−l0

αll0Yl0m0 ðx̂ÞY�
l0m0 ðŷÞ; ðG3Þ

where αll0 coefficients are given by Eq. (B2).

2. Angular integrals and Wigner 3-j symbols

The integral over three spherical harmonics is a Gaunt
integral that contains Wigner 3-j symbols,Z

dΩq̂Yl1
ðq̂ÞYl2

ðq̂ÞYl3
ðq̂Þ ¼ Gl1l2l3

¼ Hl1l2l3

�
l1 l2 l3

m1 m2 m3

�
;

ðG4Þ

where the isotropic part is

Hl1l2l3 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r �
l1 l2 l3

0 0 0

�
:

ðG5Þ

The indices must satisfy m1 þm2 þm3 ¼ 0, jl2 − l3j ≤
l1 ≤ l2 þ l3 and permutations, and l1 þ l2 þ l3 must be
even. The Gaunt coefficients (G4) represent the coefficients
that arise when decomposing the product of two spherical
harmonics in terms of a third one, i.e.

Yl1
ðq̂ÞYl2

ðq̂Þ ¼
Xl1þl2

L¼jl1−l2j

XL
M¼−L

Gl1l2LY
�
Lðq̂Þ: ðG6Þ

The integral over four spherical harmonics is thereforeZ
dΩq̂Yl1

ðq̂ÞYl2
ðq̂ÞY�

l3
ðq̂ÞY�

l4
ðq̂Þ ¼

X
L

Gl1l2LGLl3l4
:

ðG7Þ

The Wigner 3-j symbols satisfy the following orthogon-
ality relation:

X
m1m2

�
l1 l2 l

m1 m2 m

��
l1 l2 l0

m1 m2 m0

�
¼ 1

2lþ 1
δll0δmm0 :

ðG8Þ

Some other relations used in our paper are

X
m

ð−1Þm
�
l l L

m −m 0

�
¼ ð−1Þl ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1
p

δL0 ðG9Þ

and �
l l 0

m −m 0

�
¼ ð−1Þl−mffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1
p : ðG10Þ

Equations (G6)–(G10) can be used to perform the angular
integral over the product of four Legendre polynomials
with the same argumentZ

dΩr̂Pl1ðk̂ · r̂ÞPl2ðk̂ · r̂ÞPl3ðk̂ · r̂ÞPl4ðk̂ · r̂Þ

¼ 4π
X
L

ð2Lþ 1Þ
�
L l1 l2

0 0 0

�
2
�
L l3 l4

0 0 0

�
2

;

ðG11Þ

where the sum over L is restricted by triangle conditions.
The angular part of the 3D Fourier transform of a

function fðrÞ that depends only on radius isZ
dΩq̂e�iq·rfðrÞ ¼ 4πj0ðqrÞfðrÞ: ðG12Þ

The Fourier transform of the inverse Laplacian is (e.g. [41])

Ξ0
−2ðrÞ≡

Z
q
e−iq·r

1

q2
¼

Z
∞

0

dq
2π2

j0ðqrÞ ¼
1

4πr
: ðG13Þ

3. Wigner 6-j symbol

We sometimes use a rescaled 6-j symbol defined by�
j1 j2 j3
j4 j5 j6

�0

≡ ð4πÞ2ij1þj2þj3ð−1Þj4þj5þj6Hj1j2j3

×Hj1j5j6Hj2j4j6Hj3j4j5

�
j1 j2 j3
j4 j5 j6

�
¼ ij1þj2þj3ð−1Þj4þj5þj6

�
j1 j2 j3
0 0 0

��
j1 j5 j6
0 0 0

�
×

�
j2 j4 j6
0 0 0

��
j3 j4 j5
0 0 0

��
j1 j2 j3
j4 j5 j6

�
×
Y6
i¼1

ð2ji þ 1Þ: ðG14Þ
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This is only nonzero if triangle conditions of the form jj2 − j3j ≤ j1 ≤ j2 þ j3 are satisfied for ðj1; j2; j3Þ, ðj1; j5; j6Þ,
ðj2; j4; j6Þ and ðj3; j4; j5Þ. Additionally, j1 þ j2 þ j3, j1 þ j5 þ j6, j2 þ j4 þ j6 and j3 þ j4 þ j5 must be even. The
product of the first 3-j symbol and the 6-j symbol in Eq. (G14) can also be replaced by a sum over 3-j symbols using
Eq. 34.5.23 of [96,97]:�

j1 j2 j3
j4 j5 j6

�0
¼ ij1þj2þj3

�
j1 j5 j6
0 0 0

��
j2 j4 j6
0 0 0

�

×

�
j3 j4 j5
0 0 0

��Y6
n¼1

ð2jn þ 1Þ
� Xmaxðj4;j5;j6Þ

m¼−maxðj4;j5;j6Þ
ð−1Þm

×

�
j1 j5 j6
0 m −m

��
j2 j4 j6
0 m −m

��
j3 j4 j5
0 m −m

�
: ðG15Þ

Numerical evaluation is straightforward and fast, noting that we only require ji ≲ 10 because the perturbation theory
kernels Fn and Gn involve only low-order Legendre polynomials.
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