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Modeling the large-scale structure of the universe on nonlinear scales has the potential to substantially
increase the science return of upcoming surveys by increasing the number of modes available for model
comparisons. One way to achieve this is to model nonlinear scales perturbatively. Unfortunately, this
involves high-dimensional loop integrals that are cumbersome to evaluate. Trying to simplify this, we show
how two-loop (next-to-next-to-leading order) corrections to the density power spectrum can be reduced to
low-dimensional, radial integrals. Many of those can be evaluated with a one-dimensional fast Fourier
transform, which is significantly faster than the five-dimensional Monte-Carlo integrals that are needed
otherwise. The general idea of this fast fourier transform perturbation theory method is to switch between
Fourier and position space to avoid convolutions and integrate over orientations, leaving only radial
integrals. This reformulation is independent of the underlying shape of the initial linear density power
spectrum and should easily accommodate features such as those from baryonic acoustic oscillations. We
also discuss how to account for halo bias and redshift space distortions.
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I. INTRODUCTION

Observations of the large-scale structure (LSS) of the
universe are becoming increasingly precise and abundant,
with many large surveys planned in the near future, includ-
ing e.g. DES [1], eBOSS [2], DESI [3], Euclid [4], WFIRST
[5], LSST [6], and SPHEREX [7]. It is exciting to use this
observational window to study fundamental physics and the
evolution and composition of the universe. This is possible
because properties of the constituents of the universe leave
characteristic fingerprints in the observed distribution of
LSS, enabling detailed studies of e.g. dark energy, the initial
conditions from the big bang, neutrinolike particles, or
modifications of general relativity. The accuracy with which
we can study these fingerprints is set by the number of
independent three-dimensional modes that we can model
and include in data analyses. This is in turn determined by
the smallest scale that we can still model. Therefore, an
important aspect of large-scale structure research is to extend
the validity of models to smaller, more nonlinear scales.

Given the immense effort put into future surveys and
the strong dependence of their science output on the
smallest scale that can be modeled, any idea for improving
LSS models on small scales is worth pursuing. This has
therefore been an area of intense study in the literature. The
two main perturbative modeling approaches are Eulerian
standard perturbation theory (SPT) (e.g. [8-12]) and
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Lagrangian perturbation theory (LPT) (e.g. [13—15]); see
[16] for a review and e.g. [17—40] for a selection of more
recent developments. Higher-order perturbative corrections
to these models push their validity to smaller scales.
However these corrections involve high-dimensional, com-
putationally expensive loop integrals. For example, the
2-loop power spectrum in SPT involves five-dimensional
integrals at every wave number of interest. Accurate
numerical evaluation of the 2-loop power spectrum can
therefore take several CPU hours for a single set of
cosmological parameter values. Reducing the computa-
tional complexity can make these 2-loop integrals more
practicable for the LSS community, and simplify their use
for constraining cosmological parameters from LSS sur-
veys with Monte-Carlo chains, which often require evalu-
ating model predictions for thousands of cosmological
parameter values.

Motivated by this, we recently proposed a fast method to
evaluate the 1-loop, next-to-leading-order matter power
spectrum from an arbitrary linear input power spectrum
[41]. Reference [42] presented the same method for 2-2
contributions and an alternative method for 1-3 couplings.
Related work that separates high-dimensional integrals
into products of lower dimensional integrals includes
[36,43-50] for LSS and e.g. [51-54] for the CMB.

Our method in [41] executes 20 one-dimensional FFTs
to return the 1-loop power spectrum over several decades in
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wave number at once at machine-level precision. This
exploits spherical symmetry of large-scale structure for-
mation in real space by analytically integrating over
orientations. The linear input power spectrum can thereby
have an arbitrary functional form as long as it can be
represented on a high-resolution, one-dimensional grid that
is used for one-dimensional FFTs. In particular, the method
can easily resolve the imprint of baryonic acoustic oscil-
lations, BAO, on the initial power spectrum (see Sec. VI A).
This is crucial for providing state-of-the-art model pre-
dictions for the nonlinear evolution of BAO features in
ACDM models and extensions thereof.

Our goal in this paper is to generalize the fast fourier
transform perturbation theory (FFT-PT) approach intro-
duced in [41] to higher order in large-scale structure
perturbation theory, specifically to the 2-loop power spec-
trum, corresponding to next-to-next-to-leading order in the
linear mass density. This generalization is important to test
the applicability of the fast FFT-PT framework of [41]
beyond 1-loop power spectrum integrals. It should also
help to make 2-loop perturbation theory more practically
useable, for example to constrain cosmological parameters
from a given data set with only little computational cost.

While FFT-PT relies on exact analytical reformulations
of the relevant 2-loop integrals, a viable alternative to
reduce computational cost is to evaluate approximations of
those integrals. As demonstrated by Refs. [55,56], this can
be achieved by Taylor expanding around a fiducial cos-
mological model, or by precomputing integrals for a
fiducial cosmology with high precision and then computing
corrections for another cosmology with lower precision.
The accuracy level and robustness of such approximate
methods needs to be checked for every application, e.g.
when accounting for halo biasing, redshift space distortions
or extensions of the basic ACDM model.

Although we share the same motivation and goals with
Refs. [55,56], our exact FFT-PT method is technically
completely different and therefore complementary in prac-
tice, providing a useful path for cross-checks. It would also
be interesting to combine the ideas of [55,56] and our
method in the future, particularly if the goal is to compute the
2-loop power spectrum robustly for different cosmological
parameters at the subpercent level precision that is needed to
realize the full scientific potential of future LSS surveys.

For clarity we will focus on the standard 2-loop integrals
for the matter power spectrum in SPT. However, our
formalism can also handle halo bias, redshift space dis-
tortions (RSD), effects from the relative velocity between
dark matter and baryons [57], or corrections from the
effective field theory of large-scale structure [22,23],
because the relevant integrals have the same form as the
ones we consider here. For example, halo bias can be
included simply by modifying the perturbative F, kernels
that enter the loop integrals (see Sec. VIE), while RSD
effects amount to including additional velocity correlators
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involving velocity kernels G,, (see Sec. VI F). In principle it
should also be possible to generalize the formalism to
higher-order statistics beyond the power spectrum. Our
method should also work for cosmological models beyond
ACDM as long as analytical expressions for perturbative
kernels exist (see [58] for recent progress in this direction).
For models that do not allow for analytical perturbative
kernels one instead has to resort to alternative approaches,
for example computing kernels fully numerically. While this
is possible for subsets of 2-loop contributions by storing
kernels on grids [59], it is not clear if fourth or fifth order
kernels could be included efficiently in such an approach.
Our paper is organized as follows. To get intuition, we first
introduce higher-order corrections to 2-point statistics in a
simple perturbative toy model in Sec. II. In Sec. III we
generalize this to a subclass of simple 2-loop SPT power
spectrum corrections that do not involve inverse Laplacians.
We then generalize this to account for a single inverse
Laplacian in Sec. IV, and multiple inverse Laplacians in
Sec. V. In Sec. VI we comment on the applicability of the
method, and extensions to e.g. biased tracers. Finally, we
conclude in Sec. VII. Appendices provide background
material, derivations, and show how some of the general
results simplify further for the special case of scaling
universes with power law initial power spectrum.

A. Conventions and notation

Throughout our paper, k and q refer to Fourier space,
whereas r and x refer to position space. We use the
following shorthand notation for Fourier space integrals:

[=]ar .

Hats denote unit vectors, e.g. § = q/g, where ¢ = |q|. Py,
denotes the linear matter density power spectrum, whereas
P, refers to Legendre polynomials. We sometimes abbre-
viate indices of spherical harmonics as £ = (£, m) and use

the shorthand notation $ g = S ms S~ Spherical

m=—¢"
harmonics are normalized so that [ dQgY s, ()%, (4) =
Sp08mm and Yo(q) = (47)~'/2. We highlight the most
important results of our paper in boxed equations.

II. PERTURBATIVE CORRECTIONS TO THE
2-POINT CORRELATION FUNCTION

In this section we introduce higher-order corrections to
the matter 2-point correlation function in a simple toy
model, which is useful to get intuition for the full
corrections discussed later.

A. Perturbative 2-point correlation function:
Overview of terms in a toy model

The approach of Eulerian standard perturbation theory
(SPT) to solve the fluid equations for the large-scale dark
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matter overdensity is to expand this overdensity and the
velocity perturbatively in the linear overdensity d,

5(x) =Y 8,(x). 2)

Here, the nth order contribution o, to the full nonlinear
overdensity is of order (&;)". It has a known analytical form
that follows from the fluid equations in an expanding
universe. The 2-point correlation function or power spec-
trum of the nonlinear density is then given by summing up
contributions at different orders:

(66) = (8161) + 2(8103) + (6207)

tree-level 1-loop
+2(8,85) +2(5,84) + (8363) + O(8Y) . (3)
~ ——
2-loop higher loops

The first term is the leading-order contribution, which is
usually called the tree-level contribution because the
corresponding Feynman diagram does not involve any
loops. The next two terms are the 1-3 correlation between
the linear and third order density, and the 2-2 correlation
between the two second order densities. These are next-to-
leading order contributions to the power spectrum. The
Feynman diagrams of these 1-loop terms involve a single
loop. The next three terms, corresponding to 1-5, 2-4 and
3-3 correlations, are next-to-next-to-leading-order terms,
corresponding to Feynman diagrams with two loops that
will be the focus of our paper.

These 2-loop integrals are typically studied in Fourier
instead of position space. This has the advantage that
differential operators like gradients or inverse Laplacians
turn into analytical expressions of Fourier wave vectors,
which are simple to write down and evaluate. However,
working in Fourier space comes at the expense of intro-
ducing convolution integrals that would be simpler prod-
ucts of fields in position space.

Since both the differential operators in position space
and the convolutions in Fourier space represent substantial
complications to typical calculations, we start with a simple
but unphysical foy model where we ignore all differential
operators to simplify position space calculations.
Specifically, let us assume for a moment that the nth order
density is just the nth power of the linear density,

5(x) = [61(x)]". (4)

In this toy model, the 1-3 part of the 1-loop contribution to
the 2-point correlation function is

=3 <6|1 (x) (5I1 (x’)éll (x’)éll (x'))
3£(r)&(0) (5)

<(51 (X) (53(X/)>
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where the position X’ = x + r is separated by a distance r
from x. We also defined &(r) = (5;(x)8,(x’)) as the
2-point correlation function of the linear density, with
£(0) representing the correlation at zero lag r =0.
Similarly, we obtain for the 2-2 contribution to the 2-point
correlation function

<52(X) 52(X/)> = 2<51 (X)dl (X) 51 (X/)51 (X/)>

(0101 (x) 01 ()31 (%)
— 202 + [EO,

(6)

We can calculate similar expressions for 2-loop contri-
butions in this simple toy model. The 1-5 contribution is
given by a linear correlation function at nonzero separation
r multiplied by the square of the zero lag term &£(0),

(61(%) 65(x')) = 15 (6 (x) 61 (x')51 (x')51 (x')51 (x')61 (x'))
= 15¢(r)[€(0))*.
(7)

The 2-4 contribution has two qualitatively different con-
tractions,

(02(x) 64(x")) = 12(61(x)d1(x) 61 (x")d1 (x")61 (x")01(x))

361 (3)61 () 61 ()81 ()81 (x)61 (x'))
= 12[¢(r)]?€(0) + 3 [£(0)]°.

(8)

Finally, the 3-3 contribution is

1

| | | |
<53(X) 63 (X/)> =6 <51 (X)51 (X)51 (X) (51 (X/)(Sl (X/)51 (X/)>
19(61(x)61(x)61 (x) 81 (x)61 (x' )51 (x'))
=6[¢(r)]* +9£(r)[E(0)]%.

©)

In the toy model of Eq. (4), the 1- and 2-loop integrals thus
only involve products of the 2-point correlation function
&(r) and the zero-lag correlation £(0). The computational
cost of evaluating 1- and 2-loop integrals is therefore trivial
in this toy model.

It is not clear, however, if such a simple form of 1- and
2-loop integrals can also be obtained if we work with the
full physical nth order density perturbations that involve
gradient and inverse Laplacian operators. While this has
recently been shown to be the case for 1-loop integrals in
[41] (also see [42—44]), it is not clear if 2-loop integrals
allow similar simplifications. Addressing this question is
the main goal of our paper.
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Note that the constant [£(0)]? and [£(0)]® terms in 2-2
and 2-4 correlations are not present if we consider only the
connected part of the correlation functions, (AB), =
(AB) — (A)(B), or if we enforce the density to have zero
average at each order, 6, = & — (6]).

B. Eulerian fluid and equations of motion

The toy model where the nth order density perturba-
tion is just the linear density raised to the nth power is
not physical because it does not solve the equations of
motion of DM in an expanding background. We briefly
summarize here how to generalize the perturbative
expansion so that it solves these equations (see [16]
for a review).

The relevant fluid equations can be written as the Fourier
transform of the continuity equation,

5(k,7) + 0(k, 1) — —A (e (k—k; ~k)
x a(ky, k,)6(ky,7)0(k,, 1), (10)

and the Fourier transform of the divergence of the Euler
equation,

. 3
O(k,7) +H(r)0(k,7) + E'H(r)zgm (7)6(k, 7)
—— [ (k- ki~ ki k)
Kk,
x 0k, 7)0(k,, 1), (11)
where & is the matter overdensity, & = V - v is the velocity
divergence, * = d/dr is the time derivative relative to

conformal time, and H is the conformal Hubble parameter.
We have also introduced the abbreviations

ki +k,) -k 1

a(k;. ky) :(1k722)2 =1 +F<k1 k),

2 2
(k- k) |k + k|
k. k, =

ﬂ( 1 2) Zk%k%
k, -k,
233 2

These kernels can be interpreted in position space by noting
that multiplication with a wave vector k corresponds to
taking the gradient, whereas multiplication with k/k?
corresponds to the gradient of the inverse Laplacian, i.e.
the gradient of a potential.

The equations of motion can be solved with the
perturbative ansatz

5:200:5”, (13)

n=0
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where the nth order perturbation in Fourier space is an
n-fold convolution of the linear density o; filtered by a

(symmetrized) kernel F o,

5, (k) = F5, % x5, (14)

or writing this more explicitly,
50 = [ oreplk-a-q)
qq,

X Fo (@, o @)1 (@) - 81 (). (15)

A similar expression follows for the velocity divergence 6.

Explicit expressions for the F ') kernels can be obtained
from recursion relations that follow from the equations of
motion; see Appendix A. For our purposes, however, we
only need to know the general form of the F, filter kernels.
This is determined by the operators appearing in the fluid

equations of motion, involving e.g. gradients and inverse

Laplacians. Indeed, the nth order kernel F Sf)(ql, v qy)

involves only sums of products of the following simple
“building block™ operators:

FﬁlS)(qlv "'vqn)

1
no(A AN
~ NS \g ) , 16
{| (4:-4) |s1q1+--~+ann2} (16)

where n; are integers, /; are non-negative integers, and
s; € {—1,0, 1}. The last operator in Eq. (16) corresponds to
an inverse Laplacian. The velocity kernels G
same building blocks.

The simple toy model calculation from Sec. Il A thus
needs to be refined by including these building blocks for
the nth order perturbation in Fourier space. Except for the
inverse Laplacians, which require more work and will be
discussed in a later section, this is relatively straightfor-
ward, as we will show next.

involve the

I11. 2-LOOP POWER SPECTRUM
CONTRIBUTIONS WITHOUT
INVERSE LAPLACIANS

In this section we discuss contributions to the 2-loop
matter power spectrum in Eulerian standard perturbation
theory (SPT) that do not involve inverse Laplacians.
Sections IV and V will generalize the results to account
for such inverse Laplacians.

The form of the 2-loop corrections in full SPT is rather
similar to the simple toy model from the last section. The
final expressions therefore have a similar form to above,
involving zero-lag terms £(0) and correlation terms £(r) at
nonzero separation r. This can also be seen from the
diagrammatic representation of the 2-loop integrals in
Fig. 1, where “tadpole” subdiagrams (red dashed) lead
to zero-lag terms £(0) and “connector” subdiagrams (blue)
lead to correlation terms &(r).
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Py
. .
R VI
'

Pis(k) = 30 X —>—sest o X
.’ F5 \‘I Fl
‘\~q2'1'
3
N
Cart
\‘ , k_
Poa(k) = 24 x —% N 2 - X
4\(12/ 2
) /‘T\ )
P337]<k‘) = 6% > >

k—qi—qo

FIG. 1. Diagrammatic representation of nontrivial 2-loop
contributions to the dark matter power spectrum in standard
Eulerian perturbation theory. Tadpole subdiagrams (red dashed)
are evaluated at the same point, leading to zero-lag correlations
£(0). “Connector” subdiagrams (blue) are evaluated at two differ-
ent points, leading to correlations &(r) at nonzero separation r.

A. 1-5 correlations

We start with the 1-5 contribution to the power
spectrum that arises from the correlation between the
linear and fifth-order density. From the toy model result
of Eq. (7) and the diagram in Fig. 1 we expect this to be
of the form &(r)[E(0)]?, or Py, (k)[(0)]> in Fourier
space. Explicitly, the 1-5 correlation in Fourier space is

[ 1 [ 1 | 1
Pis(k) =30 (6y FS™) 61 % 6y % 6y % 61 % 61)
— 30 P (k) /

q:92

X Pin(q1)Piin(q2)-

FS(S)(k7 qla _q17q2a _q2)

(17)

The prefactor arises from 15 possibilities to form the
contraction multiplied by two because (5,55) = (555;).
The Fs kernel consists of the building block operators
listed in Eq. (16), and its angular structure can be
parametrized by angular products between the argu-
ments of the F5 kernel, i.e. the edges attached to the F
vertex in Fig. 1. The most general form of such 1-5
contributions, ignoring inverse Laplacians for now,
reduces to the following simple and fast-to-evaluate
form (see endnote [60])

k"o Py, (k) (G ‘(Alz)fo(f( -q)" (f( Q)"
q:92

xq\' Piin(41) 45 Piin(42)
= K" Py (k) Mo (£o. 1. £2)8, (0)89,(0). (18)
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As expected from the toy model Eq. (7), the linear
power spectrum Py, (k) is multiplied by a k-independent
product of two zero-lag correlations,

80 - 75

2—7T2‘12+"P1m(CI)~ (19)
These are fast to evaluate, either as a 1D integral over
the linear power spectrum or by selecting the r =0
entry of a 1D Hankel transform with [/ =0. The
coupling factor M, in Eq. (18) is a number defined
by Eq. (B1) in Appendix B. The first few values are
given in Table I

B. 2-4 correlations

We proceed with 2-4 correlations. From the toy model
result of Eq. (8), we expect them to be of the form
E(0)[E(r)]? and [£(0)], where only the former depends
on the separation and contributes to the Fourier space
power spectrum at nonzero wave number. Explicitly, this
2-4 contribution to the power spectrum is

I 1 I 1
P24(k) =24 <(F4£S) 61 X 51 * 61 * (51) (FQ(S) 51 * 61)>

= 24/ FAES)(%»—(I17(I27k—(I2)Fz(S)(OIz»k—OIQ)
q:92

X Pin(q1) Piin(g2) Pin([k—asy]).
(20)

Introducing q3 = k — q, with a Dirac delta, we obtain for
2-4 contributions without inverse Laplacians the following
fast expression (see endnote [61])

/ (226 (@ — (k=) (@2 - 6)7 (@1 -:)"
q:9293
X (41 G2) g} Prin(91) 45> Prin(92) 45’ Piin(q3)
— & (0)(4n)*2 / ® drrjo(kr)
0
¢1+min(£5,65)

<)

L=0

M (¢1.64,63;L)EL (r)ék (7). (21)

The right-hand side is similar to the £(0)[£(r)]* structure
expected from the toy model result of Eq. (8) and the
diagram in Fig. 1. The radial integral is the result of the
angle-averaged 3D Fourier transform of [£(r)]?; see
Eq. (G12). This integral is weighted by a spherical
Bessel function j, and is therefore a 1D Hankel transform.
This can be evaluated efficiently and robustly with a 1D
FFT using FFTLOG [62].

In Eq. (21) we defined a generalized correlation function

‘ as
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0= [Tohd e P )

This is related to the 2-point correlation between the linear
density and a derivative or inverse Laplacian of the linear
density [41]. Each &(r) is a 1D Hankel transform of the
linear power spectrum and can therefore again be computed
with a 1D FFT. The right-hand side of Eq. (21) can
therefore be evaluated using only 1D FFTs. The coupling
factors M, are defined in Eq. (B3), with some example
values given in Table I.

C. 3-3 correlations

The last contribution to the 2-loop power spectrum is the
3-3 correlation of two third-order densities. From the toy
model results of Eq. (9) we expect contributions of the
forms [£(r)]* and £(r)[£(0)]?. Tt is well known that the latter
term reduces to a term proportional to [P;3(k)]?/ Py, (k), i.
it can be obtained directly from the P3 1-loop integral. We
therefore only consider the nontrivial 3-3 term which is of
the form [£(r)]*. We expect that this part of the nontrivial
3-3 contribution to the power spectrum should become a
3D Fourier transform or 1D Hankel transform of [&(r)]3.
Indeed, the nontrivial 3-3 power spectrum is

() I — o I
61*51*51)( 61*51*51)>

P33 (k) = 6((Fy
=6/‘ (275 (k— ) — 5 — ) (23)

[F( )((h,(ha%)] Piin(q1) Pin(q2) Pin (g3)

and contributions to this without inverse Laplacians reduce
to (see endnote [63])

/ / (27)%p(k—q; —q2—q3)
q:9293
X (A2 43)7 (@1 43) 2 (@1 Q2) > [T 4 Pin(41)

O+ 30+ 058 40
2477,'[) drr?jo(kr) lz Z Z

0 L,=0 Ly—

XM3(0”1752,53§L1,L27L3)5ﬁf (r) ﬁ;(r) rng(”) (24)

As expected, this is a 1D Hankel transform of a finite sum
of triple products of linear correlation functions & (r),
which can be computed using only 1D FFTs.

The right-hand side of Eq. (24) involves the coupling
factor M5 defined by Eq. (B5). For ¢; < ¢, <5 <1 the
only nonzero couplings to L; are listed in Table I. For
example, for (¢, >, ¢3) = (0, 1, 1) only two couplings are
nonzero, (L, L,,L3) = (0,1,1) and (2, 1, 1), so we only
need to compute &) , & | £ and &) and one additional 1D

PHYSICAL REVIEW D 94, 103530 (2016)

TABLE I. The angular structure of 2-loop integrands leads to
coupling factors M, between three angular momenta (£, £5, £3)
and n angular momenta L. The table shows all nonzero coupling
factors M (2, ¢,,¢3) for £; <2, M, (¢,,¢5,¢5; L) for [; < 1,
as well as M, (£1,¢,,¢3; L, L") and M3(¢,¢5,65;L,, Lo, L)
for 71 < ¢, <5 < 1. See Appendix B for definitions of these
factors.

(£1.¢2,¢3) M,
0, 0, 0) 1
©, 0, 2) 1/3
0. 2, 0) 1/3
©, 2. 2) 1/9
(1, 1, 1) 1/9
(2,0, 0) 1/3
2,0, 2) 1/9
(2,2,0) 1/9
2.2.2) 11/225
(£1.€2,¢3) L M,
0, 0, 0) 0 1
©, 1, 1) 1 -1/3
(1, 0, 0) i -1
a, 1, 1) 0 1/9
(L 1, 1) 2 2/9
(£1,¢2,¢3) (L,L) M,
0, 0, 0) 0, 0) 1
0,0, 1) (1, 0) -1
©, 1, 1) O, 1) -1/3
©, 1, 1) 2, 1) -2/3
(1,1, 1) 0, 0) 1/9
(1, 1, 1) 0, 2) 2/9
(1, 1, 1) 2, 0) 2/9
(1, 1, 1) 2, 2) 4/9
(£1,62,¢3) (Ly, Ly, L3) M;
0, 0, 0) 0, 0, 0) 1
0,0, 1) (1, 1, 0) -1
O, 1, 1) o, 1,1 -1/3
©, 1, 1) 2,1,1) 2/3
(1,1, 1) 0, 0, 0) 1/9
1,1, 1) ©, 2,2) 2/9
(1, 1, 1) 2,0,2) 2/9
(1, 1, 1) 2, 2,0 2/9
(1, 1, 1) 2,2,2) -2/9

Hankel transform to go back to Fourier space, requiring five
1D FFTs in total.

IV. SINGLE INVERSE LAPLACIAN IN THE
2-LOOP POWER SPECTRUM

For simplicity, we have ignored inverse Laplacian
operators so far. In fact, however, they do appear in the
perturbative solutions for the DM fluid because the con-
tinuity equation (10) and the Euler equation (11) involve
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the gradient of the velocity divergence potential,
V.V26. When solving the equations perturbatively,
we therefore encounter expressions like the inverse
Laplacian of composite quadratic fields, e.g. V=202 ~
V~2[53]. In Fourier space, this is represented by terms
like |q; + q,|? (this can also be seen from the recursion
relations for the perturbative Fourier space F, kernels;
see Appendix A). Such Fourier space factors can render
the integrand of loop integrals nonseparable in the
integration variables q; and (,, so that the integrand
cannot be written as a function of q; multiplied by a
function of q,. This may seem problematic for the
approach used in the previous section, because the
2-loop integrals do not straightforwardly split into an
integral over q; multiplied by an integral over (. In this
section we show that it is still possible to reduce 2-loop
integrals with a single inverse Laplacian to 1D Hankel
transforms that allow fast evaluation. The more com-
plicated case involving multiple inverse Laplacians will
be discussed in Sec. V.

A. 1-5 correlations with inverse Laplacians:
Products of two correlation functions

1. Simple example

We first generalize the 1-5 correlations from Eqgs. (7) and
(18) to the case with a nontrivial inverse Laplacian. To see
how the inverse Laplacian can look like in Fourier space,
consider for example

/ ar ™7 (5, (x) 81 ()31 ()8 () V2 [51(x')3, (x')] )

1
- *]Dlin(k)/ 7131111((11)]31111((]2%
q:92 |q1 + q2|2

(25)
where the right-hand side follows from

(G10(x) = [P (6)

The particular inverse Laplacian in Eq. (25) thus turns into
—|q; + q2|7? in Fourier space. To evaluate the resulting
2-loop integral over q; and q, efficiently, we introduce
q3 = q; + q, with a Dirac delta, integrate out all orienta-
tions and use Eq. (G13) to obtain

Piin(91) Piin(2) © 0 0
e vl )9 . (27
/11(12 lq; + qof A rr&g(r)éo(r).  (27)

This is just a radial integral over the product of two
correlation functions, which can be evaluated very
efficiently.
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2. General case

The most general form of the inverse Laplacian can be
deduced from the arguments of the F'5 kernel in Eq. (18)
and the form of the kernel recursion relations in
Appendix A; it is given by |sok + s1q; + 5,q5|7% with
parameters s; € {—1,0, 1} that parametrize on which fields
the inverse Laplacian acts. Allowing also for nontrivial
angular dependence in the integrand that arises from
gradient operators V;, we obtain for the most general
1-5 contribution to the power spectrum (see endnote [64]
for a derivation):

dQ; A N
knuPlin(k)/Tﬂ_k/ (ql‘qZ)fo(k'ql)fl
q192

X(lA( A )fz 4;" Pin(41)45 Pin(4)
92 Isok-+s141+5:q0]*

= k" Py, (k) ZZ;? (sgnsg)™o [sodrrjp, (|solkr)

Cot+l) Gyt
X

Z Z M3(f0,f1,l€2;L07L27L1)

Li=0 L,=0

X é’Llll,Sl (r)éﬁsz(r>1 . (28)

The right-hand side of Eq. (28) is given by 1D Hankel
transforms of products of two correlation functions £,
which are themselves given by 1D Hankel transforms of
the linear power spectrum. Thus, using Egs. (18) and (28),
the calculation of the full P,5(k) contribution to the 2-loop
power spectrum at all k can be obtained by a sequence of
1D Hankel transforms, which are fast to compute with 1D
FFTs using FFTLoG [62].

Note that Eq. (28) is only meant to be applied for cases
with nontrivial inverse Laplacians where at least two of s,
sy, S, are nonzero, because otherwise there is no non-
separable denominator and Eq. (18) can be applied instead.
The right-hand side of Eq. (28) involves the coupling factor
M defined in Eq. (B5) and listed in Table I. It also
involves the generalized correlation functions

o .
)= Gens)' [T P@islan. (29)

where s € {—1,0, 1}. They reduce to the usual correlations
& (r) for |s| =1 and to zero-lag terms £9(0) for s = 0,
because j;(0) = ;9. In the special case £; = n; = s =0
and s; = s, =1, Eq. (28) reduces to the simple result
of Eq. (27).

B. 2-4 correlations with inverse Laplacians

1. Simple example

We now turn to 2-4 correlations including inverse
Laplacians. Our main idea to evaluate these 2-loop integrals

103530-7



MARCEL SCHMITTFULL and ZVONIMIR VLAH

is to split them into nested 1-loop integrals that are much
simpler to evaluate. For clarity we introduce this approach
first for a simple special case in this section, discussing the
fully general case in the subsequent section and in
Appendix C.

The special case we consider is given by the first
contraction of Eq. (8) if we include an inverse Laplacian
acting on the squared linear density as

/ ar ™ (51(x)6) (x) 81 (x)0) (x) V2[5, (x')8) (x')])

_ 7/ ]Dlin((h) Hin(qZ) Phn(|k_q2|)
q:95 |q1 + q2|2

Y

(30)

where the right-hand side follows from Eq. (26). To speed
up evaluation, the main idea is now to write the 2-loop
integral (30) as an outer q,-integral over an inner tadpole
integral over q;:

/ Piin(q1)Piin(42) Prin (|k — q2])
a9 lq; + q)?

:/qunn(CIZ)[ ) %}Phnﬂk—qﬂ). G31)
~——

Pladpole (qZ)

This reduces the 2-loop integral to two nested 1-loop integrals
that are easy to evaluate. In the diagrammatic representation
of Fig. 1, this corresponds to evaluating the red tadpole
subdiagram first, and then using the result to compute the
blue subdiagram connecting the F', and F, vertices.

To see more specifically how Eq. (31) simplifies
numerical evaluation, we write the inner tadpole integral
as (see endnote [65])

Papaelaz) = [T arrin(an@r). (2
Then, we can evaluate the Fourier space convolution over
q, in Eq. (31) as a product in position space, obtaining

/ Piin(q1)Piin(42) Prin (|k — q])
a9 la; +qof

_ 4z / T dr 2o (kr)E (T (r). (33)
0

This is a 1D Hankel transform of the product between the
linear correlation function &)(r) and the 4-point-like
correlation 7 (r). The latter is defined as a 1D Hankel
transform of the product of the linear power spectrum Py;,
and the tadpole integral P,gpolc:

© dq .
T(r) E[) 2—”5q%JO(qzr)Plin(QZ)Ptadpole(qZ)' (34)
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Using Eq. (33), the 2-loop integral of Eq. (30) can be
computed from a given linear power spectrum with four 1D
Hankel transforms in total, which is extremely fast. Similar
reductions of 2-loop integrals to two nested 1-loop integrals
are also used in other contexts to simplify their evaluation;
see e.g. [66] for examples in quantum field theory.

2. General case

The 2-loop integral (30) from the last section is a special
case in the sense that the integrand does not contain
nontrivial angular dependence from terms like e.g.
q; - 2. One of the main results of our paper is that the
FFT-PT approach still works if such nontrivial angular
dependence is included in the integrand. While this leads to
additional coupling factors, the general strategy is the same
as in the last section, i.e. we split the 2-loop integral into
two nested 1-loop integrals that can be evaluated as 1D
Hankel transforms. This is discussed in detail in
Appendix C. The final results for the nontrivial 2-4
correlations, given by Egs. (C8) and (C11), involve only
1D Hankel transforms, which can be evaluated efficiently
with a finite number of 1D FFTs using FFTLOG [62].

C. 3-3 correlations with inverse Laplacians:
& times transformed &

1. Simple example

We finally turn to the last remaining contribution to the
2-loop power spectrum arising from nontrivial 3-3 corre-
lations. These involve for example an inverse Laplacian
acting on two linear densities in Eq. (9) as follows:

) | [ — | |
/ dr ™™ (51(x)01(x)d1 (x) 61 (x') V2 [61(x") 1 (x)] )

F)lin(q1)P1in(q2)Plin(|k_q1 _q2|)
q,9, |q1 + q2|2

(35)

Again, the inverse Laplacian turns into —|q; + q»|™? in
Fourier space. This 2-loop integral can be simplified to (see
Appendix E 1)

/dec/ Piin(q1)Piin(42) Prin(|k — q1 — q2])
q:92

4r la, + q.

— (4n)* /0 ™ dr Pjo(kr) (P T(r). (36)

This is the Hankel transform of the product of the linear
correlation function &)(r) and the 4-point like quantity T(r)
defined by

T0)= [ yiotan) [T a6 (37)
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The latter is obtained by squaring the linear correlation
function in position space, transforming the result to
Fourier space using a Hankel transform, dividing by ¢,
and transforming back to position space with another
Hankel transform. Therefore, the 2-loop integral of
Eq. (36) is essentially given by & times a transform of
&2, This is extremely numerically efficient.

2. General case

The most general form of integrals contributing to
nontrivial 3-3 correlations follows by also including scalar
products in the integrand, and introducing k —q; — q, =
g3 (see endnote [67] and Appendix E 2):

dQp
/_4 k/ (2”)35D(k—(h -q—q3)
n q:9293

(@2 - 83)71 (@1 - 63761 - 6) " g

Xq\" Piin(q1)95 Pin(42) 45 Pin(43)
14

= (4n)* Aoo dr r?jo(kr) Z

Ly=[¢1=2,]

XE (T (). (38)

The right-hand side is a 1D Hankel transform of a sum of
products between linear correlation functions £(r) and the
4-point-like quantity T(r). The latter is defined by applying
two subsequent 1D Hankel transforms to a product of two
correlation functions &(r):

'ﬂ'i;’/ﬂz C3.n1nyny (r)

© dq o © )
= / 524 4JL3(qr){ / dr'(r")2jr,(qr")
0 <7 0

o+t 1405
X {

L =|60=3] Ly=[61~¢3]

M;5(¢1,¢,5,¢3;Ly, Ly, Ly)
< b1 () 55(#’)] } (39)

where the coupling factor M3 from Eq. (BS) restricts the
sums to be finite.

The general 3-3 correlation of Eq. (38) can thus
be evaluated with a finite number of 1D Hankel trans-
forms. The structure is similar to the [£(r)]® structure
obtained for 3-3 correlations without inverse Laplacians
in Egs. (9) and (24), but the outer-most integral in
Eq. (39) effectively applies an inverse Laplacian to the
product of two correlation functions £(r) as expected
from the contractions in Eq. (35) and the simple
example of Eq. (36).

PHYSICAL REVIEW D 94, 103530 (2016)
V. MULTIPLE INVERSE LAPLACIANS

Unfortunately, the full 2-loop power spectrum also
involves contributions that have multiple nontrivial inverse
Laplacians, corresponding to multiple nonseparable
denominators in 2-loop integrands. Since they involve
3d wave vectors one cannot simply separate the denom-
inators using a partial fraction decomposition and then
apply the machinery laid out in the last sections. Instead,
we follow a somewhat different approach than in the rest of
the paper. This reduces contributions with multiple non-
trivial inverse Laplacians to low-dimensional radial inte-
grals. We explicitly show this for the case of trivial
numerators in the Fourier space integrals and indicate
how more complicated numerators could in principle be
generated from this.

A. 1-5 correlations

Based on explicit calculation of the F'5 kernel that enters
1-5 contributions to the power spectrum, we consider
integrals of the general form

eia'ql eiﬂ'lh

I5(k,a,p) :/ ;

i) S TRl ) R

Piin(q1) Piin(42) Piin (k)
i + @[k + qp + g

, (40)

where n;, n; <2 and we introduced parameters & and f.
Nontrivial numerators can be generated by computing /5
and taking appropriate derivatives with respect to « and f
evaluated at zero, although we do not explicitly do this
here. Introducing a helper variable for k + q; + q, with a
Dirac delta, Eq. (40) reduces to

Lis(k,a.p) = Plin(k)/(131'6”“5,(1(/)),,3 (r.k)
3

xZ), (r+ak)Z), (r+4.k).  (41)

The computation is therefore reduced to calculating

_(0) _/ eiq.r
= (T, k)= —_—= 7, 42
nn( ) q q2n|k +q|2n ( )

_(1) _/ elar
= I’,k = /Pl s 43

which we will discuss below.

B. 2-4 correlations

Similarly, 2-4 correlations inverse

Laplacians of the form

with multiple
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124(]@“7.3) :/

a9 Q%nl k + qq " Clinz k + q,|*™
Piin(91) Prin(92) Piin ([k + o))

eia'ql elﬂqZ

— (44)
a1 + @5k + qp + g
can be reduced to
ikr—=(0 —~(1
Ly(k,a,p) = /d3re k r:ig)m (r, k):‘il)n’] (r+a.k)
x 22 (r+p.k) (45)
Tnyn, ’ .

Here we defined

=(2) _ elar
= (k)= | ————Pj; P, . (lk +ql). 46
nn( ) qunlk q|2” lm(Q) lm<| q|) ( )

C. 3-3 correlations

For 3-3 contributions to the power spectrum with
multiple inverse Laplacians we consider the general inte-
gral

eia'ql eiﬂ'q2

I33(k, . B) :/

G (]%nl k +q|*" Q§n2|k + qo|*™

o« Piin(q1)Piin(q2) Prin (kK + q; + q2])
a1 + @ [k + q; + qof*

(47)
which reduces to
Ins(k, . B) = /d?’reik'rEle),,}(rvk)Eil])n; (r+a.k)
x 55‘231,2 (r+p.k). (48)

D. Evaluating 2 integrals

It remains to compute the 2" integrals defined in
Egs. (42), (43) and (46). Similarly to calculations in the
rest of the paper (expanding all terms in spherical har-
monics or using Egs. C4, C6 and C7 of [41]) we find

ENM (k) =Y (=) L+ )P KO, (r.k).
L

(49)

where P; are Legendre polynomials.
The QV) coefficients in Eq. (49) can be computed in two
alternative ways. One way is

PHYSICAL REVIEW D 94, 103530 (2016)

Q0 (ri k) = 47r/°° ds s2j, (k)R (s) /°°d_‘12
! 0 0o 2m

x ¢ j.(g5)ji(ar)R™ (q), (50)

where R (g) = 1. R"?)(q) = Pin(q). R (s) = R} (s) =
20, (s) (see Eq. (G13) and [41]), and R (s) = &, (s).
To compute the two-dimensional radial integral in Eq. (50),
we need to integrate over g for every value of s and r, and
then perform a 1D Hankel transform for every value of r
and k to evaluate the integral over s. This procedure is
computationally much more expensive than the one-
dimensional Hankel transforms in the rest of the paper,
but should still be relatively fast compared to the commonly
used five-dimensional integrations, noting also that for-
mally related integrals have been successfully computed in
another context in [50,68].

An alternative, potentially faster way of computing the
QW) coefficients in Eq. (49) follows by first expanding
1/|k + q|*" in case of 2 and Z(V) or Py, (|k + q|)/|k +
q|*" in case of 2? in Legendre polynomials P, (k - q).
This gives for example

(=1)*F /d‘] 2-2n ; 2)
PN -~ N n ! k,
(2L + 1) 2ﬂ'2q .]L(qr)an .L( q)

X Piin(q), (51)

0% (rk) =

where ai??L (k, q) are coefficients in the Legendre expansion

above. For Q!), we obtain the same expression but
involving coefficients a!!) that follow from expanding
1/|k +q|*". Q9 can be obtained in the same way by
omitting Py, (¢) in Eq. (51).

Finally, the expressions for 2 from Eq. (49) are
collected in the [, integrals in Egs. (41), (45) and (48).
The result then simplifies by expanding exp(ik - r) in
Legendre polynomials and using Eq. (G11) for the integral
over four Legendre polynomials (assuming the special case
a = f = 0 with trivial numerator).

In Fig. 2 we present the test results for the integrals
[15(k, O, 0), 133(k, 0, O) and 124(k,0,0>, with n; = n; =1
and each term in the denominators extended by an
infinitesimally small e contribution in order to remove
potential singular points, e.g. we have ¢> — ¢*> + € and
similar for the rest of the terms. For realistic P;5, P33 and
P, terms, € can be taken to zero. We compare numerically
computed results using Monte Carlo [69] integration

(points in Fig. 2) with the results computed with methods
presented above using the Eg) functions and Eq. (51) (lines
in Fig. 2), finding good overall agreement.

The latter method is computationally much less expen-
sive since we are reducing the five-dimensional integration
to 1D integrals (computation of Legendre coefficients

a™)) and two sequences of consecutive Hankel transforms
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FIG. 2. Numerical results for two-loop integrals /s, I4 and I35
defined in Eqgs. (40), (44) and (47) for the special case where
a=f =0 and the linear power spectrum has the simple form
Pjin = k% exp(—k?). Using the radial integrals in Egs. (41), (45)
and (48) together with Eq. (51) (red lines) is compared against the
conventionally used direct Monte Carlo evaluation of two-loop
integrals using the CuBA [69] library (black points). As men-
tioned in the text, denominators in the /;5, /54 and /55 terms have
been extended, ¢g*> — ¢*> + e with e = 0.001, in order to avoid
singular points.

[one to obtain Q) using e.g. Eq. (51) and another one to
evaluate e.g. Eq. (41)]. Alternatively, Q") can be computed
using the 2D integration in Eq. (50).

Both methods rely on the (infinite) summation over the
multipole number L, but in practice this converges rapidly
fork <1 hMpC_l, so that the summation can be truncated,
at least for the simple test case with trivial numerator and
exponentially decaying linear power spectrum considered
in Fig. 2. Future numerical work is required to check how
well this approach works with nontrivial numerators and
realistic linear power spectrum.

VI. APPLICABILITY, EXTENSIONS
AND DISCUSSION

A. Functional form of the linear input power spectrum

Our equations are formally correct for an arbitrary linear
input power spectrum because no step of the derivations
makes any assumption about the shape of the input power
spectrum. At a practical level, the 1D integrals are 1D
Hankel transforms that are nontrivial to evaluate numeri-
cally because of highly oscillatory spherical Bessel func-
tions in integrands. Fortunately, these integrals can be
evaluated robustly and efficiently as 1D FFTs using the
FFTLOG library [62]. This does impose a weak restriction
on the shape of the input power spectrum in the sense that it
needs to be stored on a discrete 1D grid so that no features
finer than the grid resolution can be represented. However,
we can use an extremely high resolution for this grid,
because we only need to perform one-dimensional FFTs on
it, which are extremely fast. This resolution is more than
sufficient to resolve features in the power spectrum such as
BAO wiggles.

PHYSICAL REVIEW D 94, 103530 (2016)

To see this more explicitly, note that the peaks and
troughs of the BAO wiggles in the power spectrum have a
typical width of Ak ~ 0.02 hMpc~'. For our 1D FFTs, we
can easily use 10,000 grid points that are logarithmically
spaced in 107> hAMpc~! < k < 100 ”Mpc~". This then gives
more than 100 grid points between k = 0.09 hMpc~! and
k=0.11 hMpc™', and 40 grid points between k =
0.29 hMpc~! and k =0.31 hMpc~!. Every peak and
trough of the BAO wiggles can therefore easily be
represented with dozens of grid points each, which should
indeed be sufficient to accurately model these BAO
features.

Another potential restriction is that the FFTs used by
FFTLoG may introduce ringing in the Hankel transforms.
In [41] we suppressed this by extrapolating the linear
input power spectrum with power laws at extremely large
scales k <107 hMpc™! and at extremely small scales
k = 100 hMpc~', which do ultimately not contribute sig-
nificantly to the power spectrum on scales of practical
interest for cosmology. This is therefore just a numerical
trick to avoid ringing and should not restrict the appli-
cability of our method in practice (also noting that
numerical FFT-PT results for the 1-loop power spectrum
were shown to agree with Monte-Carlo integrals at the 107>
level [41]).

B. Number of terms

For 2-loop power spectrum contributions with at most
one inverse Laplacian, our final expressions involve only a
finite number of terms that need to be summed up. This
follows from the fact that the angular structure of the
perturbative F, and G, kernels does not go beyond a
maximum multipole, which in turn follows from the
structure of the equations of motion for the DM fluid.
Concretely, the F, and G, kernels involve at most quadru-
pole terms like P,(q; - q;), and the recursion relations (A5)
imply that in general F,, and G, involve at most P, (q; - ;).
Therefore, 1-5 terms involve only £ < 5, while 2-4 and 3-3
terms involve only £ < 6. The total number of terms may
still be significant. While we have not checked if this would
be an issue in practice, we expect that even a potentially
large number of 1D FFTs should be faster than performing
five-dimensional Monte-Carlo integrals for every k of
interest. The number of FFTs can be reduced by exploiting
symmetries to avoid computing the same terms multiple
times. Since only a limited number of &5 are needed for all
2-loop integrals, some speedup should also follow by
computing all of them with 1D Hankel transforms from
a given linear power spectrum and storing them in memory,
which is trivial because they are defined on a 1D grid.

For contributions with two or more multiple inverse
Laplacians, we followed another approach that involves
series of infinitely many terms. For the special cases
considered in Section V, we found that they can be
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truncated after a few terms. While we expect this to be also
the case in full generality, further work is required to
check this.

C. Potential infrared divergences

While we showed how to evaluate 2-loop power spec-
trum contributions using low-dimensional radial integrals,
an important future step is to actually implement this and
test numerical performance in practice. One potential issue
might be that we do not explicitly cancel the sensitivity of
individual contributions to very large-scale infrared (IR)
modes within integrands [29], but instead we currently rely
on accurate cancellations between fully integrated contri-
butions. While this seems problematic for certain power
law initial power spectra (scaling universes), it is less
problematic for ACDM initial power spectra that scale as k'
on large scales k < k.q. Since the individual contributions
should be accurate to machine level precision if evaluated
with FFTs, it should be possible to control cancellations of
large terms, but this needs to be checked numerically. If this
poses problems in practice, an alternative would be to
modify the scheme so that IR sensitivity is canceled at an
earlier stage of the algorithm. In this context it is also worth
noting that our reformulation of 2-loop integrals is by no
means unique, and other reformulations may be more
suitable for numerical evaluations (also see [41], where
vector identities were used to reformulate some 1-loop
results).

D. LPT and beyond LCDM

Throughout our paper we have worked with the standard
time-independent perturbative F, kernels in SPT. In LPT,
the corresponding kernels have slightly different coeffi-
cients but involve the same types of terms when computing
cumulants of the displacement field perturbatively (e.g.
[15,16,28,70-73]). Our results can therefore straightfor-
wardly be applied to 2-loop integrals if LPT is evaluated
order by order, simply by changing coefficients (see [41]
for examples of this for 1-loop integrals in LPT). Mapping
from the displacement cumulants to the density power
spectrum in LPT can involve a second layer of computa-
tional complexity, but this can again be reduced to spherical
Hankel transforms [38,74].

The form of the perturbative F, kernels is strictly
speaking only valid in an Einstein-de Sitter (EdS) universe.
In other cosmologies the kernels can be time-dependent.
The effect of this on the 1-loop matter power spectrum is
typically at a subpercent level [16,75], but can reach 1% or
more when also considering momentum statistics that are
relevant for redshift space distortions [58]. It would be
interesting to test this approximation at the 2-loop level.
While this goes beyond the scope of this paper, our
formalism should still apply to the general cosmologies
for which Ref. [58] derived separable perturbative kernels.

PHYSICAL REVIEW D 94, 103530 (2016)
E. Halo bias

Tracers of the large-scale DM distribution such as halos
or galaxies are typically biased with respect to the DM. The
relation between halos and DM is often modeled with a bias
relation of the form [76,77]

85(X) = b8, (X) + by85,(X) 4 byos55 (X) + b38,,(X) + - -,
(52)

where 52 is the square of the DM tidal tensor, and we did
not write down velocity bias and potential other biases. One
way to include this in perturbative models is to modify the
perturbative F,, kernels such that they relate the nonlinear
halo density ¢, to the linear DM density ¢, i.e.

au(k) = F (k)8 (k)

)
+/F2<q,k—q>«sl<q>51<k—q>+--~. (53)

For example for the above simple bias relation the modified
kernels would be F 1 = by and

) 17 b -
Fz(q,p)z<2lb1+bz>+;<z+2)q-p

4 30, ., 1
+ (Eb1+bs2>§<(Q'P) —§> (54)

This only changes coefficients, e.g. from 17/21 to
17/21b; + b,, without changing the structure of the terms
contributing to the kernels. 2-loop corrections to the halo
power spectrum can therefore be evaluated in the same way
as for the DM power spectrum if the modified coefficients
of the halo F ., kernels are used. The G, velocity kernels
should be modified in a similar way.

F. Redshift space distortions

Redshift space distortions (RSD) [78-80] emerge due to
the fact that we observe redshifts of galaxies and not
directly their positions. The position inferred from the
observed redshift is distorted by the peculiar velocity and
the comoving redshift-space coordinate for a galaxy is
given by

AU
= u 35
S=X+12 (55)

where Z is the unit vector along the line of sight, and u is
the comoving velocity parallel to the line of sight.

There have been several approaches computing the RSD
effects within PT [21,81-87]. Even though initial computa-
tional routes of these approaches might seem rather differ-
ent, the results are equivalent, as expected (assuming the
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same perturbative order, approximations and resummations
in each of the approaches).

In the distribution function (DF) approach [85-89] the
overdensity in redshift space is given as the decomposition

000 =Y () hoo. s6)

L=0

were Tﬁ(k) is the Fourier transform of velocity moments
T} (x) = (1 4+ 8(x))vj (x). It follows that the redshift space

power spectrum in the plane-parallel approximation can be
written as

L=0
L'=0

where Py (k) = (T (k)|T;" (K))" are the correlations of
the different velocity moments. Using rotational symmetry,
as shown in [85,86], each of the P;;/ spectra can be further
decomposed in the form

Pry(k)= Y PH(OP (WP (). (58)

I=L,L-2....
/=1L,
m=0...

where PJ"(u) are the associated Legendre polynomials, and

u==1- k. It is important to note that the decomposed
L.L
Ly

vector k. Also note that the decomposition above gives a

finite number of terms for each L and L’. Explicit PT

expression for all the 1-loop PIL f'm contributions are given

in Ref. [86]. They can be constructed from 1,,, (k) and
Jm (k) expressions given in Appendix D of Ref. [86]. It is
clear that the FFT-PT method used for the fast computation
of the P,, and P3 1-loop contributions from Ref. [41] is
straightforwardly applicable to the integrals 1, (k) (con-
volution type integrals similar to Py,) and J,,,(k) (propa-
gator type integrals similar to P 3).

It is important to note that the decomposition of the RSD

effect into the Pi}%,’m(k) spectra does not rely on PT and is

valid up to all orders. So analogous expressions as
presented up to one loop in [86] can be computed up to
two loop. For these correlations the methods presented in
this paper would be fully applicable.

As mentioned, an advantage of the DF approach lies in
the use of rotational symmetries to determine the angular
structure of RSD correlators valid regardless of the PT
order. One-loop RSD power spectrum results obtained in
some of the other references [21,81-83,90] reduce after
explicit calculation to the same angular structure, as
expected, finally reaching the same conclusion, albeit, in
a less transparent way. Our treatment of RSD corrections to
the 2-loop power spectrum is therefore not restricted to the
DF approach but applies to all the other RSD modeling

spectra P o depend only on the magnitude k of the wave
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approaches mentioned above. This discussion should also
be valid at higher orders.

Similar conclusions (keeping in mind Sec. VI E) hold for
biased tracers in redshift space where the explicit decom-
positions using the DF approach can be found in [87]. From
the above it follows that equivalent conclusions hold also
for velocity statistics (pairwise velocity and pairwise
dispersion) in real and redshift space and the explicit DF
decomposition presented in [91].

As mentioned above, our methods for rapid loop
computations can also be performed in LPT (for explicit
1-loop expressions see appendices in e.g. [15]). For LPT
models of RSD effects in addition to the biasing effects see
e.g. [92,93].

VII. CONCLUSIONS

Pushing models of the large-scale structure of the
universe to nonlinear scales is a challenging problem in
cosmology. An extensively studied approach to this is
perturbation theory. Unfortunately, perturbative corrections
come in the form of high-dimensional loop integrals that
are cumbersome to evaluate. For example, the 2-loop power
spectrum involves five-dimensional integrals at every wave
number of interest.

Generalizing previous work on the 1-loop matter power
spectrum [41,42], we show in this paper how 2-loop
corrections to the density power spectrum in Eulerian
standard perturbation theory can be rewritten so that they
involve only low-dimensional radial integrals. In absence of
multiple inverse Laplacians, these take the form of one-
dimensional Hankel transforms that can be evaluated very
efficiently with one-dimensional FFTs using FFTLOG [62].
Contributions arising from multiple inverse Laplacians seem
to require a sequence of low-dimensional radial integrals,
which are computationally more challenging but may still be
faster than five-dimensional integrations (see Sec. V).

One specific application of the method is the possibility
to speed up Monte-Carlo chains when fitting cosmological
parameters from LSS observations. More generally, the fast
expressions can be useful for anyone working with the
2-loop power spectrum or higher-order loop integrals in
general.

Our reformulation of 2-loop power spectrum integrals is
based on avoiding convolution integrals by repeatedly
changing between Fourier and position space, integrating
over orientations, and performing the remaining radial
integrals using one-dimensional FFTs. This is very general
in the sense that it does not assume a specific shape for the
linear input power spectrum. This, in turn, is important to
accurately model the imprint of baryonic acoustic oscilla-
tions on LSS 2-point statistics, which is arguably the most
pristine cosmological signal measured with high precision
from modern surveys.

The result that three-dimensional loop integrals can be
reduced to one-dimensional radial integrals is not a

103530-13



MARCEL SCHMITTFULL and ZVONIMIR VLAH

coincidence, but can be understood from the fact that
structure formation only depends on distances between
objects if we assume statistical isotropy and homogeneity
and the standard fluid equations of motion with their
standard perturbative solution (also see [41]).

We show how the same method can be applied to the
2-loop power spectrum of halos or any other biased tracer
of the dark matter with known bias relation. Redshift space
distortions can also be handled with this method. This is
straightforward to see for the distribution function approach
to model redshift space distortions but also applies to many
other RSD modeling approaches (see Sec. VIF). Our
method should also apply to Lagrangian space models
as shown for the 1-loop case in [41]. For the special,
presumably only academically interesting case of scaling
universes with perfect power law initial power spectrum,
the one-dimensional FFTs can be evaluated analytically so
that all 2-loop power spectrum contributions reduce to
simple power laws (see Appendix F).

In the future, it would be interesting to numerically
implement the fast 2-loop expressions presented in our
paper, extending the 1-loop implementations of [41,42]. It
would also be useful to include effective field theory
corrections and generalize the method to higher-order
statistics like the bispectrum or trispectrum. These possible
directions of future investigation seem worthwhile pursuing
given the impressive amount of upcoming data from a
number of planned LSS surveys in the near future and the
need to analyze and model these observations beyond the
linear regime to maximize their science returns.
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APPENDIX A: PERTURBATIVE EXPANSION
AND GRAVITY KERNELS

This section provides a brief overview of the perturbative
approach to solve the equations of motion in Eulerian
standard perturbation theory (see [16] for a review).

We start form the standard ansatz for the expansion of
density and velocity divergence field

=Y 6 (k)

n=0

7) i 0" (k, 7

n=0

0k,7)=—

where we have for a given order
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s"(k,7) = / (27)°6”(k —q;... — q,)
q q”

F () 0,)51(q1, 7)., (q,, 7),
mwmnw=/ (2778 (k = q... — q,)
qp---q,
X G (s o 0,)81(q1.7)..081(q, 7). (A3)

By definition the first order kernels are unity, i.e. F 5” =

G\ = 1. Since the linear solution &, is known, all
higher order nonlinearities are incorporated in the kernels

FY) and GY. The upper index (s) denotes symmetrized
kernels,

F(qy.....q,) = ZF (7{q1. ... q,}),
GW%m%b;ZQW%mmH (A4)

Unsymmetrized kernels satisfy recursion relations that can
be derived by substituting Eq. (A3) into the equations of
motion Eq. (11). These recursion relations are

ql,- Gu(g1s Q)

kqlm

Fn—m(qm+l’ (RS qn)

{(Zn—i—l)

2
k Qim Dm+1-n
2 2
ql---mqm+1---n

lm

Gn—m (qm-H [RRRE] qn) }
(A5)

and

—_

n—

Gu(qis - qp
,qn): ( 1 )

“(2n+3)(n—1)

k'qlmm
{3 G

1-m

G,(qy, ...

3
Il

X

n—m(qm-H’ LER) qn)

QD 1on

2 2
ql---mqm+1-~n

X Gn—m (qm+19 ceey qn)}

+n
(A6)

where we have introduced the notation q;...,, = q; + -+ +
qy and Qi = Qi + -+ Q. Also kK =q; + -+
q, in the last two equations.

APPENDIX B: COUPLING FACTORS

This Appendix provides analytical expressions for the
coupling factors M, that arise from the angular structure of
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2-loop integrands and are used throughout the paper. The
first few examples are evaluated in Table L.

1-5 correlations without inverse Laplacians in Eq. (18)
are proportional to the coupling factor M, defined by

min(Zy.2.75)

D

¢'=0

Mo(€o.¢1,65) = AzypOp, 00, (26" + 1).
(B1)
The a,, coefficients follow from decomposing products

between wave vectors in spherical harmonics using
Eq. (G3), and are given by [36,41]

1 /1
are =5 / ldﬂ//Pf’ (w)
{ 4 L ife>¢ & €+ ¢ even,

26=N2[(f=£) 2]V (£+E+ 1)
0, otherwise.

(B2)

These coefficients vanish if the second index ¢’ is greater
than the first index ¢, which helps to render sums in the
paper finite. They are normalized so that agy = 1. The M,
coupling factor in Eq. (B1) is symmetric in its arguments,
and all nonzero factors for /; < 2 are listed in Table 1.

The coupling factor M between (¢, ¢,, ¢3) and L that
enters in Eq. (21) is defined as

M(¢1.65. 655 L)
= (-1)EQ2L+1 ZaM (24, +1
min(¢5.,¢3)

D

£'=0

, L ¢ ¢\
afzf/a,g}f/(Zf +1) 0 0 0 . (B3)

This involves a Wigner 3-j symbol, which imposes a
triangle condition that implies L <7\ +7¢ <¢|+
min(¢,, £3). The range of allowed L in Eq. (21) is therefore
finite. The coupling factor is symmetric under £, <> £.
For #; < 1 the only nonzero couplings are shown in Table I.

In Eq. (C8) we used the coupling factor M, between
(£,,¢,,¢3) and (L, L"), which is defined as

My(£1,65,63; L, L)
4 O G

E E E Qg0 Xy, X,

=0£,=0£,=0

L f;)z
0 0

= (-2l +1)(2L +

f/
x (26, +1)(2¢, + 1)(2¢; + 1)< ol

X(zf”sz’3>2
0 0 0/
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The 3-j symbols impose triangle conditions on
(L', ¢y,¢,) and (L,?,,¢%), which make the sums over
L and L' in Eq. (C8) finite. The coupling factor is
symmetric under simultaneously changing #; < #3 and
L < L'. All nonzero couplings for £} < ¢, <3 <1 are
listed in Table I

Finally, several expressions involve the coupling M
between (¢,,¢,,¢3) and (L, L,, L3) defined by

M;(¢1,65,03,Ly, Ly, Ly)

4 b 4G L, L, L3\’
- Z Z Z af f/ afz af? l/p/ flz f% * (BS)

=0£,=07¢,=

This involves a rescaled 6-j symbol defined in
Eq. (G14). It severely restricts the allowed values for
L; so that e.g. the sum on the right-hand side of Eq. (24)
is finite. [94].

APPENDIX C: 2-4 CORRELATIONS WITH
INVERSE LAPLACIANS AND NONTRIVIAL
ANGULAR DEPENDENCE

This Appendix shows how to evaluate nontrivial 2-4
correlations with inverse Laplacians and nontrivial angular
dependence, providing details of the results summarized in
Sec. IV B 2. Additional details on the derivation of these
results will be provided in Appendix D.

1. Most general form of 2-4 correlations

As mentioned before, the loop correction to the SPT
power spectrum generated by 2-4 correlations is

Py(k) =24 / Fl (41 -q1. 60 Kk —@0)FY (g0 k —q0)
q:192
X Pyin(41)Prin(92) Pin(|k = q2]). (C1)

The most general form of terms contributing to this is

/ G (k=@ d - (K— @))% - @)

(]1 'Piin(91)45" Pin(42) |k = @0 Py ([k — q5])
ls1q1 + 5242 + s3(k — q2)[? ’

(C2)

where the momenta entering the denominator or inverse
Laplacian are parametrized by the parameters s, €
{-1,0,1} and s,, s3€{0,1}. The only cases not
already covered by Eq. (21) occur when at least two
of these s; parameters are nonzero. The angular structure
in Eq. (C2) is sufficiently general because it accounts
for all scalar products that can be formed between the
arguments of F, and between the arguments of F,
in Eq. (C1).
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2. Splitting in two nested 1-loop integrals

We now show how to evaluate the most general form of
2-4 correlations given in Eq. (C2) by splitting it into two
nested 1-loop integrals as demonstrated for a simpler case
in Eq. (33). We proceed in two steps: First, we calculate the
loop integral over the q; momentum that connects the F,
vertex to itself, corresponding to the red tadpole subdia-
gram in Fig. 1. We then insert the result and compute the
integral over the other loop momentum q, that connects the
F, and F, vertices, corresponding to the blue subdiagram
in Fig. 1.

Explicitly, to evaluate the 2-loop integral of Eq. (C2), we
write scalar products involving the tadpole momentum q;
in terms of spherical harmonics, e.g.

&)
(G- 6)" = 4”;0%551@'3 (@)Y (), (C3)
3
where we use the condensed notation ¢ = (£, m) and

2 =37%_.37 . Generalizing Eq. (31), the integral
14 7'=0 m'==¢

(C2) then splits into an outer (,-integral

[ @ k@ ()l G @)
924,

6111P11n(611)¢12 Piin(q2)|k — 5| Py ([k — q5])
Is1q; + 5205 + s3(k —qp) |

—4n / @ - (K @))% Prn(g2) [k — qul™
q>

20
X Piin(|k — qa]) z zafzf’zyzﬂz(k - qy)
¢ ¥

! ol
L sy

X Pladpole (5292 + s3(k — (12))0!f3f; Y;g (42). (C4)
over an inner tadpole integral over q,
sin 41" Pin(q ).
P ) =an [ Yel@Te@) o m N ()
qi
which is evaluated at the momentum p = s,q, +

s3(k — q»). Splitting the 2-loop integral in these two nested
1-loop integrals is the main trick needed for evaluating P,y.
|
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The remaining procedure to evaluate the outer and inner
tadpole 1-loop integrals in Eqgs. (C4) and (C5) is similar to
Sec. IVB 1 and [41], as we show next.

3. Evaluating the tadpole 1-loop integral over q;

The only cases for the denominator in Eq. (C2) that
are not already covered by the separable case in Eq. (21)
are (51,5, 53) € {(£1,1,0),(£1,0,1), (£1,1, 1)}, corre-
sponding to p € {q,,k —q,,k} and s; = 1. We there-
fore only consider these cases in the following. The
different cases correspond to different couplings and fields
on which the inverse Laplacian acts, generalizing Eq. (30)
from Sec. [IVB 1.

In each case, the inner tadpole integral (C5) is a Fourier-
space convolution that reduces to a position space product
of E% (r) = (4zr)~! defined in Eq. (G13) and the corre-
lation &%  (r) defined in Eq. (29):

0 L
Lt s n "
Ptafipble = 4”2 Z gf’f’LY (P )PIJI,AYI(P)
L=0 M—L
(Co)
with
Pho(p)= [Tarionh s 0. ()

This follows by integrating over orientations of the
tadpole momentum q; and expanding in multipoles of
the momentum p. For ¢, =¢;=n; =0, s; =1 and
P = q,, we recover the simpler result of Eq. (32) because
Gooo = Yo(P) = (47)7"/2.

To proceed with the evaluation of the outer integral over
q, in Eq. (C4), we consider the cases p € {q,,k — q,,k}
separately.

4. Evaluating the outer 1-loop integral: Case 1

We start with the case p=4q, in Eq. (CS), ie
(s1,82,83) = (£1,1,0). As shown in detail in
Appendix D, using Eq. (C6) in Eq. (C4), performing
angular integrations, and exploiting orthogonality relations
of Wigner 3-j symbols leads to

41" Pin(q1) 95 Piin(q2) |k — @] Pyin ([k — q5)

dQy . — R — A
/4—"/ [ (k= @) [d; - (kK —q0)]2(d, - §2)7
T Jqq,
bytts €148y
_471'/ drr]okr Z ZMz fl,fz,f3,L L)
0 L=0 L'=0

Is1q; + qf?

T (r)EL (7).

(C8)

This is a 1D Hankel transform of a sum of position space products of 4-point like correlations 7 (r) and linear correlation
functions &(r). The former is a generalization of Eq. (34), given by a 1D Hankel transform of the Fourier space product of
the linear power spectrum and the transformed linear correlation function P from Eq. (C7):
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dQZ ny+2

0 P Y JL’(QZr)Phn<Q2)Pn1 51 (('IZ)

T = [
(€9)

The coupling factor M, is defined by Eq. (B4). In the
simple special case ¢; = ¢, = ¢3 = 0, the only nonvan-
ishing coupling is M, (0, 0,0;0,0) = 1, so that the general
result of Eq. (C8) simplifies and we recover the simple
result of Eq. (33) derived earlier (for s; = 1).

The case p =k —q, in Eq. (C5) with (sq,s,,53) =
(£1,0,1) follows by symmetry, noting that the result

)51( )61 (x) V2

|
/dBI' ezk r

I |
[61(x')81(x)81 (x)] ) = — /
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above does not change if we change the integration
variable from q, to k —q,. Indeed, if we change the
denominator on the left-hand side of Eq. (C8) to
|s1q; + k — q,|72, the right-hand side follows by relabel-
ing £, <> ¢35 and n, <> ns.

5. Evaluating the outer 1-loop integral: Case 2

The last case is p = k in Eq. (C5), i.e. (s,,53) = (1, 1).
This case is related to the following contraction of the
inverse Laplacian acting on a cubic field:

Bm(ql)Phn(qQ)Phn (k q2)

(C10)
la; + k[?

The fully general case additionally contains scalar products between wave vectors. It can be reduced to (see endnote [95])

/ / Q- (k- (12)]f|[ (k- qz)] Q) qp)"
9192

Or+ts

=4z Z 77,,1 sl

—0 Ly—0

qrflplin(611)qg2plm(ﬂh)|k — | Pyin(|k — qa])

O+t 6l
A drr?j (kr) Z Z M;5(€1, 65,53 L, Ly, Ly) &2 (r) 3 (1),

ls1q; + k|?

(C11)

This involves the Hankel transform of a sum of products of two correlation functions, multiplied by the power spectrum-like
quantity P(k) from Eq. (C7). The coupling factor Mj from Eq. (B5) enforces triangle conditions for (L,#%, %),
(Ly, 2. 7%), (L3, 7). ¢%) and (L, L,, L), restricting the sums over L, L, and L3 in Eq. (C11) to be finite.

APPENDIX D: DERIVATION OF 2-4 CORRELATIONS WITH INVERSE LAPLACIAN AND
NONTRIVIAL ANGULAR DEPENDENCE

In this section we provide details for the derivation of Eq. (C8), which is a fast expression for contributions to P,, that
contain an inverse Laplacian with p = q, in Eq. (C4). We explicitly show the steps for this particular case, noting that most
other calculations in this paper proceed similarly in flavor but are typically less involved.

Introducing the auxiliary variable q; = k — q, with a Dirac delta on the right-hand side of Eq. (C4) and using Eq. (C6)

for the tadpole integral evaluated at p = q, gives

/ e

f f2f3m|
24 nonsep

(k - (12)] 4,

(K= 40)]2 (@ - G2)7

qrflPlin(Ch)‘I;zPlin(qZ”k — | Piin([k — qa])
ls1q; + qo]?

/ / /d3re’r GRR) (G, - G3)71 95 Piin(42) 45 Pin(q3)
9293

G Ol

X ZZ Z afzf’zY;/z(Q3)
¢, ¢, L

D G e Y1 (6G2) P s, (92) gy, Yo (G2)-

(D1)

The angular integrals over k and # can be performed by noting that Eq. (G2) implies

/ /dQ ™kt R) = (47)2 o (kr) Z( D ju(qar)ju (a3r) Y (@)Y, ()

This gives

(D2)
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PO (k) = (42)° / dr 2 jo(kr) /
q29q

XZ

&3 Otls

X ZZ Z afzf’zy;/z((iB)(_
¢, ¢, L

l)Lgf’szg Yf((lz)Pﬁl 51 (%)0%4 Y;g (Q2),
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Zaf RCACNE 2, (G3)95° Piin(92) 43 Piin(q3)
7

JL’ q:7)jr(q3r)Yi (G) i/((h)

(D3)

where we also expressed ( - §3)' in the first line in terms of spherical harmonics using Eq. (G3). The integral over § is a
Gaunt integral (G4), giving Gpr1¢,. The integral over g, follows from Eq. (G7), giving ZL//Qt,«lL/L//QL//Lfg. Using an
orthogonality relation for Wigner 3-j symbols, Eq. (G8), the sums over m and M’ simplify to

ng’lL’t”zgt”lL’L” = méf’zL”megM”(Hﬂ]uf’z)z- (D4)
m\ M’ 2
The same applies to the sum over M and mj:
> GoLeGue, = m@;u’ Sy (Herrer ). (D5)
My

The sum over m), then gives 21, + 1. The H factors defined in Eq. (G5) contain 3-j symbols that restrict the sums over L and

L’ to be finite. The integral over g5 gives Zj,%;(r) We thus arrive at

Cr 03 01+,

! d nz
Z §ﬁ3(7)/2q§ (]§+ Jr(@2r)Piin(q2) PR, 5, (q2)

L=0 L'=0

P () = 4 / arjo(kr) >

b b b

/ 47)?
X L+L Z Z Zaff afzf Azse! 321(/0/ i 1 (Hf’Lf’Hf’Lf’) .

#1=0¢,=0£,=0

This agrees with Eq. (C8) above.

APPENDIX E: DERIVATION OF 3-3
CORRELATIONS WITH INVERSE
LAPLACIAN

1. Simple example

In this section we derive Eq. (36), which is a simple
example of a 3-3 correlation with inverse Laplacian.

Introducing q; = k — q; — q, with a Dirac delta on the
left-hand side of Eq. (36), decomposing it in plane waves,
and performing the integral over q; gives

/ / Phn q1 Phn Q2)Phn(|k q; — q2|)
q:19 |q1 + (12|2

= /Ati;‘/dSre‘ik'rfg(r)T(r), (E1)

where we defined the 4-point like quantity T(r) by

(Do)

—l]—(r) = / Plin(Ql)Plin(QZ) eiqrreiqz»r (Ez)
ae 0+ @f

To simplify T(r), we introduce q4 = q; + q, with a Dirac
delta and perform the integrals over q; and q, to get

A — 3 S0(r = FDE(r = r]) g,
T()—A/dr 7 s (E3)

The integral over r’ has the form of a convolution. To solve
this, we introduce r’ = r — r’ with a Dirac delta, decom-
pose this in plane waves, and integrate over r’ to get (this is
equivalent to changing integration variables r' — r — r’)

0
r) :/ eiq“'r/d3r”§0(r”)§8(r”) e~ (E4)
U da

Using Eq. (G12), the integral over & gives 4zjy(gsr”).
Then, the integral over 44 gives 47 jy(q4r). We are thus left
with
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1) = [ "5 Bjotaur) [T e )B 0,
(85)

which agrees with Eq. (37) in the main text.
As an aside, we note that an alternative simplification of
T(r) follows by first integrating over q in Eq. (E3),

&(r =D& (r — )

d3 / ,
drr’

T(r) =

(E6)

but this 3D convolution integral does not seem suitable for
fast numerical evaluation.

PHYSICAL REVIEW D 94, 103530 (2016)

2. General case

In this section we derive the right-hand side of
Eq. (38), which allows for fast evaluation of general
3-3 correlations with inverse Laplacian and nontrivial
angular structure in the integrand. The derivation pro-
ceeds similarly to the simpler example above, the only
addition being the nontrivial angular structure of the
integrand, which is taken care of by expansions in
spherical harmonics.

In detail, Eq. (38) can be derived as follows. Introducing
q4 = q; + q, with a second Dirac delta on the left-hand
side of Eq. (38) and expanding both Dirac deltas in plane
waves yields

oy (41 4)" (42 43)
16,030 — k 3 _ _ _ 1 2 243
P3:]3,r120n3$ep(k) =k 0/ 4 quqg(Z”) 5D(k q; q> q3) |q1 +q2|n4 qu le q E7)
. . ko
95 [ fovene | ontenimogminena a0 -a T o)
‘]44
(E8)
Introducing r” = r — r’ with another Dirac delta and expanding it in plane waves gives
f’iizof:sep / /d3 /d3 //dB //// (1" =r+) =ik T e ity 1 ity T pigsT
Qg
ko A
X = (@1 - 62) (@2 63)7 (@) - @ fZHq,’le ) (E9)

Using Eq. (G12), the integral over k gives j(kr), and the integral over §4 gives 47j,(g4r’). Then, the integral over  yields
47jo(gr'). Next we expand the remaining plane waves and the scalar products between wave vectors in spherical harmonics
[using Eq. (G3) for the latter]. This leads to two spherical harmonics with argument ¢, so that the integral over q gives a
Kronecker delta. The same happens for the integral over t. Additionally, there are three spherical harmonics with argument
;. so that integrating over q; gives a Gaunt integral (G4). The same happens for integrals over ,, {3 and #”. The integral
over 7’ follows from the closure relation for spherical Bessel functions, enforcing g, = ¢, and yielding the intermediate
result

3
t\rt L (4m)'0 x o,
P33 oncep (k) = K™ (22772 ), drdr”dqdqldqzd%r "2 gP H ¢ Ppn(q
X Z iL1+Lz+L3 (_ )f’—&-f/—&-f/%(xf z, afzf/ afgf/]()(kr)jLS (qr)jL3 (C]r )le(511”//)jL2(CI2F/')jL3 (q3r)
L1«2~3ﬂl,2.3
e pms AMam) —n ) MMM
X Z (_1)m1+m2+1n3g]l“”llf’zlzfz13gL22;?;gm3ng/r;/ —n, gL L2233' (EIO)
M p3m 55 ’

The last sum of four Gaunt integrals over M; and m] gives a
6-j symbol (G14). Conveniently arranging the integration
order then allows to write the P53 integral as a sum over 1D
Hankel transforms as in Eq. (38) in the main text.

Some comments regarding the derivation are in order. In
this section we only consider a quadratic denominator,

ny = 2, corresponding to a single inverse Laplacian, but the
calculation above formally works for any 7,4, which is why
we gave the result for arbitrary n4 (noting though that some
integrals may diverge for n4 # 2). In the special case
without denominator, ny = 0, the integral over ¢ in
Eq. (39) yields a Dirac delta enforcing r = r”, so that
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we recover Eq. (24). As an alternative way to simplify the
integral on the left-hand side of Eq. (38) one could split the
derivative with respect to r into radial and angular parts,
similarly to e.g. [53]. This is convenient for n, = 2 but gets
likely more complicated for larger n,, whereas the results
above apply to general ny.

APPENDIX F: SPECIALIZATION TO SCALING
UNIVERSE WITH PERFECT POWER LAW
INITIAL POWER SPECTRUM

The DM power spectrum in a ACDM cosmology is
scale-dependent and includes features like baryonic acous-
tic oscillations. Therefore, integrals over this power spec-
trum or Hankel transforms must be performed numerically,
e.g. using FFTLoG [62]. This is the primary use case we
envision for our method, because it allows evaluating
2-loop corrections to the matter power spectrum in an
extremely fast way for arbitrary shapes of the initial linear
power spectrum. In this section we specialize the general
results from the rest of the paper to a simpler special case in
which the transforms can actually be performed analyti-
cally, exploiting the fact that the Hankel transform of a
power law is again a power law. This may be useful for
validating numerical implementations, but we stress again
that it is not needed for our method which applies to
arbitrary linear power spectrum shapes.

For scaling universes the DM power spectrum is
assumed to have a power-law shape,

P = () (F1)

with some slope N and pivot scale k. The linear correlation
function & then reduces to

dq 2+n+N ;

[dz(r)}scal.um kN A 27[ q (qr)

=l
SN (r )
= - N F2
where the integral over ¢ is a Hankel transform of a power
law. This is again a power law

2n+N F(M) 1

wVE T

itn+N<-1,n+N+1[1>-3and r > 0 [41,96-98]. In
the rest of this section we use this result to specialize the
fast expressions in the main text of the paper to scaling
universes, obtaining analytical solutions for all 2-loop
integrals in scaling universes.

HfH—N( ) r3+n+N <F3)

1. 1-5 correlations in a scaling universe

For example, in a scaling universe, the fast expression
for 1-5 correlations given by the right-hand side of

PHYSICAL REVIEW D 94, 103530 (2016)

Eq. (28) reduces to a simple power law in k (assuming
so=s51=s5,=1)

kot
kg

[Eq' (28)]scal.uni. =Cis k4+2N+n|+n2 (F4)

where the proportionality constant is

1+, F Lo—4— 2N—n1—n7)

Ci5 = 2N E

L0+7+2N+n1+nz)

Lo+l Gyt

X Z Z M3(Lﬂ0,f1,f2§L0’L2’Ll)

Li=0 L,=0

diST=r=n

F(L it +N+3)

(F5)

-—n,~—N

For N =-2.6 and ¢; = n; =0, we validated Eq. (F4)
numerically by brute-force integrating the left-hand side
using the Monte-Carlo integration library CUBA [69].

2. 2-4 correlations in a scaling universe

We can also simplify the fully general 2-4 correlations of
Eq. (C8) in a perfectly scaling universe. To see this, note
that the transformed correlation P(p) of Eq. (C7) becomes
a power law in a scaling universe,

1 F(L+n1;rN+3>
Srk) (LK)

F(L—nlz—N—l)

XF(LT;-N-M)p

[P21.1<p)]scal.uni, =

1+n1+N' (F6)

Then the 4-point-like correlation 7 (r) in Eq. (C9) also
becomes a power law,

D l4n +n+2N [’Pﬁl 1 ( 1 )]sca_l.unL
7wy N

! 2N+4
y F(L +n]+1122+ N+ ) (F7)
r L'—ni—n,—2N-1y °
=)

1
[TLz}nz( )]scal.uni. =

Therefore the right-hand side of the 2-4 integral in Eq. (C8)
also turns into a simple power law in k (assuming s; = 1),

[Eq‘(cg)]sca.LunL = 024k4+n1+n2+n3+3N (FS)

with proportionality constant
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1 F<—4—n|—n22—n3—3N)

6+n;+ny,+2N N 7+n,+ny+n3+3N
2 kO F( 2 )

Coq =

Cr 05 O+,

X Z Z My(€.¢5, ¢35 L, L)

L=0 L'=0

F(L’+n3 +N+3)
1
[,TLZ’1 " ( )} scal.uni.

— 2 / (F9)
F(L —1123—N)
The other case of general 2-4 correlations is given by
Eq. (C11). This takes the same power law form in a scaling
universe (assuming again s; = 1)

[Eq'(CII)]scal uni. 6'2 k4+n1+n2+n3+3N (FIO)

but the proportionality constant is now

C/24 = f§3 [,Pﬁl'] (1)]532]1\11.uni. F(I%z_?v_?
= Be/aRT (s

L1403 01 +8
. Z Z M3(f1a?fﬂ2,f3;L’L2,L3)

L,=0 L;=0

F(L2+n22+N+3) F(L3 +n3 +N+3)

2
F(L2—;2—N) F(La—'2l3—N)

(F11)

For N = -2.6 and n; = ¢; = 0, Eqgs. (F8) and (F10) are
consistent with results obtained by Monte-Carlo integrating
the left-hand side.

3. 3-3 correlations in a scaling universe

The fast expression for 3-3 correlations without inverse
Laplacians given by the right-hand side of Eq. (24) also
reduce to a simple power law in k for scaling universes,

[Eq (24)}sca]‘uni‘ = c33k6+n1+n2+n3+3N’ (FlZ)
where the proportionality constant is
—n—ny—n3—3N-6
€33 = 21 3N 1ﬂ<n +m+i+3zv+9)
()" (k) (a0
Oy+ls €1 +E5 €1+,
X Z Z Z M3 flaf25f3sLl?L21L3)
=0 L,=0 Ly=
3 p(Litni+N+3
rE—=—)

i=1

We numerically validated this both for scaling universes
and for a realistic linear input power spectrum for
i =n; =0.

More general 3-3 correlations with inverse Laplacians
are given in Eq. (38). For a scaling universe, the 4-point
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like-quantity 7 (r) from Eq. (39) becomes a power
law,

16,05,
[—H—le S (r)]scal.uni.
2n1+n2—n4+2N—2

71.4ng rn1+nz—n4+2N+6

F(L3 +ny +n22—n4+2N+6> F(L; —n —n2—2N—3)

F(L3—n| —nzzrn4—2N—3) F(L3+n1 +i;2+2N+6)

O+ 145
X Z Z M3<f1’527{3;L17L2aL3)
Ly=|6y=85] Ly=]¢,~5]

F(L|+I1]2+N+3) F(L2+n2+N+3)

2
D(=3=Y) D3

(F14)

The right-hand side of Eq. (38) therefore becomes

[Eq' (38)]scal.uni‘ = c/33k6+n|+nz+n3—n4+3N’ (FIS)

with proportionality constant

) 1 F(—nl—nz—n32+n4—3N—6)

C33 = (2ﬂ)3(k0)3N F(w)

0140, F(L3+Vl1 +n2—n4+2N+6) F(L3 —n —n2—2N—3)
2

2
Li—n;—ny+n4—2N-3 Li+n;+n,+2N+6
Ly=|¢1=0] r( 2 ) F( 2 )

o5 ‘145
E E M;(€1, 05,631y, Ly, Ly)
L\=[60=3] Ly=[61~¢5]
Li+n+N+3
I'( )

3
x | | ——2——. (F16)
,-11 (B

Numerically validating this result is unfortunately not
straightforward because the brute force integration of the
left-hand side seems nontrivial for scaling universes.
Nevertheless, the predicted scaling with k does seem
consistent with brute force integration if we choose
N=-21.

APPENDIX G: USEFUL MATHEMATICAL
IDENTITIES

For convenience we list some standard mathematical
identities that we used throughout this paper (also see
Appendix C in [41]).

1. Expansions

Some of the most frequently used relations in our paper
are the expansion of a Dirac delta in plane waves,

eron(@ = [ e (1)
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the expansion of plane waves in spherical harmonics,

o i

eFiakT — 4712 Z +isgn(a

=0 m=-1

) jillalkr)Y 1, (K) Y7, ().
(G2)

and the decomposition of scalar products between wave
vectors into spherical harmonics,

(X-¥ f_4ﬂz Z aeeY o (X) Y50, (3),

=0 m'=—¢'

(G3)

where a,, coefficients are given by Eq. (B2).

2. Angular integrals and Wigner 3-j symbols

The integral over three spherical harmonics is a Gaunt
integral that contains Wigner 3-j symbols,

[ 9t @Y @Ye @ =G
0 s
=Hs,t,e, ( )
myp  mp Mz
(G4)

where the isotropic part is

_\/(2/1+1)(2f2+1)(2f3+1)(f1 5 @)
Hff2f3: .

4r 0 0 O
(G5)
The indices must satisfy m; + m, +m3 =0, |£, — 3| <

¢1 < ¢, + ¢3 and permutations, and £; + ¢, + £; must be
even. The Gaunt coefficients (G4) represent the coefficients
that arise when decomposing the product of two spherical
harmonics in terms of a third one, i.e.

Z Z Ge e, Y1,(4).

L=|£,—t,| M=—L

Ye (@)Y, (q (G6)

The integral over four spherical harmonics is therefore
] 490 @Y @Y @2 @) = Y G Greses

(G7)

The Wigner 3-j symbols satisfy the following orthogon-
ality relation:
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Zflfzf 6 h O
, _2f+1 ¢ Cmm’ +

iy m m, m my m, m
(G8)

Some other relations used in our paper are

Z(—U’”(Z _"; I(;>_(—1)f\/2f+15w (G9)
and

£ ¢ 0\ (=1)fm

<m -m O>_\/25+1' (G10)

Equations (G6)—(G10) can be used to perform the angular
integral over the product of four Legendre polynomials
with the same argument

/ 4P, (k- #)P,, (k- #)P, (k- )P, (k - £)

‘4 L 73 ¢4 ) 2
=dr 2L + 1 ]
> 0) (oo

(G11)
where the sum over L is restricted by triangle conditions.

The angular part of the 3D Fourier transform of a
function f(r) that depends only on radius is
[ d@qeumtr) = amistans(n. (G12)

The Fourier transform of the inverse Laplacian is (e.g. [41])

1 © dg 1
=0 = —igqr __ _ uq . -
E,(r) /q e A 5 Jol(qr) yp-

3. Wigner 6-j symbol

(G13)

We sometimes use a rescaled 6-j symbol defined by

{jl J2 j3}’
Ja Js Js

= (477,')2ijl +iatis (-1 )j4+/5 TisH .

J1J2J3
1 J2 Js
XH/l/iJGH/2J4JGH/3J4/i{J4 jS ]6}
_l.jlﬂﬁj}(_l)jﬁjﬁjs(jl 2 j3><]1 Js Je)
0 0 O 0 0 O
X<j2 Ja j6>(j3 Ja js){h J2 j3}
0 0 0/\0 0 0/Ujs Jjs Js

X

o

(2ji +1). (G14)

1
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This is only nonzero if triangle conditions of the form |j, — j3| < j; < j, + j3 are satisfied for (i, j2, j3), (J1»Jss J6)>
(J2:JasJs) and (js, ja, js). Additionally, ji + jo + j3, ji +js +Jje» jo+js+Jjs and j3 + js + js must be even. The
product of the first 3-j symbol and the 6-j symbol in Eq. (G14) can also be replaced by a sum over 3-j symbols using

Eq. 34.5.23 of [96,97]:

{jl Ja jS}/:ih*/Z*h(jl Js j6)(j2 Ja j6>
Ja Js Js 0 0 0/\0 0 O

=)

Jz Js s
X
(55 9l

<j1 Js Js
X
0O m -m

><jz Ja j6><j3 Ja j5>
0 m -m 0 m -m)

6 max(jy.Jjs.je)
[T+ Y e
n=1 m==max(js.js.js)

(G15)

Numerical evaluation is straightforward and fast, noting that we only require j; < 10 because the perturbation theory
kernels F,, and G, involve only low-order Legendre polynomials.
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