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Warm dark matter cosmologies have been widely studied as an alternative to the cold dark matter
paradigm, the characteristic feature being a suppression of structure formation on small cosmological scales.
Avery similar situation occurs if standard cold darkmatter particles are kept in local thermal equilibriumwith
a, possibly dark, relativistic species until the Universe has cooled down to keV temperatures. We perform a
systematic phenomenological study of this possibility, and classify all minimal models containing dark
matter and an arbitrary radiation component that allows such a late kinetic decoupling. We recover explicit
cases recently discussed in the literature and identify new classes of examples that are very interesting from a
model-building point of view. In some of these models dark matter is inevitably self-interacting, which is
remarkable in view of recent observational support for this possibility. Hence, dark matter models featuring
late kinetic decoupling have the potential not only to alleviate the missing satellites problem but also to
address other problems of the cosmological concordance model on small scales, in particular the cusp-core
and too-big-too-fail problems, in some cases without invoking any additional input.
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I. INTRODUCTION

Dark matter (DM) is about five times as abundant as
ordinary matter [1] and known to be the dominant driver of
cosmological structure formation. The ΛCDM cosmological
concordance model, which treats DM as a completely cold
and collisionless component in the cosmic energy budget, is
remarkably successful in describing the large-scale structure
of the Universe [2,3]. At galactic scales and below, on the
other hand, the observational situation is less clear and leaves
considerable room for various new physics effects leading to
deviations from the standard scenario. Several observations
at such scales have even been claimed to be in tension with
the expectations within the ΛCDM paradigm [4–16]; see
Ref. [17] for a recent discussion. One of the most often
discussed and most long-standing of these issues is the
problem of “missing satellites” of the Milky Way [5,6], as
compared to the typical number expected in ΛCDM cosmol-
ogy, which subsequently was complemented by an observed
underabundance also of small galaxies in the field [7,9,13].

According to the leading hypothesis, DM consists of a
new type of elementary particles [18]. The most often
studied class of models postulates weakly interacting
massive particles (WIMPs) to form the DM and connects
the observed DM abundance in a theoretically compelling
way to extensions of the standard model of particle physics
at energies beyond the electroweak scale. StandardWIMPs,
like the supersymmetric neutralino [19] or the first Kaluza-
Klein excitation of the photon [20], are prototype examples
of cold dark matter (CDM) as required by the ΛCDM
paradigm. Null searches for such WIMPs at the CERN
LHC [21,22] or in direct detection experiments located
deep underground [23,24], however, start to severely limit
this possibility. Furthermore, from a theoretical perspective
WIMPs are by far not the only possible option for a good
DM candidate [25–28]. DM particles may instead have
significantly stronger nongravitational interactions, either
within a yet-to-be-explored dark sector or with ordinary
standard model particles. This may visibly affect the
distribution of the observed structure in the Universe
[29–62]. Recently, a framework for an effective theory
of structure formation (ETHOS) has been developed [63]
that will eventually allow us to directly map the particle
physics parameters in such models to cosmological
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observables at low redshift. This is particularly relevant for
those types of models that would evade any of the more
traditional ways to search for DM at colliders, in direct or
indirect detection experiments. In this case, detailed obser-
vations of the distribution of matter at small scales, for
example in terms of the power spectrum, may be the only
way to test the DM particle hypothesis.
One of themost prominent, potentially observable features

of this type would be an exponential suppression of power
in the spectrum of matter density fluctuations at sub-Mpc
scales. The classical way to achieve this is through the free
streaming of warm DM (WDM) particles, in which keV
sterile neutrinos provide the prototype example for a well-
motivatedDMcandidate of this type [28]. Such a cutoff in the
power spectrum is strongly constrained by observations of
the Lyman-α forest, typically translated into a lower bound
on theWDMmass. Recent analyses report limits as stringent
as mWDM ≳ 4.35 keV [64,65], which however has been
argued to be overly restrictive when taking into account that
the warm intergalactic medium could mimic such a cutoff
[66]. Completely independent bounds of very roughly
mWDM ≳ 1 keV arise from the observed phase-space den-
sities of Milky Way satellites and from subhalo number
counts in N-body simulations [67] as well as from weak
lensingobservations [68]. This range for theWDMmass, and
hence the location of the cutoff, is interesting because already
a value of mWDM ∼ 2 keV would provide a solution to the
missing satellites problem [69,70], with slightly larger values
at least alleviating it. Historically, this was indeed one of the
prime motivations to focus on WDM [31]. A drawback of
WDMmodels in thismass range, however, is that they cannot
address the other, at least as pressing, small-scale problems
briefly mentioned in the beginning. In particular, the cuspy
inner density profile of DM halos expected in CDM
cosmology is not affected in any significant way [71,72],
leaving the cusp-core problem [4,8,11] unexplained.
An alternative and much less explored way of creating a

cutoff in the power spectrum at these scales arises if coldDM
is kept in local thermal equilibrium with a relativistic species
until the Universe has cooled down to sub-keV temperatures
[33,34,37,43,59,73]. In this case, DM thus decouples kineti-
callymuch later than in the case of standardWIMPs [74]. The
remaining viscous coupling between the two fluids then
typically leads to a characteristic “dark” oscillation pattern in
the power spectrum,with a strong suppression at small scales
[75,76] as confirmed by explicit numerical simulations
[17,77]. Interestingly, this is a possibility that arises rather
naturally in self-interacting DM models, allowing us to
address not only the missing satellites problem but at the
same time also all other shortcomings of the ΛCDM
paradigm [43]. This observation has already triggered
significant interest and led to a number of specific model-
building attempts [47,48,51,54,55,57,78] as well as the
first fully self-consistent numerical simulations of structure
formation for this class of models [17].

Here, we take a much broader perspective and aim at
classifying, in a systematic way, the minimal possibilities
that can lead to late kinetic decoupling with an observa-
tionally relevant cutoff in the power spectrum. Such a cutoff
may or may not be related to a solution of the missing
satellites problem, but would in any case provide a
fascinating observational signature that helps to narrow
down the identity of DM.We use the language of simplified
models to describe the main ingredients that are necessary
for any model building in this direction, depending on the
spin of the CDM particle and its relativistic scattering
partner. This relativistic particle may be some form of dark
radiation (DR), the photon or one of the active neutrinos
(though we will see that the first option is favored). We note
that the existence of such a DR component is cosmologi-
cally very interesting in its own right [79,80] and can even
be invoked to improve the consistency of different
cosmological data sets [81–85]. As a result of our encom-
passing approach, we recover all previously identified
configurations with scalars, fermions and vectors that lead
to late kinetic decoupling, and also find further solutions
that open new avenues for future model building. In our
analysis, we fully include recent developments in the
theoretical description of the decoupling process (see the
discussion in the Appendix for more details).
This article is organized as follows. We start by discus-

sing in Sec. II the generic requirements and limits for any
DM model to feature sufficiently late kinetic decoupling
such as to leave an observable imprint on the power
spectrum or to alleviate the missing satellites problem.
In Sec. III we restrict ourselves to simplified models
containing only the CDM particle and its interaction with
a relativistic particle, and provide a classification of all
such models with the sought-after properties. We extend
this classification in Sec. IV by allowing for a further,
independent virtual particle mediating the interaction. We
present a summary of our results and conclude in Sec. V.
In two appendixes, we provide a concise review of the
kinetic decoupling of DM particles from a thermal bath
(Appendix A) and list the elastic scattering matrix ele-
ments, as well as the ETHOS parameters, for all models
relevant for our discussion (Appendix B).

II. DARK MATTER SCATTERING WITH
(DARK) RADIATION

As motivated in the Introduction, we are interested in
scenarios where highly nonrelativistic DM can be kept in
local thermal equilibrium with a relativistic species until
late times, via the elastic scattering processes schematically
shown in Fig. 1. The kinetic decoupling of DM from this
radiation component (see Appendix A for details) then
leads to a small-scale cutoff in the power spectrum of
density fluctuations, corresponding to a minimal halo mass
of [17]
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Mcut;kd ¼ 5 × 1010
�

Tkd

100 eV

�
−3

h−1M⊙; ð1Þ

where Tkd is the (photon) temperature at which decoupling
occurs and h≃ 0.68 [1] is the Hubble constant in units of
100 km s−1 Mpc−1 [note that this relation critically depends
on how Tkd is defined; see the discussion after Eq. (A12)].
This should be compared to the corresponding cutoff in the
halo mass function [17]

Mcut;WDM ¼ 1011
�
mWDM

keV

�
−4

h−1M⊙ ð2Þ

that is expected for a standard warm DM candidate (which
decouples at temperatures much higher than keV). In order
for such a cutoff to be observable for cold DM, and to
potentially address the missing satellites problem, we thus
need kinetic decoupling temperatures somewhat smaller
than 1 keV, i.e. much smaller than the MeV to GeV
temperatures one encounters for standard WIMPs [74].
Let us stress again that we focus here on situations where

the dominant suppression mechanism arises from acoustic
oscillations of a CDM component [75,76], and this is the
assumption under which Eq. (1) is valid. Free streaming of
the DM particles, which is the dominant effect for WDM, in
principle leads to an independent suppression of the power
spectrum [86]. Following Ref. [74], we estimate that this
effect is subdominant for DM masses above 100 keV, for
Tkd ∼ 0.1 keV and for a DR temperature equal to that of the
photons, while for significantly colder DR free streaming
becomes important only for even smaller DM masses. For
simplicity, we restrict ourselves to DM particles that are
heavy enough to lie outside this intermediate regime
between CDM and WDM.
Our goal is to systematically classify all (minimal) pos-

sibilities that could give rise to such a late kinetic decoupling
of CDM. To this end, we choose to be completely agnostic
about the nature of DM and the radiation component, so the
latter could either be a form of dark radiation (e.g. sterile
neutrinos) or begiven by the standard cosmological photon or
neutrino background.We simply assume that there is oneDM

species, denoted by χ, and one radiation species scattering
with χ, denotedby ~γ.Weallowarbitrary spins for both species,
and scrutinize all relevant simplified model Lagrangians
(which obviously could be embedded in more complete
frameworks) to seewhether they allow for kinetic decoupling
temperatures in the keV range or not.

A. Generic requirements for late kinetic decoupling

Before we start this endeavor, let us illustrate the general
challenges for model building that we should expect to
encounter. Consider for simplicity the case where the scatter-
ing amplitude close to kinetic decoupling can be approxi-
mated by a power law in the energy ω of the relativistic
scattering partner

jMj2 ≃ cnηχðω=mχÞn; ð3Þ
where thematrix element squared here and in the following is
understood to be summedover the internal degrees of freedom
(d.o.f.) η of both initial and final states. For later convenience,
we have extracted the d.o.f. of the initial DMparticle, ηχ , from
the definition of cn. For n > −1, we can analytically solve the
Boltzmann equation to determine Tkd [see Eq. (A16) in
Appendix A], plug the result into Eq. (1) and find

Mcut ≡Mcut;kd ≃Mnξ
3nþ4
nþ2

�
cn

0.001

� 3
nþ2

×

�
geff
3.36

�
− 3
4þ2n

�
mχ

100 GeV

�
−3nþ3

nþ2

: ð4Þ

Here, we have introduced

ξ≡ T ~γ=T: ð5Þ
cn ∼ 10−3 very roughly corresponds to the case where the
electroweak couplingmediates the scattering process, and geff
is the usual effective number of relativistic degrees of freedom
around kinetic decoupling.Mn is a numerical constant that is
independent of the couplings or masses of the theory, and
plotted in Fig. 2 as a function of n and in units of M⊙
(assuming a fermionic ~γ; for a bosonic scattering partner,Mn
would increase by an amount not visible at the resolution of
the figure). For reference, we also indicate the cutoff mass
induced by a 2 keV thermal WDM candidate; as discussed in
the Introduction, this provides a rough distinction between
what is ruled out by Ly-α data and what would help to
alleviate the missing satellites problem.
Typical WIMP DM candidates are well described by

the n ¼ 2 case, for which we have M2 ¼ 4.4 × 10−7M⊙;
for 100 GeV neutralinos, for example, one finds roughly
10−7M⊙ ≲Mcut ≲ 10−4M⊙ [74]. Observable values of
Mcut, close to what is still allowed by Ly-α data, thus
clearly require a significant deviation from the standard
scenario. According to Eq. (4), there exist only a handful of
basic possibilities to increase Mcut in such a way. Let us
briefly discuss them in turn.

FIG. 1. Schematic illustration of the elastic scattering of a DM
particle χ with a (possibly dark) relativistic particle ~γ. Throughout
this article, we use thick lines to denote heavy (nonrelativistic)
particles and thin lines to denotes light (relativistic) particles of
any spin.
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(i) Maximizing the radiation temperature. For DM
scattering with photons or active neutrinos, we have
by definition ξ ¼ 1 and ξ ¼ ð4=11Þ1=3 ¼ 0.71, re-
spectively. If ~γ constitutes a form of DR, on the other
hand, ξ is in principle a free parameter.
Observations of the cosmic microwave back-

ground (CMB), however, exclude the existence of
an additional radiation component corresponding
to the contribution of one more massless neutrino
(i.e.ΔNeff ¼ 1) by more than 3σ [1]. For a fermionic
(bosonic) ~γ, this translates to ξ < 0.85ð0.82Þ=η1=4~γ ,
inevitably implying a further suppression of Mcut
with respect to what is shown in Fig. 2.1 Let us also
mention that there exists an independent, weaker
constraint on ξ from big bang nucleosynthesis [87].
Interestingly, this constraint actually favors a
small DR component (unlike the one from CMB
observations).
Note, finally, that there often exists a lower bound

on the value of ξ that can be achieved in a given
model-building framework. If ~γ has been in thermal

equilibrium with photons down to some temperature
Teq, for example, and there was no additional
entropy production in the visible sector afterwards,
we have ξ≳ 0.34½geffðTeqÞ=100�−1=3η1=3~γ .

(ii) Minimizing the energy dependence of the scattering
matrix. It will obviously help if n is as small as
possible. The simplest way to achieve a constant
scattering amplitude (n ¼ 0), in particular, is a
contact interaction, i.e. an (effective) four-point
vertex. We will study this option further in
Sec. III A. In situations with propagators almost
on shell (see the next point), the scattering rate can
in extreme cases even increase with decreasing
energy ω (corresponding to n < 0). This happens
in particular when the DR particle appears in the
t-channel, a scenario which we discuss in detail in
Secs. III C and III D.

(iii) Increasing the effective coupling strength. In Fig. 3
we show which value of cn in Eq. (3) is needed
to produce Mcut ¼ 1010M⊙ (for ξ ¼ 0.5 and
geff ¼ 3.36). As can be seen, very large cn, and
hence efficient enhancement mechanisms for the
amplitude, are needed for n > 0 and mχ ≳ 1 GeV.
For large DM masses, the required amplitude even
becomes so large that unitarity violation starts to
become a possible concern; in critical cases, this
needs to be checked on a model-by-model basis (see,
e.g., Ref. [88]). Perturbativity restricts couplings to
satisfy α≲ 1, so the only option to achieve such
large amplitudes is a virtual particle that is almost on
shell in the particular kinematical situation we are
interested in (ω ≪ mχ and hence −t ≪ m2

χ). This
can be arranged both in the s=u-channel and in the
t-channel. As these possibilities typically correspond
to unrelated interaction terms in the Lagrangian, we
will discuss them separately in Secs. III and IV.

FIG. 2. Cutoff in the halo mass function resulting from DM
scattering with a radiation component ~γ. This assumes
Mcut ¼ Mn as introduced in Eqs. (3)–(4), i.e. an amplitude that
scales with the energy ω of ~γ as jMj2 ∝ ωn, a coupling strength
roughly corresponding to the electroweak coupling and a DM
mass of 100 GeV. For comparison, we also indicate the value that
is roughly excluded by Ly-α data, with slightly smaller values
allowing a potential solution to the missing satellites problem.

FIG. 3. For a scattering amplitude jMj2 ≃ cnðω=mχÞn close to
kinetic decoupling, this figure shows the value of cn that results in
Mcut ¼ 1010M⊙, as a function of the DM mass mχ . From top to
bottom, the lines correspond to n ¼ ð4; 2; 0;−0.9Þ, and we have
throughout fixed ξ ¼ T ~γ=T ¼ 0.5 and geff ¼ 3.36. The color
scale indicates the size of the matrix element for ω → hωiTkd

.

1The CMB bound can in principle be evaded if ~γ
becomes nonrelativistic right after kinetic decoupling, i.e. at
100 eV ≳ T ≳ 10 eV. Assuming that there is no entropy
production in the dark sector afterwards, however, this
implies a warm (or even hot) DM density today of
ρ0~γ ¼ ðζð3Þ=π2ÞN ~γm~γη~γξ

3T3
0, where N ~γ ¼ 1 (N ~γ ¼ 3=4) for a

bosonic (fermionic) ~γ. If we demand that this contribution make
up at most a fraction f of the total observed DM density,
we obtain a bound on ξ which turns out to be comparable to
the CMB bound, ξ < 0.8ðf=N ~γη~γÞ1=3ðm~γ=10 eVÞ−1=3. Even if ~γ
is kept in thermal equilibrium with another, relativistic species
this conclusion does not change qualitatively; we discuss this
case in Sec. III C.
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(iv) Decreasing the DM mass. From the discussion so far,
a DM mass significantly smaller than our reference
value, 100 keV≲mχ ≪ 100 GeV, appears as maybe
the most straightforward way to achieve a largerMcut.
Indeed, DM particles much lighter than typicalWIMP
DM candidates are by no means a problem per se—
though, as we will see, they might be disfavored in
given model frameworks. Recall that the lower bound
here simply results from the range of validity of
Eq. (1); for lower DM masses free-streaming effects
would have to be taken into account (unless ξ ≪ 1),
which is beyond the scope of this work. Note that if
the DM relic density is set by chemical decoupling
from any of the standard model particles, the lower
bound tightens to mχ ≳ 1 MeV [89].

B. Bounds from inherently related processes

Models with a large scattering rate χ ~γ ↔ χ ~γ typically
imply large annihilation rates, χχ → ~γ ~γ, and in some cases
significant DM self-interaction rates, χχ → χχ, as well.
In the following, we will discuss the generic constraints for
model building that result from these processes (while we
leave more model-specific considerations for later).

1. Dark matter annihilation χ χ → ~γ ~γ

So far, we have avoided making any assumptions about
how DM was produced in the first place. However, the fact
that we consider interactions between χ and the thermally
distributed ~γ in order to achieve late kinetic decoupling
indeed strongly suggests that DM was thermally produced
in the early Universe. For cold DM, the relic density then
typically scales roughly as Ωχh2 ∝ m2

χ=g04, with g0 being
the effective coupling to drive chemical decoupling. More
concretely, if we assumeMχχ→~γ ~γ ≃ g02 at chemical freeze-
out and only take into account the leading, velocity-
independent part of the cross section, σv ¼ g04=32πm2

χ ,
the relic density is given by [90]

Ωχh2 ≃ 8.81 × 10−5
xf

g1=2eff ðTcdÞ
g0−4

�
mχ

100 GeV

�
2

; ð6Þ

where v is the relative velocity between the two annihilat-
ing DM particles (if the leading contribution to the cross
section in the zero-velocity limit is instead given by
σv ¼ g04=32πm2

χv2, this expression must be multiplied
by xf=3). Here, xf ≡mχ=Tcd and the effective number
of degrees of freedom geff are evaluated at the temperature
Tcd of chemical decoupling. A relic density in agreement
with the observed value of Ωχh2 ¼ 0.1188� 0.0010 [1]
can thus not only be obtained for the specific combination
of weak-scale masses mχ ∼ 100 GeV and couplings
g02 ∼ 0.04, but also for any other combination of mχ and
α0 that leaves the ratio of these quantities constant (this is
sometimes referred to as WIMPless DM [91]).

Let us now denote with g the effective coupling for the
scattering process, so we expect cn ∼ g4 in Eq. (3). Rotating
the corresponding diagrams, schematically shown in Fig. 1,
we see that χχ → ~γ ~γ must at least contribute to the total
DM annihilation rate. Demanding that these annihilation
processes do not deplete the DM abundance below the
observed value implies a rough upper bound of g2 ≲ g02 ∼
0.04ðmχ=100 GeVÞ for ξ ∼ 1 (note that this argument
applies even if the initial DM abundance was not produced
thermally). Using Eq. (4), this in turn restricts the cutoff
mass approximately to

Mcut ≲Mn

�
mχ

100 GeV

�
−3nþ1

nþ2

: ð7Þ

Even when taking into account the impact on the DM
abundance, considering lighter DM particles will thus in
general help significantly to achieve a larger value of Mcut.
Due to the different kinematics of scattering and anni-

hilation processes, an intermediate particle nearly on shell
in the former case is not on shell in the latter. This means
that the value of the matrix element can be much larger for
scattering than for annihilation, even though the “same”
diagrams are involved. As can easily be checked, the
argument of the preceding paragraph still runs through,
in exactly the same way, when taking into account that
cn=g4 may in fact be much larger than unity because of this
effect—a possibility which we will make excessive use of.
In this case, the right-hand side of Eq. (7) should be
multiplied by a factor of ðcn=g4Þ3=ðnþ2Þ.

2. Dark matter self-scattering χ χ → χ χ

Coupling DM to (dark) radiation inevitably implies
that DM will be self-interacting, too. If ~γ is bosonic and
there is a direct coupling χ-χ-~γ, for example, this will
induce a Yukawa-type potential with strength αχ ¼ g2χ=4π
and range 1=m~γ between the DM particles, resulting in
a characteristic velocity-dependent self-scattering cross
section.2 We are typically interested in the classical limit
(mχv ≫ m~γ), where the velocity-weighted transfer cross
section peaks at around vmax ∼ 0.1gχ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m~γ=mχ

p
, resulting

in σTðvmaxÞ ∼ 10=m2
~γ ; for larger velocities v ≫ vmax, the

transfer cross section then drops sharply as σT ∝ v−4

(see e.g. Ref. [96]). Observations of dwarf-scale systems
result in upper bounds on the self-interaction rate of
roughly σT=mχ ≲ 10 cm2=g≃ 4.6 × 104=GeV3 [97–101],
while constraints on cluster scales are up to two orders of
magnitude more stringent [102,103]. Given that vmax is
smaller than the typical velocities encountered in dwarf

2For pseudoscalar mediators, the situation is much more
involved [92–95] and a full analysis is beyond the scope of this
work.
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galaxies, however, the former limit constrains the coupling
gχ much more severely in our case.
Following Ref. [63], we define hσTi30 as the

transfer cross section σT averaged over a Maxwellian
velocity distribution with a most probable velocity of
vM ¼ 30 km=s, a value representative for dwarf galaxies.
For σTðvÞ we use the perturbative result [96] in the Born
limit (αχmχ ≪ m~γ), the parametrization obtained in
Ref. [63] for the classical limit (mχv ≫ m~γ), and an
analytical result outside these two regimes which results
from approximating the Yukawa potential by a Hulthén
potential [49]. In Fig. 4, we plot hσTi30=mχ as a function of
the coupling gχ for various masses mχ . We choose a
reference value of m~γ ¼ 100 eV, noting that the cross
sections would become even larger for lighter ~γ particles. In
the figure, one can clearly identify the different regimes for
σT (as well as the imperfect matching conditions, which are
an artifact of our parametrization and bear no physical
significance). For αχ ≲ 10−7ðmχ=GeVÞ−1 we are thus in the
Born regime (for the choice of m~γ adopted in this figure),
while for larger coupling we are in the classical regime
(apart from very small DMmasses, where the characteristic
resonances from the intermediate regime start to appear).
Besides the bound on the self-interaction rate mentioned
above, we also include in the figure the generic upper
bound on gχ that results from DM annihilation processes
χχ → ~γ ~γ; see the discussion in the previous subsection.
As one can clearly see, the self-interaction bounds are

typically much stronger than those from the relic density.
This implies in particular that the annihilation process
χχ → ~γ ~γ cannot be responsible for setting the correct DM
density in the first place: in this case one would need
coupling strengths close to the transition between solid and
dashed lines in Fig. 4. For DMmasses below the TeV scale,
the self-interaction limits become in any case so severe that
extremely tiny couplings are needed to evade them. In the
classical regime, in particular, we find a simple scaling

hσTi30
mχ

∼ 5.3

�
αχ
10−5

�
1.5
�

mχ

100 GeV

�
−2.5

�
m~γ

keV

�
−0.5 cm2

g
;

ð8Þ

which is valid for DM masses of

mχ ≳ m~γ

100 eV
max

�
1;

1

107αχ

�
GeV: ð9Þ

For a direct coupling of DM to bosonic ~γ, the self-
interaction bound thus makes it generically very hard to
obtain as large cutoff masses as desired. Plugging the
resulting constraint on gχ into the expression for the cutoff
mass, Eq. (4), we obtain the rough estimate of

Mcut ≲Mn

�
cn

106g4χ

� 3
nþ2

�
mχ

100 GeV

�1−3n
nþ2

; ð10Þ

where we have conservatively assumed m~γ ¼ 1 keV and
Mn is shown in Fig. 2. This implies that, compared to the
generic expectation of cn ∼ g4χ , very large enhancements of
the amplitude from almost on-shell virtual particles are
necessary to achieve sufficiently large values of Mcut.
Interestingly, it is also no longer favorable to consider
small DM masses when taking into account the self-
interaction bound.
Let us however stress that DM self-interactions do not

only provide useful constraints on the type of models
that we want to consider. Rather, as briefly mentioned in
the Introduction, they have been invoked as solutions to a
number of shortcomings of ΛCDM cosmology at small
scales. In particular, it has been argued [96,104–106] that a
velocity-dependent transfer cross section σT resulting from
a Yukawa potential may successfully address both the
cusp-core problem [4,8,11] and the too-big-to-fail problem
[10,14] that appear at the scale of dwarf galaxies, without
violating the stringent constraints at cluster scales. For this
solution to work, self-interaction cross sections not more
than one order of magnitude below the constraints on
hσTi30=mχ shown in Fig. 4 are needed. Another recent
observation that has sparked significant interest in DM self-
interactions is the cluster Abell 3827, where one of the
member galaxies falling towards the center of the cluster
appears to be displaced from its own gravitational
well [16,107].

FIG. 4. DM self-interaction in dwarf-scale systems, induced by
a direct coupling between light bosonic ~γ and DM, as a function
of αχ ¼ g2χ=4π. From top to bottom, the curves show the case for
a DM mass increasing from mχ ¼ 1 MeV to mχ ¼ 10 TeV. We
have throughout assumed m~γ ¼ 100 eV; lighter masses would
give higher cross sections. The dashed parts of the curves indicate
where the coupling strength gχ is so large that χχ → ~γ ~γ would
deplete the DM abundance below the observed value. Values
above the horizontal thick line are excluded by dwarf galaxy
observations.
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Light fermions ~γ, on the other hand, obviously do not
generate a Yukawa potential. A lower bound on the DM
self-interaction rate can then be obtained by considering the
diagrams displayed in Fig. 5, i.e. by forming a loop of the
scattering process shown in Fig. 1. Assuming again that
the shaded blobs in Fig. 5 are of the order of g2, we roughly
estimate jMj2 ∼ g8=16π2. The transfer cross section will
thus be of the order of σT ∼ 10−5g8=m2

χ . Even when using
the stronger constraint σT=mχ ≲ 0.1 cm2=g from cluster
scales (as σT is to a good approximation velocity inde-
pendent in this case), this only results in the essentially

insignificant bound g2 ≲ ðmχ=MeVÞ3=4, which is always
much weaker than the relic density bound considered above
for the range of DM masses relevant for our discussion,
mχ ≳ 0.1 MeV.We can in fact turn this argument around: if
the effective couplings represented by the blobs in Fig. 5
were large enough to result in a significant self-interaction
rate, this would imply a DM self-annihilation rate too large
to be consistent with the DM abundance observed today.
Stronger bounds from self-interactions can arise in specific
models, however, as we will see in the following.

III. TWO-PARTICLE MODELS

We first consider models with the minimal possible
particle content; i.e. we assume that there is no additional
particle mediating the scattering process χ ~γ → χ ~γ. This
leaves three basic topologies that we will study in more
detail in the following: (A) contact interactions, (B) s=u-
channel mediated scattering processes and (C) dominantly
t-channel mediated scattering processes. For each of these
cases, we will discuss all possible spin combinations that
potentially could lead to late kinetic decoupling; i.e. we
allow in principle both χ and ~γ to be a scalar (Dirac) fermion

FIG. 5. Minimal effective DM self-interaction resulting from
the χ–~γ interactions shown in Fig. 1.

FIG. 6. Overview of results for the two-particle models we have considered, where the DM particle χ and the (dark) radiation particle ~γ
can be scalars, Dirac fermions and vectors, respectively. Here, TOP denotes the topology of the (dominant) DM-DR scattering
amplitude. Late kinetic decoupling (LKD) indicates whether in these types of models a small-scale cutoff as large asMcut ∼ 1010M⊙ can
be arranged. Thermal production (TP) indicates whether the observed DM density can be explained by thermal production via χχ → ~γ ~γ,
and σT indicates the type of the DM self-interaction rate (only for viable models). A white cell indicates that LKD is possible and that
models of this type additionally satisfy the indicated property (e.g. TP). Dark gray indicates that the model is either ruled out, or that it is
not possible to achieve LKD, for the reason stated. Here, hσTi30 indicates the DM self-interaction strength at the scale of dwarf galaxy
scales and Z2 the assumed symmetry to stabilize DM. Operators with dimension (dim) larger than four map to the scalar/scalar four-
point case if they lead to an approximately constant scattering amplitude; otherwise they are too small to lead to LKD. Note that
t-channel scattering with vector DR is only possible in a non-Abelian gauge theory and hence is covered in the SUðNÞ part.
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or vector particle, respectively (for the sake of brevity,
we will however not explicitly consider pseudoscalars and
axial vectors in our analysis). For simplicity, and to avoid
unphysical results, we will assume that a vector boson is
always associated with a gauge symmetry—which may
however be spontaneously broken to allow for m~γ ≠ 0.
We further require that DM be stabilized by a Z2 symmetry;
i.e. we do not allow for vertices with an odd number of χ
particles. For a quick overview of our results for this type of
models, we refer the reader to Fig. 6.

A. Pointlike interactions

Let us start with the case of a single, pointlike contact
interaction, as depicted in Fig. 7. The simplest possibility
to obtain this is with a dimension-4 operator. Due to gauge
invariance, the only such operator that we need to study
separately is in fact the case of a “portal interaction”
between a scalar χ and a scalar ~γ, leading to a constant
scattering amplitude. This is because a four-point coupling
involving (broken or unbroken) gauge fields would imply
the existence of further three-point couplings that unavoid-
ably lead to additional diagrams of the form studied in the
subsequent Secs. III B and III C.
Higher dimensional operators that lead to an (almost)

constant scattering rate will have the same phenomenology,
albeit with a suppressed amplitude, and hence do not
have to be studied separately. Alternatively, a higher-
dimensional operator containing derivatives or fermionic
DR could add an energy dependence to the scattering rate.
As any such operator is irrelevant in the language of
effective field theory, i.e. suppressed at low energies, it
will necessarily yield n > 0 in Eq. (3). Given that cn is
suppressed by a large mass scale, Fig. 3 then tells us that
this possibility will not succeed in producing sufficiently
large values of Mcut.
The only pointlike interaction we have to consider in

more detail at this point is thus a portal interaction of the
form L ⊃ λ

4
χ2 ~γ2. This implies jMj2 ¼ λ2 ¼ hjMj2it and,

cf. Eqs. (3)–(4),

M4S
cut ≃ 8.4 × 1010ξ6λ3

�
mχ

10 GeV

�
−9=2

M⊙; ð11Þ

seemingly implying that a cutoff in the desired range can be
obtained for any DM mass smaller than a few GeV.
As stressed in Sec. II B 1, however, an additional upper

bound on λ results from the requirement that the DM
annihilation rate χχ → ~γ ~γ should not become so large that
it would deplete the initial DM abundance (thermally
produced or not) below the currently observed value. In
Eq. (6) we should thus simply replace g0 →

ffiffiffi
λ

p
, and require

the resulting value for Ωχ not to be smaller than the
observed one. This leads to3

M4S
cut ≲ 3 × 1010ξ15=2

�
mχ

MeV

�
−3=2

M⊙; ð12Þ

where the maximal value for λ, and henceMcut, is achieved
if DM is actually produced thermally (and this process is
dominated by the same portal coupling between DM and
DR). Given that ξ≳ 1 is strongly constrained by CMB
observations (see also footnote 1), DM in this simplest
scenario must thus be lighter than about 1 MeV in order to
produce a cutoff in an observationally interesting range. As
discussed, free-streaming effects start to further increase the
cutoff mass for mχ ≲ 0.1 MeV (or even lighter DM masses
if ξ ≪ 1). The resulting additional suppression of structure
implies that the same value of Mcut can be achieved for
smaller values of ξ, which allows us to satisfy the strong
CMB constraints on this quantity by an even larger margin
(while mχ ≪ 0.1 MeV would simply result in the standard
WDM case). We leave a full exploration of this interesting
regime for future work.
For this mass range, the DM annihilation bound becomes

λ≲ 7 × 10−7ξ0.5mχ=MeV. Even though it is parametrically
suppressed by a factor of λ4, however, the induced DM
self-coupling (see Fig. 5) for this model is actually log
divergent. To be able to remove this divergence by
renormalization, we thus must add an interaction term
ΔL ¼ ðλ0=4!Þχ4. Its finite part can thus be tuned to any
desired value, independent of the above discussion, leading
to a velocity-independent DM self-interaction cross sec-
tion. Let us conclude the discussion of this case by
remarking that the required small value of λ might most
naturally be realized by a dim > 4 operator (as long as it
leads to an approximately constant scattering rate, with

FIG. 7. Diagram illustrating a pointlike interaction of a DM
particle χ with a (possibly dark) relativistic particle ~γ. Because we
focus on unsuppressed interactions, only dimension-4 operators
are considered, which restricts the analysis of this topology to
bosonic particles.

3We note that xf depends logarithmically on the DMmass, and
we used here the approximation given by Kolb and Turner [108].
Furthermore, we took into account the impact of T ~γ ≠ T during
freeze-out by assuming xf ∝ ξ in Eq. (6). We checked this latter
assumption explicitly by solving the full Boltzmann equation
provided in Ref. [90], finding that the actual scaling is more
accurately given by xf ∝ ξr, with 1.1≲ r ≲ 1.2 (where r is larger
for smaller values of mχ and/or ξ). Note that we assume that ξ
remains constant between chemical and kinetic decoupling.
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n ¼ 0). See Refs. [37,51] for examples of large cutoff
masses resulting from such effective operators (and
sub-GeV DM masses).

B. Scattering exclusively via s=u-channel

Let us next consider situations where the scattering
proceeds exclusively via the s-channel (and hence also
the u-channel). The requirement to stabilize DM via a Z2

symmetry then implies, as illustrated in Fig. 8, that the
virtual particle must be χ (recall that by assumption no
further particle beyond χ and ~γ can be involved in our
simplified two-particle model). This means that ~γ must be
bosonic, and we fully need to take into account the
stringent constraints on DM self-interactions discussed in
Sec. II B 2. Here, we only consider the situations that arise
when ~γ is a scalar or an Abelian gauge boson, and χ is either
a scalar or a fermion. Otherwise—i.e. for non-Abelian DR
or vector DM—there are necessarily four-point, s=u- and
t-channel diagrams involved in the scattering process; we
defer the treatment of these cases to Sec. III D. We calculate
all relevant matrix elements in Appendix B, and list the
results in Table I.
While both diagrams in Fig. 8 individually contain a

resonance, those leading contributions cancel exactly in the
t → 0 limit in all cases. The result is an effective scattering
amplitude that is to a very good approximation independent
of the energy ω of the relativistic scattering partners. We
thus obtain the same result as in the contact interaction
case, Eq. (11), with the understanding that we should
replace λ2 by the corresponding expression for hjMj2i=ηχ
stated in Table I, where ηχ denotes the number of internal
degrees of freedom of the DM particle. The essential
difference, however, is that now we have a three-point
coupling giving rise to a strong Yukawa potential between
the DM particles. We can thus combine the result for the
cutoff mass, Eq. (4), with the constraint hσTi30=mχ ≲
10 cm2=g on the transfer cross section, where hσTi30 is
supplied in Eq. (8). This results in

Ms=u
cut ≲ 2 × 10−7ξ6r

3
2

�
m~γ

keV

��
mχ

100 GeV

�1
2

M⊙: ð13Þ

Here, we have introduced r≡ hjMj2i=ðηχg4χÞ, where gχ is
the dimensionless coupling constant that enters the Yukawa
potential—for the scalar/scalar (fermion/vector) case, e.g.,
we have r ¼ 1=2 (r ¼ 16=3).
Equation (13) clearly demonstrates that the strong

constraints on DM self-interactions make it impossible
to achieve late kinetic decoupling if the scattering is only
mediated through s- and u-channel diagrams. We note that
we arrived at this conclusion completely independently of
the DM production mechanism. We have assumed in this
argument, however, that the DM self-scattering takes place
in the classical regime. For very light, (sub-)MeV DM [e.g.
scalar DM scattering with hidden Uð1Þ vectors [38]] it may
thus be possible to achieve large cutoff values and evade the
self-scattering constraints.

C. Scattering dominantly via t-channel

Due to the Z2 symmetry for the χ particles, any scattering
diagram involving a t-channel exchange is of the form
displayed in Fig. 9. Just as for the s=u case, this topology
thus only allows scalar or non-Abelian ~γ. Here, we only
consider the former case, deferring a dedicated discussion
of the latter case to the next subsection. Such models have
two independent coupling constants for the χ − χ − ~γ and
~γ − ~γ − ~γ vertices. The presence of the former induces
s- and u-channel diagrams of the type discussed above.
Here, we will thus require that those couplings be small
enough to satisfy the self-interaction constraints of Fig. 4,
cf. Eq. (8), and that the t-channel diagram dominate the
scattering process. We note that this is indeed the generic
situation, even for a ~γ − ~γ − ~γ coupling much smaller than
the χ − χ − ~γ coupling, because of the strong kinematic
enhancement of the t-channel diagram. We calculate the
two relevant matrix elements, i.e. those for scalar and
fermionic DM, in Appendix B and list the results in Table I.
As expected from the familiar Coulomb case, the

scattering amplitude from the t-channel exchange of a
massless particle diverges, and has to be regulated by
introducing a nonvanishing DR mass term. In fact, such a
mass term can be argued to arise from requiring the
potential to be bounded from below: in our simplified
model, this can only be achieved by adding a four-point

FIG. 8. As in Fig. 7, but in the presence of a χ-χ-~γ coupling,
which leads to a resonance in the s- (left) and u-channel (right).

FIG. 9. As in Fig. 8, but in the presence of an additional 3-~γ
coupling, which leads to a resonance in the t-channel in addition
to the s=u resonances shown in Fig. 8.
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interaction term ðλ=4!Þ~γ4 to the scalar potential
Vð~γÞ ¼ ðm2

0=2Þ~γ2 þ ðμ~γ=3!Þ~γ3; considering the global min-
imum of this potential then leads to the conclusion that
m~γ ∼maxðm0; μ~γ=

ffiffiffi
λ

p Þ ≳ μ~γ , largely independent of the
value of m0. In general, Debye screening will furthermore
generate a thermal mass of the order of mDebye

~γ ∼
ffiffiffi
λ

p
T ~γ . At

temperatures T ~γ ≫ μ~γ , the combination of this effect and
the requirement of vacuum stability thus even lead to
m~γ ≫ μ~γ , essentially independent of the size of λ.
In the case of scalar DM, we have another dimensionful

constant μχ which denotes the χ − χ − ~γ coupling.
Perturbativity and the absence of a global minimum in
the scalar potential with χ ≠ 0, which would break the
DM-stabilizing Z2 symmetry, restrict μχ to be sufficiently
smaller than mχ . However, generically we still expect
μχ ≫ m~γ . Lastly, we would like to mention that for scalar
DM and DR one will generally also have a portal
interaction term in the Lagrangian as discussed in
Sec. III A. Due to the strong kinematic enhancement of
the t-channel diagram, however, this term will not have any
significant effect unless μχ ≪ m~γ .
In the limit where DR is highly relativistic, we find for

fermionic DM an average scattering amplitude of

hjMj2it ¼
g2χμ2~γm

2
χ

ω4
ln
4ω2

m2
~γ

: ð14Þ

For scalar DM we find the same expression after replacing
the dimensionless DM-DM-DR coupling gχ with the corre-

sponding dimensionful coupling μχ as gχ → μχ=ð
ffiffiffi
8

p
mχÞ.

We remind the reader that for such an energy dependence,
the general analytic solution referred to in Eq. (4) is no
longer valid. We can still immediately see that in this case
the momentum transfer rate γ, cf. Eqs. (A7)–(A8), would
fall with temperature less rapidly than the Hubble rate.
In such a situation, DM and DR would initially not be in
local thermal equilibrium. Once they enter it, however,
they would not leave it anymore—leading to a depletion
of structure on large scales that is unacceptable from an
observational point of view (unless the couplings are
chosen to be so small that thermal equilibrium would only
be reached late during matter domination).
In view of this rather unexpected behavior, let us lift our

general assumption of ultrarelativistic DR and investigate
which effect an increased DR mass m~γ would have on the
cosmological behavior of this class of models. We will
assume that ~γ still follows a thermal distribution,4 so we

should expect that at some point the Boltzmann suppres-
sion of the ~γ number density will dominate over the T−4

~γ

scaling from Eq. (14), leading to a suppression of the
momentum transfer rate and hence kinetic decoupling
relatively shortly after the DR has become nonrelativistic.
To investigate this in more detail, we solve the full

Boltzmann Eq. (A13) numerically, noting that the solution
close to kinetic decoupling, and for a given value of Tkd,
only depends on two parameter ratios, m~γ=ξ and g2χμ2~γ=mχ .
We find that the former quantity is essentially fixed by the
requirement to obtain a cutoff mass of Mcut ¼ 1010M⊙,
varying only from m~γ=ξ ¼ 0.53 keV for g2χμ2~γ=mχ ¼
10−20 keV to m~γ=ξ ¼ 2.0 keV for g2χμ2~γ=mχ ¼ 10−10 keV.

For very small couplings leading to g2χμ2~γ=mχ⋘10−20 keV,
on the other hand, it is no longer possible to achieve a cutoff
mass of Mcut ¼ 1010M⊙ because χ and ~γ would not reach
local thermal equilibrium early enough in the first place.
In Fig. 10, we show the DR mass that is required in this

scenario to obtain a cutoff mass of Mcut ≃ 1010M⊙, as a
function ofmχ=αχ and for several values of ξ (solid lines).We
also show, for various values ofmχ , the constraints that arise
fromconservatively requiring that theDMself-interaction not
become too strong, namely hσTi30 < 30 cm2=g; everything
to the left of the dashed lines is thus excluded. For
mχ ≳ 1 GeV, these constraints scale as expected for the

classical regime, cf. Eq. (8), i.e. ðmχ=αχÞmin ∝ m−2=3
χ .

Decreasing the DM mass below about 1 GeV, the limits do
not tighten significantly anymore. As shown exemplarily for
mχ ¼ 1 MeV, they feature instead a much stronger depend-
ence onm~γ in this regime. This implies, as expected, that for
DMmasses even closer to theDRmassof order keV (required

FIG. 10. Fermionic DM of mass mχ scattering with scalar dark
radiation of mass m~γ , with αχ ≡ g2χ=ð4πÞ and the cubic DR self-
coupling fixed to μ ¼ m~γ . Solid lines show the parameter
combinations that lead to Mcut ≃ 1010M⊙, for a DR to photon
temperature ratio of ξ ¼ 1, 0.5, 0.1 (from top to bottom). Dashed
lines give the constraints that result from DM self-scattering, for a
given DM mass; everything left of the respective dashed curve is
excluded.

4In contrast to the effectively massless case, this requires
thermal equilibrium of ~γ with at least one further relativistic
species φ of temperature T ~γ . Since we consider here by
construction a situation in which ~γ is nonrelativistic around
kinetic decoupling of the DM particles, the CMB bound on the
energy density of additional degrees of freedom (i.e. on ξ) thus
becomes independent of η~γ and only depends on ηφ.
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for sufficiently late kinetic decoupling) those limits start to
become less stringent again. In the plot, we have fixed
μ ¼ m~γ . Smaller values will shift the solid lines to the left,
by a factor ofm2

~γ=μ
2. As long asμ is still large enough to bring

DM and DR into local thermal equilibrium, this has hardly
any effect on the allowed range of parameters in this model.
Models with fermionic DM that couple to a keV-scale

scalar with a cubic self-coupling thus allow us to have
both large cutoff masses and DM self-interaction strengths
relevant at the scale of dwarf galaxies, for a broad range of
DM masses. For mχ ≳ 1 GeV, this is very roughly achieved
for a coupling strength of αχ ∼ 10−6ðmχ=10 GeVÞ5=3, while
smaller DMmasses require a stronger coupling than expected
from this simple scaling law. Interestingly, for DM masses
smaller than around 1 MeV, the constraints on the DM
self-interaction rate are no longer stronger than those from the
DMannihilation rate (as would be the case form~γ ≪ 1 keV).
This implies that in this setup one may in fact have thermally
produced DM, with both Mcut and hσTi30 in a range that is
interesting from the point of view of small-scale ΛCDM
problems. Let us finally stress that the above discussion
applies in full analogy to the case of scalar DM, with the
already mentioned replacement gχ → μχ=ð

ffiffiffi
8

p
mχÞ.

D. DM-DR interactions through all channels

Lastly, we consider those cases where treating s=u- and
t-channel (as well as four-point) diagrams separately is
no longer possible because of gauge invariance. We first
note that a vector DM particle is generally not allowed if
fermions exist that are charged under the same gauge
group, because the assumed Z2 symmetry would be
incompatible with covariant derivatives. In a dark sector
with a minimal field content without fermions, on the other
hand, the spontaneous breaking of a Uð1Þ symmetry
necessarily leads to a massive vector that obeys a Z2

symmetry and hence constitutes a very natural DM can-
didate, which has been discussed e.g. in the context of
Higgs portal models [109]. In a similar fashion, breaking a
non-Abelian group leads to two independent Z2 symmetries
and hence two different DM particles [110]—a situation
which we will not study further because at this point we are
only interested in scenarios with a single DM particle.
As shown in Appendix B, the scattering amplitude for

Abelian vector DM and scalar DR is independent of the DR
energy in the limit that we are considering, and thus leads to
the same phenomenology as discussed in Sec. III B for
interactions that proceed exclusively through s=u-channel
exchange. This implies in particular that late kinetic
decoupling cannot be achieved for Abelian vector DM
because the required coupling strength is ruled out by the
resulting strong DM self-interaction.
In the context of the two-particle models that we

consider here, the only case that we have left out from
our discussion so far is non-Abelian DR. The DM particle

can then be either a scalar or a fermion, which leads to
identical results for the scattering rates [up to a constant
factor of order unity (see Table I) and a subdominant
contribution from the four-point coupling in the scalar
case].5 We note that the case of fermionic DM scattering
with non-Abelian DR has been previously studied in
Ref. [60], where it was also pointed out that the necessarily
small gauge couplings imply that confinement is irrelevant.
DR can hence be described as a perfect fluid just like in all
the other model types we study here.
Also in this case, a DRmass has to be introduced in order

to regularize the scattering amplitude. Such a mass arises
inevitably from screening effects in the thermal plasma and
can be estimated as mDebye

~γ ∼ gχT ~γ [112]. On top of this
thermal mass, there can of course also be a temperature-
independent mass if the gauge symmetry is spontaneously
broken. In the limit where the DR is still ultrarelativistic,
the squared scattering amplitude is in any case of the same
form as Eq. (14), but with the leading ω−4 dependence
replaced by a ω−2 dependence. Such a dependence implies
that the momentum transfer rate scales as γ ∝ T2

~γ , i.e. (for
constant ξ) in the same way as the Hubble rate during
radiation domination. During matter domination, on the
other hand, γ will quickly fall behind H ∝ T3=2.
If the leading contribution to the DR mass is thermal, this

can result in a very interesting phenomenology, where all
density perturbation modes that enter the horizon before
matter-radiation equality are suppressed in a smooth way
(while those that enter after equality are essentially unaf-
fected). Tuning the SUðNÞ coupling strength to αχ ∼ 10−9

(for N ¼ 2 and mχ ∼ TeV), in particular, would help to
alleviate a certain tension in the normalization of the power
spectrum of density fluctuations as inferred from different
types of observations [60,61].Measurements of theCMB [1],
in particular, predict a value of the observable σ8 that is about
2σ larger thanwhat is obtained from large-scale structure data
[85,113]. Adopting the above parameter values, we find that
the resulting DM self-interaction becomes hσTi30=mχ ≲
1 cm2=g for m~γ ≳ 10−8 eV, thus evading the observational
constraints on this quantity (see the discussion in Sec. II B 2).
We note that the necessarily small value of αχ implies that the
process χχ → ~γ ~γ cannot be responsible for the thermal
production of DM in this scenario.
Let us instead entertain the possibility, as in the preced-

ing section, that the non-Abelian gauge bosons also have a

5It was only recently pointed out [111] that it is also possible to
break a non-Abelian group partially in such a way that the gauge
bosons of a residual non-Abelian subgroup would constitute DR,
and DM would consist of vector particles stabilized by a Z2

symmetry. The phenomenology of such a setup depends on the
exact breaking pattern, and contains anyway more than one DM
particle for the concrete situation considered in [111]. Hence, we
do not further consider this possibility among the minimal
scenarios we focus on here.
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constant mass term which starts to dominate around keV
temperatures. Requiring again that ~γ be somehow kept in
chemical equilibrium even after it becomes nonrelativistic,
this would lead to the characteristic exponential cutoff in
the power spectrum that is the main focus of this article.
We thus solve the full Boltzmann Eq. (A13) numerically,
requiring again that Mcut ¼ 1010M⊙. Similar to the
t-channel case discussed above, this fixes the ratio m~γ=ξ
as a function of the ratio α2Nm

2
~γ=mχ , where we have defined

αN ≡ g2χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2 − 1Þ

p
=ð4πÞ. Again, the allowed value of

m~γ shows very little variation, from m~γ ¼ 2.2 keV for
α2Nm

2
~γ=mχ ¼ 10−10 keV to m~γ ¼ 0.18 keV for α2Nm

2
~γ=

mχ ¼ 10−25 keV. For α2Nm
2
~γ=mχ ⋘ 10−25 keV, χ and ~γ

are not in local thermal equilibrium at high temperatures.
In analogy to the case of scalar DR in the t-channel

discussed in the previous subsection, we plot in Fig. 11 the
value of the dark gluon mass m~γ that is needed for a cutoff
mass Mcut ≃ 1010M⊙, as a function of mχ=α2N and for
several values of ξ (solid lines). We also show, as dashed
lines, the constraints connected to DM self-interactions;
here, we simply rescaled the available parametrizations for
σT by the difference between SUðNÞ mediators and Uð1Þ
mediators expected at tree level.6 For mχ ≳ 10 GeV, these

constraints scale as expected for the classical regime,
cf. Eq. (8), i.e. ðmχ=α2χÞmin ∝ m−7=3

χ . For smaller DM
masses, the limits weaken with respect to this scaling for
the largest DRmasses shown in the figure. Also in this case,
this implies that there is a small region in parameter space
where relatively light thermal DM, with mχ ≲ 1 MeV, can
produce an observable cutoff in the power spectrum and
feature an observationally relevant, but not yet excluded
self-interaction rate.

IV. THREE-PARTICLE MODELS

We now extend our discussion to simplified models
where the scattering between χ and ~γ is mediated by a
different particle. As before, we will require that DM be
stabilized by a Z2 symmetry; this time, however, we will
allow for further, heavier particles to carry the same parity
(which corresponds to the standard situation in typical
scenarios with WIMP DM candidates, like supersymmetry
or universal extra dimensions). This restricts the logical
possibilities to the same topologies as considered in the
previous section, i.e. scattering exclusively via a heavy
particle χ0 in the s=u-channel (as depicted in Fig. 8) or
scattering via a light particle ~γ0 in the t-channel (as depicted
in Fig. 9). For simplicity, we also do not explicitly study the
possibility of vector DM (see Sec. III D for some general
considerations concerning this option), and restrict the
discussion to couplings described by dimension-4 oper-
ators (though we comment in Appendix B 2 on some
opportunities that arise when lifting this assumption).
The fact that χ and χ0 (as well as ~γ and ~γ0) may differ in

both spin and mass opens several new avenues for model
building and the phenomenology of these models. Most
strikingly, more combinations of particle spins are now
possible (including fermionic ~γ) and the scattering can
proceed exclusively through the t-channel. The new mass
scale, furthermore, can help to avoid bounds on the self-
interaction of DM, and qualitatively change the resonance
structure of the s=u-channel diagrams. As before, we will
discuss the two fundamental topologies separately, focus-
ing on those models and aspects that result in a qualitative
difference to the two-particle models.

A. Scattering via s=u-channel

Let us first consider models with a mediator particle χ0
that is slightly heavier than χ and shares the same Z2 parity.
Defining Δm≡mχ0 −mχ , we restrict our analysis
to masses for which we have mχ ≫ Δm ≫ ω ≫ m~γ .
Larger values of Δm would simply result in suppressed
scattering rates; very small values, on the other hand, would
typically involve serious fine-tuning in concrete models
(and, furthermore, in many cases just lead to situations that
are fully analogous to the s=u-channel two-particle models
discussed in the previous section).

FIG. 11. Fermionic DM of mass mχ scattering with non-
Abelian DR of mass m~γ . For DR consisting of SUðNÞ gauge

bosons, we define αN ≡ g2χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN2 − 1Þ

p
=ð4πÞ. Solid lines show the

parameter combinations that lead toMcut ¼ 1010M⊙, for a DR to
photon temperature ratio of ξ ¼ 1, 0.5, 0.1 (from top to bottom).
Dashed lines show the constraints that result from DM self-
scattering, for N ¼ 2 and a given DM mass; everything left of the
respective curve is excluded. Larger values of N result in weaker
constraints.

6Concretely, we find jMj2SUðNÞ=jMj2Uð1Þ ¼ ðN2 − 1Þ=4≡
α0χ2=α2χ , after summing over all colors, and then use
σT;SUðNÞðαχÞ ¼ σT;Uð1Þðα0χÞ=N2 to account for the color average
in the initial state. We stress that this prescription is only an
approximation to the full higher-order σT, in the nonperturbative
regime, but note that it reproduces the exact result in the Born
regime.
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A complete list of the relevant models, along with results
for the scattering matrix elements, is given in Table II. Note
that this time there appear no vector particles in this
classification. This is because non-Abelian gauge bosons
are not compatible with the imposed Z2 symmetry, for the
topology considered here, while Abelian gauge bosons
only couple to a pair of identical particles (appearing e.g. in
the situation studied in Sec. III). To leading order, the
squared amplitudes are all of the form

hjMj2it ¼
rηχg4χ
δ2

�
ω

mχ

�
n
; ð15Þ

where n ¼ 0 for scalar DR, and n ¼ 2 if ~γ is a
fermion. Here, gχ denotes the χ-χ0-~γ coupling (divided
by mχ in the one case it is dimensionful, namely when all
particles are scalars); δ is given by δ≡ Δm=mχ ; and r is a
model-dependent constant with 1 ≤ r ≤ 16. Defining
M10 ≡Mcut=1010M⊙, we can use the analytic expression
(4) for the cutoff mass and find in terms of the parameters
introduced above7

Mn¼0
10 ≃ 8.4ð6.8Þξ6

�
rg4χ
δ2

�3
2

�
mχ

10 GeV

�
−9
2

; ð16Þ

Mn¼2
10 ≃ 7.9ð7.7Þξ9

2

�
rg4χ
δ2

�3
4

�
mχ

10 MeV

�
−15

4

: ð17Þ

The main constraint on this types of models typically
results from the requirement that the pair-annihilation rate of
χ should not be so large that it would deplete the number
density of χ below the cosmological abundance of DM.
Following the discussion in Sec. II B 1, we thus have to
demand that r1=4gχ be smaller than the value of g0 in Eq. (6)
that is needed forΩχh2 ≃ 0.119.8 Using furthermore xf ∝ ξ,
this leads to the following upper bounds on the cutoff mass:

Mn¼0
10 ≲ 0.9ξ

15
2

�
δ

0.01

�
−3
�

mχ

10 GeV

�
−3
2

; ð18Þ

Mn¼2
10 ≲ 4ξ

21
4

�
δ

0.01

�
−3
2

�
mχ

100 keV

�
−9
4

: ð19Þ

We stress that while the actual bounds are model dependent,
because the DM annihilation rate may be dominated by

processes other than χχ → ~γ ~γ, the above expressions provide
very useful order-of-magnitude estimates that allow us to
classify in which models cutoff masses Mcut ∼Oð1010M⊙Þ
can in principle be achieved.
For cases where the scattering rate is almost constant

(n ¼ 0), such large cutoffs can relatively easily be obtained
for DM masses up to around 10 GeV (or even larger DM
masses if one is willing to accept a fine-tuning between mχ

and mχ0 beyond the percent level). We note that Eq. (16)
reproduces as expected the result for a scalar four-
point coupling that we earlier derived in Eq. (11), after
replacing rηχg4χ=δ2 → λ2. The different conclusions about
the maximal mass scale of the DM particles in these cases
(∼10 GeV vs ∼1 MeV) arise thus exclusively due to the
on-shell enhancement resulting from δ ≪ 1. For an exam-
ple similar to this type of model, where a fermionic DM
particle interacts with a fermionic mediator and pseudo-
scalar DR particles, see Ref. [54] (but note that in this case
the model contains a further scalar t-channel mediator, as
discussed in Sec. IV B).
For cases with n ¼ 2, i.e. for a fermionic ~γ, viable

models in the above sense are restricted to a small range of
sub-MeV DM masses (for an example of such a model,
where fermionic DM couples to neutrinos via a scalar, see
Ref. [78]). Similar to the situation discussed in Sec. III A,
the mass range of interest extends to mχ ≲ 100 keV, where
free-streaming effects have to be taken into account. In this
regime, ξ can hence be chosen small enough to avoid
any tension with CMB data and yet suppress the power
spectrum as desired.
It is very interesting to note that all models discussed in

this section are in principle viable, if only for a relatively
small range of DM masses and mediator particles that are
highly degenerate in mass with the DM particles. None
of these models, on the other hand, naturally gives rise to
large DM self-interaction rates. Similar to the case of the
simple scalar four-point interaction discussed above, those
would have to be added by hand.

B. Scattering via t-channel

In this section, we consider models where we add a light
bosonic particle ~γ0 tomediate the interaction between χ and ~γ
via a t-channel diagram. For simplicity we only consider
models with the following hierarchy of energy scales:
mχ ≫ m~γ0 ≫ ω ≫ m~γ . This ensures that we are sufficiently
far away from the situation discussed in the two-
particle case, while retaining the possibility of large scatter-
ing rate enhancements through an almost on-shell mediator
particle ~γ0.
We provide a complete list of the relevant models, as

well as results for the scattering matrix elements, in
Table II. For a dimensionful ~γ-~γ-~γ0 coupling μ~γ , the
scattering amplitudes are always constant, to leading order,
and given by

7The leading number refers to a bosonic ~γ and the one in
parentheses to a fermionic ~γ.

8Here, we do not include the δ dependence in the comparison
of the effective coupling constants because this derives from an
on-shell enhancement that is absent for the annihilation process.
Note also that in models where χ0 is close in mass to χ,
coannihilations [114] become important. This will increase the
effective annihilation rate during freeze-out, hence leading to a
stronger constraint on g. The actual limits on Mcut are thus
slightly more stringent than stated in Eqs. (18)–(19)—apart from
models with p-wave rather than s-wave annihilation, where the
additional factor of xf=3 in Eq. (6) has the opposite effect.
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hjMj2it ¼ rηχg2χ

�
μ~γ

m~γ0

�
2
�
mχ

m~γ0

�
2

: ð20Þ

Otherwise, they take the form

hjMj2it ¼ rηχg2χg2~γ

�
mχ

m~γ0

�
4
�
ω

mχ

�
2

: ð21Þ

Here, gχ denotes the χ-χ-~γ0 coupling (divided by mχ in
cases where it is dimensionful), and g~γ denotes the ~γ-~γ-~γ0

coupling; r is a model-dependent constant in the range
1 ≤ r ≤ 128=3. In all these cases, the form of the amplitude
allows us to use the analytic expression (4) for the cutoff
massMcut. For the constant amplitude, Eq. (20), this leads to

Mn¼0
10 ≃ 8.4ð6.8Þξ6r32

�
gχμ~γ

m~γ0

�
3
�

m~γ0

GeV

�
−3
�

mχ

TeV

�
−3
2

; ð22Þ

while for the n ¼ 2 case, Eq. (21), the resulting cutoff mass
becomes

Mn¼2
10 ≃ 1.4ð1.4Þξ9

2ðrg2χg2~γÞ
3
4

�
m~γ0

MeV

�
−3
�

mχ

TeV

�
−3
4

: ð23Þ

An important phenomenological difference of these
models, as compared to the three-particle models in
the s=u-channel, is that the light mediator ~γ0 will mediate
a significant velocity-dependent DM self-interaction.
Because we now have the freedom to choose m~γ0 ≫ m~γ ,
the DM self-interaction rate can be much more easily
arranged to be in an observationally relevant range (e.g.
such as to mitigate the ΛCDM small-scale problems). In
fact, this can be done while at the same time allowing for
thermally produced DM. In Fig. 12 we illustrate this point
by plotting the value of αχ ¼ g2χ=4π as a function ofmχ that
is required to obtain hσTi30=mχ ¼ 1 cm2=g, for various
values of m~γ0 . For large DM masses, mχ ≳ 100 GeV in the
plot, we are in the classical regime for σT ; for DM masses
below about 10 GeVand small values of αχ , we are instead
in the Born regime. The small jumps that are visible in
between are not physical but result from the fact that the
parametrizations that we adopt here do not connect the
various regimes described in Sec. II B 2 in a perfectly
smooth way. Once the ratio of mediator to DM mass
becomes large enough, strong resonances develop in σT . As
indicated by shaded areas in Fig. 12, this allows multiple
solutions to hσTi30=mχ ¼ 1 cm2=g. Here, the steps in the
upper envelopes of these shaded areas reflect the number of
resonances where this condition can be met.
In the same figure we show, for comparison, the value

of αχ that follows from Eq. (6) when assuming that the
process χχ → ~γ0 ~γ0 proceeds with a rate of σv ¼ πα2χ=2m2

χ

and is fully responsible for setting the correct relic
density (labeled “s-wave”). We also show the case of

σv ¼ πα2χv2=2m2
χ (labeled “p-wave”). We note that a more

accurate treatment would depend on the concrete model.
For a fermionic DM particle χ annihilating to a vector ~γ0
(s-wave) or scalar ~γ0 (p-wave), for example, the actual
annihilation rate at lowest order is larger by a factor of 2
and 3=2, respectively (this corresponds to models (B23) to
(B27) in Appendix B). Accordingly, the s-wave (p-wave)
line would move downwards by about 30% (20%). In
general, the annihilation rate also receives an enhancement
due to the Sommerfeld effect. Compared to what is shown
in the figure, this will result in a slightly smaller value of αχ
that is necessary to achieve the correct relic density; even in
the vicinity of resonances, however, this is only an Oð1Þ
effect [115] which again would hardly be visible at the
resolution given here.
Even though the details are somewhat model dependent,

Fig. 12 clearly illustrates that for mediator masses
m~γ0 ≳ 1 MeV and DM masses in the TeV range it is in
general possible to accommodate thermal DM production
and a DM self-interaction rate that is sufficiently large to
visibly affect the inner structure of subhalos at the scale of
dwarf galaxies. Let us now investigate the consequences for
the cutoff in the power spectrum in this regime, assuming
again that the above s-wave annihilation cross section is
responsible for setting the relic density. This fixes gχ in
Eqs. (22)–(23), which thus become

Mn¼0
10 ≃ ξ

27
4 r

3
2

�
μ~γ
m~γ0

�
3
�

m~γ0

GeV

�
−3
�

xf
geffðTcdÞ

�3
4

; ð24Þ

Mn¼2
10 ≃ 1

2
ξ
39
8 r

3
4g

3
2

~γ

�
m~γ0

MeV

�
−3
�

xf
geffðTcdÞ

�3
8

: ð25Þ

FIG. 12. Combinations of αχ and mχ that lead to
hσTi30=mχ ¼ 1 cm2=g, for various mediator masses m~γ0 . The
shaded areas show the range of parameters where the appearance
of resonances in σT allows multiple solutions to this condition.
For comparison, we also show the value of αχ that results in
the correct relic density when considering only the process
χχ → ~γ0 ~γ0, assuming that ξ ¼ 0.5 (see text for further details).
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Note that now there is only a very weak dependence of
the cutoff on the DM mass, through xf and geff (as well
as the Sommerfeld effect; see [43,47] for examples). For
MeV mediators and couplings α~γ ∼ αχ ∼ 10−2, thermally
produced DM can thus lead to M10 ∼ 1 in the n ¼ 2 case,
implying in particular that for mχ ∼ TeV a simultaneous
solution of all small-scale problems of ΛCDM is pos-
sible. A similar phenomenology is obtained for n ¼ 0,
i.e. for models with dimensionful ~γ-~γ-~γ0 couplings, if one
adopts μ~γ ∼ 10−3m~γ . Indeed, the n ¼ 2 case corresponds
exactly to the situation first described in Ref. [43], and is
followed up by several concrete examples for model
building with vector mediators and fermionic DM and
fermionic DR [47,48,55,57] as well as scalar DR [54].
As one can see from this discussion, however, there
exists a rather large variety of models that fall into this
class, including the possibility of scalar mediators. The
possibilities for future model building that we have
pointed out here thus go clearly beyond the specific
settings considered so far.
The very large values of the tree-level scattering ampli-

tude we need for TeV-scale DM particles (see also Fig. 3)
may lead to worries about the reliability of the calculation,
since higher-order corrections could be important.
Therefore, we calculated the full one-loop correction
arising from the exchange of one additional scalar mediator
for fermionic DM and scalar DR using LoopTools [116].
It turned out that this correction can safely be neglected.
This can be traced back to the fact that the DR particle
in the loop is highly virtual since the change of
four-momentum upon entering the loop is of orderffiffiffiffiffijtjp

∼ Tkd ≫ m~γ . The kinematical situation is thus differ-
ent from the scattering or annihilation of nonrelativistic
particles, which remain nearly on shell when exchanging
one or more light mediators and thus experience
Sommerfeld enhancement [117–119].
To conclude this section, let us point out that there is yet

another class of thermally produced DM models, visible in
the low-mass part of Fig. 12, where the self-interaction rate
is at the right level to potentially address the cusp-core
or the too-big-to-fail problem. In contrast to the class of
solutions discussed in the previous paragraph, here the
transfer cross section σT is either in the Born or the resonant
regime. Given that the cutoff is almost independent of mχ

for all thermally produced models considered in this
section, however, the same conditions on m~γ and g~γ
(or μ~γ) as just discussed above will lead toM10 ∼ 1, though
of course the different values of αχ and mχ will lead to
different requirements for concrete model building. We
have thus identified a whole new class of GeV DM models
that could potentially address all ΛCDM small-scale
problems simultaneously. We leave a more detailed inves-
tigation of the expected rich phenomenology as an inter-
esting direction for future work.

V. CONCLUSIONS

If cold DM is kept in local thermal equilibrium with a
relativistic species (dark radiation) until the Universe has
cooled down to temperatures below ∼1 keV, this results
in a characteristic suppression of the power spectrum of
matter density fluctuations for scales below what corre-
sponds roughly to the size of the smallest dwarf galaxies.
Such a cutoff may help to alleviate the problem of missing
satellites in the cosmological concordance model. More
importantly, it provides quite in general a fascinating way
of probing new particle physics in the dark sector by using
astrophysical observables connected to the distribution of
cosmological structure. This type of probe is thus highly
complementary to traditional attempts to identify the
particle nature of DM.
In this article, we have provided a systematic classi-

fication of the minimal model-building options that allow
for such a scenario. The simplest solution turns out to be a
contact interaction between a DM particle with mχ ≲
1 MeV and a relativistic DR particle, either in the form
of a four-point portal interaction between two scalars or via
a suppressed, higher-dimensional operator (Sec. III A).
Scenarios where DM couples via a three-point coupling
to DR, on the other hand, are severely constrained by
observational bounds on the strength of DM self-
interactions, leaving no room for a sufficiently late kinetic
decoupling (Sec. III B). This problem may be circum-
vented by allowing for a mediator particle that is slightly
heavier than DM (Sec. IVA) or lighter than DM
but significantly heavier than DR (Sec. IV B). In the
first class of models, DM cannot be too heavy [typically
mχ ≲Oð10 GeVÞ]; in the second class, the possibility
to get an observable cutoff for thermally produced DM
turns out to be almost independent of the DM mass.
In Appendix B, we provide the corresponding ETHOS
[17,63] parameters of our simplified particle physics
models; similar parameters will result in almost
identical results when performing full numerical simula-
tions of structure formation for such DM candidates.
Within the classes of models considered, we do not find

examples where photons could play the role of the dark
radiation component to achieve sufficiently late kinetic
decoupling. As discussed in Appendix B 2, this may
change to some extent if higher-dimensional operators
are included in the discussion of possible interactions
between the mediator and the radiation component. The
fact that the left-handed leptons of the standard model are
contained in SUð2Þ doublets makes it furthermore chal-
lenging to construct models where late kinetic decoupling
can be achieved with (active) neutrinos; see again
Appendix B 2 for a discussion.
The main phenomenological difference to WDM sce-

narios, which lead to a similar cutoff in the power spectrum,
is that in particular the class of models featuring t-channel
mediators much lighter than DM (and much heavier than
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DR) naturally gives rise to relatively large DM self-
interaction rates. For a few concrete models with TeV-
scale DM particles and MeV-scale mediators, it has been
noticed before that this fact can be used to simultaneously
alleviate all small-scale problems of ΛCDM cosmology for
thermally produced DM. We have not only demonstrated
that the models studied so far fall into a much broader class
of viable solutions with this property, but also identified a
new class of GeV-scale DM models with similar properties
(Sec. IV B). This opens promising and largely unexplored
model-building avenues.
We have furthermore shown that the cubic self-

interaction of a scalar DR particle makes the DM-DR
interaction increasingly efficient for small energies
(Sec. III C). In this case, DM and DR would inevitably
be in local thermal equilibrium at late times, though not
necessarily at early times. If the dark radiation particles
are instead massive, with m~γ ∼ 1 keV, they will however
decouple around the same time as in the other cases
discussed here. For (sub-)MeV DM, such a scenario would
in fact also allow for thermally produced DM with self-
interaction rates in the observationally relevant rate (similar
to the case of non-Abelian dark radiation; see Sec. III D).
We leave a more detailed investigation of this interesting
observation for future work.
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Note added.—Recently, two studies appeared on the arXiv
that independently identified some of the new scenarios for
very late kinetic decoupling that we have described and
classified here. In particular, Binder et al. [120] pointed out
that the fermion/scalar/fermion combination shown as entry
(B24) in Table II provides such a new solution, while Tang
[121] identified interacting scalar DR and fermionic DM as
a further possibility (see the fermion/scalar case in Table I,
and the discussion in Sec. III C).

APPENDIX A: KINETIC DECOUPLING

The kinetic decoupling of DM particles from a thermal
bath can be described from first principles by solving the
underlying Boltzmann equation [76,122]—just as the
standard way of calculating the relic density of thermally
produced DM particles [90] is based on solving the
Boltzmann equation during an earlier epoch of chemical
decoupling. The original formalism [122] was later
extended to nonrelativistic scattering partners [74] that
may have a temperature differing from that of photons
[43,47], situations in which the DM number density or the
effective number of relativistic degrees of freedom can
change during or after decoupling [42,74] and, most

recently, to the case where the scattering amplitude is
not Taylor expandable around small momentum transfer
[123,124]. Here, we provide a brief summary taking into
account these more recent developments.
Consider a particle ~γ with a thermal distribution g� of

temperature T ~γ , and a nonrelativistic DM particle χ that can
interact with ~γ. The Boltzmann equation that governs the
evolution of the DM phase-space distribution f in an
expanding Friedmann-Robertson-Walker universe is then
given by L½f� ¼ C½f�, with the Liouville operator9

L½f� ¼ Eð∂t −Hp · ∂pÞfðpÞ; ðA1Þ

and a collision term

C½f� ¼ 1

2ηχ

Z
d3k

ð2πÞ32ω
Z

d3 ~k
ð2πÞ32 ~ω

Z
d3 ~p

ð2πÞ32 ~E
× ð2πÞ4δð4Þð ~pþ ~k − p − kÞjMj2χ ~γ↔χ ~γ

× ½ð1 ∓ g�ÞðωÞg�ð ~ωÞfð ~pÞ
− ð1 ∓ g�Þð ~ωÞg�ðωÞfðpÞ�: ðA2Þ

Here, H ¼ _a=a is the Hubble parameter, and ðE;pÞ and
ðω;kÞ are the 4-momenta of the incoming particles χ and ~γ,
respectively (outgoing momenta are denoted with a tilde).
The scattering amplitude jMj2 is summed over all internal
degrees of freedom, and the phase-space densities are
normalized such that, e.g., the number density of the
particle χ is given by nχ ¼ ηχ

R
d3pfðpÞ=ð2πÞ3.

Even when the DM particle is no longer in local thermal
equilibrium, one can now define a parameter

Tχ ≡ ηχ
3mχnχ

Z
d3p
ð2πÞ3 p

2fðpÞ: ðA3Þ

Introducing further the dimensionless parameters

x≡mχ=T; ðA4Þ
y≡mχTχs−2=3; ðA5Þ

the second moment of the full Boltzmann equation,
keeping only leading terms in p2=m2

χ , reduces to
10

9All momenta that appear in these expressions are physical, as
opposed to comoving, and the time dependence of f is under-
stood to arise, to leading order, exclusively from the expansion of
the Universe via p ∝ 1=a (where a is the scale factor). Note
further that we are throughout using conventions for the nor-
malization of quantum fields and their interactions that are
consistent with those of Peskin and Schroeder [125].

10Note that this assumes a constant comoving DM particle
number density during and after kinetic decoupling. Otherwise an
additional term must be added to this equation that couples the
evolution of Tχ to that of nχ [42]. This can be relevant, e.g., in the
presence of resonances or a strong Sommerfeld enhancement of
the DM annihilation rate.
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d log y
d log x

¼
�
1 −

1

3

d log g�S
d log x

�
γðT ~γÞ
HðTÞ

�
yeq
y

− 1

�
: ðA6Þ

Here, s is the total entropy density, g�S are the effective
entropy degrees of freedom of all relativistic particles in the
Universe and yeq is given by Eq. (A5) with Tχ → T ~γ . The
momentum transfer rate γ, finally, is given by

γðT ~γÞ ¼
1

48π3ηχT ~γm3
χ

×
Z

dωk4ð1 ∓ g�Þg�ðωÞjMj2t¼0

s¼m2
χþ2mχωþm2

~γ

; ðA7Þ

where k≡ jkj. The above expression only holds if jMj2 is
Taylor expandable around t ¼ 0 [in the sense that
jMj2 ¼ jMj2t¼0½1þOðω2=m2

χÞ�, taking into account that
t is of the same order as ω2]. While this is typically a good
assumption, it fails for example if the denominator is
suppressed by ω or t (because the propagator is almost
on shell). In such situations, we have to make the
replacement [123]

jMj2t¼0

s¼m2
χþ2mχωþm2

~γ

→ hjMj2it ≡ 1

8k4

Z
0

−4k2
dtð−tÞjMj2:

ðA8Þ
This allows us to rewrite γðT ~γÞ in terms of the total transfer
cross section, σT ≡ R

dΩð1 − cos θÞdσ=dΩ, as

γðT ~γÞ ¼
1

3π2ηχmχ

Z
dωg�ðωÞ∂ωðk4σTÞ; ðA9Þ

where we have used that g�ð1 ∓ g�ÞðωÞ ¼ −T ~γ∂ωg�ðωÞ.
The solution to Eq. (A6) before and after DM leaves

local thermal equilibrium with the ~γ particles is of the form

TχðTÞ ¼
�
T ~γ for T ≳ Tkd

C=a2 for T ≲ Tkd

ðA10Þ

with a constant C that is uniquely determined by the
solution of the differential equation. Given that the tran-
sition between the two regimes typically happens rather
fast, it is natural to define the kinetic decoupling temper-
ature as the point where the two asymptotics meet (see
Fig. 1 in Ref. [74]). This is equivalent to rewriting C, and
hence Eq. (A10), as

TχðTÞ ¼
�
T ~γðTÞ for T ≳ Tkd

ξTkd½aðTkdÞ=aðTÞ�2 for T ≲ Tkd

ðA11Þ

where we have introduced

ξ≡ T ~γ=T: ðA12Þ
Other definitions of the kinetic decoupling temperature
exist in the literature (see e.g. [50,51,57,126,127]), for
example requiring that γ ¼ H at the time of kinetic

decoupling, which are all related to the definition advocated
here by multiplying the small temperature regime of
Eq. (A11) with a constant different from unity.
The most prominent observable connected to kinetic

decoupling is that of a cutoff in the power spectrum of
matter density perturbations. For very late kinetic decou-
pling, the dominant mechanism of suppressing the growth
of DM perturbations is dark acoustic oscillations [75,76]
(unless DM is very light, in which case free-streaming
effects [86] start to dominate). As recently confirmed
numerically [17], the resulting minimal halo mass is then
given by Eq. (1), which is in rather good agreement with
earlier analytic estimates. Note that Tkd in this expression is
calculated by using the definition given by Eq. (A11); for
an alternative definition, the expected magnitude of Mcut
has to be correspondingly rescaled.
Let us conclude this section by making explicit how the

above general analysis simplifies for the purpose of the
specific application we are interested in for most of this
article: DM scattering with a highly relativistic species,
resulting in kinetic decoupling in the keV range. The latter
implies that we are still well in the radiation dominated
era, H2 ¼ ð4π3G=45ÞgeffT4, with a constant number of
effective relativistic degrees of freedom geff ¼ 3.36.11

Equation (A6) then becomes

dTχ

dT
− 2

Tχ

T
¼ ðTχ − ξTÞ fðT ~γÞ

T3
; ðA13Þ

where

fðT ~γÞ ¼
3

ffiffiffiffiffiffiffiffi
5=π

p
2πg1=2eff

MPlγðT ~γÞ

¼
ffiffiffiffiffiffiffiffi
5=π

p
2ð2πÞ4

MPl

g1=2eff ηχm
3
χ

Z
dωg�∂ωðω4hjMj2itÞ:

ðA14Þ
As in Eq. (A8), we can evaluate the amplitude at t ¼ 0
instead of taking the average if the Taylor series around this
point locally provides a good approximation. In general,
the above two equations need to be solved numerically to
determine Tkd according to Eq. (A11), as implemented in
DarkSUSY [74,128]. In many cases of practical interest,
the amplitude is furthermore well approximated by a power
law for small energies,12

11If ~γ constitutes some form of dark radiation, this would in
principle contribute additional degrees of freedom on top of those
from the standard model neutrinos and photons taken into
account here. Such an additional contribution is observationally
strongly constrained [1], and would anyway change the predic-
tion for Tkd only by a factor ≲ 1

4
Δgeff=geff ; cf. Eq. (A16).

12Note that this introduces the coefficient cn with the correct
prescription of summing and averaging the amplitude squared
over initial and final states, in the sense that this is how it enters in
the momentum transfer rate; see Eqs. (A7) and (A14).
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1

ηχ
hjMj2it ¼ cn

ωn

mn
χ
þO

�
ωnþ1

mnþ1
χ

�
: ðA15Þ

In this case, Eqs. (A13)–(A14) can be solved analytically
even for noninteger n > −1 [122], and the kinetic decou-
pling temperature as defined in Eq. (A11) is given by

Tkd

mχ
¼

�
ξT2

mχTχ

�
T≲Tkd

¼
��

a
nþ 2

�
1=ðnþ2Þ

Γ
�
nþ 1

nþ 2

��−1
;

ðA16Þ
with

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5

2ð2πÞ9geff

s
ðnþ 4Þ!ζðnþ 4Þξnþ4cn

MPl

mχ
ðA17Þ

for a bosonic ~γ. If ~γ is a fermion, the above expression has
to be multiplied by a factor of 1 − 2−ðnþ3Þ.

APPENDIX B: SCATTERING
MATRIX ELEMENTS

In this appendix, we provide the Lagrangians and scatter-
ing amplitudes for allmodels included in our analysis.While
we use the full expressions to calculate the kinetic decou-
pling temperature, we state here only the leading terms
for jMj2 in the limit mχ ≫ ω ≫ m~γ . In each case, we also
check explicitly whether keeping only these leading order
terms provides a good estimate for the calculation of Tkd,
and whether simply evaluating jMj2 for t ¼ 0 leads to a
reliable estimate of Tkd or whether one has instead to use the
t-averaging prescription given in Eq. (A8). See Appendix A
for more details about how to calculate Tkd.

1. Two-particle models

Let us first consider those simplified models that only
contain the (cold) DM particle χ and the (relativistic)
scattering partner ~γ. As motivated in Sec. III, we are then
interested in the following interaction terms (to indicate the
spin of the involved particles, we denote scalars always
with ϕ, vectors with V and fermions with ψ).

A. Scalar four-point interaction

ΔL ¼ λ

4
ϕ2
χϕ

2
~γ : ðB1Þ

B. DM-DR interactions through s=u-channel
(i) Scalar-scalar

ΔL ¼ μχ
2
ϕ2
χϕ~γ: ðB2Þ

(ii) Fermion-scalar

ΔL ¼ gχψ̄χψχϕ~γ: ðB3Þ

(iii) Scalar–Uð1Þ vector

ΔL ¼ igχ ½ð∂μϕ
†
χÞϕχ − ϕ†

χð∂μϕχÞ�Vμ
~γ

− g2χðVμ
~γ Þ2jϕχ j2: ðB4Þ

(iv) Fermion–Uð1Þ vector

ΔL ¼ gχψ̄χV ~γψχ : ðB5Þ

C. DM-DR interactions through t-channel
(i) Scalar-scalar

ΔL ¼ μχ
2
ϕ2
χϕ~γ þ

μ~γ

6
ϕ3
~γ : ðB6Þ

(ii) Fermion-scalar

ΔL ¼ gχψ̄χψχϕ~γ þ
μ~γ
6
ϕ3
~γ : ðB7Þ

D. DM-DR interactions through all channels
(i) Vector-scalar

ΔL ¼ gχmχVχμV
μ
χϕ~γ þ

1

2
g2χVχμV

μ
χϕ2

~γ

−
1

2
gχ

m2
~γ

mχ
ϕ3
~γ : ðB8Þ

[This results from a spontaneously broken Uð1Þ
symmetry; the imaginary part of the original scalar
field Φ thus gives the mass to Vμ

χ .]
(ii) Scalar–SUðNÞ vector

ΔL ¼ −
1

2
Tr½ðFa

μνÞ2� − g2χV
aμ
~γ Vb

~γμΦ
†
χtatbΦχ

þ igχ ½ð∂μΦ
†
χÞtaΦχ − Φ†

χtað∂μΦχÞ�Vaμ
~γ :

ðB9Þ

(iii) Fermion–SUðNÞ vector

ΔL ¼ −
1

2
Tr½ðFa

μνÞ2� þ gχΨ̄χVa
~γ t

aΨχ : ðB10Þ

We list the squared amplitudes for all those models, with
and without averaging over t, in Table I. In all cases, the
amplitudes squared are summed (not averaged) over all
external spins, polarization states and “colors,” as well as
over particles and antiparticles. We also provide the ratio of
kinetic decoupling temperatures that results when using the
t-averaging prescription and the simplified t ¼ 0 prescrip-
tion, respectively. To obtain this ratio, we calculated the
kinetic decoupling temperature by solving the full process
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Eq. (A13) numerically. In the next-to-last column of
Table I, we indicate whether expanding the amplitude as
a power law in the energy of the relativistic scattering
partner provides an accurate estimate of the correct decou-
pling temperature (i.e. whether the analytic result given in
Eq. (A16) agrees with the full numerical result at the
percent level).
We are studying here situations with intrinsically large

kinematic enhancements, i.e. where the presence of small
quantities in propagators (namely t, ω and m~γ) can have
significant effects on the amplitude. It should therefore not
be a surprise that we identify cases where the simple t ¼ 0
prescription breaks down completely. One of those exam-
ples is the case of scalar/scalar scattering via the s=u
channel, where the amplitude evaluated at t ¼ 0 is propor-
tional to m4

~γ=m
4
χ while the averaged amplitude is not

suppressed by the small DR mass. A similar issue appears,
certainly not unexpectedly, in all cases where ~γ appears in
the t-channel. Apart from that, we confirmed that if the
squared amplitude takes the form of a power law in the
energy close to kinetic decoupling, as well as at slightly
higher temperatures, the analytic solution (A16) for the
kinetic decoupling temperature provides a very reliable

estimate for the full numerical result. For DR in the
t-channel, however, the amplitude close to kinetic decou-
pling is not of the form given in Eq. (A15) and, con-
sequently, the analytic solution cannot be expected
to apply.
As mentioned in the introduction, finally, ETHOS [63]

provides an efficient way of classifying the impact of DM
models on structure formation by means of a handful of
phenomenological parameters—in the sense that every
DM model with similar ETHOS parameters leads to
almost identical results in full numerical simulations.
An important input here is the DR opacity to DM
scattering, _κ ~γ−χ , which for relativistic DR typically can
be parametrized as

_κ ~γ−χ
Ωχh2

≡ −nχ
16πm2

χð1þ zÞΩχh2

R
dωω3g�ðωÞ½A0 − A1�R

dωω3g�ðωÞ

¼ −
X
m

am

�
1þ z
1þ zkd

�
m
; ðB11Þ

where z denotes the cosmological redshift and

TABLE I. Full list of relevant two-particle models. For the scattering matrix elements, only the leading terms in ω=mχ are given,
assuming mχ ≫ ω ≫ m~γ (for the t-channel results, we have further assumed that μ~γ is sufficiently large that the t-channel amplitude
always dominates over the s=u-channel amplitudes). In the fifth column, we state the ratio of the kinetic decoupling temperature
resulting from the t-averaging prescription to that from the t → 0 prescription. The next-to-last column indicates whether keeping only
the leading order result for the amplitude (after averaging or setting t ¼ 0) provides a good estimate for Tkd. In this case the analytical
solution, Eq. (A16), can be used; otherwise, Eq. (A13) must be solved numerically. The last column, finally, states the full set of ETHOS
parameters [63] that describe the respective model, as defined in Eqs. (B11)–(B13).

DM/DR ΔL hjMj2it jMj2t¼0
TkdðhjMj2itÞ
TkdðjMj2t¼0

Þ
jMj2 ∝ ð ω

mχ
Þn ETHOS parameters

Four-point (contact interaction only)
Scalar/scalar (B1) λ2 λ2 1.0 ✓ fa2; αl≥2 ¼ 1g

s=u-channel
Scalar/scalar (B2) μ4χ

2m4
χ

Oðm4
~γ Þ Not applicable ✓/✗ fa2; α2 ¼ 3

5
; αl≥3 ¼ 2

3
g

Fermion/scalar (B3) 16g4χ
3

16g4χ 1.7 ✓ fa2; α2 ¼ 3
5
; αl≥3 ¼ 1g

Scalar/vector (B4) 32g4χ
3

16g4χ 1.2 ✓ fa2; α2 ¼ 9
10
; αl≥3 ¼ 1g

Fermion/vector (B5) 64g4χ
3

32g4χ 1.2 ✓ fa2; α2 ¼ 9
10
; αl≥3 ¼ 1g

t-channel
Scalar/scalar (B6) μ2χμ

2
~γ

8ω4 ln 4ω2

m2
~γ

μ2χμ
2
~γ

m4
~γ

Not applicable ✗ (m~γ → 0 undefined)

Fermion/scalar (B7) 2g2χμ2~γm
2
χ ln ð4ω2=m2

~γ
Þ

ω4

16g2χμ2~γm
2
χ

m4
~γ

Not applicable ✗ (m~γ → 0 undefined)

DM-DR interactions through all channels
Vector/scalar (B8) 4g4χ 48g4χ 3.5 ✓ fa2; α2 ¼ 3

5
; αl≥3 ¼ 1g

Scalar/vector [SUðNÞ] (B9) 9g4χCFC2
Am

2
χ ln

4ω2

m2
~γ

ω2

72g4χCFC2
Am

2
χω

2

m4
~γ

Not applicable ✗ (m~γ → 0 undefined)

Fermion/vector [SUðNÞ] (B10) 18g4χCFC2
Am

2
χ ln

4ω2

m2
~γ

ω2

144g4χCFC2
Am

2
χω

2

m4
~γ

Not applicable ✗ (m~γ → 0 undefined)
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AlðωÞ≡ 1

2

Z
1

−1
d cos θPlðcos θÞ

jMj2
ηχη~γ

����
t¼2ω2ðcos θ−1Þ
s¼m2

χþ2ωmχ

: ðB12Þ

In the above expression, θ is the angle between the
incoming and outgoing DR particle, and Pl denotes the
lth Legendre polynomial. This means that A0 − A1 is, up to
a constant, essentially just the transfer cross section σT for
DM-DR scattering, and _κ ~γ−χ is thus closely related to the
momentum transfer rate γ; see Eq. (A9). The only other
relevant parameters for the models studied here are a set of
angular coefficients αl defined by

αl ≡
R
dωω3g�ðωÞ½A0ðωÞ − AlðωÞ�R
dωω3g�ðωÞ½A0ðωÞ − A1ðωÞ�

; l ≥ 2: ðB13Þ

In Table I, we provide for each model the full set of
nonvanishing parameters fan; αlg in the limit considered
here, namely T ~γ ≪ mχ. We also indicate those cases
where the above expressions do not apply because the
limit m~γ → 0 cannot be taken, a situation for which the
ETHOS parametrization has not been worked out yet.
For models with the same set of parameters, the effect
of the cutoff in the primordial power spectrum on nonlinear
structure formation will be identical. We note that the value
of αl has a rather limited impact in this respect, as it leaves
shape and location of the first peak in the linear power
spectrum mostly unaffected [63].

2. Three-particle models

We now consider simplified models where the scattering
between nonrelativistic DM particles χ and relativistic
particles ~γ is mediated by a different particle—either a
“DM-like” particle χ0 which is slightly heavier than χ
(leading to s=u-channel exchange) or a “DR-like” particle
~γ0 which is much heavier than ~γ (leading to t-channel
exchange). As motivated in Sec. IV, we are then interested
in the following interaction terms of dimension 4 (to
indicate the spin of χ and ~γ, we denote again scalars
always with ϕ, vectors with V and fermions with ψ).

A. DM-DR interactions through a mediator χ0 in the
s=u-channels
(i) Scalar-scalar-scalar

ΔL ¼ μχϕχϕχ0ϕ~γ: ðB14Þ

(ii) Scalar-fermion-fermion

ΔL ¼ gχϕχψ̄χ0ψ ~γ þ H:c: ðB15Þ

(iii) Fermion-scalar-fermion

ΔL ¼ gχϕχ0 ψ̄ ~γψχ þ H:c: ðB16Þ

(iii) Fermion-fermion-scalar

ΔL ¼ gχϕ~γψ̄ χ0ψχ þ H:c: ðB17Þ
B. DM-DR interactions through a mediator ~γ0 in the

t-channel
(i) Scalar-scalar-scalar

ΔL ¼ μχ
2
ϕ~γ0ϕ

2
χ þ

μ~γ

2
ϕ~γ0ϕ

2
~γ : ðB18Þ

(ii) Scalar-scalar-fermion

ΔL ¼ μχ
2
ϕ~γ0ϕ

2
χ þ g~γψ̄ ~γψ ~γϕ~γ0 : ðB19Þ

(iii) Scalar-scalar-vector

ΔL ¼ μχ
2
ϕ~γ0ϕ

2
χ þ μ~γϕ~γ0Vμ~γV

μ
~γ : ðB20Þ

(We assume that the gauge symmetry is broken
spontaneously by hϕ~γ0 i ∝ μ~γ.)
(iv) Scalar-vector-scalar

ΔL ¼ igχ ½ð∂μϕ
†
χÞϕχ − ϕ†

χð∂μϕχÞ�Vμ
~γ0

þ ig~γ½ð∂μϕ
†
~γÞϕ~γ − ϕ†

~γð∂μϕ~γÞ�Vμ
~γ0 : ðB21Þ

(v) Scalar-vector-fermion

ΔL ¼ igχ ½ð∂μϕ
†
χÞϕχ − ϕ†

χð∂μϕχÞ�Vμ
~γ0

þ g~γψ̄ ~γV ~γ0ψ ~γ: ðB22Þ
(vi) Fermion-scalar-scalar

ΔL ¼ gχψ̄χψχϕ~γ0 þ
μ~γ
2
ϕ~γ0ϕ

2
~γ : ðB23Þ

(vii) Fermion-scalar-fermion

ΔL ¼ gχψ̄χψχϕ~γ0 þ g~γψ̄ ~γψ ~γϕ~γ0 : ðB24Þ

(viii) Fermion-scalar-vector

ΔL ¼ gχψ̄χψχϕ~γ0 þ μ~γϕ~γ0Vμ~γV
μ
~γ : ðB25Þ

(We assume again that the gauge symmetry is
broken spontaneously by hϕ~γ0 i ∝ μ~γ.)
(ix) Fermion-vector-scalar

ΔL ¼ gχψ̄χV ~γ0ψχ

þ ig~γ½ð∂μϕ
†
~γÞϕ~γ − ϕ†

~γð∂μϕ~γÞ�Vμ
~γ0 : ðB26Þ
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(x) Fermion-vector-fermion

ΔL ¼ gχψ̄χV ~γ0ψχ þ g~γψ̄ ~γV ~γ0ψ ~γ: ðB27Þ

We note that the dimensionful coupling μ~γ cannot be
chosen completely independently of the mediator massm~γ0 ;
in Eqs. (B25) and (B20), e.g., it is the vacuum expectation
value of the same field that gives rise to both quantities.
We list the resulting squared amplitudes in Table II,
following the same format as in Table I for the two-particle
models. Note that we focus on parameter choices where
we can expect qualitative differences with respect to the
two-particle models discussed above. Sufficiently close
to kinetic decoupling, we therefore require mχ ≫ Δm≡
mχ0 −mχ ≫ ω ≫ m~γ (for s=u-channel mediated processes)
and mχ ≫ m~γ0 ≫ ω ≫ m~γ (for t-channel mediated proc-
esses), respectively.
Also in this case, we identify situations where the

simple t ¼ 0 prescription leads to a qualitatively

wrong result for the inferred decoupling temperature. In
the s=u-channel, this happens for the combination of scalar
DM and fermionic χ0 and ~γ, where jMj2t¼0 ∝ ω4 while
hjMj2it ∝ ω2. In the t-channel the “critical” combinations
concern fermionic ~γ and scalar ~γ0: unlike that suggested by
the result for jMj2t¼0, those combinations do not lead to an
insignificant scattering rate—but rather to a scattering rate
that is (up to a constant factor) the same as in the case of
exchanging a vector particle ~γ0. As long as one uses the
correct description for calculating the matrix element, on
the other hand, the analytic solution (A16) for the kinetic
decoupling temperature always provides a very reliable
estimate for the full numerical result.
For convenience, we provide the ETHOS parameters

also for all three-particle models. For the case of
fam; αlg ¼ fa4; αl≥2 ¼ 3=2g, which appears e.g. for
fermion-fermion scattering via vector exchange [see
Eq. (B27)] as studied in Refs. [47,48,55,57], detailed
numerical simulations have already been performed [17].

TABLE II. Full list of relevant three-particle models—including DM particles χ, (dark) radiation particles ~γ, and
mediator particles χ0 or ~γ0. For s=u-channel and t-channel processes, we have assumed mχ ≫ Δm≡mχ0 −mχ ≫
ω ≫ m~γ and mχ ≫ m~γ0 ≫ ω ≫ m~γ , respectively; in all cases, we state only the leading terms for the squared
amplitude. The last three columns are defined as in Table I.

DM/mediator/DR ΔL hjMj2it jMj2t¼0
TkdðhjMj2itÞ
TkdðjMj2t¼0

Þ
jMj2 ∝ ð ω

mχ
Þn ETHOS parameters

s=u-channel
Scalar/scalar/scalar (B14) μ4χ

m2
χΔm2

μ4χ
m2

χΔm2
1.0 ✓ fa2; αl≥2 ¼ 1g

Scalar/fermion/fermion (B15) 32g4χω2

3Δm2

16g4χω4

Δm4
Not applicable ✓ fa4; αl≥2 ¼ 3

4
g

Fermion/scalar/fermion (B16) 88g4χω2

3Δm2

40g4χω2

Δm2
1.1 ✓ fa4; αl≥2 ¼ 12

11
g

Fermion/fermion/scalar (B17) 64g4χm2
χ

Δm2

64g4χm2
χ

Δm2
1.0 ✓ fa2; αl≥2 ¼ 1g

t-channel
Scalar/scalar/scalar (B18) μ2χμ

2
~γ

m4

~γ0

μ2χμ
2
~γ

m4

~γ0

1.0 ✓ fa2; αl≥2 ¼ 1g

Scalar/scalar/fermion (B19) 32μ2χg2~γω
2

3m4

~γ0
Oðm2

~γ Þ Not applicable ✓/✗ fa4; αl≥2 ¼ 3
4
g

Scalar/scalar/vector (B20) 4μ2χμ
2
~γ

m4

~γ0

4μ2χμ
2
~γ

m4

~γ0

1.0 ✓ fa2; αl≥2 ¼ 1g

Scalar/vector/scalar (B21) 64g2χg2~γω
2m2

χ

m4

~γ0

64g2χg2~γω
2m2

χ

m4

~γ0

1.0 ✓ fa4; αl≥2 ¼ 1g

Scalar/vector/fermion (B22) 128g2χg2~γω
2m2

χ

3m4

~γ0

128g2χg2~γω
2m2

χ

m4

~γ0

1.3 ✓ fa4; αl≥2 ¼ 3
2
g

Fermion/scalar/scalar (B23) 16g2χμ2~γm
2
χ

m4

~γ0

16g2χμ2~γm
2
χ

m4

~γ0

1.0 ✓ fa2; αl≥2 ¼ 1g

Fermion/scalar/fermion (B24) 512g2χg2~γω
2m2

χ

3m4

~γ0
Oðm2

~γ Þ Not applicable ✓/✗ fa4; αl≥2 ¼ 3
4
g

Fermion/scalar/vector (B25) 32g2χμ2~γm
2
χ

m4

~γ0

32g2χμ2~γm
2
χ

m4

~γ0

1.0 ✓ fa2; αl≥2 ¼ 1g

Fermion/vector/scalar (B26) 128g2χg2~γω
2m2

χ

m4

~γ0

128g2χg2~γω
2m2

χ

m4

~γ0

1.0 ✓ fa4; αl≥2 ¼ 1g

Fermion/vector/fermion (B27) 256g2χg2~γω
2m2

χ

3m4

~γ0

256g2χg2~γω
2m2

χ

m4

~γ0

1.3 ✓ fa4; αl≥2 ¼ 3
2
g
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Those simulations included the effect of DM self-
interactions, for which we do not explicitly list the relevant
ETHOS parameters here. We note, finally, that a recent
computation for the models (B24) and (B27) resulted in
identical linear power spectra for these two cases when
neglecting the impact of perturbations in the DR fluid [120].
Including this effect, which is encoded in the parameters αl,
we thus expect (small) differences between the power
spectra generated by DM-DR scattering mediated by scalar
and vector mediators, respectively (see the discussion
in Ref. [63]).
Let us, finally, point out that none of the models studied

in this section (nor in the previous section where we
considered two-particle models) allows for the possibility
that ~γ is the SM photon. For the Lagrangians in Eqs. (B4)–
(B5), for example, this is excluded because it would lead to
too large DM self-interactions (as discussed in Sec. III B);
the Lagrangians (B20) and (B25), on the other hand, are not
compatible with an unbroken Uð1Þ gauge symmetry. We
note that this conclusion may change when including
higher-dimensional operators in the discussion, an interest-
ing candidate being e.g. a scalar ~γ0 in the t-channel that
couples via ~γ0FμνFμν to photons. As the effective coupling

g~γ0 of such higher-dimensional operators would necessarily
be suppressed, however, we expect from Fig. 12 that such
solutions would require even smaller mediator masses m~γ0 ,
and hence even lighter DM.
Similarly, it appears to be challenging for any concrete

model building to identify ~γ with the SMneutrino. Themain
reason is that due to SUð2Þ gauge invariance any new state
coupling to the neutrino should couplewith equal strength to
the (left-handed) SM electron. This argument basically
excludes the possibility of achieving late kinetic decoupling
with ~γ ¼ νL in the Lagrangians stated in Eqs. (B19), (B22),
(B24), and (B27), because the coupling of electrons to new
light states is generally strongly constrained. In the case of
Eqs. (B15)–(B16), on the other hand, the leptons would
couple to heavy new states—which is not excluded if the
mass scale is high enough (in supersymmetry, e.g., this
would correspond to a coupling among the neutralino,
lepton and slepton). Inspecting Eqs. (18)–(19), however,
tells us that a large mass scale can only be reconciled with
late kinetic decoupling for extremely smallmass splittings δ.
Again, higher-dimensional operators may potentially allow
for qualitatively different options.
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