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Using Monte Carlo random walks of a log-normal distribution, we show how to qualitatively study void
properties for nonstandard cosmologies. We apply this method to an fðRÞ modified gravity model and
recover the N-body simulation results of [I. Achitouv, M. Baldi, E. Puchwein, and J. Weller, Phys. Rev. D
93, 103522 (2016).] for the void profiles and their deviation from GR. This method can potentially be
extended to study other properties of the large scale structures such as the abundance of voids or overdense
environments. We also introduce a new way to identify voids in the cosmic web, using only a few
measurements of the density fluctuations around random positions. This algorithm allows us to select voids
with specific profiles and radii. As a consequence, we can target classes of voids with higher differences
between fðRÞ and standard gravity void profiles. Finally, we apply our void criteria to galaxy mock
catalogues and discuss how the flexibility of our void finder can be used to reduce systematic errors when
probing the growth rate in the galaxy-void correlation function.
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I. INTRODUCTION

Over the past decade, galaxy surveys have revealed
cosmic voids that are an essential component of the cosmic
web (e.g., [1–8]). Their dynamical formation carries
information of the background expansion and the nonlinear
gravitational interactions, as matter flows out from under-
dense patches leading to the mass assembly of halos [9,10].
Therefore, their statistical properties can be used to con-
strain cosmology, for instance, using the integrated Sachs-
Wolfe effect (e.g., [11]), performing an Alcock-Paczynski
test (e.g., [12]), measuring their abundance or their density
profiles (e.g., [13–16]), or looking at the clustering of
matter in underdense environments [17,18].
Furthermore, void statistics are promising to probe dark

energy models such as coupled dark energy [19] or
modified gravity models that rely on screening mecha-
nisms, such as fðRÞ gravity [20,21]. In particular, the
abundance of voids and void profiles can be used to test
the cosmic expansion and the growth rate, where the fifth
force is unscreened in underdense environments (e.g.,
[13,16,20,22,23]). However, precise theoretical predictions
of how void abundance and void profiles change for
modified gravity models are still lacking. This has driven
intensive N-body numerical analyses of such properties
(e.g., [24–26]). In this work, we introduce a fast estimate of
how void profiles can vary for nonstandard cosmologies,
based on Monte Carlo Random Walks (MCRW). This
method can potentially be explored to study other

quantities such as the abundance of voids or the statistical
properties of overdense peaks in the nonlinear matter
density field.
As an application, we show how different ways of

selecting voids can enhance the imprint of fðRÞ modified
gravity, which has not been studied before. In fact, there is
no one single approach to identify voids, nor should there
be, as different techniques can highlight different properties
of what each calls a void. For instance, many void finders
define voids based on density criteria inside a sphere (e.g.,
[3,4,27,28]). This definition is very helpful when trying to
link the theory of an expanding underdense patch to the
prediction of void abundance (for instance, [14,29]). Other
techniques based on watershed transforms or dynamical
properties around voids (e.g., velocity field) have also been
very useful to identify voids without imposing a particular
shape for them (e.g., [30–36]). With cosmological obser-
vations, ZOBOV/VIDE [37,38] has also been quite suc-
cessful in identifying density minima using Voronoi
tessellation, leading to voids with interesting properties
and that are not necessary spherical. In this case, it is
however more challenging to link the initial underdense
patches of matter to the identified void [14].
In this work we study how a measurement of the density

fluctuations at a limited number of scales is enough to
identify voids, which would not be the case if the matter
was not clustered. We also show how the selection of
voids with specific ridges can be important when probing
the growth rate.
This paper is organized as follows. In Sec. II, we show
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nonstandard cosmology using MCRW, focusing on void
profiles. In Sec. III, we apply this technique to test the
deviation of the void profiles for fðRÞ gravity and discuss
the importance of the void identification when testing for
deviations withΛCDM. In Sec. IV, we apply the void finder
criteria to mock catalogues and show how a few measure-
ments of the density fluctuations are enough to identify
voids in a low density survey. Finally, in Sec. V, we test the
effect the identification criteria to the measurement of the
growth rate and highlight the advantages of having flexible
void profiles (at a fixed void radius) when probing the
growth rate. In Sec. VI, we present our conclusions.

II. THEORY

In order to compute a local minimum in the dark matter
density field, we generally need to measure the density
contrast smoothed over some scale δðRSÞ and determine if
it is below some density threshold.
For instance, the spherical model (e.g., [29,39]) of an

underdense patch of matter expands linearly as the Universe
is expanding. If the initial patch is sufficiently deep to
accumulate shells at the void boundary, the perturbation
becomes nonlinear, its size increases faster than the back-
ground expansion, and shell crossing will occur leading to a
void of a density contrast ΔðRvÞ ∼ −0.8 for an Einstein de
Sitter universe (where Rv is the void radius). Hence, some
void finders naturally search for spherical patches that have a
density contrast of ∼ − 0.8 once they are smoothed on a
scale RS ¼ Rv. Such void finders require knowledge of the
integrated density contrast over a scaleRS and do not add any
constraints to the void density profile. Void finders based on
the watershed concept (e.g., [37,38]) also need to have an
estimate of the density around each particle (e.g., Voronoi
Tessellation) to define zones that have a density minimum
and thus voids. No constraints are imposed on the shape of
the voids nor on their profiles.
In the next section, we describe howwe can useMCRW to

study void profiles by selecting a sample of trajectories that
satisfy different density criteria. The choice of these criteria is
not restrictive and can be tuned to target voids with specific
characteristics. In addition, because our Universe is struc-
tured as the so called cosmicweb, wemaywonderHowmuch
information do we need to have in order to find a void? For
instance, considering a random position in a galaxy survey
and measuring the density contrast at a smoothing scale
δðR1Þ, would it be enough to know if we are at the center of a
void of size Rv? Note that in this case we do not consider the
integrated density profileΔðRvÞ but rather the density profile
at a given radial bin δðR1Þ which would be interesting to
identify voids when looking at a galaxy survey with masked
regions. The two quantities are linked by

ΔðRÞ ¼ 3

R3

Z
R

0

δðqÞq2dq: ð1Þ

The answer would naturally depend on the definition of
the voids, thus letting us consider voids as an underdense
patch of matter (negative density contrast within the void)
and a ridge that defines the void radius (δðRvÞ > 0).
Let us also set a first sample of voids with radius
Rv ∼ 20 Mpc:h−1.

A. Monte Carlo random walks

Considering a random position in a galaxy survey, the
probability to find a density contrast ΔðRÞ smoothed on a
scale R is given by the probability distribution function
(PDF) of the cosmological density fluctuation. The full
PDF carries all the nonlinear gravitational interactions
between the primordial density perturbations up to the
present epoch. Hence, it is the fundamental quantity that
characterizes the clustering of matter in the Universe and all
its hierarchical order (e.g., skewness). In the standard
inflationary model (slow roll inflation with a single field),
this PDF is initially Gaussian. Theoretical models that
estimate the late time evolution of this PDF include
perturbation theory (e.g., [40–43]) and the excursion set
theory (e.g., [44–46]). Those methods provide a good
physical understanding but are limited by the nonlinear
evolution as well as the mapping between the Lagrangian to
Eulerian space that often assumes a deterministic spherical
evolution [47]. From an empirical approach, the 1-point
PDF of galaxies is well described by a log-normal
distribution (e.g., [48–50]). This has been confirmed by
several N-body simulations (e.g., [50–53]) even in the
highly nonlinear regime (down to R ∼ 2 Mpc:h−1 for
ΛCDM cosmology [53]). This is an impressive result
considering that the dynamics of the initial density pertur-
bations can only be described using N-body simulations.
For this reason, in what follows, we use the log-normal
PDF to study the density criteria that identify voids with
specific characteristics. Note that we neglect the higher
order of the full PDF; hence, our results can only describe
the qualitative feature of a full N-body simulation.
For an initial matter density field with Gaussian statis-

tics, the evolution of the density fluctuations as a function
of the smoothing scale follows a stochastic Langevin
equation:

∂ΔðR;x ¼ 0Þ
∂R ¼

Z
d3k
2π3

~δk
∂ ~Wðk; RÞ

∂R ð2Þ

where ~δk and ~Wðk; RÞ are the Fourier transforms of the
density fluctuation and the filter function, respectively.
Instead of using the smoothing scale (or the linear variance)
as an integration variable, [44] has shown that it is more
convenient to use ln k when solving for the evolution of the
so called trajectory (ΔðRÞ). Each trajectory is defined by a
set of values for Δ ¼ ΔðR0Þ;ΔðR2Þ;…ΔðRnÞ and the
stochastic Langevin equation to solve is
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∂Δðx; R; ln kÞ
∂ ln k ¼ ηðx; ln kÞ ~Wðk; RÞ; ð3Þ

where the stochastic force is a Gaussian white noise,

hηðx1; ln k1Þηðx2; ln k2Þi

¼ δDðln k2 − ln k1ÞPLinðk1Þ
sin k1R
k1R

: ð4Þ

We can solve numerically the trajectories by performing
a Monte Carlo approach. We use a large number of
trajectories ΔðR; ln kÞ as a function of the smoothing scale
R. To construct each trajectory, we integrate the Langevin
equation [Eq. (3)] over the logarithm wave numbers ln k,
adding on each step the stochastic force [44]. This leads to
the well-known Gaussian random walks [44,54,55] that
have a variance

σ2LinðRÞ ¼
1

2π2

Z
PLinðkÞ ~W2ðk; RÞk2dk: ð5Þ

For this analysis, we use the linear power spectrum from
CAMB1 [56] using aWMAP-5 cosmology [57] (Ωm ¼ 0.26,
h ¼ 0.72, σ8 ¼ 0.79, ns ¼ 0.963, Ωb ¼ 0.044). This cos-
mology corresponds to the N-body simulations that we will
use in Sec. IV.
In Fig. 1, we can see the distribution of these random

walks (Gaussian) at different smoothing scales (blue
histogram). The solid blue PDF is the standard Gaussian
PDF

PðΔ; σLinÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2LinðRÞ
p exp

�
−

Δ2

2σ2LinðRÞ
�
: ð6Þ

As we already mentioned, this PDF corresponds to the
initial statistic of the matter density fluctuations. In order to
obtain Monte Carlo walks that have a log-normal distri-
bution, we simply use the mathematical correspondence
between a Gaussian and a log-normal distribution (e.g.,
[53]) when we solve for Eqs. (3) and (4):

ΔLN þ 1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2NLðRÞ

p

× exp

�
Δ

σLinðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ σ2NLðRÞÞ

q �
; ð7Þ

where

σ2NLðRÞ ¼
1

2π2

Z
PNLðkÞ ~W2ðk; RÞk2dk: ð8Þ

This time, the subscript NL indicates that we use the
nonlinear power spectrum of the matter density field for
which we use the halo-fit from CAMB [56] with the same
WMAP-5 cosmology. In Fig. 1, we can see the correspond-
ing Monte Carlo walks at three different smoothing scales
(black histograms). The solid back curves show the
corresponding log-normal distribution,

PðΔLN; σ2NLðRÞÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2eff

p

× exp
�
−
ðlnð1þ ΔLNÞ þ σ2eff=2Þ2

2σ2eff

�

×
1

1þ ΔLN
; ð9Þ

where σ2eff ¼ ln½1þ σ2NLðRÞ�.
Unsurprisingly, we can see that on large scales (lower

panel) the standard deviation of these PDFs is smaller than
on small scales (top panel). This is a direct consequence of
Eqs. (5) and (8). In the limit where R → ∞, σNL, σLin → 0,
these PDFs become a Dirac delta functions centred on zero.
This is satisfied by construction, as a consequence of the
homogeneous Universe on large scales, while on small
scales the matter density fluctuations (linear/nonlinear
ones) can fluctuate significantly (e.g., if they correspond
to a proto-halo/halo). Finally note that the choice of the
filter does not matter when generating those random walks
since we do not add any conditions such as an absorbing
boundary threshold (used in the excursion set theory [44]).
However, the choice of filter has a physical meaning as it
defines the smoothed volume that we consider (VðRSÞ ¼R
d3xWðx; RSÞ). Therefore, in what follows, we only

FIG. 1. PDF of the Gaussian ΔðRÞ (blue histogram) and log-
normal ΔLNðRÞ (black histogram) Monte Carlo random walks at
three different smoothing scales. The solid curve shows the
associated Eqs. (6) and (9).

1http://camb.info/readme.html.
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consider a top-hat filter in real space Θðx − RSÞ, leading
to VðRSÞ ¼ 4

3
πR3

S.
In the next section, we select a sample of those

Monte Carlo walks that satisfied some density constrains
relevant to identify voids.

B. Density criteria to find voids

We are interested in identifying voids at the present
epoch; hence, we want that at a random position in a galaxy
survey, considering the matter within a small smoothing
scale Rm → 0, the corresponding density contrast ΔLNðRmÞ
tends to −1 (no matter). The choice of Rm can be adjusted
to give a smooth density profile Rm ∼ 1 Mpc:h−1 or a
sharper profile: in the limit of a top-hat void profile, the
matter density inside the void is null. Therefore, the upper
limit of Rm is the actual void size. In what follows, we
consider the following example: Rv ¼ 17.25 Mpc:h−1,
Rm ¼ 2 Mpc:h−1, and ΔLNðR < RmÞ < −0.9. We also
require a ridge at the size of the void radius by adding
the condition δLNðRv � εÞ > 0 with ε ¼ 1 Mpc:h−1. Note
that for any trajectory ΔLNðRÞ (cumulative smoothed
density profile on scale R), we obtain the equivalent
trajectory δLNðrÞ by differentiating ΔLNðRÞ.
Those two requirements define a 1þ 1 condition: One

that looks for an empty patch at a small smoothing scale
and the other one that gives a lower limit on the amplitude
of the density fluctuation at the ridge, corresponding to an
overdense compensation wall at the void radius. This last
constraint is not mandatory for certain void finders (e.g.,
[38]), particularly for large voids, and therefore, we
distinguish this additional condition as a þ1 condition.
Finally, we require that ΔLNðR < RvÞ < ΔLNðRvÞ in

order to reduce the scatter around the averaged void profile
(2þ 1 criteria). This means we compute ΔLN for every
value of R in the range 0 < R < Rv, and if any ΔLN does
not satisfy that condition, we exclude the trajectory.
Generating 1000 trajectories, we found that ∼6.2% of

the trajectories satisfy these 2þ 1 conditions.
In Fig. 2, we can see the averaged value of all trajectories

ΔLN (red curve) that satisfy these 2þ 1 conditions, while the
light red band shows the standard deviation around the
averaged mean value. The blue curve represents the mean
value of the corresponding linear trajectories, while the black

curve shows the density fluctuation δLNðRÞ ¼ 1
3R2

dðR3ΔLNÞ
dR .

This averaged fluctuation has what we can expect from a
void profile at z ¼ 0: an underdensity at the center, slowly
reaching a maximum density contrast on the ridge and
having δLNðR ≫ RvÞ → 0 on large scales. In principle, we
could add more conditions to further reduce the scatter
around the mean value of the void density profile. For
instance, we could add an upper limit on the amplitude of
the ridge. However, if one wants to keep the criteria to a
minimum, these 2þ 1 criteria are a good compromise to
obtain a mean density profile consistent with a void profile
expectation.

It is interesting to mention that the excursion set theory
uses the linear density fluctuation to predict the abundance
of voids (e.g., [14,29,44]). The spherical evolution (e.g.,
[29,39]) of a linearly extrapolated underdensity that cor-
responds to a void today is given by ΔðRÞ ∼ −2.7. This
value is often used in the excursion set theory (e.g.,
[14,29,44]) to predict the abundance of voids, (when a
random linear trajectory crosses that threshold at the largest
smoothing scale without crossing the linear threshold of
halo formation). One may be tempted to establish a link
between the log-normal random walks that are identified as
voids and the corresponding linear trajectories. However,
there are a few caveats. First, any deterministic link
between the initial conditions and the nonlinear density
fluctuations is in theory not correct. While the nonlinear
density fluctuations can effectively be described by a log-
normal distribution, there is no physical reason why it
should be the case. Hence, using a log-normal trans-
formation from initial Gaussian density fluctuations to
study the link between the void identified today and the
initial density criteria is, in principle, not a physical
description of the nonlinear processes leading to the
formation of voids. Keeping this in mind, we may still
investigate if there is an effective link between the two.
However, the spherical criterion is a deterministic predic-
tion that cannot encapsulate all of the nonlinear interactions
of the density fluctuations. For instance, in [14], the authors
have measured, from an N-body simulation, the extrapo-
lated linear density contrasts that lead to the voids identified

FIG. 2. Averaged void profiles from Monte Carlo random
walks for the nonlinear integrated density fluctuations ΔLNðRÞ
(red curve). The light red bands show the standard deviation
around this averaged profile. The corresponding linear density
fluctuation is shown by the blue curve, and the black curve shows
the density fluctuation δLN computed from the integrated density
fluctuations.
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with ZOBOV [37]. They show that on average and for large
voids the critical density was consistent with the spherical
prediction of Δ ∼ −2.7 but shows a nonnegligible scatter
around this mean value. In addition, in the context of the
excursion set theory, the averaging of trajectories at random
positions requires an effectively lower density criteria than
what is expected from density peak fluctuations [54,55,58]
(by a factor ∼1=1.4).
Hence, it would be interesting to investigate the conse-

quences for the prediction of the abundance of voids, thus
building an effective mapping between the void size we
identified previously and the scale where the linear random
walk trajectory crosses some effective threshold (e.g.,
Δ ∼ −2.7=1.4). This, however, goes beyond the scope of
this work.

III. APPLICATION: VOID PROFILES DEPARTURE
FROM GR IN f ðRÞ GRAVITY USING MCRW

Modification of general relativity (GR) on large scales
has been investigated as an alternative to the cosmological
constant (e.g., [20,21]. The fðRÞ gravity model is one
example where a function of the Ricci scalar, fðRÞ, is added
to the Einstein-Hilbert action. The function fðRÞ can be
tuned to have the same expansion history as the standard
ΛCDM scenario [20]. Furthermore, to ensure the validity of
GR in our local environment, the so-called Chameleon
screening mechanism [59] is required. The former sup-
presses the deviation from GR in high-density environ-
ments such as the Milky Way.
In such models (e.g., [20]), the function fðRÞ is given by

fðRÞ ¼ −m2
c1ðR=m2Þn

c2ðR=m2Þn þ 1
; ð10Þ

where m2 ¼ H2
0Ωm, with H0 and Ωm being the Hubble

parameter and matter density, respectively, at z ¼ 0. The
parameters n, c1, and c2 are free. To recover the back-
ground expansion close to ΛCDM, fðRÞ is expressed as
fðRÞ ¼ −6m2ΩΛ=Ωm þOððm2=RÞnÞ, and in what fol-

lows, we use a n ¼ 1 model. In this case, fR ≡ dfðRÞ
dR can

be interpreted as a scalar degree of freedom. A field
equation can be obtain for fR where the only degree of
freedom is set by the background field amplitude at
z ¼ 0, fR0.
The value of ∣fR0∣ controls the screening mechanism:

smaller values of ∣fR0∣ correspond to higher screening.
Current constraints from large scales and galaxy clusters
rule out models with ∣fR0∣ ≥ 10−4 [60–62]. Nevertheless,
In what follows, we consider fR0 ¼ −10−4 for our analysis
to test how our MCRW approach can reproduce void
profiles in the case of modified gravity.
In order to generate our MCRW for the fðRÞ modified

gravity, we use the halo fit from MGcamb [63] with the
cosmological parameters defined in Sec. II to compute

Eq. (8) and let the other density criteria unchanged. In over
1000 trajectories, 9% satisfied the density criteria, an
increase of 3=2 compared to the number of trajectories
for the GR case. This is in qualitative agreement with the
result of the N-body simulation of [13,16,22,23] where
the author found more large voids for fðRÞ gravity due
to the fifth force that is unscreened in an underdense
environment. Physically, the fifth force pushes the particles
stronger toward the walls of the voids [64]. This means that
cosmic voids are more efficient to form and that the fðRÞ
voids have a higher ridge amplitude. This has also been
confirmed by [13,16,22,23].
In Fig. 3, we can see the comparison between GR density

profiles (solid curves) discussed previously and the ones
computed for fðRÞ gravity with fR0 ¼ −10−4 (dotted
curves). This shows the characteristic feature of fðRÞ
voids: the dotted lines are below the GR ones within the
voids, while on the ridge these density fluctuations become
higher. It is quite remarkable that a MCRW approach can
reproduce this main feature observed in an N-body sim-
ulation (e.g., [13,16,22,23].). One might wonder if the
differences between the GR and fðRÞ profiles are signifi-
cant given the uncertainties in the profile shown in Fig. 2. In
Fig. 2, the scatter band is due to cosmic variance (it is not a
statistical error). When we generate the GR and fðRÞ
profiles, we use the same initial conditions (random seed
and linear power spectrum) such that the cosmic variance
canceled out and the difference between the dashed Vs
solid curves in Figs. 3 and 4 are directly due to the fðRÞ
imprint induced by a different nonlinear power spectrum.

FIG. 3. Averaged void profiles from Monte Carlo random
walks for the nonlinear integrated density fluctuations ΔLNðRÞ
(red curve). The corresponding linear density fluctuation is
shown by the blue curve, and the black curve show the density
fluctuation δLNðRÞ. The dotted curves show the same for
fR0 ¼ −10−4.
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Finally, the difference between the linear integrated density
fluctuations (blue curves) is also interesting. They corre-
spond to the Gaussian perturbation that leads to the
identified voids and are different even though we started
from the same initial conditions. The difference between
the two is due to the additional voids identified in the fðRÞ
MCRW, leading to a different linear density threshold for
the GR and fðRÞ voids. This could be investigated further
to predict the abundance of voids in nonstandard
cosmologies.
Additionally, we can investigate the effect of the void

identification criteria on these profiles. In fact, previous
studies of fðRÞ imprints on void profiles have not inves-
tigated the effect of the void finder itself. As we already
mentioned, void finders such as [37,38] tend to identify
voids without ridge for Rv ≥ 17 Mpc:h−1 (see [65]).
Because the fifth force enhances the void ridge, it might
be interesting to test the imprint of fðRÞ for different types
of void profiles (for a fixed Rv). In Fig. 4, we can see the
nonlinear density fluctuation for GR (black curves) and
fðRÞ (violet curves) for two different voids that satisfy
different criteria: voids that have a ridge (solid curves)
and voids without (dashed lines). For this example, to
select voids with a ridge, we require that δLNðRv ¼
17.25�1Mpc:h−1Þ<−0.1, ΔLNðR< 16.25Mpc:h−1Þ<
ΔLNðRvÞ, and ΔLNðR < 2 Mpc:h−1Þ < −0.5. The ridge
condition is weaker than the previous condition in
order to enhance the difference between GR and fðRÞ
voids. For the same reason, the condition at low radius

is less restrictive (< −0.5) compared to the previous
example. For the voids without a ridge, the conditions
are δLNðRv ¼ 17.25� 1 Mpc:h−1Þ < −0.4, ΔLNðR<
16.25Mpc:h−1Þ<ΔLNðRvÞ, and ΔLNðR< 5Mpc:h−1Þ<
−0.5. Both show the expected feature of the fðRÞ voids: the
inner part of the voids is again steeper than in GR.
In the lower panel, we can see the relative difference

between the fR0 ¼ −10−4 profiles and the corresponding
GR profiles. The fðRÞ voids with a ridge (solid line) show a
departure from GR at the ridge, while the ones without only
differ from GR in the inner part of the void profiles.
Another way to explain this trend is because the clustering
of the matter is more effective for fðRÞ (e.g., [13]); voids
will be more empty in the inner part (mass conservation)
and will accrete more matter at their ridge. This is why the
MCRW can be used to test the departure from GR.
This work indicates that requiring voids with a ridge

might be important when probing nonstandard gravity
models. Our MCRW study can also be applied to study
other statistical properties: we can study larger underdense
or overdense regions by selecting random walks of a given
density fluctuation on large scales. In the next section, we
test further the advantages of having a flexible void finder
applied to galaxy mock catalogues.

IV. VOID FINDER FOR GALAXY MOCK
CATALOGUE

In this section, we use the freely available DEUSN-body
simulations used for several purposes (e.g., [54,55,66–68]).
This simulation has a 648 Mpc:h−1 box size with 20483

particles and was realized using the RAMSES code [69] for
a ΛCDM model calibrated to WMAP 5-yr parameters
ðΩm; σ8; ns; hÞ ¼ ð0.26; 0.79; 0.96; 0.7Þ. We built 36 dark
matter and 36 galaxy mocks catalogues by subsampling
Nh ¼ 15000 dark matter particles/halos. The halos are
identified with the Friend-of-Friends (FoF) algorithm with
linking length b ¼ 0.2, selecting the most massive haloes
and leading to a mean density of n̄ ¼ 0.003 Mpc−3:h3.
These choices approximately mimic the selection of the
6dFGS galaxy survey2 and correspond to the choices made
in [8]. For the dark matter mocks, we randomly select a
sample of dark matter particles in each catalogue until the
density equals n̄ ¼ 0.003 Mpc−3:h3.

A. Method

Previously, we have used different density criteria to
identify voids, using conditions both on the integrated
density contrast ΔLN and the density fluctuation δLN. For
mock catalogues, it becomes interesting to mainly probe
the density fluctuation δLNðRÞ at different scales in order to
identify voids. Indeed, in such a case, we do not have to
assume any volume (shape for the voids). Furthermore, in a

FIG. 4. Averaged void profiles from Monte Carlo random
walks for the nonlinear density fluctuations δLNðRÞ for GR
(black curves) and fR0 ¼ −10−4 (violet curves) in the case of
different density criteria to identify voids. The void profiles with a
ridge are shown by the solid curves, while the dashed curves
show the ones without a ridge. The bottom panel shows the ratio
between the fðRÞ density profiles with respect to the GR ones.

2http://www.6dfgs.net/.
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galaxy survey, some regions might be masked. In such
case, computing the averaged profile δLNðRÞ is generally
done by counting pairs (using the correlation function that
gives the excess probability of having galaxies distant
from Rþ dR with respect to the mean density ρ̄). Hence,

δLNðRÞ≡ ρvgðRÞ
ρ̄ − 1 ¼ ξvgðRÞ (e.g., Sec. 2.2 in [70]).

Given the position of dark matter particles or a number
NGal of galaxies with coordinates Xj

G ¼ ðxjG; yjG; zjGÞ,
j ¼ ½1; NGal�. The previous density criteria to identify voids
can be applied in the following steps:

(i) Generate a number NRan of random positions that
follow the selection function of the galaxies posi-
tions, Xl

R ¼ ðxlR; ylR; zlRÞ, in order to determine the
correlation function. Generate another uniform ran-
dom set NTrial of positions that span the spatial
coverage of the galaxy catalogue but do not have to
trace the selection function Xj

T ¼ ðxjT; yjT; zjTÞ.
(i*) For an N-body simulation, Xl

R and Xj
T follow the

same random distribution with min/max coordinates
given by the size of the box. In the case where we
only know the galaxy positions and the survey has
masked regions, we can use the random distribution
of the galaxies (if provided) to generate one for Xj

T.
The idea is to count how many randoms are in a cell
of length dL < Rv. Then, we label all the cells that
have a density above the average number per cell
(above 1σ, for instance). Finally, we draw a random
distribution for Xj

T and select only the positions that
correspond to a labeled cell until we reach a total
number of randoms equal to NTrial. Hence, the
position Xj

T will avoid being next or in the masked
regions.

(ii) Compute for each positions Xj
T:

(iia) the number of random trial pairs RTðj; RiÞ in
bin

Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxR − xjTÞ2 þ ðyR − yjTÞ2 þ ðzR − zjTÞ2

q
:

(iib) the number of data (galaxy) trial pairs DTðj; RiÞ
in bin

Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxG − xjTÞ2 þ ðyG − yjTÞ2 þ ðzG − zjTÞ2

q
;

where Ri ≤ Rv.
(iii) Do two nested loops over the coordinate j ¼

½1; NTrial� and the separation pairs Ri ¼ ½0; Rv�.
Within these loops, flag the coordinates Xj

T that
satisfied the criteria on the ratio:

δjT;G ¼ DTðj; RiÞ
RTðj; RiÞ

NRan

NGal
− 1: ð11Þ

The flagged coordinates are the void positions

(iii*) Optional: Do an additional loop over the voids to
exclude overlapping ones (trial positions which are
closer together than 2Rv).

In Fig. 5, we can see the result of the previous steps in a
small subsection of one of the galaxy mock catalogues,
setting Rv ¼ 17.5 Mpc:h−1 and using the density criteria
used in [8]:

δjT;Gðj; R ¼ 1� 1 Mpc:h−1Þ < −0.9; ð12Þ

δjT;Gðj; R ¼ 2� 1 Mpc:h−1Þ < −0.7; ð13Þ

δjT;Gðj; R ¼ Rv þ ΔRÞ > δjT;Gðj; RvÞ; and ð14Þ

δjT;Gðj; R ¼ Rv � 1 Mpc:h−1Þ ≥ 0: ð15Þ

The first two conditions are similar to ΔLNðR <
2 Mpc:h1Þ < −0.9 for low density sample. The third and
fourth [Eqs. (14) and (15)] conditions ensure a ridge for the
voids. In what follows, we refer to these conditions as the
3þ 1 conditions. The choice ofNTrial is arbitrary: the higher
the NTrial, the higher number of voids is expected until it
converges if we require nonoverlapping voids (step iii*). In
Fig. 5, we required nonoverlapping voids, and we find
NVoid ∼ 90 voids using NTrial ∼ 10NGal and NRan ∼ 10NGal
(case a). Neglecting (iii*) and choosing NTrial ∼ 10NGal,
NRan ∼ 10NGal leads to NVoid ∼ 1500 voids (case b).
Using 10 mocks, we employ the Landy-Szalay estimator

[71] to compute the LS cross-correlation function:

FIG. 5. Sample of the voids with the 3þ 1 criteria (blue circles)
for a slice of a mock dz ¼ 20 Mpc:h−1. Galaxies are shown by
the black squares.
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ξvgðRÞ ¼
DvDg

RvRg

NRanNRan2

NGalNVoid
−

×
DvRv

RvRg

NRan

NVoid
−
DgRg

RvRg

NRan2

NVoid
þ 1; ð16Þ

where NVoid corresponds to the number of voids identified
with the required density criteria and NRan2 corresponds to
a random set of values that overlap with the voids. The
number of pairs at a distance R are labeled by Dg and Dv for
the galaxy and void data, respectively, while Rg and Rv

correspond to galaxy and void pairs, respectively, com-
puted from the random distributions.
In Fig. 6, we can see the LS cross-correlation function

for the identified voids, selecting nonoverlapping voids
(case a) and all voids (case b). The error bars are computed
using the standard deviation over the mocks. The main
effect of selecting nonoverlapping voids is to reduce
the amplitude of the correlation on scales R > Rv.
Interestingly, the standard deviation of these mean density
profiles is similar even though there are ∼15 times more
overlapping voids, demonstrating that overlapping voids do
not add more information.

B. Extension to different ridges and void sizes

One of the criteria we may want to vary is the amplitude
of the void ridges. Previously, we required δðR ¼ RvÞ > 0;
however, we can require a higher ridge or no ridge at all. In
Fig. 7, we can see how the þ1 condition changes once we
choose δðR ¼ RvÞ > −0.5 (long dashed curve), δðR ¼
RvÞ > 0.2 (short dashed curve), and δðR ¼ RvÞ > 0 (solid
curve) for the nonoverlapping voids (case a).
More interestingly, we can also vary the void sizes Rv,

keeping the other criteria. Given the hierarchical clustering

of galaxies, we may wonder if our 3þ 1 criteria, applied on
the first two bins and around the ridge, are enough to identify
large voids. Indeed, considering voids as twice the size of the
previous ones, for instance,Rv ∼ 35 Mpc:h−1, is probing the
density on scales R < 2 Mpc:h−1 and on R ∼ 35 Mpc:h−1

enough to identify voids? The answer to this question is
positive as we can see from Fig. 8, where the green curve
corresponds to voids with Rv ¼ 35� 1 Mpc:h−1. This
would not be the case if the galaxies were randomly
clustered, as we show in the next section. The voids in
Fig. 8 have the same 3þ 1 criteria and are nonoverlapping
(case a), only Rv varies (blue, pink, and green curves
correspond to Rv ¼ 17.5� 1 Mpc:h−1, 35� 1 Mpc:h−1

and 8.75� 1 Mpc:h−1, respectively). We note that the ridge
is higher for smaller voids, in agreement with the expectation
that galaxies are more clustered on small scales. However,
one could vary theþ1 criterion to select specific void ridges.
If we want a steeper profile for the large voids, we could
change the second condition δðR ¼ 2� 1Þ < −0.7 to
δðR ¼ 5� 1Þ < −0.7, while if we want a higher amplitude
on the ridge, we can require δðRvÞ > 0.2, for instance.

C. Discussion and limitation of the method

In this section, we have presented an easy way to identify
voids in mock catalogues and in galaxy survey (see [8] for
an application of this void finder to the 6dFGS data). The
method relies on probing 3þ 1 density measurements in
Eq. (11) at small (R ≤ 2 Mpc:h−1) scales and at the void
scale (R ¼ Rv Mpc:h−1). Furthermore, those criteria can be
changed according to the choice of void profiles we target.

FIG. 6. Mean density profile for the voids identified with the
3þ 1 criteria using 10 mocks. FIG. 7. Mean density profile for the voids identified with the

3þ 1 criteria using 10 mocks. The solid curve corresponds to the
þ1 condition δðR ¼ RvÞ > 0 (same as Fig. 6) and the long-
dashed curve corresponds to δðR ¼ RvÞ > −0.5, while the short-
dashed curve corresponds to δðR ¼ RvÞ > 0.2.
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This is a consequence of the cosmic clustering and using a
low density mock catalogue. In fact, probing only 3þ 1
bins in order to obtain smooth void profiles (as shown in
Figs. 7 and 8) would not work if we consider a random set
of positions. Indeed, if we replace the positions of the mock
galaxies by random positions with the same number
density, we will still find positions that satisfy the density
criteria at the 3þ 1 bins we consider. Those spurious voids
would be due to Poisson fluctuations and would have a
density profile as shown in Fig. 9 for different Rv and using

the same 3þ 1 criteria. As we can see, the selected spurious
voids satisfied the required criteria but do not have a void
profile with a smooth shape as presented in Fig. 8. These
spurious voids are also present in other void finder
algorithms, such as ZOBOV. Using a higher density sample
or choosing more restrictive conditions to identify voids,
such as lowering the density at the void center or requiring
conditions over the cumulative density fluctuation ΔLN,
would reduce their fractions.

V. APPLICATION: SYSTEMATIC ERRORS IN THE
MEASUREMENT OF THE GROWTH RATE
FOR VOIDS WITH DIFFERENT RIDGES

Redshift space distortions around cosmic voids can be
used to probe the growth rate f ≡ d ln δmðaÞ

d ln a , with δmðaÞ being
the growing mode of matter density fluctuations and a the
scale factor. The growth rate is a powerful cosmological
probe that is sensitive both to the cosmic expansion and the
gravitational interactions between galaxies. On large scales,
the linear growth rate can be measured by probing the
coherent infall or outflow of galaxies sourced by the
gravitational potential.
In the Gaussian streaming models (GSM) (e.g., [72,73]),

the void-matter correlation function in the local Universe
can be expressed as

ξv−DM ¼
Z

ð1þ ξ1Dv−DMðyÞÞ

× P
�
v − vpðyÞ

�
π −

v=H0

y

��
dv − 1; ð17Þ

where vp is the peculiar velocity of dark matter, π is the

line of sight, y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ ðπ − v=H0Þ2Þ

p
, with σ the

perpendicular direction to the line of sight, and PðvÞdv is
the stochastic velocity distribution of matter within a group
(reproducing the small scale elongation along the line of
sight). In the linear approximation, the peculiar velocity can
be expressed as [74] vpðrÞ ¼ −1=3H0rΔNLðrÞf. The veloc-
ity distribution is given by

PðvÞdv ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσv

p exp

�
−

v2

2σv

�
dv; ð18Þ

where σvðRÞ is the velocity dispersion. In what follows, we
neglect the scale dependence of σv [8,70,73].
To test the effect of the ridge amplitude without

introducing complication due to the linear bias approxi-
mation (when probing the galaxy redshift space distortion),
we consider only the measurement of the growth rate using
the dark matter density mocks we introduced in Sec. IV. We
start by identifying voids in the dark matter mock cata-
logues using the criteria from Eqs. (12)–(15). Then, we
measure the mean density profile and use Eq. (1) to obtain
the integrated density profile in real space that we use in the

FIG. 8. Mean density profile for the voids identified with the
3þ 1 criteria defined in Sec. IVA and for different void sizes.

FIG. 9. Mean density profile for the spurious voids identified
with the 3þ 1 criteria defined in Sec. IVA and for different void
sizes.
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GSM. Finally, we use the same dark matter density mocks
to build the redshift space (RS) mock catalogues. To do so,
we shift the real space dark matter particles r to s using the
flat sky approximation:

s ¼ rþ vpðrÞ
H0

ur; ð19Þ

where ur is the unitary vector along the line the sight (here,
the z-coordinate) and vp ≡ v:ur is the peculiar velocity of
the particles along the z-direction.
We identify voids in the RS catalogues and measure the

averaged correlation function over six mocks σ6 in redshift
space hξv−DMðπ; σÞi6, such that we have 36=6 ¼ 6 mea-
surements of the averaged correlation function and the
standard deviation averaged over the six mocks to compute
the likelihood between the mock means and the GSM,
letting ðfσ8; σvÞ as free parameters in Eq. (18). To find the
best fitting values we run a Markov Chain Monte Carlo
analysis for the six measurements of the averaged corre-
lation function (see [8] for the details). For each submock,
we run three different Monte Carlo chains to ensure the
convergence of the best fitting values. For each mock, the
likelihood is computed from scales ½1.5; 45� Mpc:h−1,
along and across the line of sight in bins of 3 Mpc:h−1.
In Fig. 10 (dark green square), we can see the best fitting

values of the averaged six submocks fσ8 for the criteria
of Eqs. (12)–(14), where we use δjT;Gðj; R ¼ RvÞ ≥ δridge
for Eq. (15) with δridge ¼ 0.1. The error bars show the

mean standard deviation across the six submocks: σ6=
ffiffiffi
6

p
.

The solid black line shows the fiducial cosmology of the
mocks (fσ8 ∼ 0.376). We see that on average the GSM
recover the fiducial cosmology. This is consistent with the
results presented in [8] using galaxy mocks where they
have used galaxy mocks and fit for the linear bias.
In [70], the authors have shown the same consistency of

the growth rate only for certain void sizes. Depending on
the void sizes, the void profiles show different features: the
small voids have a high density on the ridge, while the large
voids have no ridge at all. In this work, we can study the
effect of the ridge at a fixed void radius by keeping the void
criteria of Eqs. (12)–(14) and changing (15). For instance,
changing Eq. (15) to δjT;Gðj; R ¼ RvÞ ≥ δridge, we can test
the effect of the ridge by using δridge ¼ −0.1, 0, 1, 0.2, 0.4,
0.5, 0.6. The results are shown in Fig. 10 by the blue, dark
green, green, orange, pink, and red squares, respectively.
Interestingly, the mean best fitting value for fσ8 (averaged
over the six submocks) is consistent with the fiducial
cosmology, at 1σ only for two cases (δridge ¼ 0.1, 0.5).
However, the scatter around the mean value is larger for
δridge ¼ 0.5. Hence, δridge ¼ 0.1 gives the best constraint:
fσ8 ¼ 0.366� 0.04. The other two extreme cases
(δv ¼ −0.1, 0.6) have a similar uncertainty but they also
show a systematic error in the inferred value of fσ8. This
qualitatively highlights the importance of selecting voids
when probing the growth rate, particularly the amplitude of
the ridge. A more quantitative study would go beyond the
scope of this work (see [75] who also point some
systematic errors with the GSM in the context of redshift
space distortion around voids). Overall, the criteria pre-
sented to identify voids can easily be used to different
galaxy surveys (e.g., [8]) and be tuned to study nonstandard
cosmologies (e.g., enhance departure from GR as we
qualitatively study in Sec. III).

VI. CONCLUSION

In this work, we present a new method to quickly test the
imprint of nonstandard cosmology using MCRW for a
log-normal distribution. We focus on the departure from
GR in the void density profiles for an fðRÞ gravity model.
In order to do so, we introduce flexible criteria to identify
the random walks that mimic void profiles.
We find interesting results: our method can reproduce the

qualitative features of the fðRÞ gravity imprints in the void
profiles found in [13], without using a full N-body
simulation. Furthermore, the departure from GR is sensitive
to the type of voids, highlighting the importance of the
ridge when identifying voids.
In addition, we test how flexible density criteria can be

used to identify voids in real galaxy surveys. It would not
be the case if the matter of our Universe would be randomly
distributed. We also show how the flexibility to identify
voids is important when probing the growth rate using
redshift space distortions around voids.

FIG. 10. Best fitting values for fσ8 as a function of the ridge
amplitude. The different colors correspond to voids with the same
radius but a density fluctuation at the ridge δridge ¼ −0.1, 0.1, 0.2,
0.4, 0.5, 0.6 for blue, dark green, green, orange, pink, and red
squares, respectively.
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Finally, this work can be extended to different approaches;
for instance, it would be interesting to explore further the
correspondence between the initial density criteria that lead
to voids identified in the MCRW and N-body simulations.
We could also test which are the initial density fluctuations
that result in voids, for different cosmologies. This could
potentially be used tomodel the abundance of voids. It would
also be interesting to test how the voids identified with the
criteria used in Sec. IV change in a nonstandard cosmology
where the clustering properties of the matter are different
(e.g., warm dark matter). Our MCRW method can also be
used to study the statistical properties of overdense fluctua-
tions in the cosmic web such as peaks.

The code used to find the voids in this work is available
on demand if the reader is interested in using the method
described in Sec. IV and is not afraid of using Fortran.
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