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Precise measurements of the cosmic microwave background (CMB) power spectrum are in excellent
agreement with the predictions of the standard ΛCDM cosmological model. However, there is some tension
between the value of the Hubble parameter H0 inferred from the CMB and that inferred from observations
of the Universe at lower redshifts, and the unusually small value of the dark-energy density is a puzzling
ingredient of the model. In this paper, we explore a scenario with a new exotic energy density that behaves
like a cosmological constant at early times and then decays quickly at some critical redshift zc. An exotic
energy density like this is motivated by some string-axiverse-inspired scenarios for dark energy. By
increasing the expansion rate at early times, the very precisely determined angular scale of the sound
horizon at decoupling can be preserved with a larger Hubble constant. We find, however, that the Planck
temperature power spectrum tightly constrains the magnitude of the early dark-energy density and thus any
shift in the Hubble constant obtained from the CMB. If the reionization optical depth is required to be
smaller than the Planck 2016 2σ upper bound τ ≲ 0.0774, then early dark energy allows a Hubble-
parameter shift of at most 1.6 km s−1 Mpc−1 (at zc ≃ 1585), too small to fully alleviate the Hubble-
parameter tension. Only if τ is increased by more than 5σ can the CMB Hubble parameter be brought into
agreement with that from local measurements. In the process, we derive strong constraints to the
contribution of early dark energy at the time of recombination—it can never exceed ∼2% of the radiation/
matter density for 10≲ zc ≲ 105.
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I. INTRODUCTION

Current measurements of temperature and polarization
power spectra of the cosmic microwave background
(CMB) are in excellent agreement with the standard
ΛCDM cosmological model [1]. Still, there is some tension
between the valueH0 ¼ 66.93� 0.62 km s−1Mpc−1 of the
Hubble parameter obtained from the CMB [2] and
those obtained from local measurements, H0 ¼ 73.24�
1.74 kms−1Mpc−1 (3.4σ tension) as inferred from super-
novae and more [3], andH0 ¼ 72.8� 2.4 km s−1 Mpc−1 as
measured by H0LiCOW [4]. There is also unease among
some theorists about the incredibly small value, relative to
the Planck density, of the dark-energy density required to
account for the observations [5]. There are an almost
endless number of explanations for dark energy, but this
work will be inspired by a recently proposed string-
axiverse [6–9] scenario for dark energy [10].
The purpose of this paper is to investigate whether the

Hubble-parameter tension might be explained by the pres-
ence of an exotic dark-energy density in the earlyUniverse of
the type that might arise in some of these axiverse scenarios.
In this framework, dark energy is due to an axion-like field
that is active today [9,10]. However, there can be a large
number of similar light fields that can be dynamically

important at some point in the earlier history of the
Universe and then decay away in influence.
Here we surmise that one of these axion-like fields

becomes dynamical around the time of recombination.
More precisely, it behaves, as wewill delineate more clearly
below, like a cosmological constant at early times. However,
at some critical redshift zc, which is taken to be on order the
redshift of recombination, the energy density then decays
more rapidly than that of radiation. The cosmological-
constant–like behavior at early times increases the prere-
combination expansion rate and thus reduces the sound
horizon at recombination. The resulting reduction in the
angle subtended by the CMB acoustic peaks can then be
compensated by an increase in the Hubble constant.
Although such an exotic early dark energy is capable of

increasing the value of the Hubble parameter today, we find
that a value of τ greater than its Planck-2016 2σ upper bound
is required to fully resolve the Hubble tension. We also find
that the exotic energy (EE) is constrained to contribute at
most ∼2% of the total energy density of a ΛCDM universe
around the time of recombination, and may only contribute
≳5% if it decays earlier than a redshift of ∼105.
The idea of an additional early-Universe contribution to

the energy density has been considered before [11–13].
Although similar in spirit, those models differ from what
we consider here. The conclusion reached in our work that
EE contributes no more than ∼2% of the critical density
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around the time of recombination is consistent with the
conclusions of earlier papers on other early-dark-energy
models in which upper limits of ∼4–5% were inferred. The
increased early-Universe expansion rate considered here
also resembles in spirit the explanation suggested in
Refs. [3,13,14] for the Hubble-parameter tension in terms
of an increased number of relativistic degrees of freedom.
This paper is organized as follows. In Sec. II, we describe

the exotic energy model, its evolution and its effect on the
temperature (TT) power spectrum. In Sec. III, we describe
the Fisher-matrix analysis we employ to constrain the
model (Sec. III A) and the data we use for this analysis
(Sec. III B). In Sec. IV we obtain constraints on the EE and
determine how it changes the Hubble parameter. We do so
for the optical depth at reionization τ fixed at its current
best-fit (Sec. IVA), 2σ (Sec. IV B) and 5σ (Sec. IV C)
values. We conclude in Sec. V.

II. MODEL

The form of the exotic energy (EE) we consider is
motivated by the axionlike fields discussed in Ref. [10].
There it was argued that an axionlike field driving accel-
erated expansion today might be one of ∼100 such fields in
the string axiverse, each of which has some small chance to
drive accelerated expansion at some point in the history of
the Universe. The scenario suggests that there may be other
axionlike fields that may have behaved earlier in the history
of the Universe like a cosmological constant but then
decayed away in influence.
Here we will use a phenomenological model inspired by

Ref. [10]. The energy density ρee of the EE takes the form,

ρeeðaÞ
ρc

¼ Ωeeð1þ a6cÞ
a6 þ a6c

; ð1Þ

where ρc is the critical density today, Ωee is the fractional
energy density of the EE today and ac ¼ 1=ð1þ zcÞ is the
critical value of the scale factor at which the EE shifts from
early-time behavior to late-time behavior.
The pressure the EE exerts is

peeðaÞ ¼ ρee
a6 − a6c
a6 þ a6c

: ð2Þ

It can be seen that at redshifts z ≫ zc, we have a6 ≪ a6c and
therefore pee ≃ −ρee. That is, the EE behaves like a
cosmological constant at early times, similar to a slowly
rolling axion field. On the other hand, at redshifts z ≪ zc,
a6 ≫ a6c and pee ≃ ρee, emulating a free scalar field, with
the hardest possible equation of state allowed by causality.
Figure 1 shows how the energy density of the EE evolves

over cosmic history. Matter, radiation and the cosmological
constant are also shown for comparison. Changing Ωee
shifts the curve of the EE up or down. Changing zc changes
the redshift at which the EE switches from behaving like a

cosmological constant to decaying away faster than
radiation.
We assume that the EE only changes the homogeneous

background evolution of the universe. We do not have a
physical model of how perturbations change as a result of
adding this phenomenological model to ΛCDM. In this
paper, we simply add the energy density and pressure of the
EE to the Friedmann equation in the background sector of
the public code Cosmic Linear Anisotropy Solving System
(CLASS) [15]. We note that inclusion of scalar-field pertur-
bations can, in some cases, considerably alter the pertur-
bation spectrum [16]. We will address the effects of
perturbations in realistic, physical models for EE in
subsequent work.
On adding such an EE with nonzero Ωee to ΛCDM, the

predicted TT angular power spectrum will shift. It can be
shifted back to better fit the data by shifting the other
parameters of the ΛCDM model. We show how EEs of
various zc and Ωee shift the TT spectrum in Fig. 2.
For our analysis, we choose the critical redshift range

10 ≤ zc ≤ 106. We found that critical redshifts smaller than
approximately 500 shift the angular size θ� of the sound
horizon at recombination to larger values for Ωee > 0. If θ�
were increased in this way, then the current expansion rate
H0 would have to be decreased to shift θ� back to its
measured value. EEs with zc ≲ 500 therefore move the
Hubble parameter further away from its local value,
exacerbating the discrepancy between the Planck and local
values. We include some such critical redshifts in our
analysis, limiting the zc range to 10 on the lower end.

FIG. 1. Shown here are the evolutions of the energy densities of
exotic energy (EE; dashed lines) for several critical redshifts zc,
matter (solid blue), radiation (solid green), and the cosmological
constant (solid red). For each zc we choose the exotic-energy
density Ωee to be the 3σ upper limit we derive from the Planck
temperature power spectrum assuming the reionization optical
depth τ is fixed to the current Planck best-fit value. The energy
densities are all shown, relative to the critical density ρc today, as
a function of the scale factor a.
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On the higher end, we limit our analysis to zc ≤ 106, as
EEs with higher critical redshifts have little effect on CMB
power spectra.

III. METHOD

Our aim here is to determine the largest value of the
fractional exotic energy density Ωee consistent with Planck
measurements of the temperature power spectrum,1 after

marginalizing over the other cosmological parameters that
are fit to the data. (While doing so, we also investigate
whether a nonzero Ωee is preferred by the data, but find a
null result.) Given the speculative nature of the model, here
we do a rough initial analysis, following that outlined in
Refs. [17–20], in which the log-likelihood is approximated
by a quadratic dependence on the parameters. The loss of
precision of this approach, relative to the full Monte Carlo
analysis, is made up for by clarity and simplicity. The upper
bounds we derive, though, should be understood as
approximations rather than precise results.
Given the complexities involved in the current Planck

polarization data, we work here with only the temperature
power spectrum. Since the primary impact of the polari-
zation data (especially that at low multipole moments l) is
to fix the reionization optical depth τ [21], we remove τ
from our Fisher analysis and instead fix it to different
values that fall within (and, for illustration, also outside) the
current Planck error limits. As we will see, the best-fit
cosmological parameters we infer from the temperature
power spectrum are in rough agreement (within 2σ) of
those reported by the complete Planck analysis (including
polarization). We believe, therefore, that the cosmological-
parameter shifts we infer below from the introduction of
exotic energy reflect reasonably well those that would be
obtained from a complete analysis.

A. Fisher matrices

In order to constrain Ωee for various zc’s, we do a Fisher-
matrix analysis using the Planck TT angular power spec-
trum DTT;obs

l in a manner similar to that outlined in
Refs. [17–20]. For the analysis, we vary H0 ¼
100h km s−1 Mpc−1, the fractional density ωb ¼ Ωbh2 of
baryons today, the fractional density ωc ¼ Ωch2 of cold
dark matter today, the amplitude lnð1010AsÞ of the primor-
dial power spectrum, and the scalar spectral index ns. We
refer henceforth to these 5 parameters in our Fisher analysis
as the “cosmological parameter” and then introduce the
current exotic-energy density Ωee, for a given zc, as a sixth
parameter in the Fisher analysis.
We parametrize the residues RðlÞ of the observed and

best-fit spectra as

RðlÞ ¼ DTT;obs
l −DTT;best-fit

l ¼
XNp

i¼1

δAigTTi ðlÞ: ð3Þ

Here Np is the total number of parameters Ai, and

giðlÞ ¼
∂Dl

∂Ai
; ð4Þ

where we have dropped the spectrum identifier TT.
The partial derivatives giðlÞ of the spectrum with respect
to the cosmological parameters were determined by shifting

FIG. 2. The shifts caused in the TT power spectrum due to the
addition of EE are shown for various zc. Here, the value of the
reionization optical is fixed to the current Planck best-fit value
τ ¼ 0.0596. The other cosmological parameters are fixed at the
values, shown in Table I, that provide the best fit to the TT power
spectrum. Clearly the critical redshift of the EE is important in
determining how theEE shifts the TT spectrum. In the upper figure,
thevalue ofΩee chosen for each zc is the3σ upper limit of its best fit.
In the lower figure,Ωee is chosen such that itmoves θ� by 1%.Ωee is
approximately two orders of magnitude greater for the lower plot.

1Observations obtained with Planck (http://www.esa.int/
Planck), an ESA science mission with instruments and contri-
butions directly funded by ESA Member States, NASA, and
Canada.
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the parameters by 1% about their best-fit values and
running the CLASS code to create the TT power spectrum
for each shift. Therefore, ΔAi ¼ 0.01Ai and the derivatives
become:

giðlÞ ¼
DlðAi þ ΔAiÞ −DlðAi − ΔAiÞ

2ΔAi
: ð5Þ

The choice of changing all parameters by 1% is only
somewhat arbitrary. We assume that this change is small
enough that we are still in the linear regime, which validates
the Fisher analysis and use of finite differences to numeri-
cally differentiate. Moreover, we assume a 1% shift is large
enough to ensure that the partial derivatives do not suffer
significant numerical errors. These partial derivatives are
shown in Fig. 3.
For the EE, the partials were determined as

gΩee
ðlÞ ¼ DlðΔΩeeÞ −DlðΩee ¼ 0Þ

ΔΩee
; ð6Þ

where ΔΩee is the value of Ωee that moved the angular size
θ� of the sound horizon at the redshift of the CMB by 1%.
This value was found by recursively running CLASS for
each zc until a ΔΩee was found that moved θ� by 1% in
either direction. The partial derivatives of Dbest-fit

l with
respect to Ωee for various zc’s are shown in Fig. 4.
The Fisher matrix Fij is then given by

Fij ¼ hgi; gji; ð7Þ
where h; i denotes the inner product

hgi; gji≡
X

l

giðlÞgjðlÞ
ðσDl

Þ2 ; ð8Þ

and σDl
is the error on Dobs

l . Hence, the analysis is limited
by the error on the observed Dl’s.
The inverse Fisher matrix is then [22]

ðF−1Þij ¼ rijσiσj; ð9Þ
where rij is the correlation coefficient between the param-
eters Ai and Aj, and σi and σj are their respective errors.

B. Planck data

In their 2016 paper, Planck reports best-fit values for the
TTþ TEþ EEþ SIMLow (SimLow is based on low lEE
data) spectra combined [2]. We begin by using these values
for the cosmological parameters and for τ; we label these as
Planck-16. However, as we only use the Planck TT power
spectrum for our analysis, the best-fit values for just the TT
spectrum will be shifted from Planck-16 by some small
amount. Therefore, we first do a Fisher analysis using just
the TT spectrum and the cosmological parameters in order
to find this new best fit.
The minimum-variance unbiased estimators are deter-

mined as

δAi ¼
X

j

ðF−1ÞijhRðlÞ; gjðlÞi; ð10Þ

where δAi quantifies the shift, relative to Planck-16, in the
parameter Ai that will fit just the TT data better. We then
check that the shifts in the parameters are all small
compared with their 1σ errors and furthermore that the
shift in

χ2 ¼
X

l

R2ðlÞ
ðσDl

Þ2 ¼ hRðlÞ; RðlÞi ð11Þ

is insignificant. We thus check that

FIG. 3. Shown here are the partial derivatives of the TT
spectrum with respect to the cosmological parameters, H0 (dark
blue), ωb (green), ωc (red), lnð1010AsÞ (light blue) and ns (pink).
These were derived at the best-fit values obtained by setting
τ ¼ τPl, shown in Table I.

FIG. 4. The partial derivatives of the TT spectrum with respect
to Ωee are shown here for various values of zc.
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σi
∂χ2
∂Ai

¼ −2σihRðlÞ; giðlÞi ≪ 1: ð12Þ

Doing so, we begin our investigation of the effects of exotic
energy with a baseline ΛCDMmodel that provides the best
fit to the TT data that we use and that is consistent, within
errors, with the best-fit CMB values obtained from the full
Planck-16 analysis. The values adopted for the cosmologi-
cal parametersþ τ for our subsequent analysis are shown in
Table I.
As errors on higher Dl’s are correlated [23], we use

binned data for l ≥ 30. The bin size is 30 for all but the
last bin which spans 2490 ≤ l ≤ 2508. The correlation
between errors on Dl’s from different bins is then dimin-
ished. In all, we use 2 ≤ l ≤ 2508 for the analysis.

IV. CONSTRAINTS ON THE EE

Adding the EE will shift all parameters by some amount,
which can be expressed in terms of χ2 and the errors on the
parameters as

δAi ¼ −
1

2

X

j

rijσiσj
∂χ2
∂Aj

: ð13Þ

The quantity σjð∂χ2=∂AjÞ is small at the best-fit value
for the cosmological parameters and the correlation coef-
ficients are such that jrijj ≤ 1. This makes the shift in any
parameter δAi due to any of the cosmological parameters
much smaller than the error σi on Ai. Therefore, all
significant shifts are due to the EE,

δAi ≃ −
1

2
ðF−1Þi;Ωee

∂χ2
∂Ωee

: ð14Þ

For the EE, this shift looks like

δΩee ≃ −
1

2
ðF−1ÞΩee;Ωee

∂χ2
∂Ωee

: ð15Þ

Therefore, the shift in parameter Ai induced by a change
ΔΩee from its baseline value Ωee ¼ 0 is

TABLE I. The values of the cosmological parameters and reionization optical depth τ used as the best-fit values
with no exotic energy (EE) are shown alongside the Planck values. We also show the reduced χ2 for the TT power
spectrum for these values.

Planck-16 τ ¼ τPl τ ¼ τPl þ 2στ;Pl τ ¼ τPl þ 5στ;Pl

100h 66.93� 0.62 67.99749 68.28782 68.77709
ωb 0.02218� 0.00015 0.02240 0.02244 0.02251
ωc 0.1205� 0.0014 0.11970 0.11906 0.11799
τ 0.0596� 0.0089 0.0596 0.0774 0.1041
ln1010As 3.056� 0.018 3.05576 3.08972 3.14024
ns 0.9619� 0.0045 0.96453 0.96599 0.96862
χ2red 0.9271 0.7652 0.7471 0.7322

FIG. 5. The best-fit values and errors on Ωee are shown here.
The optical depth τ was fixed at the best-fit Planck-16 value to
obtain these constraints.

FIG. 6. Shown here are the best-fit values of the Hubble
parameter H0 and its 1σ upper limit obtained by including
EEs in the fit to the Planck temperature power spectrum. We also
show the central value obtained from local measurements in [3] as
well as the values that are 1σ and 2σ lower than the best fit.
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δAiðzcÞ≃ ðF−1Þi;Ωee

ðF−1ÞΩee;Ωee

δΩee; ð16Þ

where δAi’s are now a function of the critical redshift zc.
Below we do the following for several values of τ: (1) We

first determine the values of the five other cosmological
parameters that provide the best fit to the TT data we use;
(2) we then add Ωee as a sixth parameter to the Fisher
analysis and determine (a) the best-fit value of Ωee; (b) the
1σ error to Ωee; and (c) the shifts induced by Ωee to the
cosmological parameters and record specifically the shift in
H0. We provide results as a function of 10≲ zc ≲ 106.
(3) We look in each case to see whether the introduction of
Ωee improves the fit to the TT data by a statistically
significant amount. In no case do we find evidence that the
TT data prefers a nonzero value of Ωee and thus derive in
each case only upper limits to Ωee.

A. Fixing τ = τPl
We begin by considering the current Planck central value

τ ¼ 0.0596. The constraints to Ωee are then shown in Fig. 5
as a function of the critical redshift zc. Also shown there is
the 1σ error to Ωee. The best-fit value of Ωee is (unphysi-
cally) negative for some zc, but for no value of zc does the
preferred value depart from the null result by a statistically
significant amount. This remains true for all our constraints
on Ωee for various values of τ.
For τ ¼ 0.0596, the largest allowable EE-induced

increase in the best-fit value of the Hubble parameter is
0.22 km s−1 Mpc−1, at a critical redshift zc ≃ 10000, as
seen in Fig. 6. This is a small fraction of the Planck 1σ error
(roughly 0.6 km s−1 Mpc−1) to H0, so does not do much in
the way of relieving the CMB/local-measurement tension.
The introduction of Ωee to the Fisher analysis increases the

FIG. 7. The best-fit values and errors on Ωee are shown for
various critical redshifts of the EE. We fix τ at τPl þ 2στ;Pl.

FIG. 8. The best-fit and best-fit þ1σ values for H0 (in
km s−1 Mpc−1) are shown along with its local measurement at
various σ.

FIG. 9. The best-fit values and errors on Ωee for various zc are
shown for τ fixed at τPl þ 5στ;Pl.

FIG. 10. The best-fit vales of H0 (in km s−1 Mpc−1) are shown
with their 1σ errors. The local measurement is also shown at
various σ.
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error to H0, to roughly 1.2 km s−1 Mpc−1, and so may go
some way toward alleviating the tension.

B. Fixing τ = τPl þ 2στ;Pl
Next we fix τ at its Planck-16 2σ upper limit. The TT

spectrum prefers a larger value of τ [1]. Therefore, the
reduced χ2 is slightly smaller in this case, and smaller still
when we fix τ at its 5σ Planck-16 value, as seen from
Table I.
The constraints on Ωee are shown in Fig. 7. We find that

the errors on Ωee are essentially the same between our
analyses at various values of τ. The blue line in Fig. 7 hence

offers a visual reference to comparing constraints onΩee for
various τ.
The change brought about in the Hubble parameter for

τ ¼ 0.0774 is shown in Fig. 8. The best-fit value of H0

increases at most by 0.36 km s−1Mpc−1 (zc ¼ 1259), its 1σ
value increasing at most by 1.6 km s−1 Mpc−1 (zc ¼ 1585).
The total increase in the Hubble parameter for τ ¼ 0.0774
is twofold. First, the EE is capable of inducing a greater
positive shift in H0 as compared to τ ¼ τPl. Second, for
higher τ, a larger best-fit value of H0 without any EE is
preferred, as can be seen from Table I. Consequently,
although the Hubble tension is not resolved, H0 is pushed
closer to its local measurement.

FIG. 11. We plot the 1σ likelihood contours for the Hubble parameter against Ωee for various critical redshifts, covering the range of
critical redshifts that we probe. We fix τ ¼ τPl þ 5στ;Pl for these. In each plot, the Planck-16 values for both parameters are marked by the
horizontal and vertical dashed black lines. The dashed blue lines mark the value for the best-fit Hubble parameter for just the TT spectrum
without EEs. Negative values of Ωee are unphysical but allowed in our analysis. Estimators of Ωee are consistent with zero within ∼2σ.
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C. Fixing τ = τPl þ 5στ;Pl
The results from fixing τ at its Planck-16 and 2σ values

hint that perhaps a higher value of τ will allow the EE to
fully resolve the Hubble tension. Therefore, in this section
we explore what happens if τ for some reason departs by 5σ
from its best-fit value. The best-fit values adopted in this
section are shown in Table I.
The constraints we obtain on Ωee are shown in Fig. 9.

The change in the Hubble parameter is shown in Fig. 10.
Although fixing τ at 5σ does not entirely eliminate the

discrepancy, H0 is increased by a greater amount as
compared to Fig. 8. For some zc, it is increased to within
the 2σloc range of the locally measured Hubble parameter
H0;loc. The greatest increase in the best-fit value of H0

is 0.88 km s−1 Mpc−1 (zc ¼ 1585), in its 1σ value is
2.22 km s−1 Mpc−1 (zc ¼ 1779).
We plot 1σ likelihood ellipses for H0 and Ωee in Fig. 11.

For local extrema in the shifts in H0, a higher correlation
between H0 and Ωee can be seen in the ellipses. While for
critical redshifts that leave H0 unchanged, there is little
correlation between H0 and Ωee. The Planck-16 values are
always within ∼2σ ellipses and all the Ωee estimators are
consistent with the null result.

V. CONCLUSIONS

We consider a simple exotic energy density that provides
a small perturbation to standard ΛCDM. The EE behaves
like a cosmological constant until some critical redshift zc,
then decays away as a−6. We investigate whether such an
EE can alleviate the Hubble tension and find constraints on

the maximum fractional energy density Ωee today, that this
field can have by doing a Fisher analysis on the Planck TT
power spectrum.
In our analysis, we find that the value of τ places a strong

constraint on the preferred value ofΩee as well as the extent
to which it can mitigate the Hubble tension. A larger value
of τ leads, with EE, to a larger best-fit value of H0.
In order for the best-fit value of H0 for a ΛCMDþ EE

universe to coincide with the local measurement, a value of
τ greater than its 5σ Planck-16 value is required. (Such a
large value of τ is consistent with that obtained by the
WMAP 9-year results, τWMAP ¼ 0.088� 0.014 [24].) If we
fix τ at its Planck-16 best-fit and 2σ values, the tension is
not altogether resolved, however, H0 is shifted up closer to
its local value. This is largely due to the error on H0

increasing on the addition of the EE. Increasing τ and
allowing for such an EE is indeed capable of alleviating
the Hubble tension.
The Hubble tension between local measurements and the

Planck data has been studied before by Refs. [3,14,25–31].
Altering the effective number of neutrino species Neff [3]
and allowing the equation of state parameter of dark energy
w to vary with time [31] have been investigated as solutions
to the Hubble tension (although variable w may introduce
more tensions, eg. with baryon acoustic oscillation mea-
surements [31]). The correlation between H0 and Neff as
well as that betweenH0 and variable w is stronger than that
betweenH0 and theEEand theymaybe better candidates for
diminishing the Hubble tension.
Furthermore, Refs. [3,26,32] suggest unresolved sys-

tematics in Planck data may be the cause of the tension.

FIG. 12. We plot two best fits (blue and black) for the Planck temperature angular power spectrum for τ ¼ τPl þ 2στ;Pl, and the Planck
data (red). In black is the best fit without any EE. In blue we plot the best fit including an EE with zc ¼ 1259. This is the EE that
increases the best-fit Hubble parameter the most. In the lower panel, we subtractDbest-fit

l from all three spectra and plot the residues. The
bottom left and bottom right panels are scaled differently such that the residues may be more easily distinguishable.
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In particular, Ref. [32] suggests that Planck multipoles
l ≥ 1000 may suffer systematic errors. Excluding l ≥ 1000
data not only significantly reduces the Hubble tension, but
would also allow more room for early dark energy. However,
Ref. [33] finds inconsistencies between high and low
multipoles in Planck data statistically insignificant.
Adding the EE to ΛCDM, the cosmological parameters

shift to accommodate the EE. The reduced χ2 for the TT
spectrum at their new best fit is not significantly changed.
All changes in χ2red are approximately an order smaller than
the error on it. In Fig. 12, we plot the best-fit spectra
without any EE and that with the EE which increases the
best-fit value of H0 the most, for τ ¼ 0.0774. From the
residues in the lower panel shown therein, it can be seen
that the addition of the EE leaves the TT spectrum, and
hence the reduced χ2s, largely unaltered. Therefore, current
data does not favor with statistical significance the addition
of the EE to ΛCDM.
This EE was motivated from axionlike fields that may

explain dark energy [10]. The exotic energy considered
here contributes its most to the total energy density of the
Universe close to its critical redshift, forming its greatest
fraction of the total energy density of the Universe. In
Fig. 13 we plot this fraction η ¼ ρeeðzcÞ=ρΛCDMðzcÞ of the
total energy density of a pure ΛCDM universe that early
exotic dark energy can form, as a function of redshift,
according to our constraints on Ωee. For extremely high
redshifts, the TT spectrum allows dark energy to have a
larger energy density than that in a ΛCDM universe as long
as it quickly redshifts away. This can also be seen from
Fig. 1, where the EE with the greatest critical redshift has a
higher energy density than radiation just before it decays.
Closer to recombination, the greatest contribution of early
dark energy is constraint to be ≲2% of the total energy
density in a ΛCDM universe. This result is consistent with
constraints on other early dark energy models obtained
through Monte Carlo analyses [11–13] that found upper
limits of 4%-5%.
The constraints presented here on Ωee can be improved

by more computationally heavy approaches such as includ-
ing polarization data in the analysis or by doing a full
Markov-Chain-Monte-Carlo analysis on the 6 dimensional

parameter space for each zc considered. However, our
simpler approach allows us to constrain an early dark
energy model on a level consistent with a full MCMC
analysis, and show that it is capable of increasing the value
of the Hubble parameter. We conclude that adding an exotic
energy, such as the one considered here, to ΛCDM may
form a part of the solution to the Hubble tension if a higher
optical depth to reionization is allowed. If the Hubble
tension persists with a 1% measurement of the local value
of H0, then it may be useful to revisit the exotic-energy
model considered here.

ACKNOWLEDGMENTS

We thank Julian Muñoz and Daniel Pfeffer for helpful
discussions, and Adam Riess for useful comments on an
earlier draft. This work was supported by NSF Grant
No. 0244990, NASA NNX15AB18G, the John
Templeton Foundation, and the Simons Foundation.

[1] P. A. R. Ade et al. (Planck), Astron. Astrophys. 571, A16
(2014).

[2] N. Aghanim et al. (Planck), arXiv:1605.02985.
[3] A. G. Riess et al., Astrophys. J. 826, 56 (2016).
[4] V. Bonvin et al., arXiv:1607.01790.
[5] R. R. Caldwell and M. Kamionkowski, Annu. Rev. Nucl.

Part. Sci. 59, 397 (2009).

[6] P. Svrcek and E. Witten, J. High Energy Phys. 06 (2006)
051.

[7] P. Svrcek, arXiv:hep-th/0607086.
[8] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,

and J. March-Russell, Phys. Rev. D 81, 123530
(2010).

[9] D. J. E. Marsh, Phys. Rev. D 83, 123526 (2011).

FIG. 13. The exotic energy density at its critical redshift ρeeðzcÞ
is plotted as a fraction of the total energy density ρΛCMDðzcÞ of a
pure ΛCDM universe for a range of redshifts. This fraction is
within an order-unity factor of the greatest contribution of the EE
to the energy density of the Universe. This plot was made for
τ ¼ τPl and allowing Ωee ¼ σΩee

.

DARK ENERGY AT EARLY TIMES, THE HUBBLE … PHYSICAL REVIEW D 94, 103523 (2016)

103523-9

http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1051/0004-6361/201321591
http://arXiv.org/abs/1605.02985
http://dx.doi.org/10.3847/0004-637X/826/1/56
http://arXiv.org/abs/1607.01790
http://dx.doi.org/10.1146/annurev-nucl-010709-151330
http://dx.doi.org/10.1146/annurev-nucl-010709-151330
http://dx.doi.org/10.1088/1126-6708/2006/06/051
http://dx.doi.org/10.1088/1126-6708/2006/06/051
http://arXiv.org/abs/hep-th/0607086
http://dx.doi.org/10.1103/PhysRevD.81.123530
http://dx.doi.org/10.1103/PhysRevD.81.123530
http://dx.doi.org/10.1103/PhysRevD.83.123526


[10] M. Kamionkowski, J. Pradler, and D. G. E. Walker, Phys.
Rev. Lett. 113, 251302 (2014).

[11] M. Doran and G. Robbers, J. Cosmol. Astropart. Phys. 06
(2006) 026.

[12] V. Pettorino, L. Amendola, and C. Wetterich, Phys. Rev. D
87, 083009 (2013).

[13] E. Calabrese, D. Huterer, E. V. Linder, A. Melchiorri, and L.
Pagano, Phys. Rev. D 83, 123504 (2011).

[14] J. L. Bernal, L. Verde, and A. G. Riess, J. Cosmol. Astro-
part. Phys. 10 (2016) 019.

[15] D. Blas, J. Lesgourgues, and T. Tram, J. Cosmol. Astropart.
Phys. 07 (2011) 034.

[16] R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev.
Lett. 80, 1582 (1998).

[17] G. Jungman, M. Kamionkowski, A. Kosowsky, and D. N.
Spergel, Phys. Rev. D 54, 1332 (1996).

[18] M. Tegmark, A. Taylor, and A. Heavens, Astrophys. J. 480,
22 (1997).

[19] S. Galli, K. Benabed, F. Bouchet, J.-F. Cardoso, F. Elsner, E.
Hivon, A. Mangilli, S. Prunet, and B. Wandelt, Phys. Rev. D
90, 063504 (2014).

[20] J. B. Muñoz, D. Grin, L. Dai, M. Kamionkowski, and E. D.
Kovetz, Phys. Rev. D 93, 043008 (2016).

[21] M. Zaldarriaga, Phys. Rev. D 55, 1822 (1997).
[22] D. Coe, arXiv:0906.4123.
[23] P. A. R. Ade et al. (Planck), Astron. Astrophys. 571, A15

(2014).
[24] G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. Ser. 208,

19 (2013).
[25] E. D. Valentino, A. Melchiorri, and J. Silk, Phys. Lett. B

761, 242 (2016).
[26] S. Grandis, D. Rapetti, A. Saro, J. J. Mohr, and J. P. Dietrich,

arXiv:1604.06463.
[27] M. Archidiacono, S. Gariazzo, C. Giunti, S. Hannestad, R.

Hansen, M. Laveder, and T. Tram, J. Cosmol. Astropart.
Phys. 08 (2016) 067.

[28] C. Umilt, M. Ballardini, F. Finelli, and D. Paoletti,
J. Cosmol. Astropart. Phys. 08 (2015) 017.

[29] Z. Huang, Phys. Rev. D 93, 043538 (2016).
[30] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A14

(2016).
[31] S. Joudaki et al., arXiv:1610.04606.
[32] G. E. Addison, Y. Huang, D. J. Watts, C. L. Bennett, M.

Halpern, G. Hinshaw, and J. L. Weiland, Astrophys. J. 818,
132 (2016).

[33] N. Aghanim et al. (Planck), arXiv:1608.02487.

TANVI KARWAL and MARC KAMIONKOWSKI PHYSICAL REVIEW D 94, 103523 (2016)

103523-10

http://dx.doi.org/10.1103/PhysRevLett.113.251302
http://dx.doi.org/10.1103/PhysRevLett.113.251302
http://dx.doi.org/10.1088/1475-7516/2006/06/026
http://dx.doi.org/10.1088/1475-7516/2006/06/026
http://dx.doi.org/10.1103/PhysRevD.87.083009
http://dx.doi.org/10.1103/PhysRevD.87.083009
http://dx.doi.org/10.1103/PhysRevD.83.123504
http://dx.doi.org/10.1088/1475-7516/2016/10/019
http://dx.doi.org/10.1088/1475-7516/2016/10/019
http://dx.doi.org/10.1088/1475-7516/2011/07/034
http://dx.doi.org/10.1088/1475-7516/2011/07/034
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://dx.doi.org/10.1103/PhysRevD.54.1332
http://dx.doi.org/10.1086/303939
http://dx.doi.org/10.1086/303939
http://dx.doi.org/10.1103/PhysRevD.90.063504
http://dx.doi.org/10.1103/PhysRevD.90.063504
http://dx.doi.org/10.1103/PhysRevD.93.043008
http://dx.doi.org/10.1103/PhysRevD.55.1822
http://arXiv.org/abs/0906.4123
http://dx.doi.org/10.1051/0004-6361/201321573
http://dx.doi.org/10.1051/0004-6361/201321573
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://dx.doi.org/10.1016/j.physletb.2016.08.043
http://dx.doi.org/10.1016/j.physletb.2016.08.043
http://arXiv.org/abs/1604.06463
http://dx.doi.org/10.1088/1475-7516/2016/08/067
http://dx.doi.org/10.1088/1475-7516/2016/08/067
http://dx.doi.org/10.1088/1475-7516/2015/08/017
http://dx.doi.org/10.1103/PhysRevD.93.043538
http://dx.doi.org/10.1051/0004-6361/201525814
http://dx.doi.org/10.1051/0004-6361/201525814
http://arXiv.org/abs/1610.04606
http://dx.doi.org/10.3847/0004-637X/818/2/132
http://dx.doi.org/10.3847/0004-637X/818/2/132
http://arXiv.org/abs/1608.02487

