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We propose a mechanism of producing a new type of primordial perturbations that collapse to primordial
black holes, whose mass can be as large as necessary for them to grow to the supermassive black holes
observed at high redshifts, without contradicting Cosmic Background Explorer/Far Infrared Absolute
Spectrophotometer (COBE/FIRAS) upper limits on cosmic microwave background (CMB) spectral
distortions. In our model, the observable Universe consists of two kinds of many small patches which
experienced different expansion histories during inflation. Primordial perturbations large enough to form
primordial black holes are realized on patches that experienced more Hubble expansion than the others. By
making these patches the minor component, the rarity of supermassive black holes can be explained. On the
other hand, most regions of the Universe experienced the standard history and, hence, only have standard
almost-scale-invariant adiabatic perturbations confirmed by observations of CMB or large-scale structures
of the Universe. Thus, our mechanism can evade the constraint from the nondetection of the CMB
distortion set by the COBE/FIRAS measurement. Our model predicts the existence of supermassive black
holes even at redshifts much higher than those observed. Hence, our model can be tested by future
observations peeking into the higher-redshift Universe.
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I. INTRODUCTION

Observations have revealed the existence of supermas-
sive black holes (SMBHs) of about 109M⊙ at high red-
shifts z ¼ 6–7. So far, about 40 quasars, which are thought
to be SMBHs blazing by accreting the surrounding gas,
have been discovered [1–13]. In particular, a quasar
indicating a SMBH as massive as 1.2 × 1010 M⊙ was
recently discovered [14]. Until now, there has been no
established astrophysical explanation of why such massive
black holes (BHs) already existed at such high redshifts
when the age of the Universe was less than a billion years
(see, e.g., [15–19] for reviews of SMBHs in the high-
redshift universe).
In light of this situation, it is intriguing to consider a

possibility that the observed SMBHs are primordial black
holes (PBHs) that formed in the very early Universe
when the Universe was still dominated by radiation [20].
If some region has a curvature perturbation of the order of
unity, this region undergoes gravitational collapse shortly
after the size of the region becomes comparable to the
Hubble horizon [21,22]. Typically, the mass of the resultant
black hole is roughly equal to the horizon mass at
formation. Since the formation time of PBHs can be related
to the comoving wave number k of the perturbations
collapsing to PBHs, their mass can also be related to it

as MPBH ∼ 2 × 1013M⊙ðk=Mpc−1Þ−2. At first sight, the
desired amount of PBHs of the desired mass, i.e., as large as
necessary to grow to the order of 109M⊙ by z ∼ 6; 7, seems
to be realized just by a moderate probability of primordial
perturbations of order unity at the corresponding (comov-
ing) scale. Such perturbations can indeed be realized in
some inflation models [23–40], though the sufficient
formation of such black holes does not happen in the
standard cosmology in which primordial perturbations are
almost scale invariant and Gaussian [41]. The approximate
scale invariance and Gaussianity of the primordial pertur-
bation are observationally confirmed at large scales,
namely, the scales relevant to observations of the cosmic
microwave background (CMB) (for recent Planck results,
see [42,43]) or large-scale structures of the Universe. Yet
these properties could be largely violated on much shorter
scales, including the scales corresponding to the PBHs
relevant to the seeds of SMBHs considered in this paper.
There is, however, a problem in explaining SMBHs by

PBHs: simply enhancing primordial perturbations at suit-
able scales to yield a sufficient amount of SMBHs, as stated
above, is already excluded from the observations of the
energy spectrum of CMB photons [41,44–46]. To see this,
let us assume Gaussianity of the primordial perturbation
(non-Gaussian cases will be discussed later). Then, the
requirement that produced PBHs are sufficient enough to
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explain the abundance of the observed SMBHs fixes the
typical amplitude, or the root-mean-square amplitude, of
the perturbations toOð10−2Þ [41], which is greater than the
upper limit set by the nondetection of the distortion of the
CMB spectrum by COBE [47]. This consideration severely
restricts the validity of the scenario of PBHs whose initial
mass exceeds ∼104M⊙–105M⊙ as the origin of the
SMBHs, since these masses correspond to the shortest
scales above which the dissipation of fluctuations causes
CMB distortion. In [46] this issue was revisited, based on
[45], using the following delta-function-type spectrum of
the curvature perturbation:

PζðkÞ ¼ 2π2Aζk−2δðk − k�Þ; ð1Þ

and let us rewrite k� ¼ k̂�Mpc−1. Figure 1 shows a plot of
CMB μ distortions resulting from this spike with Aζ fixed to
0.02, a value which is, roughly, necessary to produce a
sufficient amount of PBHs assuming that primordial
curvature perturbations are Gaussian. This figure is a
slightly modified version of Fig. 1 of [46], and it shows
that any spike with Aζ ≳ 0.02 in a range 1≲ k̂� ≲ 3 × 104

produces μ somewhat larger than the Cosmic Background
Explorer/Far Infrared Absolute Spectrophotometer (COBE/
FIRAS) upper bound. Therefore, PBHs formed from a
spike in the above range of k̂� are virtually excluded. This
range of k̂� can be translated into the PBH mass range as
2 × 104 M⊙ ≲MPBH ≲ 2 × 1013 M⊙; that is, PBHs in this
mass range are basically ruled out, at least for Gaussian
perturbations.1

The root of this constraint lies in the fact that requiring
the formation of a sufficient amount of PBHs inevitably
leads to relatively large inhomogeneities everywhere in the
universe. Even though PBH formation is extremely rare, a
Gaussian probability density function (PDF) implies that
perturbations everywhere else are so large that their
diffusion damping distorts the energy spectrum of CMB
photons from a perfect Planck distribution (CMB distor-
tion) at a level excluded by COBE. Admittedly, there is a
possibility that PBHs whose initial mass is ∼104 M⊙ –
105 M⊙ grow2 to explain SMBHs of 109 M⊙–1010 M⊙ at

high redshifts, as is argued in [38], but whether PBHs can
grow to these masses is uncertain. One of the benefits of
resorting to PBHs is that one can create sufficiently large
black holes in the early Universe due to collapse of
primordial perturbations, but this benefit seems to have
been partially lost due to the above CMB μ-distortion
constraint. In addition, future experiments may reveal even
more massive SMBHs at higher redshifts.
In this light, we propose a novel inflationary scenario in

which density perturbations are generated yielding PBHs
whose initial mass is larger than 104 M⊙–105 M⊙ as the
origin of SMBHs while evading the constraint from CMB
distortion mentioned above. This can be accomplished by
realizing a tiny fraction of patches where curvature per-
turbations become large during inflation, collapsing to
PBHs later during the radiation-dominated era, while
keeping the spectrum of curvature perturbations almost
scale invariant outside those patches, as depicted in Fig. 2.
Then, fluctuations whose wavelengths correspond to the
masses of these PBHs, as the seeds of the SMBHs, are
sufficiently small and, hence, the CMB distortion constraint
can be evaded. We will discuss a mechanism of how such a
situation can be realized in the framework of inflation, and
then provide two toy models. We focus on the most massive
SMBHs (109 M⊙–1010 M⊙) observed at high redshifts, for
which no compelling astrophysical explanations exist at the
moment. In the last section, we discuss consequences of our
scenario and how it can be tested and distinguished from
potential astrophysical explanations.
As already mentioned, simply preparing Gaussian per-

turbations whose dispersion is sufficiently large to generate
PBHs as the seeds of SMBHs contradicts with constraints
on CMB distortion. One may first try to evade this by a
monotonically decreasing PDF whose tail is considerably
enhanced in comparison to that of a Gaussian PDF with the
same dispersion. In Appendix A, this possibility is briefly

FIG. 1. CMB μ distortions generated from the delta-function-
type power spectrum, with Aζ ¼ 0.02. The horizontal line
corresponds to the 2σ upper limit provided by COBE/FIRAS.
This figure is a slightly modified version of Fig. 1 of [46].

1This point was also noted in [38], but they concluded PBHs
with MPBH > 105 M⊙ are severely constrained, and this upper
bound of allowed masses is slightly larger than the one we obtain
here (MPBH ≃ 2 × 104 M⊙). This is because, in [38], the upper
bound was obtained by assuming only the perturbation modes
which dissipate during the μ era, when dissipation of perturba-
tions results in μ distortions efficiently, are severely constrained.
Nevertheless, strictly speaking, since the transition to the μ era is
gradual, the modes which dissipate before the onset of the μ era
also cause μ distortions and, hence, are constrained, though
relatively weakly. This effect is taken into account in [46], based
on [45].

2Smaller PBHs are also potentially excluded by compact dark
matter halos [46] and acoustic reheating [48,49].
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explored by calculating CMB spectral distortions for a class
of phenomenological models of PDFs. It turns out that it
also works (if such a PDF can indeed be realized in some
inflationary model, which we do not discuss in this
paper), but the PDF has to be hugely deviated from a
Gaussian PDF.
In the next section we discuss inflationary models, in

which PBHs can be produced whose mass and abundance
are adjustable, in order to explain the SMBHs observed at
high redshifts, while evading CMB distortion constraints,
and then we summarize and conclude in Sec. III.

II. SUPERMASSIVE BLACK HOLES FORMED
BY THE COLLAPSE OF INFLATIONARY

PERTURBATIONS

A. Basic idea

Our observable Universe consists of many small patches
which become causally disconnected during inflation.
For instance, if we consider a patch of comoving wave
number k, it becomes decoupled from the other patches
of the same size at a time when k ¼ aH. After this time,
each patch evolves independently as if they themselves
were an individual Friedmann-Lemaître-Robertson-Walker
(FLRW) universe. If the inflation is caused by a single
slowly rolling scalar field, only adiabatic perturbations are
generated. In this case, each patch follows the same
trajectory in field space and the difference between the
patches is just the difference in the moment when the field
value in each takes a particular value. On the other hand, if
inflation is caused by multiple fields, isocurvature pertur-
bations are also generated besides the adiabatic mode.

Because of the presence of the former, each patch follows a
different trajectory in field space in general, and in the
following we assume such a situation.
Now, suppose that there are essentially only two different

trajectories that each patch can follow (Fig. 3, right). Let us
label each trajectory by A and B, respectively (Fig. 3,
right). In general, the patches corresponding to A and the
patches corresponding to B, after being causally discon-
nected, expand by a different amount, namely, NA ≠ NB
[NAðNBÞ is the number of e-folds in the patches A(B), see
the left panel of Fig. 3]. According to the δN formalism
[50–55], the difference in the number of e-folds is equal
to the curvature perturbation ζ on constant density
hypersurfaces.
It is known that if the region of interest has ζ exceeding

ζc ≃ 1, such a region undergoes gravitational collapse to
form a black hole when it reenters the Hubble horizon [22].
The threshold value ζc depends on the perturbation profile;
there is a lot of literature in which the determination of ζc as
well as its dependence on the perturbation profile have been
investigated. For instance, Shibata and Sasaki [56] found
that ζc depends on the initial curvature profile and it varies
at least in the range (0.7,1.2) (see also [57–64]). However,
precise knowledge of ζc is not crucial for our discussions
here and so we simply take ζc ¼ 1.
Let us assume that most of the patches followed the

trajectory A, that the trajectory B is followed by only a tiny
number of patches, and that NB − NA > ζc ¼ 1. Then, the
patches corresponding to B distribute sparsely, with each
surrounded by patches corresponding to A, and each patch
B has a positive curvature perturbation NB − NA. In other
words, large curvature perturbations of ζ > ζc are

FIG. 2. An illustration of situations discussed in this paper. The black regions correspond to those where curvature perturbations
become large during inflation and collapse to PBHs later during the radiation-dominated era. Normally, if a sufficient amount of PBHs is
realized to explain the SMBHs, fluctuations whose wavelengths correspond to the mass of those PBHs are relatively large, as depicted in
the left panel, and, hence, they dissipate to produce CMB distortions larger than observational upper limits set by COBE. In this paper, in
order to explain SMBHs by PBHs without contradicting this CMB distortion constraint, we discuss phenomenological inflation models
that realize a sufficient probability of PBH formation to explain the SMBHs, while keeping fluctuations with corresponding wavelengths
sufficiently small outside these patches, as depicted in the right panel, thereby evading the CMB distortion constraint.
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generated only in the patches B and no substantial
curvature perturbation is generated by the present mecha-
nism in the patches A occupying most part of the universe.
Because of our assumption that NB − NA > ζc, each patch
B turns into a BH upon horizon reentry. Noting that the
mass of the resultant BH is directly related to the comoving
size of the patches B, the timewhen the trajectories A and B
start to deviate determines the BH mass. In this paper we
consider two inflation models that can realize these
situations with appropriately chosen model parameters.
Let us denote by β the probability that a region whose

size is the same as that of patches B collapses to a BH,
namely,

β ¼ number of patches B
number of patches A

: ð2Þ

The rareness of the patches B means β ≪ 1, which is
required by observations as we will show below.
Observations of SMBHs at high redshifts suggest that

one SMBH of MBH ∼ 1010 M⊙ exists roughly in every
comoving volume V of 1 Gpc3 [1]. Taking these numbers
as fiducial values, we find the present energy density of
these SMBHs normalized by the present critical density ρc,
denoted by ΩBH;0, is given by

ΩBH;0 ¼
MBH

ρcV
≈ 7 × 10−11

�
MBH

1010 M⊙

��
V

Gpc3

�
−1
: ð3Þ

In order to relate β with ΩBH;0, let us note that the mass of a
BH that formed at a redshift z is given by

MBH ≃ 1

2GHðzÞ ; ð4Þ

where HðzÞ is the Hubble parameter at z. From this
equation, we find MBH ¼ 6 × 1017 M⊙ if it is formed at
the matter-radiation equality z ¼ zeq. Hence BHs with

MBH ≲ 1010 M⊙, which we are interested in, are
formed in the radiation-dominated epoch. Using HðzÞ ¼
H0ð1þ zÞ2 ffiffiffiffiffiffiffiffi

Ωr;0

p
, valid for z > zeq, we have

1þ z ¼ 2 × 107
�

MBH

1010 M⊙

�
−1=2

: ð5Þ

Then, using a relation ΩBH;0 ¼ βΩr;0ð1þ zÞ, we have

β ¼ 4 × 10−14
�

MBH

1010 M⊙

�
3=2

�
V

Gpc3

�
−1
: ð6Þ

Thus, observations require β ≪ 1. Note that the initial mass
of PBHs does not have to be ∼1010 M⊙ to explain the
observed SMBHs at high redshifts, since the mass of PBHs
should grow to some extent; this should mainly occur after
the matter-radiation equality, with the growth during
radiation domination known to be quite limited. The
accurate description of the growth of mass on a cosmo-
logical time scale would be a formidable task, and is
beyond the scope of this work. However, we can adjust the
typical mass of PBHs formed in our models simply by
changing ϕBH introduced later, so this issue does not affect
the feasibility of our model. Also, it would be more natural
to expect that only a fraction of SMBHs are bright enough
to be observed at high redshifts, and so the total number
density of SMBHs, including those which are too dim to be
observed, would be larger than ∼1 Gpc−3 mentioned
above. However, the uncertainty of β stemming from these
two issues does not affect the feasibility of our model, since
β turns out to only slightly affect χ̄, which is estimated later
in (33).

B. Simple model 1: A hill on top of the ϕ2 potential

In this subsection, we provide a two-field inflation model
in which PBHs as the observed SMBHs are produced by

FIG. 3. Left: The separate universe picture in which patches A and B evolve independently as if each were a FLRW universe. Right:
Trajectories in field space corresponding to patches A and B, respectively.
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the mechanism we explained in the previous subsection.
The Lagrangian density we consider is given by

L ¼ −
1

2
ð∂ϕÞ2 − 1

2
ð∂χÞ2 − VðϕÞð1þ θðχÞvðϕÞÞ; ð7Þ

where θðχÞ is the unit step function.3 Inflation is caused by
the potential VðϕÞ for χ < 0 and VðϕÞð1þ vðϕÞÞ for
χ > 0. To be definite, we adopt the following functions
for VðϕÞ and vðϕÞ:

VðϕÞ ¼ 1

2
m2ϕ2; vðϕÞ ¼ α exp

�
−
ðϕ − ϕ0Þ2

2μ2

�
: ð8Þ

Here α is a positive dimensionless parameter. Then, the
field ϕ in the positive-χ region rolls down the potential
which is slightly higher than that in the negative-χ region.
Thus, trajectories in the positive-χ region experience a
greater number of e-folds than those in the negative-χ
region. In terms of the definition introduced previously,
trajectories with negative/positive χ correspond to patches
A and B, respectively (see Fig. 4).
How can the above inflation model realize the mecha-

nism described in the previous subsection? To see this, let
us first evaluate the initial condition of each patch of the
comoving size k−1BH corresponding to the mass of SMBHs
when each patch becomes causally disconnected. We
denote by ϕobs and χ̄ the values of the scalar fields when
the current observable universe crosses the Hubble horizon
during inflation. At this moment, all the patches of the
comoving size corresponding to the SMBHs are deep inside
the Hubble horizon and take the same values ðϕobs; χ̄Þ. We
require χ̄ < 0 so that the most regions of the universe follow
trajectories with negative χ afterwards. By the time that kBH
becomes equal to aH, regions of comoving size larger than
k−1BH but smaller than k−1obs (the comoving scale of the current
observable universe) have undergone classical slow-roll
motion associated with stochastic motion originating from
redshifting of the short-wavelength vacuum fluctuations
[65]. Thus, at the moment when kBH ¼ aH, each patch of
the comoving size k−1BH has randomly different field values
centered at the values determined by the classical slow-roll
equations of motion. The distribution of the χ field value
around the center, in this case χ̄, is approximately Gaussian
and its variance is given by [66]

hðχ − χ̄Þ2i≃ H2

4π2
ðNobs − NBHÞ; ð9Þ

where Nobs − NBH is the number of e-folds between the
time when the observable universe crossed the Hubble

horizon and the one when the size of k−1BH crossed the
Hubble horizon. Approximating that H remains almost
constant during that period, we have Nobs − NBH ≃
lnðkBH=kobsÞ.
After the time kBH ¼ aH, each patch of the comoving

size k−1BH becomes causally disconnected and the fields on
each patch evolve independently from the others. Adopting
the viewpoint of the separate universe picture [54], we
make an assumption that the fields on each patch behave as
spatially uniform fields which obey classical equations of
motion for the homogeneous fields in the FLRW spacetime,
whose expansion is also determined by the field values in
the same patch. Each patch follows different trajectories in
field space due to different field values at the time
kBH ¼ aH. However, because of the special form of the
potential we consider, only whether χ is positive or negative
matters in terms of the number of e-folds. In this sense,
there are essentially only two trajectories in field space
(trajectories with positive χ and negative χ) and the model
can effectively realize the mechanism described previously.
The condition that the patches with positive χ (the B
patches in the language introduced previously) have cur-
vature perturbations greater than ζc imposes constraints
among the model parameters. In addition, in order for the
above inflation model to successfully explain the origin of

FIG. 4. Illustrations of trajectories of mini universes A and B in
field space for the potential given by Eq. (8). Suppose there exists
a hill at ϕ ¼ ϕ0 for 0 < χ, and all trajectories are assumed to start
at ðϕ; χÞ≃ ðϕobs; χ̄Þ, denoted by the star in this figure. The
trajectories are zigzag for ϕ > ϕBH reflecting quantum fluc-
tuation of χ, while they are smooth for ϕ < ϕBH reflecting the
classical nature of the time evolution. If the absolute magnitude of
χ̄ð< 0Þ is sufficiently large, only an extremely rare fraction of the
patches of ∼kBH enter into the region 0 < χ, and subsequently
reach the hill. The amount of expansion is different between these
two types of trajectories, and so patches experiencing the hill are
where the curvature perturbation is locally large. If the hill is
sufficiently wide and high, the amplitude of this curvature
perturbation becomes of order unity, leading to the formation
of PBHs. The mass and abundance of PBHs can be roughly
controlled by the position of the hill and χ̄, in order to explain
SMBHs observed at high redshifts.

3Strictly speaking the unit step function is unrealistic, but,
qualitatively, the results of this paper are not affected as long as
the transition at χ ¼ 0 is sufficiently sharp.
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SMBHs, the model also needs to achieve the observatio-
nally suggested values of β and MBH, as discussed later.
We describe how to calculate curvature perturbations

on scale k−1BH, working in a box of comoving size
k−1obs ∼OðGpcÞ. Let us first discuss the amplitude of the
curvature perturbation on kBH, when this mode exits the
horizon at tBH. As discussed shortly, the effects of the hill
are chosen to be negligible up to ϕBH. First, the amplitude
of field fluctuations δϕ and δχ on flat slices are given by
(see, e.g., [67])

Pδϕ;δχðtBH; kBHÞ ¼
�
HkBH

2π

�
2

; ð10Þ

where HkBH is the Hubble parameter when the mode kBH
exits the horizon. We assume that the energy density of χ is
always negligible, and so the curvature perturbation ζ on
uniform-density slices at tBH is solely determined by δϕ
and is given by ζ ¼ −Hδϕ= _ϕ. Hence, the power spectrum
of the curvature perturbation at tBH is

PζðtBH; kBHÞ ¼
1

4π2

�
H2

_ϕ

�
2

¼ 1

24π2M4
Pl

V
ϵ
: ð11Þ

Without the presence of the hill (α ¼ 0), fluctuations on
kBH just correspond to the time difference on the essentially
same trajectory, noting that in this case χ does not affect
cosmic expansion and, hence, plays no role, and the
curvature perturbation is conserved after kBH exits the
horizon. Also, perturbations in this case are Gaussian and
almost scale invariant. These perturbations are determined
by VðϕÞ, and we choose it so that Pζ ∼Oð10−9Þ, to match
observations on large scales. In this case, the probability of
PBH formation is vanishingly small. Next, let us consider
the effects of the hill (α ≠ 0). After k−1BH exits the horizon,
each region of k−1BH can be regarded as evolving as an
independent FLRW universe [54]. The metric on uniform
density slices may be written as ds2 ¼ −dt2 þ ~a2ðt; xÞd2x,
where ~aðt; xÞ ¼ aðtÞ exp½ζðt; xÞ� is the local scale factor,
aðtÞ is the global scale factor, and ζðt; xÞ is the curvature
perturbation. Here and hereafter, the position-dependent
quantities are understood to be those smoothed over the
comoving scale of k−1BH, not over the Hubble radius at each
moment. Let us consider two patches A and B of k−1BH
around points xA and xB, and assume that in most of the
regions inside the patch A(B) χ continues to be negative
(positive) for t > tBH. Note that, even if χðtBH; xBÞ > 0, this
does not ensure the positivity of χ in most of the regions
inside the patch B for t > tBH. To see this, first recall that,
after tBH, the field values ϕ and χ smoothed over the
Hubble radius at each point keep randomly fluctuating by
∼H over the time scale ∼H−1. This means that, naively, if
χðtBH; xBÞ > 0 but χðtBH; xBÞ ≪ H, roughly half of the
region in the patch B would end up having χ < 0; more
precisely, due to the sharp wall at χ ¼ 0, which hinders

crossing from χ < 0 to χ > 0 for t > tBH, actually more
than half of the region in the patch B would end up having
χ < 0. Hence, we need χðtBH; xBÞ > Oð1ÞH to ensure
the positivity of χ in most of the regions in the patch B
for t > tBH. The curvature perturbation at ðtBH; xA;BÞ,
ζðtBH; xA;BÞ, is of order Oð10−5Þ, the same as the case
without the hill as explained above since the effects of the
hill are negligible up to tBH. When the hill is present, the
inflaton trajectories for t > tBH qualitatively differ, depend-
ing on χ; in this case, the curvature perturbation of the patch
B grows for tBH < t < tend, where tend corresponds to the
end of the inflation, and this growth is entirely determined
by the difference in the overall expansion histories of the
patches A and B for t > tBH. This is because, as long as χ
stays negative (positive) in most regions in the patch A (B),
quantum fluctuations of χ on the Hubble radius arising after
tBH essentially do not play any role, in the sense that it no
longer affects expansion. Also, quantum fluctuations of ϕ
on the Hubble radius arising after tBH keep being converted
to curvature perturbations on k > kBH, but this does not
affect the curvature perturbation on k−1BH either. To calculate
the growth of the curvature perturbation for t > tBH due to
the difference in the expansions, let us define the local
Hubble parameter Hðt; xÞ by

Hðt; xÞ≡ _~aðt; xÞ
~aðt; xÞ ¼

_aðtÞ
aðtÞ þ

_ζðt; xÞ: ð12Þ

Let us temporarily adopt the slow-roll approximations to
illustrate how to evaluate curvature perturbations, though
we use exact equations later. During inflation, the equation
of motion for ϕ in the patch A is given by

3H _ϕþ V 0ðϕÞ≃ 0; H2 ≃ 1

3M2
Pl

VðϕÞ; ð13Þ

where a prime denotes differentiation with respect to ϕ and
MPl is the reduced Planck mass, and for the patch B

3H _ϕþ ½VðϕÞð1þ vðϕÞÞ�0 ≃ 0;

H2 ≃ 1

3M2
Pl

VðϕÞð1þ vðϕÞÞ: ð14Þ

The numbers of e-folds of the patches A and B from tBH to
tend are given by

NA ¼ 1

M2
Pl

Z
ϕBH

ϕend

dϕ
VðϕÞ
V 0ðϕÞ ;

NB ¼ 1

M2
Pl

Z
ϕBH

ϕend

dϕ
VðϕÞð1þ vðϕÞÞ
½VðϕÞð1þ vðϕÞÞ�0 : ð15Þ

PBH formation is determined by the difference in the
curvature perturbation at the end of inflation, since there-
after it is conserved, and from (12) it is expressed as
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ζðtend; xBÞ − ζðtend; xAÞ ¼ ζðtBH; xBÞ − ζðtBH; xAÞ þ ΔN;

ΔN ≡ NB − NA: ð16Þ

As mentioned above, ζðtBH; xA;BÞ ∼Oð10−5Þ, while we are
interested in situations where ΔN ∼ 1 to produce PBHs,
and so we can safely neglect ζðtBH; xA;BÞ and focus on ΔN
in the following.
Let us calculate the relationship between ϕBH and MBH.

The mass of PBHsMBH is roughly estimated by the horizon
mass at the moment when the comoving scale kBH reenters
the horizon, from which one finds

MBH ∼ 2.2 × 1013 M⊙
�

kBH
1 Mpc−1

�
−2
: ð17Þ

This can be inverted as follows:

kBH ∼ 47

�
MBH

1010 M⊙

�
−1=2

Mpc−1: ð18Þ

Noting the following relation

ln

�
kBH
kobs

�
≃ Nobs − NBH ¼

Z
tBH

tobs

dtH ≃ 1

M2
Pl

Z
ϕobs

ϕBH

dϕ
V
V 0

¼ 1

4M2
Pl

ðϕ2
obs − ϕ2

BHÞ ð19Þ

and setting kobs ¼ 1 Gpc−1, we obtain

ϕBH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
obs − 4M2

Pl log

�
kBH
kobs

�s

≃ 13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.01 log

�
MBH

1010 M⊙

�s
; ð20Þ

where we have set Nobs ¼ 55ðϕobs ≃ 14.8MPlÞ. Note that
the dependence of ϕBH on MBH is very weak; for instance,
if we set MBH ¼ 1 M⊙, ϕBH ≃ 12MPl. Therefore, though
we assume MBH ¼ 1010 M⊙ and ϕBH ¼ 13MPl in the
following, our analysis is valid for other masses as well.
For instance, one may choose the typical initial mass of
PBHs to be smaller than 1010 M⊙, taking into account
possible mass growth of PBHs.
For each μ, which represents the width of the hill, ϕ0 has

to be sufficiently smaller than ϕBH, so that the sharp wall of
the potential at χ ¼ 0 does not prevent stochastic motion of
χ from crossing the wall when kBH ¼ aH. In order to
ensure the efficient crossing of the wall by stochastic
motion, the kinetic energy of χ field, ∼H4, has to be larger
than the potential gap at ϕ ¼ ϕBH; otherwise, the wall
blocks the stochastic motion effectively and χ cannot enter
the positive region. The height of the potential wall at the
peak ϕ ¼ ϕ0 is given by αVðϕ0Þ, which is much larger than

H4 in our present model for a range of α in which Oð1Þ
difference of the number of e-folds arises between A and B.
Thus, ϕBH must be located sufficiently far from the peak
where the height of the wall is smaller than H4. This
requirement determines the position of the hill as follows.
We introduce R by

R≡ H4

VðϕBHÞvðϕBHÞ
≃ m2ϕ2

BH

18αM4
Pl expf−ðϕBH − ϕ0Þ2=2μ2g

ð21Þ

and rewrite the exponential factor here by defining ν as
ϕBH ¼ ϕ0 þ νμ; then, we can solve for ν as

ν ¼
�
2 ln

�
18αRM4

Pl

m2ϕ2
BH

��
1=2

≃ 6.4

�
1þ 0.05

�
ln

�
α

0.06

�
þ lnR

��
1=2

; ð22Þ

where we have set ϕBH ¼ 13MPl and m ¼ 3 × 10−6MPl.
Hence in the following we fix ν ¼ 6.4. Here we assume the
crossing to the positive χ region happens only at
ϕ ¼ ϕBH ¼ 13MPl, leading to the monochromatic mass
function of PBHs at MBH ≃ 1010 M⊙. Strictly speaking,
however, the masses would be distributed around the mass
determined by ϕBH, and this mass spectrum is determined
by the following two effects. First, the crossing to the
positive χ region can in principle also occur when ϕ > ϕBH,
though the probability of these cases is exponentially
suppressed, since the probability of reaching χ ¼ 0
becomes rapidly rarer as ϕ is increased. This effect
determines the tail of the mass function at larger masses.
Second, the crossing can occur even for ϕ < ϕBH, though
the probability would be increasingly suppressed as ϕ
becomes closer to ϕ0 due to the gap of the potential at
χ ¼ 0; to quantify this effect, the probability of χ jumping
over the gap by stochastic motion has to be calculated. This
issue is explored in Appendix B.
If the hill, described by vðϕÞ, is sufficiently high, the

slow-roll conditions are violated near the hill located
around ϕ0 < ϕBH. Hence, we use the following equations
without the slow-roll approximations, to solve for the time
evolution of ϕ for ϕ < ϕBH:

ϕ̈þ 3H _ϕþ ½VðϕÞð1þ vðϕÞÞ�0 ¼ 0; ð23Þ

H2 ¼ 1

3M2
Pl

�
_ϕ2

2
þ VðϕÞð1þ vðϕÞÞ

�
: ð24Þ

It is convenient to use the e-folds N as the time variable
defined as evolving backward in time; then, because
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N ¼
Z

tend

t
Hdt →

∂
∂t ¼ −H

∂
∂N ; ð25Þ

the above can be rewritten as

ϕNN þ
�
HNðϕ;ϕN;ϕNNÞ

Hðϕ;ϕNÞ
− 3

�
ϕN

þ 1

H2
½VðϕÞð1þ vðϕÞÞ�0 ¼ 0; ð26Þ

H2ðϕ;ϕNÞ ¼
VðϕÞ½1þ vðϕÞ�=3M2

Pl

1 − ϕN
2=6M2

Pl

; ð27Þ

where the subscripts N denote differentiation with respect
to N.
We use these exact equations only for ϕ < ϕBH, where

slow-roll conditions may be violated. The initial conditions
to solve the above exact equations are provided at ϕBH
using the slow-roll approximations, always valid for
ϕ > ϕBH, as follows. For the case of the ϕ2 potential,
we have

N ¼ 1

4M2
Pl

ðϕ2 − ϕ2
endÞ ð28Þ

and its differentiation with respect to N

1 ¼ þϕϕN=2M2
Pl; ð29Þ

so the initial conditions to solve the above equation of
motion are

N ¼ NBH ¼ 1

4M2
Pl

ðϕ2
BH − ϕ2

endÞ; ϕ ¼ ϕBH;

ϕN ¼ ϕBH;N ¼ 2M2
Pl

ϕBH
: ð30Þ

With these initial conditions, we solve the equation of
motion up to ϕend ¼

ffiffiffi
2

p
MPl, corresponding to ϵ ¼ 1 in the

slow-roll approximation, for different parameters describ-
ing the hill α and μ. The moment Nend;B when ϕend is
reached depends on the shape of the hill at 0 < χ, so
Nend;B ¼ Nend;Bðα; μÞ. Then the curvature perturbation is
ΔNðα; μÞ ¼ Nend;A − Nend;Bðα; μÞ.4 A contour plot of ΔN
is shown in Fig. 5. For the same μ, if α is larger, the hill is
higher, and therefore ΔN is larger. For the same α, if μ is
smaller, ϕ0 is larger, and the height of the hill is higher, and

hence ΔN is larger. If the hill is sufficiently high, ϕN
becomes smaller than H=2π near the hill, which means
quantum motion is more important than classical motion,
and, hence, eternal inflation occurs in the patches B. The
parameter region leading to eternal inflation is also shown
in Fig. 5.
To conclude, there is a parameter space where the

curvature perturbation exceeds unity and, hence, PBHs
can be formed; the resulting SMBHs have masses
around 1010 M⊙.
Finally, let us determine the initial value χ̄ of χ which

leads to an observationally suggested value of β. As already
mentioned, χ on the patches corresponding to kBH when
ϕ ¼ ϕBH is randomly distributed around the central value χ̄
with its variance given by Eq. (9). As a result, noting (2), β
is given by

β≃
Z

∞

0

dχ
1ffiffiffiffiffiffi
2π

p
σχ

exp

�
−
ðχ − χ̄Þ2
2σ2χ

�

≃ −
σχffiffiffiffiffiffi
2π

p
χ̄
exp

�
−

χ̄2

2σ2χ

�
; ð31Þ

where we have used the fact that the integral picks up only
the high-σ tail of the Gaussian distribution (recall that
χ̄ < 0). As explained previously, our calculation of the
curvature perturbation at the B patches is valid for
χðtBH; xBÞ > Oð1ÞH, so the lower bound of the integration
here should be strictly speaking taken as Oð1ÞH, but this
only affects χ̄, evaluated below, only slightly. Solving the
above equation for χ̄ yields

χ̄ ¼ −σχ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W0

�
1

2πβ2

�s
; ð32Þ

where W0 is the Lambert function. Using the expansion of
W0ðxÞ for large x given by W0ðxÞ ¼ ln x − ln ln xþOð1Þ,
we have

FIG. 5. A contour plot of ΔN caused by a hill on top of the ϕ2

potential. The shaded region corresponds to parameters leading to
eternal inflation at the B patches.

4ϕobs is chosen so that the e-folds in the A patches at ϕ ¼
ϕendð¼

ffiffiffi
2

p
MPl for the case of ϕ2 potential), Nend;A, is zero in the

slow-roll approximation, but Nend;A deviates from zero with the
numerical calculation without the slow-roll approximation, and
the curvature perturbation should be defined as the deviation from
that value.
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χ̄ ≃ −
H
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nobs − NBH

p
½− lnð2πβ2Þ − lnð− lnð2πβ2ÞÞ�1=2:

ð33Þ

That is, the observed abundance of SMBHs can be realized
if χ̄ takes this value.

1. Simple model 2: A hill on top of the
R2-inflation-type potential

The ϕ2 potential considered in the previous subsection is
somewhat disfavored by the Planck data [68]. However, our
mechanism can work for other types of potentials, includ-
ing those favored by the Planck data. To see this, in this
subsection we consider a hill on top of the following
potential:

VðϕÞ ¼ 3M2M2
Pl

4

�
1 − exp

�
−

ffiffiffi
2

3

r
ϕ

MPl

��2

: ð34Þ

This can be obtained by a conformal transformation (see,
e.g., [69]) of R2 inflation [70], which is so far favored by
the Planck data. The parameter M is fixed by the COBE-
WMAP normalization of the amplitude of the curvature
perturbations as follows (see, e.g., [71]):

M ≃ 10−5MPl
4π

ffiffiffiffiffi
30

p

Nobs

�
Pðk�Þ

2 × 10−9

�
1=2

≃ 1.25 × 10−5MPl

�
Nobs

55

�
−1
�

Pðk�Þ
2 × 10−9

�
1=2

: ð35Þ

If we define ϕf by ϵ ¼ 1, then ϕf ¼
ffiffi
3
2

q
logð1þ 2ffiffi

3
p ÞMPl ≃

0.94MPl. Nobs for this model is given by

Nobs ¼
3

4

�
exp

� ffiffiffi
2

3

r
ϕobs

MPl

�
− exp

� ffiffiffi
2

3

r
ϕf

MPl

��

−
ffiffiffi
6

p

4MPl
ðϕobs − ϕfÞ: ð36Þ

This can be approximately solved for ϕobs (neglecting the
last two terms above) as

ϕobs ≃
ffiffiffi
3

2

r
MPl log

�
1

3
ð4Nobs þ 2

ffiffiffi
3

p
þ 3Þ

�
: ð37Þ

We set Nobs ¼ 55 and then ϕobs ≃ 5.3MPl. Then ϕBH can
be determined as follows:

Nobs − NBH ≃ ln

�
kBH
kobs

�
≃ 11

�
1 − 0.1log10

�
MBH

1010 M⊙

��

≃ 3

4

�
exp

� ffiffiffi
2

3

r
ϕobs

MPl

�
− exp

� ffiffiffi
2

3

r
ϕBH

MPl

��
;

ð38Þ

from which

ϕBH ≃ 5.0MPl

×

�
1þ 0.56log10

�
1þ 0.025log10

�
MBH

1010 M⊙

���
:

ð39Þ

The ratio corresponding to (21) is

R≡ H4

VðϕBHÞvðϕBHÞ

≃ M2

12αM2
Pl

exp

�ðϕBH −ϕ0Þ2
2μ2

��
1− exp

�
−

ffiffiffi
2

3

r
ϕBH

MPl

��2

:

ð40Þ

Once more, let us rewrite exp½ðϕBH − ϕ0Þ2=2μ2� ¼
expðν2=2Þ and solve for ν to obtain

ν ¼
�
2 ln

�
12αRM2

Pl

M2

�
1 − exp

�
−

ffiffiffi
2

3

r
ϕBH

MPl

��−2��1=2

≃ 6.7

�
1þ 0.045

�
ln

�
α

0.06

�
þ lnR

��
1=2

: ð41Þ

The initial conditions to be provided at ϕBH are

N ¼ NBH ¼ 3

4M2
Pl

�
exp

� ffiffiffi
2

3

r
ϕBH

�
− exp

� ffiffiffi
2

3

r
ϕend

��
;

ð42Þ

FIG. 6. A contour plot of ΔN caused by a hill on top of the R2-
inflation-type potential. The shaded region corresponds to
parameters leading to eternal inflation at the B patches.
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ϕ ¼ ϕBH; ϕN ¼ ϕBH;N ¼ 2
ffiffiffi
2

p
M2

Plffiffiffi
3

p exp

�
−

ffiffiffi
2

3

r
ϕBH

�
:

ð43Þ

A contour plot of ΔN in this case is shown in Fig. 6.

III. SUMMARY AND DISCUSSION

We have proposed a new mechanism in which primordial
perturbations large enough to produce PBHs are generated
while most regions of the universe are kept sufficiently
homogeneous so that constraints from CMB distortions can
be evaded. In particular, our model can explain SMBHs
observed at high redshifts by PBHs. The basic idea is that
each patch of the comoving size corresponding to the
comoving Hubble horizon at the time of the PBH formation,
after being causally disconnected, followed one of two
different inflationary histories causing a different amount of
expansion. A history followed by a tiny number of patches
has more expansion than the other history followed by most
patches. If this difference in expansion, in terms of the
number of e-folds, exceeds unity, the minor patches, having
experiencedmore expansion than themajor ones, collapse to
form PBHs when they reenter the Hubble horizon. Since
perturbations are sufficiently tiny elsewhere, nothing special
happens that might lead to phenomena contradicting with
observations. In particular, no significant CMB distortion is
generated in our mechanism and the upper bound set by
COBE/FIRAS measurements can be satisfied.
In our scenario, PBHs of mass 1010 M⊙ (or less,

considering the growth of these PBHs) are produced at
redshifts z≳ 2 × 107. Thus, this scenario predicts the
existence of SMBHs at any redshift relevant to astrophysi-
cal observations, in contrast to potential astrophysical
scenarios in which the number of SMBHs rapidly decreases
as the redshift is increased. If future observations discover
SMBHs at even higher redshifts, then our scenario will be a
strong candidate. On the other hand, if SMBHs turn out to
be absent at higher redshifts, then our scenario will be
disfavored.
Finally, a few comments are in order. For the χ field to

take a positive value at around ϕBH in some patch of kBH,
larger regions encompassing that patch must have experi-
enced more “kicks” to the positive direction (see Fig. 4).
This indicates that the spatial distribution of PBHs as the
seeds of the SMBHs at high redshifts tend to be clustered in
our models; this clustering may turn out to be inconsistent
with observations. One may circumvent this problem by
modifying the potential in such a way that the field
trajectory is restricted to some constant ~χ (χ̄ < ~χ < 0)
for ϕ > ϕcð> ϕBHÞ, with ϕc chosen so that spatial cluster-
ing can be avoided and ~χ adjusted to give an appropriate
value of β, as has been done around (33). This work should
be regarded as an existence proof of phenomenological
models that can predict PBHs whose mass is sufficiently

large to explain SMBHs of ∼1010 M⊙ at high redshifts, and
to this end we have introduced two toy models. The
potentials we used may appear somewhat contrived, and
it would be desirable to find simpler and more physically
motivated models that lead to the same predictions dis-
cussed here.
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APPENDIX A: DEPENDENCE ON PRIMORDIAL
NON-GAUSSIANITY OF μ-DISTORTION

CONSTRAINTS ON PBHS

As discussed in the Introduction, in [46] PBHs as the
seeds of SMBHs are shown to be constrained by CMB μ
distortions. That is, if PBHs with MPBH ≳ 104 M⊙ –
105 M⊙ formed by collapse of radiation perturbations
provide the seeds of SMBHs, CMB spectral distortions
larger than observational upper bounds obtained by COBE/
FIRAS inevitably arise. Likewise, the formation of PBHs
with MPBH ≲ 105 M⊙ as the potential seeds of SMBHs
simultaneously leads to an abundant production of dark
matter minihalos [ultracompact minihalos (UCMHs)] at
high redshifts (say, z ∼ 1000), which may emit standard
model particles (such as photons) too intensely to be
consistent with observed flux obtained by experiments
like Fermi (see [46]). However, in drawing this conclusion,
primordial perturbations are assumed to be Gaussian, and
one would expect constraints obtained in [46] change for
non-Gaussian cases. If non-Gaussianity is such that high-σ
peaks are suppressed, then constraints on PBHs from CMB
μ distortions (and UCMHs, mentioned above) are even
tighter, since in this case the dispersion of primordial
perturbations for a fixed abundance of PBHs is larger than
that in a Gaussian case. Conversely, if non-Gaussianity is
such that high-σ peaks are enhanced, then μ-distortion
constraints on PBHs would be relaxed, and if non-
Gaussianity is sufficiently large, μ-distortion constraints
on PBHs would be completely evaded. This was the
essence of avoiding CMB distortion constraints in order
to explain most massive SMBHs at high redshifts by PBHs,
discussed in this paper.
In this appendix we show primordial perturbations have

to be tremendously non-Gaussian, with high-σ peaks
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enhanced considerably in comparison to a Gaussian case, to
completely evade constraints on PBHs from CMB dis-
tortions, adopting the following class of PDFs:

PðζÞ ¼ 1

2
ffiffiffi
2

p
~σΓð1þ 1=pÞ exp

�
−
� jζjffiffiffi

2
p

~σ

�
p
�
; ðA1Þ

where ~σ and p are positive. This function satisfiesR
∞
−∞ PðζÞdζ ¼ 1 and reduces to a Gaussian PDF when
p ¼ 2. If p < 2 high-σ peaks are enhanced compared to the
case of p ¼ 2 and so we restrict our attention to p < 2 here.
For general p, derivatives at ζ ¼ 0 are discontinuous and so
this PDF is unphysical; however, the purpose of this
appendix is to show that ζ has to be tremendously non-
Gaussian for PBHs as the seed of SMBHs to avoid
constraints from CMB μ distortion and UCMHs, and this
toy model is convenient for that purpose. The dispersion is

σ2 ≡
Z

∞

−∞
ζ2PðζÞdζ ¼ 2Γð1þ 3=pÞ

3Γð1þ 1=pÞ ~σ
2; ðA2Þ

where ΓðaÞ is a gamma function. In particular, σ ¼ ~σ when
p ¼ 2, as it should be. The abundance of PBHs is

β ¼
Z

∞

ζc

PðζÞdζ ¼ Γð1=p; 2−p=2ðζc= ~σÞpÞ
2pΓð1þ 1=pÞ ; ðA3Þ

where Γða; zÞ is an incomplete gamma function. This can
be solved for ~σ as

~σ ¼ 2−1=2ζc
Q−1ð1=p; 2βÞ1=p ; ðA4Þ

whereQ−1ða; zÞ is the inverse of the regularized incomplete
gamma function Qða; zÞ≡ Γða; zÞ=ΓðaÞ, namely, z ¼
Q−1ða; sÞ if s ¼ Qða; zÞ. The PDF for different values
of p for the same β ¼ 4 × 10−14 [see Eq. (6)] and with
ζc ¼ 1 is shown in Fig. 7. Note that all the curves in this
figure cross at ζ ∼ 1, which is expected since the integral
above ζc ∼ 1 is fixed and the dominant contribution to the
integral comes from ζ ∼ 1. In addition, the plot of σ as a
function of p, with β fixed to the above value, is shown in
Fig. 8. If p is smaller, the tail of the PDF or the probability
of PBH formation is enhanced for fixed σ, and so the value
of σ, required to explain SMBHs at high redshifts by
PBHs, is smaller; if σ is sufficiently small, constraints from
CMB μ distortion and potentially from UCMHs can be
avoided. Let us consider constraints on PBHs obtained
from CMB μ distortion following [46]. Let us assume the
following delta-function-type power spectrum to realize a
sufficient probability of PBH formation:

Pζ ¼ σ2kδðk − k�Þ: ðA5Þ

The μ distortion generated from this spike is [45]

μ≃ 2.2σ2
�
exp

�
−

k̂�
5400

�
− exp

�
−
�
k̂�
31.6

�2��
; ðA6Þ

where k� ¼ k̂�Mpc−1. We adopt μupper ¼ 9 × 10−5 as a 2σ
upper limit obtained by COBE/FIRAS [47]. The μ dis-
tortion calculated by the above formula as a function of k̂�
for several values of p is shown in Fig. 9, along with the
COBE/FIRAS upper limit. This figure is to be compared
with Fig. 1, which is the corresponding plot for the
Gaussian case. As can be seen from the Fig. 9, if
μupper ≲ 2.2σ2, noting that the inside of the square bracket
is less than unity, there exists a range of k� excluded by
CMB μ distortion. This condition yields 6.4 × 10−3 ≲ σ or
0.43≲ p fixing β as above; if this is satisfied, approx-
imately a spike in the following range is excluded:

31.6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− log

�
1 −

μupper
2.2σ2

�s
≲ k̂� ≲ −5400 log

�
μupper
2.2σ2

�
:

ðA7Þ

Using the following relationship between k� and the typical
mass of PBHs evaluated by the horizon mass when the
modes with k ¼ k� cross the horizon:

FIG. 7. The PDF of the curvature perturbation ζ for the same β,
with different values of p, of Eq. (A1).

FIG. 8. The root mean square σ of ζ for each p required to
produce a desirable amount of PBHs to explain SMBHs at high
redshifts.
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MPBH ¼ 2.2 × 1013
�

k�
1 Mpc−1

�
−2
; ðA8Þ

the above range of k̂� is translated into the following range
of the mass of PBHs, excluded by CMB μ distortion:

8 × 105 M⊙
�
log

�
μupper
2.2σ2

��
−2

≲MPBH ≲ 2 × 1010
�
− log

�
1 −

μupper
2.2σ2

��
−1
: ðA9Þ

The lower and upper bounds here for each p for the same
fixed β above are shown in Fig. 10. Noting the logarithmic
dependence on p of this mass range, PBHs in roughly
106 M⊙ ≲MPBH ≲ 1010MPBH, which is probably the most
important range for PBHs as a candidate for the seeds of
SMBHs, are excluded by CMB μ distortion (and larger
PBHs are excluded by CMB y distortions) unless primor-
dial perturbations are tremendously non-Gaussian
(p≲ 0.43 in the toy model analyzed here), with high-σ
peaks enhanced considerably in comparison to a Gaussian
case. Smaller PBHs can be potentially constrained by
annihilation of dark matter inside UCMHs [46], and these
potential constraints are also applicable unless primordial
perturbations are tremendously non-Gaussian. If such a
highly non-Gaussian and monotonically decreasing PDF
for 0≲ ζ can indeed be realized in some model of inflation,
such a model can also explain SMBHs by PBHs, evading
constraints from CMB distortions or UCMHs to explain
SMBHs by PBHs.

APPENDIX B: MASS FUNCTION OF PBHS

Here we calculate the mass function of PBHs in our
model by solving the Fokker-Planck equation for the time
evolution of the PDF pðt; χÞ of the χ field. To this end we
replace the step function θðχÞ in Eq. (7) by a hyperbolic
tangent function as follows:

θðχÞ → TðχÞ≡ 1

2

�
1þ tanh

�
χ

Δχ

��
; ðB1Þ

where Δχ is a positive parameter. The Fokker-Planck
equation for pðt; χÞ is5

∂pðt; χÞ
∂t ¼ VðϕðtÞÞvðϕðtÞÞ

3HðtÞ
∂
∂χ

�∂TðχÞ
∂χ pðt; χÞ

�

þH3ðtÞ
8π2

∂2pðt; χÞ
∂χ2 : ðB2Þ

In terms of the e-folds N, this reads

−
∂pðN; χÞ

∂N ¼ VðϕðNÞÞvðϕðNÞÞ
3H2ðNÞ

∂
∂χ

�∂TðχÞ
∂χ pðN; χÞ

�

þH2ðNÞ
8π2

∂2pðN; χÞ
∂χ2 : ðB3Þ

Notice that the first term of the right-hand side represents
the effect of the gap at χ ∼ 0, and the ratio of the second
term to the first term is roughly given by R introduced in
(21). That is, the first term becomes important when
R≲ 1. Let us rewrite the above equation using quantities
normalized by Hobs ¼ HðtobsÞ, denoted with a tilde (e.g.,
~H ¼ H=Hobs). For the case of the ϕ2 potential, we obtain

FIG. 10. The lower and upper bound of Eq. (A9) for each p.
The region between the curves corresponds to the mass of PBHs
excluded by CMB μ distortion.

FIG. 9. The μ distortion induced by the delta-function-type
power spectrum of the curvature perturbation (A5) as a function
of k̂�, assuming the non-Gaussian PDF (A1). Here β ¼ 4 × 10−14

and ζc ¼ 1 are used. For 0.43 < p, there exists a range of k̂� that
leads to a μ distortion exceeding the COBE/FIRAS limit.

5Strictly speaking, the evolution of ϕ is affected by the motion
of χ; however, we investigate the motion of χ when the effects of
the hill on the evolution of ϕ are negligible, so the evolutions of ϕ
and χ would be separately treated safely, as is done in this
appendix.
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−
∂pðN; ~χÞ

∂N ¼ f1ðN; ~χÞpðN; ~χÞ þ f2ðN; ~χÞ ∂pðN; ~χÞ
∂ ~χ

þ
~H2

8π2
∂2pðN; ~χÞ

∂ ~χ2 ; ðB4Þ

where

f1ðN; ~χÞ≡ ~m2 ~ϕ2ðNÞvð ~ϕðNÞÞ
12 ~H2ðNÞ ~Δχ

∂
∂ ~χ

�
sech2

�
~χ
~Δχ

��
;

f2ðN; ~χÞ≡ ∂f1ðN; ~χÞ
∂ ~χ : ðB5Þ

For the case of the R2-inflation-type potential,

f1ðN; ~χÞ≡ ~M2 ~M2
Plvð ~ϕðNÞÞ

8 ~H2ðNÞ ~Δχ

�
1 − exp

�
−

ffiffiffi
2

3

r
~ϕðNÞ
~MPl

��2

×
∂
∂ ~χ

�
sech2

�
~χ
~Δχ

��
; ðB6Þ

and f2 ≡ ∂f1=∂ ~χ. We fix ~Δχ ¼ 1=2π, a typical distance χ
travels over one Hubble time.6 Since ~H ∼Oð1Þ and
~m ~ϕ; ~M ~MPl ≫ 1, the first and second terms above indeed
become important when v ≪ α, far from the location of the
center of the hill at ϕ ¼ ϕ0. We denote by p0 the solution
when the hill or the gap at χ ∼ 0 is absent (α ¼ 0),
satisfying a diffusion equation with a (weakly) time-
dependent diffusion coefficient,

−
∂p0ðN; ~χÞ

∂N ¼
~H2ðNÞ
8π2

∂2p0ðN; ~χÞ
∂ ~χ2 ; ðB7Þ

whose solution is

p0ðN; ~χÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2~χðNÞ

q exp

�
−
ð~χ − ~̄χÞ2
2σ2~χðNÞ

�
;

σ2~χðNÞ≡ 1

ð2πÞ2
Z

Nobs

N

~H2ðNÞdN: ðB8Þ

Let us introduce p̄ðN; ~χÞ≡ pðN; ~χÞ=p0ðN; ~χÞ; then, from
(B4) and (B7) its time evolution is determined by

−
∂p̄ðN; ~χÞ

∂N ¼ f3ðN; ~χÞp̄ðN; ~χÞ þ f4ðN; ~χÞ ∂p̄ðN; ~χÞ
∂ ~χ

þ f5ðN; ~χÞ ∂
2p̄ðN; ~χÞ
∂ ~χ2 ; ðB9Þ

where

f3 ≡ f1 þ f2
∂ðlogp0Þ

∂ ~χ ; f4 ≡ f2 þ
~H2

4π2
∂ðlogp0Þ

∂ ~χ ;

f5 ≡
~H2

8π2
: ðB10Þ

We solve the above differential equation with the initial
condition p̄ðNi; ~χÞ ¼ 1, with Ni lying between NBH and
Nobs. It is taken to be sufficiently large so that the effect of
gap is still negligible at Ni. The boundary conditions are
p̄ðN;�∞Þ ¼ 1.7 Evidently, when α ¼ 0 (f1 ¼ f2 ¼ 0) the
solution is p̄ ¼ 1, as it should. The simplest finite differ-
ence method would suffice, namely,

−
p̄nþ1
i − p̄n

i

dN
¼ fn3;ip̄

n
i þ fn4;i

p̄n
iþ1 − p̄n

i−1
2d~χ

þ fn5;i
p̄n
iþ1 − 2p̄n

i þ p̄n
i−1

d~χ2
: ðB11Þ

We take d~χ ¼ 0.0075. For fixed d~χ, jdNj has to be
sufficiently small to avoid numerical instability
(Courant-Friedrichs-Lewy Condition), and we take dN ¼
−0.002. As illustrations, the time evolution of p̄ is shown in
Figs. 11 and 12 for the ϕ2 potential with ðα; μ; ~̄χ; νÞ ¼
ð0.06; 0.5MPl;−3.6; 5.8Þ and the R2-inflation-type poten-
tial with ðα; μ; ~̄χ; νÞ ¼ ð0.02; 0.3MPl;−3.6; 6.6Þ. These val-
ues of α and μ can realize ΔN larger than unity from Figs. 5
and 6, which is necessary for PBH formation at the B
patches. In addition, the above values of ~̄χ and ν are chosen
so that the right amount of PBHs of the desired mass is
realized, to be discussed shortly. The probability is depleted
around the slope at χ ∼ 0, with χ pushed back toward the
negative-χ region, where p̄ becomes slightly larger than
unity. This increase in the probability in the left of the slope
is only barely noticeable in Fig. 11, since the probability
there is mostly determined by the influx of larger proba-
bility from the left, and the effect of the slope there is
basically negligible. In contrast, the effect of the
depleted probability at around the gap gradually propagates
toward the positive-χ region more noticeably, since from

6The smooth transition of the potential, specified by (B1),
introduces patches where 10−5 < ζ < 1. Though the fraction of
such patches is larger than that of the B patches forming PBHs, it
is significantly smaller than unity with this choice of ~Δχ , so the
substantial global μ distortion can still be avoided.

7The boundary condition p̄ðN;∞Þ ¼ 1may seem less obvious
than p̄ðN;−∞Þ ¼ 1, but the probability at χ ¼ ∞ is mostly
determined by diffusion from the initial position χ̄ before the gap
becomes important, so it would be sufficiently accurate as long as
the gap is negligible close to Nobs.
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the point of the right of the slope the crucial supply of
probability from the left is cut off as the height of the gap
increases.
The PDF of χ is related to the mass function of PBHs as

follows. First let us introduce8

βðNÞ≡
Z

∞

Hobs=2π
pðN; χÞdχ; ðB12Þ

which is the fraction of patches in which χ > Hobs=2π at an
e-fold N. Then, ðdβ=d logNÞd logN is approximately the
fraction of patches in which χ crosses χ ¼ Hobs=2π from
left to right during the interval ðN; eNÞ. Strictly speaking
that fraction is slightly larger than ðdβ=d logNÞd logN due
to the nonzero fraction of patches in which χ crosses
χ ¼ Hobs=2π from right to left during the same interval,
but such fraction is negligible unless the height of the
gap is sizable. The patches in which χ crosses Hobs=2π

from left to right during ðN; eNÞ collapse to PBHs
[basically, see the discussion after (11)] whose mass is
related to that e-fold by (18) and (19). Then the volume
fraction of PBHs whose mass lies between ðMBH; eMBHÞ is
approximately

dβðNðMBHÞÞ
dðlogMBHÞ

dðlogMBHÞ ¼
1

2

dβðNÞ
dN

				
N¼NðMBHÞ

dðlogMBHÞ

ðB13Þ

where (18) and (19) have been used to obtain the equality.
The mass function for the ϕ2 potential and the R2-inflation-
type potential is shown in Figs. 13 and 14. These show that
it is indeed possible to choose the model parameters to
realize the PBH mass function with the right abundance
[see (6)] and at the right mass, here taken to be
MBH ∼ 1010 M⊙. The width ΔMBH of the mass function
turns out to be ΔMBH=MBH ∼Oð1Þ.

FIG. 12. The time evolution of the PDF of the χ field for
the R2-inflation-type potential with ðα; μ; ~̄χ; νÞ ¼ ð0.02; 0.3MPl;
−3.6; 6.6Þ.

FIG. 13. The mass function of PBHs for the ϕ2 potential with
ðα; μ; ~̄χ; νÞ ¼ ð0.06; 0.5MPl;−3.6; 5.8Þ.

FIG. 14. The mass function of PBHs for the R2-inflation-type
potential with ðα; μ; ~̄χ; νÞ ¼ ð0.02; 0.3MPl;−3.6; 6.6Þ.

FIG. 11. The time evolution of the PDF of the χ field for the ϕ2

potential with ðα; μ; ~̄χ; νÞ ¼ ð0.06; 0.5MPl;−3.6; 5.8Þ.

8The choice of the lower bound of the integration here will not
affect the conclusion of this appendix.
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