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Motivated by advanced LIGO (aLIGO)’s recent discovery of gravitational waves, we discuss signatures
of new physics that could be seen at ground- and space-based interferometers. We show that a first-order
phase transition in a dark sector would lead to a detectable gravitational wave signal at future experiments,
if the phase transition has occurred at temperatures few orders of magnitude higher than the electroweak
scale. The source of gravitational waves in this case is associated with the dynamics of expanding and
colliding bubbles in the early universe. At the same time we point out that topological defects, such as dark
sector domain walls, may generate a detectable signal already at aLIGO. Both bubble and domain-wall
scenarios are sourced by semiclassical configurations of a dark new physics sector. In the first case, the
gravitational wave signal originates from bubble wall collisions and subsequent turbulence in hot plasma in
the early universe, while the second case corresponds to domain walls passing through the interferometer at
present and is not related to gravitational waves. We find that aLIGO at its current sensitivity can detect
smoking-gun signatures from domain-wall interactions, while future proposed experiments including the
fifth phase of aLIGO at design sensitivity can probe dark sector phase transitions.
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I. INTRODUCTION

The sublime discovery of gravitational waves at
advanced LIGO (aLIGO) [1] is yet another striking con-
firmation of Einstein’s theory of gravity. Because of the
weakness of gravitational interactions and the fact that
gravity couples to all particles that carry energy and
momentum, gravitational waves (GWs) are at the same
time witness to and remnant of some of the most violent
phenomena in our Universe, e.g., neutron-star inspirals,
black-hole inspirals, pulsars, or phase transitions. They
herald intense dynamics, potentially from a distant past.
In recent years, a strong effort was made to discover

gravitational waves using ground-based experiments. After
somewhat uneventful runs of, for example, LIGO [2], Virgo
[3], or the European Pulsar Timing Array [4], in 2015
aLIGO [5] started operations with increased sensitivity in
gravitational wave frequencies of 100–103 Hz and a reach
well into the characteristic strain of supernovae, pulsars,
and binary inspirals.
While aLIGO was primarily designed to detect gravita-

tional waves from a multitude of astrophysical sources, it
retains a remarkable sensitivity to new physics effects.
Adding gravitational wave detection experiments as an
additional arrow to the quiver of experiments to search for
new physics interactions will help to probe very weakly
coupled sectors of new physics.

With obvious shortcomings in our understanding of fun-
damental principles of nature dangling, e.g., the lack of a dark
matter candidate or the observed matter-antimatter asymme-
try, and in absence of evidence for new physics at collider
experiments, so-called dark sectors become increasingly
attractive as add ons to the Standard Model. If uncharged
under the Standard Model gauge group, dark sectors could
even have a rich particle spectrum without leaving an
observable imprint in measurements at particle colliders.
Hence, this could leave us in the strenuous situation where
wemight have to rely exclusively onvery feeble possibly only
gravitational interactions to infer their existence.
For dark sectors to address the matter-antimatter asym-

metry via electroweak baryogenesis, usually a strong first-
order phase transition is required.1 It is well known that a
first-order phase transition is accompanied by three mech-
anisms that can give rise to gravitational waves in the early
universe [7–14]: collisions of expanding vacuum bubbles,
sounds waves, and magnetohydrodynamic turbulence of
bubbles in the hot plasma. However, for previously studied
models, e.g., (next to) minimal supersymmetric Standard
Model [15], strongly coupled dark sectors [16], or the
electroweak phase transition with the Higgs potential
modified by a sextic term [17], the resulting GW frequen-
cies after redshifting are expected to have frequencies of
some two or more orders of magnitude below the reach of
aLIGO. On the other hand, if electroweak symmetry
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1For an interesting recent mechanism to do baryogenesis with
dark sector phase transitions see [6].
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breaking is triggered in the dark sector at temperatures
significantly above the electroweak scale, e.g., by radia-
tively generating a vacuum expectation value (vev) using
the Coleman-Weinberg mechanism, GW with frequencies
are within the aLIGO reach, i.e., 1–100 Hz. However, we
will explain that the overall amplitude of the signal is too
small for aLIGO at present sensitivity, but it can be probed
by the next generation of interferometers.2

At the same time, already now, aLIGO can probe beyond
the Standard Model physics. We will investigate the
consequences of topological defects, such as a domain
wall passing through the interferometer. We will model this
by introducing a nonvanishing effective photon mass
localised on the domain wall, while vanishing elsewhere.3

The signatures of passing domain walls can be well
separated from black-hole mergers and motivates an
extension of ongoing search strategies.
In Sec. II we discuss the implementation of first-order

phase transitions in dark sectors with radiative symmetry
breaking. Section III is dedicated to the modeling and
phenomenology of the domain wall interacting with
aLIGO. We offer a summary in Sec. IV.

II. FIRST-ORDER PHASE TRANSITION IN A
DARK SECTOR AT HIGH SCALES

A. Dark sector model at zero temperature

Let us consider a very simple minimal model of the
hidden (or dark) sector consisting of a complex scalar Φ
which is a SM singlet, i.e., it does not couple to any of the
Standard Model gauge groups but is charged under the
gauge group of the dark sector—in the simplest case, a U(1)
gauge group. The SM Higgs doublet H is coupled via the
Higgs-portal interactions to the complex scalar

Φ ¼ 1ffiffiffi
2

p ðϕþ iϕ2Þ: ð1Þ

In unitary gauge one is left with two real scalars,

H ¼ 1ffiffiffi
2

p ð0; hÞ; Φ ¼ 1ffiffiffi
2

p ϕ; ð2Þ

and the tree-level scalar potential reads

V0ðh;ϕÞ ¼
λϕ
4
ϕ4 þ λH

4
h4 −

λP
4
h2ϕ2: ð3Þ

Note that we have assumed that the theory is scale invariant
at the classical level [20], and as the result, none of the mass

scales are present in the theory; they can only be generated
quantum mechanically, i.e., via radiative corrections. (Of
course, one can also consider more general examples of
hidden sectors, which are not classically scale invariant and
still have first-order phase transitions.)
In the minimal Standard Model classical scale invariance

is broken by the Higgs mass parameter μ2SM. Scale invari-
ance is easily restored by reinterpreting this scale in terms
of the vev of a ϕ, coupled to the SM via the Higgs-portal
interaction, −ðλP=4Þh2ϕ2 in (3). Now, as soon as an
appropriate nonvanishing value for hϕi ≪ MUV is gener-
ated (as we will see momentarily), we get μ2SM ¼ λPhjϕji2,
which triggers electroweak symmetry breaking. (For more
detail on this, see a recent discussion in [21,22] and
references therein.)
From now on we will concentrate on the dark sector

alone and neglect the backreaction of the SM; these
corrections can be straightforwardly included, but will
not be essential to our discussion. The zero-temperature
one-loop effective potential for ϕ reads [20]

Vðϕ; μÞ ¼ λϕðμÞ
4

ϕ4 þ ngDðμÞ4
64π2

ϕ4

�
log

�
ϕ2

μ2

�
−
25

6

�
; ð4Þ

where μ is the renormalization group scale, gD is the U(1)
dark sector gauge coupling, and the second term on the rhs
are the one-loop contributions arising from the hidden U(1)
gauge bosons Z0. In this case the factor of n appearing on
the rhs of (4) is n ¼ 3. The vacuum of the effective
potential above occurs at hϕi ≠ 0. Minimizing the potential
(4) with respect to ϕ at μ ¼ hϕi gives the characteristic
Coleman-Weinberg (CW) type λϕ ∝ g4CW relation between
the scalar and the gauge couplings,

λϕ ¼ 11

16π2
g4D at μ ¼ hϕi≡ w: ð5Þ

From now on we will refer to the nonvanishing vev of ϕ in
the zero-temperature theory as w. With this matching
condition at μ ¼ w the zero-temperature effective potential
(4) for the U(1) CW theory takes the form,

VðϕÞ ¼ n
64π2

g4Dϕ
4

�
−
1

2
þ log

�
ϕ2

w2

��
: ð6Þ

It is plotted in Fig. 1, which shows the existence of a single
vacuum at ϕ ¼ w generated via radiative corrections. The
physical mass of the CW scalar is found by expanding (6)
around ϕ → wþ ϕ,

m2
ϕ ¼ ng4D

8π2
w2; ð7Þ

and the mass of the Z0 vector boson is MZ0 ¼ 1
2
gDw ≫ mϕ.

The above formulas are easily generalized also to non-
Abelian CW gauge groups. For example in a classically
scale-invariant SU(2) gauge theory with the scalar field in

2These future experiments also include the advanced LIGO/
VIRGO detectors operating in years 2020þ at the projected final
sensitivity [18] as was also pointed out very recently in [19].

3This is not a gravitational effect, but effectively it looks like
local ripples affecting the propagation of photons.
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the adjoint representation considered, e.g., in [23], one just
sets n ¼ 6 and hence

VðϕÞ ¼ 6

64π2
g4Dϕ

4

�
−
1

2
þ log

�
ϕ2

w2

��
: ð8Þ

The only difference between (6) and (8) is that in the SU(2)
case there are two W0 bosons contributing to the loops,
hence the total of 6 degrees of freedom compared to 3 on
the rhs of (6).
In the rest of this section we will concentrate on the

SU(2) with the adjoint scalar case in hand, i.e., n ¼ 6. One
can also easily switch to the U(1) theory conventions, and
other examples of CW hidden sectors, such as the SU(2)
with the scalar in the fundamental representation, and the
Uð1ÞB−L classically scale-invariant extensions of the
Standard Model were considered in [22].

B. Thermal effects

The effective potential at finite temperature along the ϕ
direction is given by the zero-temperature effective poten-
tial (8) plus the purely thermal correction ΔVT which
vanishes at T ¼ 0,

VTðϕÞ ¼ VðϕÞ þ ΔVTðϕÞ: ð9Þ

The second term is computed at one loop in perturbation
theory and is given by the well-known expression [24]:

T4

2π2
X
i

�ni

Z
∞

0

dqq2 log
�
1∓ expð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þm2

i ðϕÞ=T2

q
Þ
�
:

ð10Þ

The ni denote the numbers of degrees of freedom present in
the theory and the upper sign is for bosons and the lower
one is for fermions. The ϕ-dependent masses of these
degrees of freedom are denoted as miðϕÞ. In our case there

are n ¼ 6 degrees of freedom corresponding to W0
� vector

bosons of mass mðϕÞ ¼ gDϕ. In terms of the rescaled
dimensionless variables,

γ ¼ ϕ=w; Θ ¼ T=ðgDwÞ; ð11Þ

we have

V̂ðγ;ΘÞ ≔ VTðϕÞ
g4Dw

4
¼ 3

32π2
γ4
�
−
1

2
þ logðγ2Þ

�

þ 6Θ4

2π2

Z
∞

0

dqq2 log

×
�
1 − exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ γ2=Θ2

q ��
: ð12Þ

We plot this thermal effective potential in Figs. 2 and 3 as a
function of the rescaled scalar field γ ¼ ϕ=w for a sequence
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FIG. 1. The zero-temperature effective potential V of the CW
theory equation (6) in the units of 3

64π2
g4D.
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FIG. 2. Thermal effective potential V̂ðγ;ΘÞ of the dark sector in
Eq. (12) as a function of γ ¼ ϕ=w plotted for different temper-
atures Θ ¼ 0.40, 0.35, 0.31, 0.25, 0.20, and 0 (from top to
bottom). We have shifted V̂ðγ;ΘÞ by a constant so that the
effective potential at the origin is zero for all values of Θ.
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FIG. 3. Thermal effective potential V̂ðγ;ΘÞ as in Fig 2 now
zooming at the values around the critical temperature, Θ ¼ 0.315,
0.312, and 0.309 (from top to bottom).
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of temperature values. It easy to see from these figures that
there is a barrier separating the two vacua and thus the
phase transition is of the first order. The value of the critical
temperature where both minima are degenerate and the
position of the second minimum are determined numeri-
cally to be at4

Θc ¼
Tc

gDw
≃ 0.312; γc ¼

ϕc

w
≃ 0.95; ð13Þ

so that the order parameter ϕc=Tc ≃ 3.04=gD > 1, ensuring
that a first-order phase transition indeed took place in our
weakly coupled model of a dark sector. This fact is a
characteristic feature of Coleman-Weinberg models where
the mass parameter at the origin is set to zero as a
consequence of classical scale invariance.

C. Phase transition

Among the key parameters for the calculation of the
gravitational wave spectrum are the rate of variation of
the bubble nucleation rate β and the amount of the
vacuum energy ρvac released during the phase transition.
Specifically, following [9] we are interested in the dimen-
sionless quantities β=H� and α defined below in Eqs. (26)
and (27).
The thin-wall approximation [25,26] allows for an

analytical computation (or estimate) of the parameters
characterising the phase transition, and we will consider
it first in Sec. II D. In our model the thin-wall approxima-
tion, however, will be seen to break down already at
moderately small values of the coupling gD ≲ 1.
Therefore, we will also consider in Sec. II E a different
approximation of the effective potential by a triangu-
lar shape.
The probability of bubble formation is proportional to

exp½−S4ðϕclÞ� where S4 is the four-dimensional Euclidean
action corresponding to the tunneling trajectory and ϕcl is
the spherical bubble solution [25,27]. The all-important
effects of thermal corrections are taken into account by
replacing S4 with the three-dimensional effective action
so that the probability of tunneling from a vacuum at the
origin ϕ ¼ 0 to the true vacuum ϕþ per unit time per unit
volume is

P ¼ AðTÞ exp ½−S3ðϕclÞ=T� ∼ T4 exp ½−S3ðϕclÞ=T�: ð14Þ
Employing spherical symmetry, the 3D action is

S3 ¼ 4π

Z
∞

0

r2dr

�
1

2

�
dϕ
dr

�
2

þ VTðϕÞ
�
; ð15Þ

so that the bubble ϕclðrÞ configuration is the solution of

d2ϕcl

dr2
þ 2

r
dϕcl

dr
¼ V 0

TðϕclÞ; ð16Þ

with the boundary conditions ϕclð∞Þ ¼ 0, drϕclð0Þ ¼ 0. In
the formulas above VT is the temperature-dependent
effective potential (9).
After the Universe cools down to a temperature below Tc

the vacuum at the origin becomes metastable, and the
bubbles of true vacuum ϕþ can start appearing. The phase
transition occurs when the temperature T� is reached where
the nucleation rate of the bubbles P ∼ 1. This occurs
when S3=T� ∼ 100.
If this regime can be reached at temperatures just below

the critical temperature Tc we would have an ϵ-deviation
from the degenerate vacua. This is depicted by the lowest
curve in Fig. 3. Here the parameter ϵ is the split in the
energy density between the two vacua,

ϵ ¼ 1

g4Dw
4
ðVTð0Þ − VTðϕÞÞ: ð17Þ

For small ϵ it is suggestive to employ the thin-wall
approximation [25,26]. To get a first impression of the
results, this is what we will do in the following. However,
we stress here that the smallness of ϵ is not sufficient for the
thin-wall approximation to be valid. Indeed, the potential
barrier as seen from the false vacuum must be large
compared to the difference in energy between the true
and false vacuum, and this will turn out to be not the case in
our model at weak coupling. Hence, wewill supplement the
thin-wall approximation below with a more appropriate
treatment in Sec. II E.

D. Thin-wall approximation

The action in the thin-wall regime is given by the sum of
the volume and the surface terms:

S3¼4π

Z
R

0

r2drVTðϕþÞþ4πR2

Z
ϕþ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VTðϕÞ

p
dϕ; ð18Þ

where R is the bubble radius and the bubble interpolates
between the true vacuum ϕþ for r < R and the false ϕ ¼ 0
vacuum at r > R. The bubble wall, R� δr, is thin, δr ≪ 1
for ϵ ≪ 1.
The value of the radius R of the bubble is then found by

extremizing the action S3 with respect to R. For the volume
contribution [first term on the rhs of (18)] we have

−ϵg4Dw4
4π

3
R3; ð19Þ

while the surface-tension term gives

4πR2g2Dw
3

Z
γþ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VTðγ;ΘcÞ

p
dγ ≃ 4πR2g2Dw

3 × 0.0338;

ð20Þ

4Note that unlike in the more familiar SM Higgs effective
potential applications, neither the high-temperature nor the low-
temperature approximations for evaluating T dependence are
applicable here.
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with the integral having been evaluated numerically. The
bubble radius is found by extremizing the action,

R ¼ 2 × 0.0338
g2Dw

1

ϵ
; ð21Þ

and for the action we have

S3 ¼
16π

3

ð0.0338Þ3
g2D

w
ϵ2
: ð22Þ

The phase transition completes when

S3
T�

≃ S3
Tc

¼ 16π

3

1

0.312

�
0.0338
gD

�
3 1

ϵ2
∼ 100: ð23Þ

This implies

ϵ≃ 1

g3=2D

0.00455: ð24Þ

We can now compute the β-parameter characterizing the
phase transition and in particular the strength of the
gravitational wave signal (as we will recall in the next
section),

β

H�
¼ T

d
dT

�
S3
T

�
T¼T�

: ð25Þ

Here T� is the temperature at which the probability of
nucleating one bubble per horizon volume per unit time is
∼1 (in our case of the thin-wall regime it is just below Tc)
and H� is the Hubble constant at that time. A strong
gravitational wave signal requires a small β=H� so this is
the regime we are most interested in.
We have computed numerically the dependence of ϵ on

T which is plotted in Fig. 4. This is very well described by a
numerical fit,

ϵðΘ�Þ≃ −0.0496ðΘ� − 0.312Þ − 0.1424ðΘ� − 0.312Þ2;

where 0.312 is our value for the critical temperature Θc.

Now using the expression for the action (23), the bound
S3=T� ≃ 100 and the fit for ϵðΘ�Þ above, we find

β

H�
¼ S3

T�

ð−2Þ
ϵ

�
Θ�

dϵ
dΘ�

�
Θc

≃ 3.1
ϵ

≃ 680g3=2D ; ð26Þ

where in the final expression we have used Eq. (24).
Finally, we need to determine the second key parameter

affecting the gravitational wave spectrum—the ratio of the
vacuum energy density released in the phase transition to
the energy density of the radiation bath,

α ¼ ρvac
ρ�rad

: ð27Þ

Here ρ�rad ¼ g�π2T4�=30 and g� is the number of relativistic
degrees of freedom in the plasma at T�.
The vacuum energy, on the other hand, is easy to

estimate again in the thin-wall approximation as

ρvac ¼ g4Dw
4ϵ≃ 0.00455g5=2D w4: ð28Þ

Then we have

α ¼ 1

g�g
3=2
D

0.137
π2

1

Θ4�
≃ 1.46

g�g
3=2
D

; ð29Þ

where we have used Θ� ≃ Θc ≃ 0.312.
As already mentioned above, to safely apply the thin-

wall approximation we need not only ϵ ≪ 1 but also δ ≪ 1,
where we have defined

δ ¼ VTð0Þ − VTðϕÞ
VTðϕmaxÞ − VTð0Þ

¼ g4Dw
4

VTðϕmaxÞ − VTð0Þ
ϵ

¼ 1

V̂ðγmax;ΘÞ
ϵ; ð30Þ

and ϕmax ¼ wγmax is the maximum of the barrier.
As all terms in the potential are dimensionless and arise

from one loop we generically expect

V̂ðγmax;ΘÞ ∼
1

16π2
: ð31Þ

This therefore implies

δ ∼ 16π2ϵ ∼ 16π2
0.00455

g3=2D

: ð32Þ

This becomes of order one for gD ≃ 0.8 and the thin-wall
approximation is problematic in the weak-coupling regime
gD ≲ 1.
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FIG. 4. ϵ as a function of the nucleation temperature T� for
T� ≤ Tc.
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E. Beyond the thin-wall approximation

To understand what happens at smaller values of the
coupling we adapt the tunneling approximation of Ref. [28]
to the case of our three-dimensional thermal bubbles. In
[28] the authors approximate the potential by a triangle for
which the tunneling solutions can be found analytically. We
will follow this approach to describe the case of broad and
low-height barriers we are interested in.
The triangle potential can be characterized by the slope

on the left- and right-hand side of the peak of the triangle,
λp and λm, as well as the distance between the false vacuum
and the top of the potential, Δϕp, and the distance from the
top to the true vacuum Δϕm. For convenience, as in [28],
we introduce the abbreviations,

c ¼ λp
λm

; a ¼ ð1þ cÞ1=3; κ ¼ λp
ðΔϕpÞ3

: ð33Þ

The strategy to solve the equation of motion (16) is as
follows. One can easily find solutions to the equations of
motion on the right- and left-hand side of the triangle. On the
right-hand side one needs to implement the boundary con-
ditionϕ0ð0Þ ¼ 0.Thereare tworegimes for the fieldvalueat0.
Either the field reaches the true minimum or it does not. The
latter happens if Δϕm is sufficiently large. This is what
happens for our potential and we will only consider this case
in the following. Importantly in this situation there is no
dependence on Δϕm. On the left side the field will reach
ϕðRÞ ¼ 0. Since the potential is linear, R will be finite and
thereforewe also have ϕ0ðRÞ ¼ 0. Finally, one can match the
two solutions continuously at the top of the triangle.
After some algebra the result for the three-dimensional

action of the bubble can be written in a relatively compact
form as

S3 ¼
16

ffiffiffi
6

p
a3πΔϕp

5½ð1 − aÞ2ð1þ 2aÞ�2=3 ffiffiffi
κ

p : ð34Þ

Decreasing the coupling gD, the temperature at which
bubbles form also decreases. As one can infer from Fig. 2,
for smaller temperatures the ratio of the slopes λm=λp goes
towards larger values. It therefore makes sense to approxi-
mate Eq. (34) for this case as,

S3 ¼
8

ffiffiffi
3

p
πΔϕp

5
ffiffiffi
c

p ffiffiffi
κ

p ¼ 8
ffiffiffi
3

p
πΔϕ5=2

p

5
ffiffiffiffiffi
λm

p : ð35Þ

For small temperatures we have checked that to a
reasonable approximation, the expressions

Δϕp ∼ xΘw ∼ xT=gD; λm ∼
3

64π2
g4Dw

3; ð36Þ

can be used with

x ∼ 0.5–1.2: ð37Þ
Inserting these formulas into Eq. (35) we find

S3
T

¼ 64π2

5g9=2D

T3=2

w1=2 x
5=2: ð38Þ

For the β parameter we therefore have

β

H�
¼ T

d
dT

�
S3
T

�����
T¼T�

¼ 3

2

D
T�

¼ 3

2

S3
T

����
T¼T�

: ð39Þ

Since S3=T� is essentially fixed at ∼100, the same holds for
β=H� in our model. Accordingly we cannot decrease it
significantly below this value.
To complete our estimate we now also need to determine

the α parameter in (27). For small temperatures the differ-
ence in vacuum energy is simply given by the difference at
zero temperature,

ρvac ¼
3

64π2
g4Dw

4: ð40Þ

Using Eq. (38) we have for the temperature,

T� ∼ 0.1g3D

�
S3
T�

�
2=3

w: ð41Þ

This gives

α ¼ 3g4D
64π2

30

g�π2T4�
∼

60

g�g8D

�
S3
T�

�
−8=3

∼
0.0003
g�g8D

: ð42Þ

We stress that this is a rather crude estimate which is
supposed to be valid only for small gD ≪ 0.1.
However, there are two messages we can take from this

calculation. The first is that with decreasing gD the
transition temperature T� drops dramatically. In line with
this the α parameter rapidly increases.
Finally, for larger values of gD ≥ 0.1, we have computed

the phase transition parameters β=H� and α numerically,
still using the triangle approximation. Their values are
plotted in Fig. 5. We note that for values below gD ∼ 0.6,
the parameter α ≳ 1 and the amount of energy in the
surrounding plasma is lower than the field energy released
in the phase transition. This is important for the gravita-
tional wave signal as we will briefly discuss below.

F. Gravitational waves signal

As was already discussed and studied in the literature
[7–14], there are three types of processes during and
following the first-order phase transition involved in
the production of gravitational waves: (1) collisions of
bubble walls h2Ωc, (2) sound waves in the plasma h2Ωsw,
and (3) magnetohydrodynamics turbulence (MHD) follow-
ing bubble collisions h2Ωmhd.
We assume they contribute to the stochastic GW back-

ground approximately linearly, i.e.,

h2ΩGW ≃ h2Ωc þ h2Ωsw þ h2Ωmhd; ð43Þ
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where the three contributions to the signal are given by [14]

h2Ωc ¼ 1.67 × 10−5
�
H�
β

�
2
�

κcα

1þ α

�
2
�
100

g�

�1
3

×

�
0.11v3w

0.42þ v2w

�
3.8ðf=fenvÞ2.8

1þ 2.8ðf=fenvÞ3.8
; ð44Þ

h2Ωsw ¼ 2.65 × 10−6
�
H�
β

��
κswα

1þ α

�
2
�
100

g�

�1
3

vw

×

�
f
fsw

��
7

4þ 3ðf=fswÞ2
�

7=2
ð45Þ

and

h2Ωmhd ¼ 3.35 × 10−4
�
H�
β

��
κmhdα

1þ α

�3
2

�
100

g�

�1
3

vw

×
ðf=fmhdÞ3

½1þ ðf=fmhdÞ�113 ð1þ 8πf=h�Þ
: ð46Þ

For the peak frequencies and the Hubble rate after red-
shifting for the three processes above we use, respectively,

fenv ¼ 16.5 × 10−6 Hz

�
0.62

1.8 − 0.1vw þ v2w

��
β

H�

�

×

�
T�

100 GeV

��
g�
100

�1
6

; ð47Þ

fsw ¼ 1.9 × 10−5 Hz

�
1

vw

��
β

H�

��
T�

100 GeV

��
g�
100

�1
6

;

ð48Þ

fmhd ¼ 1.42fsw: ð49Þ

These expressions depend on the set of key parameters
associated with the phase transition: the rate of the phase
transition β=H�, the energy ratio α, together with the latent

heat fractions 0 < κ < 1 for each of the three processes and
the bubble wall velocity vw. The bubbles are supersonic for
1=

ffiffiffi
3

p
< vw ≤ 1, and subsonic for vw ≲ 1=

ffiffiffi
3

p
.

As discussed in Ref. [14] there are three regimes for the
bubbles: non-runaway bubbles, runaway bubbles in ther-
mal plasma, and runaway bubbles in the vacuum. In the
non-runaway regime, the bubble wall reaches the terminal
velocity which remains vw < 1. Such non-runaway bubbles
occur for α < α∞, with

α∞ ≈
30

24π2

P
acaΔm2

a

g�T2�
; ð50Þ

where ca measures the degrees of freedom counting 1 for
bosons and 1=2 for fermions and Δma is the change in the
mass of the particles during the phase transition. In this case
only the first two mechanisms of gravitational wave
production contribute, the MHD contribution is absent.
For α≳ α∞ it is possible for bubbles to accelerate without
bound (the runaway bubbles) and there is no terminal
velocity. In this case all three mechanisms contribute into
Eq. (43). Finally, for even larger α ≫ 1 one is in a situation
where the phase transition occurs essentially in vacuum.
These are runaway bubbles in the vacuum and only the
bubble wall collisions processes contribute to the gravita-
tion waves signal.
We find that the signal in general tends to increase with α

and that the sound wave contribution tends to be largest in
our model of the dark sector. We therefore focus on the
case α ∼ α∞ ≲ 1.5

For the sound waves the efficiency fraction κsw (for
vw ∼ 1) gives [14]

gd gd

0

200

400

600

800

1000

0.01 0.05 0.10 0.50 1
0.001

0.010

0.100

1

10

100

1000

0.1 0.2 0.5 1 2

FIG. 5. Numerical values for β=H� (left) and α (right) for values gD ≥ 0.1 in the triangle approximation (blue lines). In the right panel
the green line indicates the value of α∞ according to Eq. (50) and the golden line indicates α ¼ 1.

5Here we note some caveats. It is difficult to pinpoint exactly
where the transition between the runaway in the plasma and that
in the vacuum occurs. Also, the expressions for h2Ω from [14]
which we use, have only been tested in the α≲ 0.1 regime [14].
Our estimates for the signal at α ∼ 0.5 may therefore be on the
optimistic side.
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κsw ≈
α

0.73þ 0.083
ffiffiffi
α

p þ α
: ð51Þ

For an example value α ∼ α∞ ¼ 0.5 this is ∼0.4. Close to
the runaway case the colliding bubbles contribution is
negligible, and the MHD contribution is typically small,
too, κmhd ∼ ð0.05–0.1Þκsw (cf. [14]).
In Fig. 6 we show the reach of future and current

gravitational wave detectors, assuming the optimistic maxi-
mal value of κ ¼ 1 for sound waves. For the number of
degrees of freedomweuse g� ¼ 100. Note,Ωsw ≫ Ωc;Ωmhd
at peak frequency. Over a large part of the parameter space
we find good sensitivity at BBO and DECIGO, which
cover the frequencies resulting from phase transitions at
temperatures of Oð1Þ≲T�≲Oð103ÞTeV. For even higher

frequencies, aLIGO in the fifth phase O5, which is projected
to operate in 2020s with design sensitivity taken from
Ref. [18], can also provide sensitivity to phase transitions.
We also show the more conservative case with the lower

value of the sound waves efficiency, κ ¼ 0.4 in Fig. 7.
Relative to the κ ¼ 1 plots of Fig. 6, here we have a loss of
sensitivity to aLigo and eLisa experiments.

III. DOMAIN-WALL INTERACTIONS

In models with discrete symmetries domain walls occur
quite naturally [30]. For example they could be formed
after a cosmological phase transition where different
regions of the Universe settle into different degenerate
vacua (connected to each other by the discrete symmetry).
In dark sectors, both the distance in field space as well as

the height of the potential in between the vacua could be
relatively low. In consequence, the domain-wall tension,
i.e., the energy per unit area, could be relatively small such
that one could have a reasonable high density of walls
without exceeding constraints on the energy density (there
have even been suggestion that connect such domain walls
to dark matter and dark energy [31,32]).
Here we follow the spirit of [33–35] and consider

the observable consequences of the existence of such
domain walls. In particular we are interested in signals
observable in LIGO and other gravitational wave detectors.
While dark sectors by definition are very weakly coupled to
Standard Model particles, even low scale domain walls
feature relatively large field values. This enhances the
signal, making them potentially observable in sensitive
experiments.
Interestingly such walls would give distinct transient

signals with a variety of shapes (in contrast to the more
constant signatures from phase transitions discussed in the
previous section).

A. Domain walls

Let us consider a domain wall in a pseudo-Goldstone
boson which features an additional ZN symmetry.
Following Ref. [34] we consider the following effective
Lagrangian for the domain-wall field:

Lϕ ¼ 1

2
ð∂μϕÞ2 − 2

m2f2

N2
ϕ

sin2
�
Nϕϕ

2f

�
: ð52Þ

With this the domain-wall solutions read

ϕðzÞ ¼ 4f
Nϕ

arctan ½expðmzÞ�: ð53Þ

Abundant domain walls would contribute significantly to
the energy density. A very conservative constraint is that
this contribution should be less than the local dark matter
density. Domain walls have a density per unit area
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G
W

h2
aLIGO

DECIGO
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aLIGO O5

FIG. 6. Reach of gravitational wave detectors: We show aLIGO
together with the fifth phase of aLIGO (both solid black), and the
proposed detectors BBO, DECIGO, ET, and eLISA (dashed
black) (the sensitivities are taken from the gravitational wave
plotter http://rhcole.com/apps/GWplotter/ [29]). For the curves of
the CW phase transition—going from left to right—we choose
vw ¼ 1 throughout and, respectively ðκ ¼ 1.0; gD ¼ 0.6; T� ¼
100 GeVÞ (in red), ðκ ¼ 1.0; gD ¼ 0.6; T� ¼ 10 TeVÞ (green),
and ðκ ¼ 1.0; gD ¼ 0.6; T� ¼ 500 TeVÞ (in blue).
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FIG. 7. Reach of gravitational wave detectors for a more
conservative scenario κsw ¼ 0.4 (all other parameters as in
Fig. 6).
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σ ¼ mf2=N2
ϕ and a network with typical distance scale L

then has an energy density ρ ∼ σ=L. This gives a limit on
the abundance of domain walls [34],

f
Nϕ

≲ TeV ×

�
L

10−2 Ly

�
1=2

�
neV
m

�
1=2

�
ρDW
ρDM

�
1=2

: ð54Þ

For lower energy densities of the domain-wall network one
needs a correspondingly lower scale f.
Together with the typical velocity v of the domain walls

this gives an event rate,

Event Rate ∼
1

10 years

�
10−2 Ly

L

��
v

10−3

�
: ð55Þ

Here the crucial ingredient is the velocity of the domain
wall. Inside the galaxy objects typically have velocities
of this order of magnitude and indeed Earth moves with
such a velocity around the center of the Galaxy. Anything
considerably smaller seems a bit fine-tuned. In principle,
domain walls could move faster but truly stable ones should
be slowed down by the expansion of the Universe.6

Therefore v ∼ 10−3 seems a reasonable velocity.
All in all we want the typical domain-wall scale f to be

≲TeV which is low but still doable.

B. Interaction with photons

To have an observable effect in LIGO the domain-wall
field should have an interaction with Standard Model
particles, preferably with photons. Essentially LIGO mea-
sures a phase shift between the two arms of the interfer-
ometer. A simple modification of electrodynamics that
leads to a phase shift is a photon mass term inside the
domain wall,

LA ¼ −
1

4
FμνFμν −

1

2
m2

0;γsin
2

�
NAϕ

f

�
AμAμ: ð56Þ

Crucially, far away from the plane of the domain wall the
effective photon mass is zero in agreement with observa-
tion, as long as NA=Nϕ is integer.
If the photon is effectively massive in some region of

space inside the detector, this leads to a phase shift.
Approximately one finds,7

Δφi ¼
Z
Li

d xΔkð xÞ; ð57Þ

where Δkð xÞ is the space dependent change in wave
number and Li denotes the path along the arm i of the
interferometer. The observable quantity is the phase differ-
ence between the two paths,

Δφ ¼ Δφ1 − Δφ2: ð58Þ

To evaluate this expression we have to determine the
change in the wave number in the presence of a mass term.
Since the energy of the photon is conserved we have

Δkð xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

γð xÞ
q

− ω ≈ −
m2

γð xÞ
2ω

; ð59Þ

where the approximate sign holds for mγ ≪ ω. Moreover
we have abbreviated

m2
γð xÞ ¼ m2

0;γsin
2

�
NAϕð xÞ

f

�
: ð60Þ

For a completely flat domain wall as in Eq. (53) the field
value of the wall only depends on the distance to the wall,

ϕð xÞ ¼ ϕð x · n − z0 − vtÞ: ð61Þ

Here, n is the unit vector normal to the wall, z0 is the
distance of the wall from the origin at t ¼ 0, and v is the
velocity of the wall with respect to the origin.

C. Simple examples

We can choose the arms of the interferometer to be in the
x and y direction, respectively. For simplicity we now take
the wall to be parallel to the z direction. Its direction in the
x − y plane we specify by the angle α with respect to the x
direction. For one round trip through the cavity we then
obtain the phase shift,

ΔφðtÞ¼−
m2

0;γ

ω

�Z
L

0

dx

�
sin2

�
NAϕðxsinðαÞ−z0−vtÞ

f

�	

−
Z

L

0

dy

�
sin2

�
NAϕðycosðαÞ−z0−vtÞ

f

�		
:

¼−
m2

0;γ

ωm

×

�Z
mL

0

dx̂

�
sin2

�
NAϕððx̂sinðαÞ− ẑ0−vt̂Þ=mÞ

f

�	

−
Z

mL

0

dŷ

�
sin2

�
NAϕððŷcosðαÞ− ẑ0−vt̂Þ=mÞÞ

f

�		
;

ð62Þ

6If the two vacua connected by the domain wall are not exactly
equal in energy, the domain wall is in a sense a bubble wall,
which could be accelerated by the energy difference and therefore
be fast.

7Here we use a WKB-type approximation and neglect reflec-
tions on the domain wall. In cavities as employed in LIGO this
effect could be non-negligible. Moreover we neglect the small
deflection in the propagation direction caused by the domain
wall.
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where in the second equation we have rescaled to dimen-
sionless variables x̂ ¼ mx; ŷ ¼ myẑ0 ¼ mz0; t̂ ¼ mt. We
note that the actual signal is independent of f.
The dimensionless mass parameter m2

γ=ðmωÞ controls
the overall size of the phase shift. The sensitivity of
gravitational wave detectors such as LIGO is usually
quoted as a sensitivity to a gravitational strain,

hsens ∼
ΔLsens

L
∼ 10−22; ð63Þ

where ΔLsens is the change in the length of a detector arm
caused by the gravitational wave. In terms of a phase shift
for a single path of the detector we therefore have

Δφsens ∼ ΔLω ∼ hsensLω ∼ 10−10: ð64Þ

In Figs. 8, 9, and 10 we now show a few different sample
shapes that can be produced from these interactions.
From the dimensionless form of Eq. (62) we can

determine the typical size of the signal. The sin is

maximally of order 1. The region where the sin is
nonvanishing because we are inside the domain wall has
length 1 in these units as well. This allows one to estimate

Δφ ∼
m2

0;γ

mω
for mL≳ 1;

∼
m2

0;γ

mω
mL ∼

m2
0;γL

ω
for mL≲ 1: ð65Þ

For special geometries, where one arm of the detector is
essentially parallel to the wall, a small enhancement is
possible.
Using this and a sensitivity Δφ ∼ 10−10 we can test the

following parameter regions:

m0;γ ∼ neV

�
m

10 neV

�
1=2

for m≳ 0.1 neV;

∼ 0.1 neV for m≲ 0.1 neV: ð66Þ

D. Signatures of domain-wall crossings

Above we have already seen that domain walls can
produce interesting signals which consist of a transient
signal with a few oscillations.What is characteristic of those
signals and how are they different from gravitational wave
signals produced in black-hole or neutron-star mergers?
The first relevant feature are the typical time scales and

the typical frequencies. The duration of the signal is
essentially determined by the time it takes the domain
wall to cross the detector. If the wall is thin compared to the
size of the detector, i.e., m≳ 0.1 neV this is simply
determined by the length scale of the detector and the
velocity of the domain wall,

tduration ∼ 10 ms

�
10−3

v

�
; thin wall : m≳ 0.1 neV;

ð67Þ
corresponding to frequencies of the order ∼100 Hz. In
addition to the overall length of the signal, one will have

FIG. 8. L ¼ 4000 m, ω ≈ 1 eV, m ¼ 10 neV, mγ;0 ¼ 1 neV,
NA=Nϕ ¼ 1, α ¼ π=2.2; π=2.5; π=3 (black, blue, red), v chosen
such that signal has roughly a length of 0.02 s ∼ 1=ð50 HzÞ; this
corresponds to v ¼ 1 × 10−3.

FIG. 9. As in Fig. 8, but mγ;0 ¼ 0.1 neV, NA=Nϕ ¼ 5,
m ¼ 0.1 neV, α ¼ π=2.2, and v ¼ 3 × 10−3.

FIG. 10. As in Fig. 8, but mγ;0 ¼ 0.1 neV, NA=Nϕ ¼ 5,
m ¼ 0.5 neV, α ¼ π=2, and v ¼ 1 × 10−3.
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substructure when the wall enters/leaves one of the arms
of the interferometer. The time scale for this is determined
by the thickness of the wall and will have time scales of
the order,

tsubstructure ∼ 10 ms

�
0.1 neV

m

��
10−3

v

�
; ð68Þ

corresponding to frequencies ∼100 Hzðm=ð0.1 neVÞÞ.
For thick walls, on the other hand, the duration is set by

the wall thickness,

tduration ∼ 10 ms

�
0.1 neV

m

��
10−3

v

�
;

thick wall : m≲ 0.1 neV: ð69Þ

As discussed above the velocity is set by the typical
velocities in the galaxies.
The second feature is the time difference between the

two detectors at LIGO (or between even more detectors in
the future). By the same argument as above this is simply
given by the time it takes the domain wall to cross this
∼3000 km distance,

ttwo detectors ∼ 10 s

�
10−3

v

�
: ð70Þ

This is 3 orders of magnitude larger than the delay between
the signals for gravitational waves. To see a “coincidence”
one therefore needs to analyze in a suitably large time
window.
Indeed one can even perform an additional consistency

check between the signals in different locations. This can
be seen most easily in the limit when the wall is thin.
Ignoring high frequency substructures the signal then has a
shape as in Fig. 8 which is determined by the angle of the
wall with respect to the experiment. Therefore one can
measure both velocity and direction of the velocity from a
single measurement; the signal for the second site can be
predicted.

E. Obvious constraints on the parameter space

Although this is a very simplistic model, let us at least
discuss some obvious constraints on the parameter space
from other experiments/observations.
Photons radiating ϕ: The mass term for the photon also

represents a four boson interaction with coupling strength,

λAAϕϕ ∼
m2

0;γN
4
A

f2
∼ 10−42

�
NA

1

�
4
�
m0;γ

neV

�
2
�
TeV
f

�
2

: ð71Þ

It seems like this can be safely ignored.
Total reflection from the domain wall: We observe radio

signals from very distant astronomical sources in all direc-
tionswith frequencies down toω ∼ ð2πÞ fewMHz ∼ neV. If
m0;γ ≳ few neV a domain wall would totally reflect all such
radiowaves, i.e., in the direction where it is coming fromwe
would see no such radio waves.

F. Beyond the simplest model

Instead of adding a mass term, one could also consider
an axionlike-particlelike interaction of the domain wall
with FμνFμν

†† or ~FμνFμν. Indeed such a model might be
easier to motivate theoretically. Yet the calculation of
potential signals (in particular when cavities are employed)
needs a more careful study which we leave to future work.

IV. SUMMARY

In this articlewe investigated two types of signals fromdark
sectors observable in gravitational wave detectors: gravita-
tional waves from first-order phase transitions and dark sector
domain walls very weakly interacting with photons. In the
former case future experiments are needed, whereas in the
latter case already aLIGO could potentially observe a signal.
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