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We investigate the formation and dissipation of large-scale neutrino structures in cosmologies where the
time evolution of dynamical dark energy is stopped by a growing neutrino mass. In models where the
coupling between neutrinos and dark energy grows with the value of the scalar cosmon field, the evolution
of neutrino lumps depends on the neutrino mass. For small masses the lumps form and dissolve
periodically, leaving only a small backreaction of the neutrino structures on the cosmic evolution. This
process heats the neutrinos to temperatures far above the photon temperature, such that neutrinos acquire
again an almost relativistic equation of state. The present equation of state of the combined cosmon-
neutrino fluid is very close to −1. By contrast, for larger neutrino masses, the lumps become stable. The
highly concentrated neutrino structures entail a large backreaction similar to the case of a constant neutrino-
cosmon coupling. A present average neutrino mass of around 0.5 eV seems to be compatible with
observations so far. For masses lower than this value, neutrino-induced gravitational potentials remain
small, making the lumps difficult to detect.
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I. INTRODUCTION

The observed accelerated expansion of the Universe is
currently well described by the standard lambda cold dark
matter (ΛCDM) scenario, where a cosmological constant
leads the background of the Universe to a final de Sitter
state. Such a scenario, however, raises a “coincidence” (or
“why-now”) problem, as it is not understood why dark
energy has become important only recently, marking the
present cosmological epoch as a special one within cosmic
history. Alternative models of dynamical dark energy or
modified gravity should address the why-now problem and
the associated fine-tuning of parameters. At the same time,
these models need to explain why dark energy is almost
static in the present epoch, such that the present dark energy
equation of state w is close to the observed range near −1.
Growing neutrino quintessence [1,2] explains the end of

a cosmological scaling solution (in which dark energy
scales as the dominant background) and the subsequent
transition to a dark energy dominated era by the growing
mass of neutrinos, induced by the change of the value of the
cosmon field which is responsible for dynamical dark
energy. The dependence of the mass of neutrinos on the
cosmon (dark energy) field ϕ,

mν ¼ mνðϕÞ ∝ m̂νe
−
R

βðϕÞdϕ; βðϕÞ ¼ −
∂ lnmνðϕÞ

∂ϕ ;

ð1Þ

involves the cosmon-neutrino coupling βðϕÞ, which mea-
sures the strength of the fifth force (additional to gravity).
The constant m̂ν is a free parameter of the model which
determines the size of the neutrino mass. (We take, for
simplicity, all three neutrino masses equal—or, equiva-
lently, mν stands qualitatively for the average over the
neutrino species.) The special role of the neutrino masses
(as compared to quark and charged lepton masses) is
motivated at the particle physics level by the way in which
neutrinos get masses [2]. Growing neutrino quintessence
with a sufficiently large negative value of β successfully
relates the present dark energy density and the mass of the
neutrinos. The evolution of the cosmon is effectively
stopped once neutrinos become nonrelativistic. Dark
energy becomes important now because neutrinos become
nonrelativistic in a rather recent past, at typical redshifts of
about z ¼ 5 [3]. In this way, the why-now problem is
resolved in terms of a “cosmic trigger event” induced by the
change in the effective neutrino equation of state, rather
than by relying on the fine-tuning of the scalar potential.
This differs from other mass-varying neutrino cosmologies
[4–10]. Some of the observational consequences of those
models were studied in [5,8] and, more recently, a new
scalar field–neutrino coupling that produces viable cos-
mologies was proposed in [11]. A viable cosmic back-
ground evolution of growing neutrino quintessence offers
interesting prospects for the possible observation of the
neutrino background.
The case in which the coupling β is constant has been

largely investigated in the literature at the linear level [3], in
semianalytical nonlinear methods [12–14], joining linear
and nonlinear information to test the effect of the neutrino
lumps on the cosmic microwave background [15] and
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within N-body simulations [16–19]. For the values of β
(β ≳ 103) needed for dark energy to dominate today, the
cosmic neutrino background is clumping very fast. Large
and concentrated neutrino lumps form and induce very
substantial backreaction effects. These effects are so
strong that the deceleration of the evolution of the
cosmon gets weak, making it difficult to obtain a realistic
cosmology [20].
In this paper, we instead consider the case in which the

neutrino-cosmon coupling βðϕÞ depends on the value of the
cosmon field and increases with time. In a particle physics
context, this has been motivated [2] by a decrease with ϕ of
the heavy mass scale (the baryon-lepton-violating scale)
entering inversely the light neutrino masses. In this sce-
nario, βðϕÞ has not been large in all cosmological epochs—
the present epoch corresponds to a crossover where β gets
large. A numerical investigation [18] of this type of model
has revealed compatibility with observations for the case of
a neutrino mass mν;0 ¼ 0.07 eV. In this paper we inves-
tigate the dependence of cosmology on the value of the
neutrino mass by varying the parameter m̂ν in Eq. (1). For
large neutrino masses, we find a qualitative behavior
similar to the case of a constant neutrino-cosmon coupling
β, with difficulties in obtaining a realistic cosmology. In
contrast, for a small neutrino mass, the neutrino lumps form
and dissolve, with little influence on the overall cosmo-
logical evolution. In this case, the neutrino-induced gravi-
tational potentials are found to be much smaller than the
ones induced by dark matter. As we will discuss in this
paper, it will not be easy to find observational signals for
the neutrino lumps. Between the regions of small and large
neutrino masses, we expect a transition region for inter-
mediate neutrino masses where, by continuity, observable
effects of the neutrino lumps should show up.

II. GROWING NEUTRINOS WITH
VARYING COUPLING

We consider here cosmologies in which neutrinos
have a mass that varies in time, along the framework
of “varying growing neutrino models” [2]. As long as
neutrinos are relativistic, the coupling is inefficient and
the dark energy scalar field ϕ rolls down a potential, as in
an early dark energy scenario. As the neutrino mass
increases with time, neutrinos become nonrelativistic,
typically at a relatively late redshift z ≈ 4–6 [15]. This
influences the evolution of ϕ, which feels the effect of
neutrinos via a coupling to the neutrino mass mνðϕÞ. The
evolution of the scalar field slows down and practically
stops, such that the potential energy of the cosmon
behaves almost as a cosmological constant at recent
times. In other words, in these models the cosmological
constant behavior observed today is related to a cosmo-
logical trigger event (i.e., neutrinos becoming nonrela-
tivistic), and the present dark energy density is directly
connected to the value of the neutrino mass. In the

following we will detail the formalism and the equations
used to describe the cosmological evolution of the model.
We start with the linearized Friedman-Lemaître-

Robertson-Walker metric in the Newtonian gauge:

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ð1 − 2ΦÞdx2: ð2Þ

Moreover, we use a quasistatic approximation for subhor-
izon scales (H=k ≪ 1), which allows us to neglect time
derivatives with respect to spatial ones. Then the quasi-
static, first-order perturbed Einstein equations are the
Poisson equation [21]

k2Φ ¼ 4πGa2δT0
0; ð3Þ

and the “stress” equation

k2ðΦ −ΨÞ ¼ 12Ga2ðρ̄þ P̄Þσ; ð4Þ

where δT0
0 is the perturbation of the 0–0 component of

the energy-momentum tensor Tμν and σ is the anisotropic
stress of the fluid which depends on the traceless compo-
nent of the spatial part of the energy-momentum tensor,
Ti
j − δijT

k
k=3. This stress tensor is, in our case, only

important for relativistic particles (i.e., the neutrinos).
The source term of the Poisson equation (3) will contain
contributions from all matter species (dark matter and
neutrinos) and from the cosmon field. It is proportional
to the total density contrast δρt ¼ δρν þ δρm þ δρϕ.
The cosmon field can be described through a Lagrangian

in the standard way,

−Lϕ ¼ 1

2
∂νϕ∂νϕþ VðϕÞ; ð5Þ

where, for this work, we choose an exponential potential
VðϕÞ ∝ e−αϕ. The field-dependent mass [Eq. (1)] allows for
an energy-momentum transfer between neutrinos and the
cosmon, which is proportional to the trace of the energy-
momentum tensor of neutrinos TðνÞ and to a coupling
parameter βðϕÞ:

∇ηT
μη
ðϕÞ ¼ þβðϕÞTðνÞ∂μϕ; ð6Þ

∇ηT
μη
ðνÞ ¼ − βðϕÞTðνÞ∂μϕ: ð7Þ

The cosmon is the mediator of a fifth force between
neutrinos, acting at cosmological scales. Its evolution is
described by the Klein-Gordon equation sourced by the
trace of the energy-momentum tensor TðνÞ of the neutrinos,

∇μ∇μϕ − V 0ðϕÞ ¼ βðϕÞTðνÞ: ð8Þ

As long as the neutrinos are relativistic [TðνÞ ¼ 0], the
source on the right-hand side vanishes. During this time,
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the coupling has no effect on the evolution of ϕ. While the
potential term ∼V 0 drives ϕ towards larger values, the term
∼β has the opposite sign and stops the evolution effectively
once βTðνÞ equals V 0. The trace of the energy-momentum
tensor Tν, entering Eq. (8), is equal to

Tν ¼ mνðϕÞ ~nðϕÞ; ð9Þ

where ~nνðϕÞ ¼ nνðϕÞ=γ is the ratio of the number density
of neutrinos nν divided by the relativistic γ factor.
Equation (9) is valid for both relativistic and nonrelativistic
neutrinos. Here, we consider a coupling β between neutrino
particles and the quintessence scalar field ϕ as a field-
dependent quantity:

βðϕÞ≡ −
1

ϕc − ϕ
: ð10Þ

From Eq. (1), the neutrino mass is then given by

mνðϕÞ ¼
m̄ν

ϕc − ϕ
: ð11Þ

Here, ϕc denotes the asymptotic value of ϕ for which β and
mνðϕÞ would formally become infinite. By an additive shift
in ϕ, it can be set to an arbitrary value, e.g., ϕc ¼ 0. We
consider the range ϕ < ϕc. The divergence of β for ϕ → ϕc
in Eq. (10) is not crucial for the results of this paper—β and
mν never increase to large values, such that the immediate
vicinity of ϕc plays no role.
The coupling induces a total force acting on neutrinos

given by ∇ðΦν þ βδϕÞ and appearing in the corresponding
Euler equation [15], as is typical in coupled cosmologies
[22]. For values 2β2 > 1, the fifth force induced on
neutrinos by the cosmon becomes larger than the gravita-
tional attraction. For the large values of jβj ≈ 102 reached
during the cosmological evolution, the attraction induced
by the cosmon gives rise to the formation of neutrino
lumps. As shown in [3,15], this represents the major
difficulty encountered within growing neutrino models
and also, simultaneously, one of its clearest predictions
with respect to alternative dark energy models: the presence
of neutrino lumps at scales of ≈10 Mpc or even larger,
depending on the details of the model [3]. Since the
attractive force between neutrinos is 104 times bigger than
gravity, the dynamical time scale of the clumping of
neutrino inhomogeneities is also, therefore, a factor of
104 faster than the gravitational time scale. Even the tiny
inhomogeneities in the cosmic neutrino background grow
very rapidly nonlinear. The impact of such structures has
been shown to depend crucially on the strength of back-
reaction effects [17,19]. For constant coupling, the effect of
backreaction is strong and can lead to neutrino lumps with
rapidly growing concentration, reaching values of the
gravitational potential which exceed the observational

constraints. The effect is so strong that it is able to destroy
the oscillatory effect first encountered in [22], in which
neutrino lumps were forming and then dissipating. No
realistic cosmology has been found in this case [20]. With
the varying coupling of Eq. (10), a similar behavior will be
found for large neutrino masses. For small neutrino masses,
the oscillatory effects will be dominant and realistic
cosmologies seem possible [19].

III. NUMERICAL TREATMENT OF GROWING
NEUTRINO COSMOLOGIES

A. Modified Boltzmann code

For the early stages of the evolution of the growing
neutrino quintessence model, neutrinos behave as standard
relativistic particles and the coupling to the cosmon field is
suppressed. Therefore, the Klein-Gordon equation can be
linearized and no important backreaction effects are
present. The Einstein-Boltzmann system of equations for
the relativistic neutrinos and all other species has been
solved using a modified version of the code CAMB [23]
(hereafter referred to as nuCAMB), used and developed
already in previous papers on mass-varying and growing
neutrino cosmologies. We refer the reader to previous
publications [3,4,13,15] for details about the implementa-
tion of nuCAMB. These equations are valid until neutrinos
become nonrelativistic and as long as perturbations are still
linear. The neutrinos can be seen as a weakly interacting
gas of particles in thermal equilibrium with a phase-space
distribution fðpÞ, with p denoting the momentum. The
statistical description is, in the case of neutrinos, a Fermi-
Dirac distribution, given by

fFDðpÞ ¼
1

eðEðpÞ−μÞ=T þ 1
; ð12Þ

where μ is the chemical potential and EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
the particle energy. Then the number density of neutrinos,
the energy density, and the pressure are given, respectively,
by

nν ¼
2

ð2πÞ3
Z

d3pfFDðpÞ; ð13Þ

ρν ¼
2

ð2πÞ3
Z

d3pEðpÞfFDðpÞ; ð14Þ

Pν ¼
2

ð2πÞ3
Z

d3p
p2

EðpÞ fFDðpÞ: ð15Þ

The solution of the Boltzmann hierarchy of neutrinos
coupled to the perturbed Einstein equations (3) and (4),
together with the solution of the background Klein-Gordon
equation (8), form the basis of the modification of
nuCAMB with respect to the standard code CAMB, which
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handles dark matter, photons, and baryons altogether. We
recall that, for growing neutrino quintessence, the neutrino
mass depends on the cosmon field ϕ and, therefore, on the
scale factor a.
The ratio of the initial mass of the neutrinos to their

temperature (given in eV) is calculated in nuCAMB as
follows:

r̂νeV ≡
�
m
T

�
ν;camb

¼ ð7=8Þðπ4=15Þ
ð3=2Þζð3Þ ×

ρcrΩν;input

ρν
: ð16Þ

The first fraction comes from the relation mν ≈ ρν=nν ¼
ðð7

8
π4

15
Þ= 3

2
ζð3ÞÞTν, which is valid in the nonrelativistic limit

of Eqs. (12)–(15); the critical density is defined as usual:

ρcr ¼ 3H2
0;input

8πG . The second fraction is a rescaling that corrects
the neutrino density in order to match the wanted Ων;input

given as an input value. The code performs an iterative
routine that varies the initial conditions in such a way that
the input parameters are obtained at the present time. Since
this is not exact, the final values of H0 and Ων might vary
slightly with respect to the given input values. The ratio
r̂νeV depends on the input parameters H0;input (via the
critical density) and on Ων;input.

1 Furthermore, the neutrino
energy density ρν and the photon energy density ργ at
relativistic times are related as

ρν ¼ Nν ×
7

8
×

�
4

11

�
4=3

ργ; ð17Þ

where Nν ¼ 3 is the number of neutrino species. The use of
these formulas is valid if initial conditions are set when
neutrinos are nonrelativistic, where the linear regime still
applies. For initial conditions set at an earlier time,
relativistic corrections have to be taken into account.
After solving the Einstein-Boltzmann system, realizations
of the fields δνðkÞ and vpec;νðkÞ at an early time are
obtained from nuCAMB and are then used as the initial
conditions for the neutrino distribution in the growing
neutrino quintessence N-body simulation. This will be
explained in more detail at the end of the following section.

B. N-body simulation

For N-body simulations, we use here the code developed
in [16,17,19] and then refined in [20] and in the present
work, which uses a particle-mesh approach for the neutrino
and dark matter particle evolution and a multigrid approach
for solving the nonlinear scalar field equations. In Table I
we describe the parameters of the models discussed in this
paper. We consider five models with different neutrino
masses.
Our N-body simulation differs from standard Newtonian

N-body codes in many ways, the most important one being
that we evolve the cosmon ϕ and the gravitational poten-
tials Φ and Ψ separately. While neutrinos, dark matter, and
the cosmon are nonlinear in the N-body simulations, we

TABLE I. Table of parameters for the six models considered in this work. The top part refers to the output values computed with the
linear nuCAMB code. The bottom part refers to values computed within the N-body simulation. Quantities denoted with a subscript 0
are values at the present time, a ¼ 1.0. The hmνi½a1∶a2� is the root mean squared (rms) value of the neutrino mass in units of eV
computed between a ¼ a1 and a ¼ a2. The same notation is also valid for hwνϕi½a1; ∶a2� corresponding to the equation of state of the
combined cosmon and neutrino fluid which represents dynamical dark energy. afinal is the final time at which simulations were computed
accurately. Therefore, for the models M3–M6 we cannot cite values of present time quantities or averages at times beyond afinal. The
input values for nuCAMB corresponding to all of the models can be found in Table II of Appendix A.

Cosmological parameters Growing neutrino models

Linear values M1 M2 M3 M4 M5 M6

Ων0 þΩϕ0 0.686 0.688 0.692 0.701 0.693 0.697
Ων0 3.8 × 10−3 2.6 × 10−2 1.64 × 10−2 4.7 × 10−2 6.1 × 10−2 9.4 × 10−2

h 0.671 0.673 0.6818 0.701 0.722 0.740
mν0 (eV) 0.060 0.407 0.239 0.730 1.000 1.712
hmνi½0.4∶0.6� (eV) 0.040 0.067 0.134 0.277 0.399 0.701
hmνi½0.8∶1.0� (eV) 0.099 0.152 0.318 0.661 0.907 1.51
hwνϕi½0.9∶1.0� −0.97 −0.97 −0.95 −0.92 −0.90 −0.85
N-body values
Ων0 þΩϕ0 0.688 0.690 � � � � � � � � � � � �
Ων0 2.5 × 10−2 1.9 × 10−2 � � � � � � � � � � � �
mν0 (eV) 0.038 0.078 � � � � � � � � � � � �
hmνi½0.4∶0.6� (eV) 0.048 0.069 0.1436 0.280 0.401 0.676
hmνi½0.8∶1.0� (eV) 0.120 0.164 � � � � � � � � � � � �
hwνϕi½0.9∶1.0� −0.95 −0.96 � � � � � � � � � � � �
afinal 1.0 1.0 0.84 0.70 0.65 0.67

1r̂νeV is also the conversion factor between the mass units in the
N-body code and units in eV.
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assume that the gravitational potentials Φ and Ψ are small,
which is valid in cosmological applications, even for large
deviations of standard ΛCDM and at small scales. The
perturbation in the dark energy scalar field δρϕ can be
calculated from the perturbation of the energy density of the
cosmon field

δρϕ ¼ ϕ̄0δϕ
a2

þ Vðϕ̄Þδϕ: ð18Þ

The evolution of the homogeneous potential of the cosmon
field can be obtained through its energy density and
pressure in the following way:

VϕðaÞ ¼
1

2
ðρϕðaÞ − pϕðaÞÞ; ð19Þ

while the perturbations in the potential can be approxi-
mated by

δVϕðaÞ ¼ −
1

2
ðδρϕðaÞ þ 3δpϕðaÞÞ: ð20Þ

The cosmon field can cluster and, therefore, its spatial
gradients are nonvanishing, so that, after averaging over the
volume of the box, the energy density of the cosmon field is

ρ̄ϕ ¼ 1

2
_ϕ2 þ 1

2a2
ð1þ 2ΦÞ∂iϕ∂jϕδ

ij þ VðϕÞ; ð21Þ

while its pressure reads

P̄ϕ ¼ 1

2
_ϕ2 −

1

6a2
ð1þ 2ΦÞ∂iϕ∂jϕδ

ij þ VðϕÞ: ð22Þ

We will use for the following a convention in which bars
denote spatial averages, while angular brackets denote time
averaged quantities. The evolution of the cosmon field is
solved using a multigrid relaxation algorithm, known as the
Newton-Gauß-Seidel (NGS) solver, which was originally
developed for fðRÞ modified gravity simulations [24] and
has also been implemented into the growing neutrino N-
body simulations in [19]. The bottom part of Table I lists
the results of the six models computed using the N-body
simulations.
In the case of neutrinos, the mass is a time-varying

quantity following Eq. (11). Neutrinos obey a modified
geodesic equation,

duμ

dτ
þ Γμ

νλu
νuλ ¼ βðϕÞ∂μϕþ βðϕÞuνuμ∂νϕ; ð23Þ

in which the right-hand side gets a contribution from the
coupling.
Simulations start at an initial value of ain ¼ 0.02. Up

until a ≈ 0.30, the dark matter particles, the cosmon field,
and the gravitational potentials are evolved on the grid. For
dark matter particles, we take the standard initial conditions

from nuCAMB and start the particle-mesh algorithm that
solves the Poisson equation (3) at an initial redshift of
z ¼ 49. This is not the most accurate way of setting initial
conditions for cosmological dark matter simulations (see,
for example, the recent N-body comparisons in [25]), but
since in this work we are not interested in detailed
substructures of dark matter halos or a percent-accurate
power spectrum, we find that our approach gives a correct
description at the scales of interest. Neutrinos are first
treated differently from other particles, as a distribution of
relativistic particles in thermal equilibrium and no back-
reaction effects from neutrino structures are taken into
account. Starting from a scale factor of approximately
aini ≈ 0.30 (depending on the exact parameters of each
model), which is when neutrinos become nonrelativistic,
neutrinos are also projected on the grid: their phase-space
distribution is sampled using effective particles. Since their
equation of state is nonrelativistic, we can approximate the
phase-space distribution by

fνðx; vÞ ¼ n̄νfFDðjvν − vpec;νðxÞjÞð1þ δvðxÞÞ; ð24Þ

where fFD is the Fermi-Dirac distribution (12). The
thermal velocities of the neutrinos are the difference
between their total velocities and their peculiar velocities
vth;ν ¼ vν − vpec;ν. We obtain δvðxÞ and vpec;νðxÞ by
Fourier transforming the momentum-space realization of
those fields obtained at the time aini from nuCAMB.
Equation (24) is solved for vth;ν in order to obtain the
correct thermal distribution of particles and we duplicate
the number of neutrino particles in each grid, assigning to
each of them a thermal velocity which is equal in
magnitude but opposite in direction, to avoid a distortion
of the distribution of peculiar velocities at larger scales than
a single grid cell size. For a large enough number of
effective neutrino particles (i.e., when there is much more
than one particle per cell), the distortion of the peculiar
velocities by thermal velocities should be negligible. The
correct neutrino density one would obtain from the Fermi-
Dirac distribution for a nonrelativistic particle reads

hρνðxÞifν ¼
Z

d3vmνfνðx; vÞ ¼ mνn̄νð1þ δvðxÞÞ: ð25Þ

Since we need to enforce the right-hand side of (25) at each
grid cell of comoving volume a3ΔV, where the mass of the
neutrinos is given by the scalar field, we have a condition
on the number of particles Npart, such that

MνhNparti
a3ΔV

¼ mνn̄νð1þ δvðxÞÞ; ð26Þ

is fulfilled (more details of these methods can be found in
[17]). When neutrinos enter as particles into the N-body
simulation and, therefore, backreaction effects from neu-
trino structures start becoming important, the calculation of
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the fields and the potentials becomes computationally
demanding due to the nonlinearity of the terms sourcing
the continuity (7) and Klein-Gordon equations (8). Since
these equations cannot be linearized due to the large values
of the coupling parameter βðϕÞ, the multigrid Newton-
Gauß-Seidel solver is of crucial importance. For the
parallelization of the code, we use a simple OpenMP
approach, which calculates in parallel, for the available
processing cores, the equations of motion of the particles,
and the fast Fourier transforms. In Table III we describe all

of the parameters related to the N-body simulations,
including box and grid size.

IV. LUMP DYNAMICS AND THE LOW
MASS–HIGH MASS DIVIDE

We find two different regimes for the nonlinear evolution
of neutrino lumps, depending on the average value of the
neutrino mass. For light neutrino masses during the
lump formation process, the neutrinos are accelerated to

FIG. 1. Snapshots of the number density contrast of neutrinos δnνð~xÞ≡ nνð~xÞ=n̄ν − 1 at different times. (Left panel) Model M2, at
scale factors a ¼ 0.45, 0.7, 0.75, and 0.95, from top to bottom. The overdensity oscillates between values close to 1 (represented as light
tones (yellow in the color version)) at early times, where there are no lumps, to values close to 10 (dark tones (blue and purple in the
color version)), where several concentrated lumps form at intermediate times. At later times lumps dissolve and the overdensity
decreases back to values close to unity. (Right panel) Model M4, at scale factors a ¼ 0.35, 0.42, 0.53, and 0.64, from top to bottom. The
neutrino lumps start growing at early times and merge progressively into larger and more concentrated structures. At the end, almost all
neutrinos are attracted to a single, very massive lump.
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relativistic velocities. Subsequently, the lumps dissolve
and form again periodically, as described in detail in
Refs. [18,19]. We demonstrate this behavior in the left
panel of Fig. 1. The repeated acceleration epochs heat the
neutrino fluid to a huge effective temperature, such that
neutrinos have again an almost relativistic equation of state
during alternating periods of time.
By contrast, the behavior for large neutrino masses is

qualitatively different. The concentration of the lumps
continues to grow after their first formation. Lumps merge
and typically do not dissolve. The neutrino number density
contrast reaches high values at late times. This is demon-
strated in the right panel in Fig. 1 for an average value of the
neutrino mass mν;av ¼ 0.4 eV in the range 0.4 < a < 0.6.
This behavior resembles the one found for a constant
cosmon-neutrino coupling in [16–18].
Because of the increasing value of the concentration and

the increasing cosmon-neutrino coupling, the characteristic
time scale becomes very short and the gradients very large.
This exceeds the present numerical capability of our
simulations, typically at a value of the scale factor some-
what larger than a ¼ 0.6. In Fig. 2 we show snapshots for
two different values of neutrino masses shortly before the
simulation breaks down.
The transition between the “heating regime” for small

neutrino masses and the “concentration regime” for large
neutrino masses occurs in the range hmνi½0.4∶0.6�≈
0.07–0.14 eV, where the time average is taken for
0.4 < a < 0.6. The present value of the neutrino mass
can be substantially larger due to oscillations and the
continued increase of the mass and the temperature. For
example, the phenomenologically viable model with

hmνi½0.4∶0.6� ¼ 0.07 eV corresponds to a present neutrino
mass of around 0.08 eV, but the time oscillations grow the
neutrino mass to values of up to 0.5 eV for very short
intervals in the scale factor a (compare to Fig. 5 below).
In Fig. 1 we show the distribution of the number (over)

density contrast δnνð~xÞ≡ nνð~xÞ=n̄ν − 1 at four different
times and for two different models considered here,
namely, M2 (left panels) and M5 (right panels). For M2
as well as for models with smaller masses (not shown here),
the neutrino lumps form and dissolve very quickly. The
lumps are never stable and neutrinos accelerate to relativ-
istic velocities when they fall into the gravitational poten-
tials. The small lumps are also distributed homogeneously
across the simulation box (see the third panel from the top
on the right of Fig. 1). The lumps reach maximal number
density contrasts of about δnν ≈ 10. For M5 and for bigger
masses, the neutrino lumps become stable, accreting more
and more particles with the passing of time and increasing
their concentrations. This leads to strong backreaction
effects, changing the background cosmological evolution.
After some time, all of the neutrinos are concentrated in
very big lumps, reaching very high values of δν ≈ 50–100,
where δν ≡ ρνð~xÞ=ρ̄ν − 1; see Fig. 2. After this point, the
numerical framework for the growing neutrino quintes-
sence evolution breaks down and we can no longer reliably
solve the coupled system of equations.

V. COSMOLOGICAL EVOLUTION IN THE
LIGHT NEUTRINO REGIME

As we have seen in the previous section, there is a
qualitative difference between the cosmological evolution

FIG. 2. Snapshots of the neutrino overdensity field δνð~xÞ for models (top left) M4 and (bottom left) M6 at scale factors of a ¼ 0.64,
and 0.62, respectively. In these models, neutrino lumps cluster into large stable structures with a high concentration, starting from a
bottom-up approach, as was shown for model M4 in Fig. 1. Neutrino structures occupy large parts of the simulation box, corresponding
to scales of ∼50 Mpc. At these scale factors, the forces introduced by the cosmon coupling are too strong to be resolved by our
numerical approach, and our simulation breaks down.
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of a model with a light or a heavy neutrino mass, the
boundary being a present neutrino mass value of roughly
≈0.5 eV (calculated in linear theory). In this section we
explore more in detail the evolution of background quan-
tities in the light mass model M2, whose parameters are
shown in detail in Table I for the linear calculation in
nuCAMB (the top panel) and for the N-body computation
(the bottom panel). We study in detail the differences
appearing in the evolution of background quantities when
nonlinear physics and backreaction are taken into account.
The standard definition for the homogeneous energy

density fraction of the cosmon field ϕ is

Ωϕ ¼ 8πG
3H2

ρ̄ϕ; ð27Þ

where ρ̄ϕ is the background energy density of a homo-
geneous scalar field ρ̄ϕ ¼ KðϕÞ þ VðϕÞ and KðϕÞ its
kinetic energy. In linear theory, the homogeneous term
would be the only term entering into Ωϕ; on the contrary,
within the N-body simulation, the field is nonhomogeneous
and the combined energy density of the coupled neutrino-
cosmon fluid also receives a contribution from the pertur-
bations δρϕ of the nonhomogeneous cosmon field, given by
Eq. (18). The important quantity determining the evolution
of a dynamical dark energy is not the energy density of the
cosmon alone, but the energy density of the combined
cosmon-neutrino fluid, given by

Ωϕþν ¼
8πG
3H2

ðρ̄ϕ þ ρ̄νÞ: ð28Þ

The average energy density of the neutrinos is not indi-
vidually conserved and its evolution is given by the
continuity equation with a coupling term on the rhs [17,22],

ρν þ 2Hρν ¼ −βðϕÞϕ0ρν; ð29Þ

where ϕ0 is the time derivative of the field with respect to
conformal time τ. The corresponding equation of state of
the coupled fluid can then be defined as the sum of the
pressure components divided by the sum of the density
components:

wνþϕ ¼ p̄ϕ þ p̄ν

ρ̄ϕ þ ρ̄ν
: ð30Þ

In the literature [4,26–28], there are several definitions of
the effective equation of state or the observed equation of
state in the case in which the scalar field is coupled to other
particles. We argue that (30) is actually the equation of state
one would observe from the evolution of the Hubble
function (i.e., with supernovae and standard candle meth-
ods of redshift distance measurements). In Appendix B we
comment further on this and show a comparison between

the “observed” and theoretical equation of state of dark
energy in Fig. 10.
In Fig. 3 we plot for model M2 the background evolution

of the neutrino energy density Ων (the orange lines) and the
combined cosmonþ neutrino fluid energy density Ωνþϕ

(the blue lines), as defined in Eq. (28). The dashed lines
correspond to the linear computation in nuCAMB, while
the solid lines correspond to the results of the N-body
simulation. One can see that the effect of nonlinearities and
backreaction is quite small and is mostly just visible as a
phase shift in the oscillations of Ων, which is due to the
dynamics of the oscillating lumps, which alter the field-
dependent mass of the neutrinos as a function of time and
space. The same trend is observed in model M1 (not shown
here). This behavior tells us that, for small neutrino masses,
the effects of backreaction on the background evolution are
practically negligible and a linear computation is enough to
analyze those models further, with a considerable simpli-
fication with respect to the joint linear and nonlinear
analysis done in [15].
We show in Fig. 4 the neutrino equation of state wν (the

orange lines) as well as the combined cosmon-neutrino
fluid equation of state wνþϕ, as defined in Eq. (30) (the blue
lines), for the case of both the linear computation with
nuCAMB (the dashed lines) and the nonlinear computation
(the solid lines). In the linear analysis, the neutrinos are
treated initially as relativistic particles: as the mass
increases, they become more and more nonrelativistic,
reaching a wν of exactly zero at late times. On the contrary,
the N-body simulation is able to follow the oscillations
in the equation of state of the neutrinos, which are caused
by the fact that neutrinos get accelerated to relativistic

FIG. 3. Evolution of Ωϕþν (darker grey lines, blue in the color
version) and Ων (the lighter grey lines (orange in the color
version)) for model M2, compared between the linear output from
nuCAMB (the dashed lines) and the nonlinear calculation of the
N-body simulation (the solid lines). The total cosmon-neutrino
fluid has the same background evolution in the simulation as in
the linear calculation. The neutrino energy density is somewhat
larger in the simulation and shows a phase shift in its oscillations,
as discussed in the text.
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velocities when they fall into deep gravitational and
cosmon potentials. Once they are in these lumps and they
have acquired high speeds, their pressure increases and
they tend to escape again from these lumps, causing the
oscillating neutrino structures. When they are far away
from the cosmon potentials, their velocities decrease and
they become nonrelativistic again. The fifth force acting
among the neutrinos attracts them again to the cosmon
potential wells, and the whole cycle repeats itself.
For the combined equation of state wνþϕ, we find that the

simulation predicts a slightly higher value than the linear
one; this can be explained by studying how the neutrino
fluid is heated due to the strong oscillations of the lumps.
By falling repeatedly in the cosmon potential wells and
increasing their kinetic energy, the neutrinos’ temperature
increases and, therefore, the neutrinos do not manage to
become again completely nonrelativistic. This can be seen
in the dashed orange lines of plot 4, where the curve of wν

does not touch the zero axis after a ≈ 0.5. We will see in
Sec. VI that the neutrinos depart from their initial Fermi-
Dirac distributions and reach temperatures which are high
compared to the photon background.
In Fig. 5, we show the evolution of the spatial average of

the neutrino mass in the N-body simulation as a function of
the scale factor a. One can see that the value of m̄v varies
along an order of magnitude, from approximately 10−2 to
10−1, throughout a cosmological time interval. Because of a
phase shift in the oscillation pattern, which sets in at around
a ≈ 0.8, the present day value of the average neutrino mass

can be quite different from the one estimated with the linear
analysis (and this change depends on the precise parameters
of the model), so that the best estimate for the average
cosmological neutrino mass today is a time average of
m̄vðϕÞ at late times where a ¼ 0.8–1.0. We can see that the
big discrepancies between the masses of models M1 and
M2 calculated in linear theory (e.g., Table I) are washed
away when nonlinearities and backreaction effects are
taken into account, i.e., for small neutrino masses. Even
if the present neutrino masses for models M1 and M2 differ
by an order of magnitude in linear theory, we find a very
similar time averaged value between the two models
in the N-body simulation: hmνi½0.8∶1.0� ¼ 0.120 and
hmνi½0.8∶1.0� ¼ 0.164, respectively. The oscillation pat-
tern of the neutrino mass for the more massive model (M2)
contains higher peaks and has a smaller frequency than the
oscillations in the less massive model (M1). For other
models, this comparison can be seen in Table I.

VI. HEATING OF THE NEUTRINO FLUID

The repeated acceleration of neutrinos to relativistic
velocities during the periods of lump formation and
dissolution lead to an effective heating of the neutrino
fluid. While we do not expect a thermal equilibrium
distribution of neutrino momenta and energies, it is
interesting to investigate how close the distribution is
to the Fermi-Dirac distribution of a free gas of massive

FIG. 4. Equation of state of the combined neutrino-cosmon
fluid wϕþν (darker lines (blue in the color version)) and equation
of state of neutrinos wν (lighter grey lines (orange in the color
version)). We compare the linear output (the dashed lines) to the
nonlinear one obtained from the N-body simulation (the solid
lines) for model M2. This model has a time averaged rms mass
hmνiðalÞ ¼ 0.164, where al ¼ 0.9 in the label denotes the center
of the time interval a ¼ ½0.8–1.0� used to take the average. For
wν, the linear output does not capture the oscillating equation of
state of neutrinos due to the formation of structures, while, for
wϕþν, both codes agree relatively well. At late times, the equation
of state predicted by the simulation has a somewhat higher value
and is phase shifted due to the heating of the neutrino fluid.

FIG. 5. Neutrino mass m̄ν (average over simulation volume) in
model M2 (dotted line, blue in the color version) and model M1
(solid line, orange in the color version), as a function of the scale
factor a, for the N-body simulation. The horizontal lines show
the time averaged rms value at a late time al ¼ 0.9, denoting the
center of the time interval of ½0.8∶1.0� considered for taking the
average. For model M2, the time averaged neutrino mass is
hmνiðalÞ ¼ 0.164 (dark grey dashed line, dark blue in the color
version), while for model M1 it is somewhat smaller hmνiðalÞ ¼
0.120 (light grey dashed line, dark orange in the color version).
One can observe that the oscillation frequency is higher for the
smaller hmνi mass and the peaks are higher for the larger hmνi.
The present neutrino masses of the two models calculated in
linear theory differ by an order of magnitude; on the contrary, the
time averaged masses are very close to each other.

DYNAMICS OF NEUTRINO LUMPS IN GROWING … PHYSICAL REVIEW D 94, 103518 (2016)

103518-9



neutrinos. This distribution depends on only two param-
eters, the neutrino mass and the temperature. At a given
time, we associate the neutrino mass to the space averaged
neutrino mass. The temperature can be associated to the
mean value of the momentum.
The energy of a relativistic particle is given by

Eðp;mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
; ð31Þ

while its kinetic energy Ek ¼ Eðp;mÞ −m. Equivalently,
the kinetic energy is defined as

Ek ¼
Z

~v · d~p; ð32Þ

which yields Ek ¼ mðγ − 1Þ and reduces in the limit of
very small velocities (v ⋘ c) to the usual Ek ¼ mv2=2.
From there, the Fermi-Dirac distribution as a function of
momentum p ¼ j~pj can be obtained in the standard way. It
depends onm and T. Form ≪ T, it can be approximated by
the relativistic distribution, while form ≫ T we recover the
Maxwell-Boltzmann distribution. The distribution of par-
ticle momenta is then given by

PðpÞdp ¼ 4πp2

ð1þ eðEðp;mÞ−μÞ=TÞ dp; ð33Þ

where the factor 4π comes form the angular integration of
the three-dimensional momentum. In the ultrarelativistic
limit, we can analytically integrate the momentum p over
its distribution equation (33) and invert p̄ðT̄Þ to yield the
mean temperature as a function of the mean momentum:

T̄ ¼ 180ζð3Þ
7π4

p̄: ð34Þ

We neglect the chemical potential in (33) because the
exponential term in the denominator is 2 or 3 orders of

magnitude larger than unity. Since, in our case, the average
momentum and mass of the neutrinos are of the same order,
we cannot use either a nonrelativistic or an ultrarelativistic
limit. We need to consider both the mass and the momen-
tum in the relativistic energy equation (31). Therefore, for
each model and each time, we numerically find T̄ as a
function of the mean momentum p̄.
We extract for a ¼ 1 the temperatures

T̄ ¼ 0.077 eV ðM1; m̄ν ¼ 0.2404Þ;
T̄ ¼ 0.065 eV ðM2; m̄ν ¼ 0.2327Þ: ð35Þ

They are higher by a factor 327 (M1) or 276 (M2) as
compared to the cosmic microwave background (CMB)
photon temperature 2.35 × 10−4 eV. This demonstrates the
unconventional heating of the neutrino fluid due to the
formation and dissolution of lumps. The high temperatures
are connected with the almost relativistic equation of state
of the neutrinos seen in Fig. 4. Overall, the observed
momentum distributions come rather close to the thermal
equilibrium distribution. This also holds for the distribution
of kinetic energies. With the bulk quantities as momenta
and kinetic energies roughly distributed thermally, this is an
example of prethermalization [29].
In Fig. 6, we fit the distribution of momenta of the

neutrino particles on the grid (shown with a histogram) with
a Fermi-Dirac distribution. The actual distribution of
momenta fits the thermal equilibrium distribution very
well. At later times (the orange shade), the fit is slightly
less good: neutrinos might be accelerating towards or away
from lumps, giving them an extra kick that shifts the peak
of the distribution of momenta.
When comparing the equation of state of the neutrinos

obtained from the N-body simulation to a neutrino equation
of state wν ¼ pν=ρν, using our Fermi-Dirac fit to the
particle distribution and Eqs. (15) and (14), we get very

FIG. 6. Distribution of the momenta of the neutrino particles in the simulation for two different times, a ¼ 0.75 (the dark shade (purple
in the color version)) and a ¼ 1.0 (the lighter shade (orange in the color version)), compared to a Fermi-Dirac distribution with a
temperature given by the mean of the distribution (the dashed lines). (Left panel) For model M1, the Fermi-Dirac fits very well for
temperatures of T̄ ¼ 0.018 eV and T̄ ¼ 0.077 eV, respectively, for each scale factor. (Right panel) For model M2, the fit is also good,
with the corresponding temperatures being T̄ ¼ 0.018 eV and T̄ ¼ 0.065 eV. The CMB photon temperature is 2.35 × 10−4 eV, this
means that the nonlinear cosmon-neutrino interactions heat the neutrino background by more than a factor of 100.
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good agreement, taking into account that, for the Fermi-
Dirac fit, we are neglecting the spatial variation of the
neutrino mass mνðϕÞ. For model M2 at the scale factor
a ¼ 0.75, we obtain from the N-body simulation a
neutrino equation of state of wν ¼ 0.081, while, using
the Fermi-Dirac fit to the distribution of particles with a
mean temperature of T̄ ¼ 0.018 eV and an average neu-
trino mass m̄ν ¼ 0.1835, the proper calculation yields
wν ¼ 0.086. For a later time, at a ¼ 1.0 the N-body
simulation gives us a value of wν ¼ 0.207, while the
Fermi-Dirac fit with a mean temperature of T̄ ¼
0.065 eV and an average neutrino mass m̄ν ¼ 0.2327
amounts to a neutrino equation of state of wν ¼ 0.182.
To visualize the evolution of wν, we can observe from

Fig. 4 that neutrinos in the N-body simulation start as
nonrelativistic particles and oscillate between being almost
relativistic and completely nonrelativistic in the interval
a ¼ ½0.3; 0.6�. However, at later times where a≳ 0.7, the
neutrino equation of state still oscillates but never reaches
a value of zero again. This is in agreement with our
description of the heating of the neutrino fluid. Since the
mean temperature of the neutrino fluid is increasing with
time—and therefore its mean kinetic energy and pressure—
the minimum of the oscillations of the neutrino equation of
state increases also in time and departs from zero, once
neutrinos are heated to very high temperatures due to the
collapsing and dissolving of the neutrino-cosmon lumps.

VII. GRAVITATIONAL POTENTIALS OF
NEUTRINO LUMPS

The gravitational potential Φ is a good measure of the
physics going on in structure formation. We know, from
observational constraints, that Φ is of the order of 10−5 on
cosmological scales [14,15]. In ΛCDM, the gravitational
potential is sourced mainly by dark matter perturbations. In
Figs. 7 and 8, we show that, for models with small neutrino
masses, the neutrino contribution to Φ remains several
orders of magnitude smaller than the CDM contribution, at
all scales and at all times. Moreover, one can observe an
oscillation in time of the neutrino gravitational potential.
For models with large neutrino masses, the neutrino
contribution grows monotonically with time. At large
scales k≲ 0.3 h=Mpc and at late times, the neutrino lump
induced potential dominates over the cold dark matter
gravitational potential. This renders the total potential Φtot
too big to be compatible with present cosmological
constraints.
We show the scale dependence of the total gravitational

potential and the neutrino-induced gravitational potential
Φν at two different cosmic time scales, a ¼ 0.4 and
a ¼ 0.65, in Fig. 7. For a ¼ 0.4 (the solid lines), the
neutrino contribution is still subdominant for both model
M2 and model M5; this changes at a ¼ 0.65 for model M5
(the bottom panel). For model M2, the total gravitational
potential decreases in time, as is expected due to the effect

FIG. 8. Power spectra of the matter gravitational potential Φm
(the darker grey lines (blue in the color version)) and of the
neutrino contribution Φν (the lighter grey lines (orange in the
color version)) at two different scales, k ¼ 0.016 (the solid lines)
and k ¼ 0.116 (the dashed lines) as a function of scale factor a
with different scales on the top and bottom axis. For model M2,
the matter gravitational potential Φm is, at most, 10−5 at all times,
while the neutrino contribution is 2 to 3 orders of magnitude
smaller and displays time oscillations. In clear contrast, the
neutrino contribution from model M5 for very large scales,
reaches and dominates over the matter contribution for a≳ 0.5
and pushes the total Φ to high values that would be ruled out by
observations; see also Fig. 7. The rms neutrino mass has been
taken in the same interval range as for Fig. 7, where ae ¼ 0.5.

FIG. 7. Power spectra of the total gravitational potential Φt (the
darker grey lines (blue in the color version)) and of the neutrino
contribution Φν (the lighter grey lines (orange in the color
version)) for models M2 and M5 at the scale factors a ¼ 0.40
(the solid lines) and a ¼ 0.65 (the dashed lines), as a function of
scale. Model M2 has a rms time averaged neutrino mass
hmνiðaeÞ ¼ 0.07, where ae ¼ 0.5 stands for the central time in
the interval a ¼ ½0.4–0.6� used to take the average. Model M5 has
in the same interval a higher rms mass of hmνiðaeÞ ¼ 0.40. In the
first model, Φt at large scales is of the order of 10−5, while Φν is 3
to 4 orders of magnitude smaller at both cosmological times. For
model M5, in which neutrino lumps are stable and growing, one
sees that, at large scales, the total Φt starts with a value of 10−5 at
a ¼ 0.4, but it reaches 10−4 at later times. At a ¼ 0.65, the
neutrino contribution is dominant and neutrino structures have
migrated from small scales to large scales, as can be seen from the
dip in Φν at modes where k ¼ 0.2 − 1.0 h=Mpc.
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of dark energy, whileΦν increases especially at large scales.
For model M5, since the neutrino contribution dominates at
a ¼ 0.65, the total gravitational potential is raised to values
of 10−4 at large scales, while, at small scales (k≳ 0.4), the
neutrino contribution is still subdominant.
In Fig. 8, we show the power spectra of the total

gravitational potential Φ (the blue lines) and of the neutrino
contribution to it (the orange lines) at two different scales,
k ¼ 0.016 (the solid lines) and k ¼ 0.116 (the dashed
lines), as a function of the scale factor a. For model M2,
corresponding to an average early time neutrino mass of
0.07 eV, the total gravitational potential ΦðkÞ is 10−5 at all
times, while the neutrino contribution is 2 to 3 orders of
magnitude smaller and shows time oscillations. In clear
contrast, the neutrino contribution from model M5 (corre-
sponding to an average early time neutrino mass of
0.40 eV) for very large scales reaches and dominates over
the matter contribution (at a≳ 0.5) and pushes the total Φ
to high values that would be ruled out by observations. This
is due to the fact that neutrino lumps do not dissolve but
rather grow with continuously growing concentration and
higher gravitational potential.
There is also anticorrelation between the neutrino struc-

tures and the neutrino-induced gravitational potential, as
expected from the fact that neutrinos will tend to fall into
gravitational potential wells. In the left panel of Fig. 9, we
plot the values of the neutrino number density contrast
δnν ¼ nνð~xÞ=n̄ν − 1 and the negative neutrino-induced
gravitational potential Φν, along a diagonal line through
the simulation box. The correlation of peaks and troughs
(corresponding to an anticorrelation of δnν and Φν) is very
clear, and it is valid even for small substructures of the order
of a few megaparsecs. By plotting the neutrino density
contrast δν, we also show that, at the time a ¼ 0.75, the
neutrino number density and the energy density are

proportional, meaning that neither local mass variations
or relativistic speeds are having any effect in the neutrino
total energy. In the right panel of Fig. 9, we visualize the
neutrino-induced gravitational potential as a yellow region
marking the equipotential surface Φν ¼ þ1.0 × 10−7 and
the neutrino number overdensity structures colored blue,
purple, and red, corresponding to density contrasts δnν of
1.5, 2.0, and 4.0, respectively. For this model (M2) and at
this specific time, the neutrino structures are spread almost
homogeneously throughout the simulated volume.

VIII. CONCLUSIONS

We have investigated the dynamics of neutrino lumps in
growing neutrino quintessence and how it depends on the
mass of neutrinos. As a main result of this paper, we have
found a characteristic divide in the qualitative behavior
between small and large neutrino mass.
For light neutrino masses, the combined effects of

oscillations in the neutrino masses and the cosmon-neutrino
coupling lead to rapid formation and dissociation of the
neutrino lumps. The concentration in the neutrino struc-
tures never grows to very large overdensities. As a
consequence, backreaction effects remain small. The
effects of lump formation and dissociation lead to an
effective heating of the neutrino fluid to temperatures
much higher than the photon temperature. Because of this
heating, the neutrino equation of state again becomes close
to the one for relativistic particles. For a small present
average neutrino mass mν ¼ 0.06 eV, it was found pre-
viously [15] that the cosmology of growing neutrino
quintessence resembles very closely a cosmological con-
stant, making differences to the ΛCDM model difficult to
detect. We extend this qualitative feature to a whole range
of light neutrino masses.

FIG. 9. (Left panel) Line plot through the main diagonal of the simulation box for model M2 at a ¼ 0.75. The negative of the neutrino
contribution to the gravitational potential Φν (the dot-dashed lighter lines (blue in the color version)) oscillates in the range�1.0 × 10−7.
This is correlated to the neutrino density contrast (the black solid lines) and the number density contrast δnν ¼ nνð~xÞ=n̄ν − 1 (the darker
dashed lines (orange in the color version)), reaching values of up to 1.5. (Right panel) Snapshot of the same simulation, showing a
equipotential contour of the gravitational potential, forΦν ¼ þ1.0 × 10−7 in lighter areas (yellow in the color version), and the small but
dense neutrino lumps in darker areas (blue, purple and red in the color version), corresponding to density contrasts δnν of 1.5, 2.0, and
4.0, respectively.
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For large neutrino masses, one finds a qualitatively
different behavior. Big neutrino lumps form due to the
strong cosmon-mediated fifth force between neutrinos.
These lumps are stable and keep growing in concentration
and density. The strong clumping of the cosmic neutrino
background induces large backreaction effects on the
overall cosmic evolution. As a result, the combined
cosmon-neutrino fluid does not act effectively as a cos-
mological constant anymore, and compatibility with obser-
vations is difficult to achieve. This situation is similar to the
case of a constant cosmon-neutrino coupling [20].
The divide in the characteristic behavior reflects the

competition between heating of the neutrino fluid and lump
concentration. We have not yet established a quantitatively
accurate value of the parameter m̂ν, where the divide is
located, since the numerics are rather time consuming. In
principle, this divide will lead to an upper bound on the
present neutrino mass, as seen in terrestrial experiments.
For models in the vicinity of model M2, which seem
compatible with observations thus far, spatial average
neutrino masses as large as 0.5 eV can occur at the peak
of oscillations; cf. Fig. 5. We note that, if we live inside a

neutrino lump, the neutrino mass will be reduced in
comparison to the cosmological value.
We have further computed the strength of the neutrino-

induced gravitational potential. For light masses, this poten-
tial is found to be rather small, rendering a detection of the
neutrino lumps difficult. As neutrino masses increase
towards an intermediate mass region, before reaching the
heavy mass range incompatible with observation, the neu-
trino-induced gravitational potentials will get stronger. By
continuity, we expect that, in the intermediate mass region,
the clumped neutrino background becomes observable.

ACKNOWLEDGMENTS

We would like to thank Florian Führer for the insightful
help and the discussions about the model and its simulation.
V. P. and S. C. acknowledge support from the Heidelberg
Graduate School for Fundamental Physics. The authors
acknowledge support by the state of Baden-Württemberg
for the computational capabilities offered through the
bwHPC. This research has been supported by ERC-
AdG-290623DFG and through the Grant No. TRR33,
“The Dark Universe.”

APPENDIX A: INITIAL PARAMETERS FOR GENERATING THE MODELS IN nuCAMB
AND IN THE N-BODY SIMULATION

TABLE II. Table of initial parameters for each model, computed with nuCAMB. ~mν is the neutrino mass amplitude used in the
simulations, r̂νeV is the neutrino mass unit conversion factor between the simulations and nuCAMB. Vi is the initial value of the cosmon
potential.

CAMB values M1 M2 M3 M4 M5 M6

Input (Ωνh2) 0.048 0.048 0.075 0.018 0.038 0.098
~mν amplitude factor 8.35 × 10−5 2.0 × 10−4 6.0 × 10−4 9.9 × 10−3 8.8 × 10−3 8.8 × 10−3

Input r̂νeV factor 1.5045 1.5045 2.3508 0.5642 1.1911 3.0718
Vi 0.99 × 10−7 0.99 × 10−7 0.99 × 10−7 0.99 × 10−7 0.99 × 10−7 0.99 × 10−7

TABLE III. Table of numerical parameters for each N-body simulation run. Several tests were performed varying these parameters, but
the overall behavior for the purposes of this paper was the same. We also tested model M2 with grid sizes of 128 and 8 times the number
of particles, not noticing any qualitative difference in the dynamics. Only deviations of the order of 10% in perturbation quantities were
observed when varying the grid size or the number of particles.

N-body parameters Values Meaning

L 428 Box side length in Mpc=h
Ng 64 Grid size per dimension
Npdm 262 144 Number of dark matter particles in the simulation
Npν 524 288 Number of neutrino particles in the simulation
ngsacc 1.0 × 10−5 Numerical accuracy for the Newton-Gauß-Seidel (NGS) solver
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APPENDIX B: THE EFFECTIVE AND OBSERVED
EQUATION OF STATE OF DARK ENERGY

The equation of state w of a species is defined in terms of
its pressure and density as

w ¼ p
ρ
: ðB1Þ

For the case of coupled species, there have been several
definitions in the literature (cf. [4,26–28]). This is due to the
fact that when there is an exchange of energy and
momentum between a particle and a scalar field, the time
evolution of matter does not correspond anymore to the
volume dilution rule ρðaÞ ¼ ρ0a−3. Therefore, the equation
of state of the dark energy field will not be as simple as the
equation of state of a homogeneous scalar field, namely,

wϕ ¼ pϕ

ρϕ
¼ ð1=2a2Þ _ϕ2 þ VðϕÞ

ð1=2a2Þ _ϕ2 − VðϕÞ : ðB2Þ

In [4,26], two definitions of the equation of state (EOS) of
dark energy were investigated. The first one, called the
effective EOS weff , is given by

weff ≡ wϕ þ
β _ϕ

3H
ρν
ρϕ

; ðB3Þ

and the second one, named the “apparent” EOS wap, is
defined by

wap ≡ wϕ

1þ x
; ðB4Þ

with

x ¼ −
ρν;0
a3ρϕ

�
mνðϕÞ
mνðϕ0Þ

− 1

�
; ðB5Þ

where a 0 subscript denotes quantities at z ¼ 0. Notice that,
by construction, wap at the present epoch is identical to wϕ,
and also that wap can be smaller than −1. We find that
neither of these two definitions of EOSs describes the
dynamical dark energy field present in our model.
Since, in our model, the neutrino and cosmon field

behave together as a tightly coupled fluid, we are interested
in the conserved equation of state for the combined fluid.
This is given by the sum of both contributions from the
pressure divided by the sum of both densities. Therefore,
we define wνþϕ as

wνþϕ ≡ p̄ϕ þ p̄ν

ρ̄ϕ þ ρ̄ν
: ðB6Þ

This definition should agree with what we can extract
directly from observations of the Friedmann equation. The

equation of state wDEðzÞ of a general dark energy compo-
nent that fulfills the continuity equation (if it is composed
by two coupled fluids, the continuity equation is fulfilled
for the sum of densities and pressures) appears in the
Friedmann equation as

E2ðzÞ≡H2ðzÞ
H2

0

¼
�
Ωr;0ð1þ zÞ4 þΩm;0ð1þ zÞ3

þ ΩDE;0 exp

�Z
z

0

3ð1þ wDEð~zÞÞ
1þ ~z

d~z

�

þ Ωk;0ð1þ zÞ2
�
: ðB7Þ

Moreover, in a flat Universe and with a negligible con-
tribution from radiation, we can solve for wDEðzÞ and
obtain [30]

wDEðzÞ ¼
ð1þ zÞðE2ðzÞÞ0 − 3E2ðzÞ
3½E2ðzÞ −Ωm;0ð1þ zÞ3� : ðB8Þ

Thus, from background expansion observations, we can
obtain a constraint on wDEðzÞ, provided we know from
large-scale structure or CMB observations the present value
of Ωm. In Fig. 10, we compare the wDEðzÞ obtained from
Eq. (B8) and wνϕðzÞ, with both computed consistently
within the N-body simulation. In the former case, numeri-
cal noise in the derivatives of EðzÞ create certain scatter in
wDEðzÞ at late times.

FIG. 10. Different wðzÞ curves in the case of model M1
computed with the N-body simulation and compared to linear
theory. The dark grey dashed lines (red in the color version)
represent wDE computed from the Hubble function which is an
output of the linear code nuCAMB. The lighter solid line (orange
in the color version), representing wνþϕ is computed using the
standard pressure and density outputs from the simulation. The
dark dots (blue in the color version) stand for some set of
computed values of wDEðzÞ obtained from the Hubble function
that is calculated entirely within the N-body simulation. Because
of numerical noise in the oscillating derivatives of EðzÞ, there is
some scatter in the EOS obtained in this case.

CASAS, PETTORINO, and WETTERICH PHYSICAL REVIEW D 94, 103518 (2016)

103518-14



[1] L. Amendola, M. Baldi, and C. Wetterich, Growing matter,
Phys. Rev. D 78, 023015 (2008).

[2] C. Wetterich, Growing neutrinos and cosmological selec-
tion, Phys. Lett. B 655, 201 (2007).

[3] D. F. Mota, V. Pettorino, G. Robbers, and C. Wetterich,
Neutrino clustering in growing neutrino quintessence,
Phys. Lett. B 663, 160 (2008).

[4] A.W. Brookfield, C. van de Bruck, D. F. Mota, and D.
Tocchini-Valentini, Cosmology of mass-varying neutrinos
driven by quintessence: Theory and observations, Phys.
Rev. D 73, 083515 (2006); 76, 049901(E) (2007).

[5] G. La Vacca and D. F. Mota, Mass-varying neutrino in
light of cosmic microwave background and weak lensing,
Astron. Astrophys. 560, A53 (2013).

[6] X.-J. Bi, B. Feng, H. Li, and X. Zhang, Cosmological
evolution of interacting dark energy models with mass
varying neutrinos, Phys. Rev. D 72, 123523 (2005).

[7] R. Fardon, A. E. Nelson, and N. Weiner, Dark energy from
mass varying neutrinos, J. Cosmol. Astropart. Phys. 10
(2004) 005.

[8] D. B. Kaplan, A. E. Nelson, and N. Weiner, Neutrino
Oscillations as a Probe of Dark Energy, Phys. Rev. Lett.
93, 091801 (2004).

[9] C. Spitzer, Stability in MaVaN models, arXiv:astro-ph/
0606034.

[10] R. Takahashi and M. Tanimoto, Speed of sound in the mass
varying neutrinos scenario, J. High Energy Phys. 05 (2006)
021.

[11] F. Simpson, R. Jimenez, C. Pena-Garay, and L. Verde, Dark
energy from the motions of neutrinos, arXiv:1607.02515.

[12] N. Wintergerst and V. Pettorino, Clarifying spherical col-
lapse in coupled dark energy cosmologies, Phys. Rev. D 82,
103516 (2010).

[13] N. Wintergerst, V. Pettorino, D. F. Mota, and C. Wetterich,
Very large scale structures in growing neutrino quintes-
sence, Phys. Rev. D 81, 063525 (2010).

[14] N. Brouzakis, V. Pettorino, N. Tetradis, and C. Wetterich,
Nonlinear matter spectra in growing neutrino quintessence,
J. Cosmol. Astropart. Phys. 03 (2011) 049.

[15] V. Pettorino, N. Wintergerst, L. Amendola, and C.
Wetterich, Neutrino lumps and the cosmic microwave
background, Phys. Rev. D 82, 123001 (2010).

[16] Y. Ayaita, M. Weber, and C. Wetterich, Neutrino lump fluid
in growing neutrino quintessence, Phys. Rev. D 87, 043519
(2013).

[17] Y. Ayaita, M. Weber, and C. Wetterich, Structure formation
and backreaction in growing neutrino quintessence,
Phys. Rev. D 85, 123010 (2012).

[18] M. Baldi, V. Pettorino, L. Amendola, and C. Wetterich,
Oscillating non-linear large-scale structures in growing
neutrino quintessence, Mon. Not. R. Astron. Soc. 418,
214 (2011).

[19] Y. Ayaita, M. Baldi, F. Führer, E. Puchwein, and C.
Wetterich, Nonlinear growing neutrino cosmology, Phys.
Rev. D 93, 063511 (2016).

[20] F. Führer and C. Wetterich, Backreaction in growing
neutrino quintessence, Phys. Rev. D 91, 123542
(2015).

[21] C.-P. Ma and E. Bertschinger, Cosmological perturbation
theory in the synchronous vs. conformal Newtonian gauge,
Astrophys. J. 455, 7 (1995).

[22] M. Baldi, V. Pettorino, G. Robbers, and V. Springel,
Hydrodynamical N-body simulations of coupled dark en-
ergy cosmologies, Mon. Not. R. Astron. Soc. 403, 1684
(2010).

[23] A. Lewis, A. Challinor, and A. Lasenby, Efficient
computation of CMB anisotropies in closed FRW models,
Astrophys. J. 538, 473 (2000).

[24] E. Puchwein, M. Baldi, and V. Springel, Modified-gravity-
gadget: A new code for cosmological hydrodynamical
simulations of modified gravity models, Mon. Not. R.
Astron. Soc. 436, 348 (2013).

[25] A. Schneider, R. Teyssier, D. Potter, J. Stadel, J. Onions,
D. S. Reed, R. E. Smith, V. Springel, F. R. Pearce, and R.
Scoccimarro, Matter power spectrum and the challenge of
percent accuracy, J. Cosmol. Astropart. Phys. 04 (2016)
047.

[26] S. Das, P. S. Corasaniti, and J. Khoury, Superacceleration
as signature of dark sector interaction, Phys. Rev. D 73,
083509 (2006).

[27] F. Perrotta, C. Baccigalupi, and S. Matarrese, Extended
quintessence, Phys. Rev. D 61, 023507 (1999).

[28] F. Perrotta and C. Baccigalupi, On the dark energy
clustering properties, Phys. Rev. D 65, 123505
(2002).

[29] J. Berges, S. Borsanyi, and C. Wetterich, Prethermalization,
Phys. Rev. Lett. 93, 142002 (2004).

[30] L. Amendola and S. Tsujikawa, Dark Energy: Theory and
Observations (Cambridge University Press, Cambridge,
England, 2010).

DYNAMICS OF NEUTRINO LUMPS IN GROWING … PHYSICAL REVIEW D 94, 103518 (2016)

103518-15

http://dx.doi.org/10.1103/PhysRevD.78.023015
http://dx.doi.org/10.1016/j.physletb.2007.08.060
http://dx.doi.org/10.1016/j.physletb.2008.03.060
http://dx.doi.org/10.1103/PhysRevD.73.083515
http://dx.doi.org/10.1103/PhysRevD.73.083515
http://dx.doi.org/10.1103/PhysRevD.76.049901
http://dx.doi.org/10.1051/0004-6361/201220971
http://dx.doi.org/10.1103/PhysRevD.72.123523
http://dx.doi.org/10.1088/1475-7516/2004/10/005
http://dx.doi.org/10.1088/1475-7516/2004/10/005
http://dx.doi.org/10.1103/PhysRevLett.93.091801
http://dx.doi.org/10.1103/PhysRevLett.93.091801
http://arXiv.org/abs/astro-ph/0606034
http://arXiv.org/abs/astro-ph/0606034
http://dx.doi.org/10.1088/1126-6708/2006/05/021
http://dx.doi.org/10.1088/1126-6708/2006/05/021
http://arXiv.org/abs/1607.02515
http://dx.doi.org/10.1103/PhysRevD.82.103516
http://dx.doi.org/10.1103/PhysRevD.82.103516
http://dx.doi.org/10.1103/PhysRevD.81.063525
http://dx.doi.org/10.1088/1475-7516/2011/03/049
http://dx.doi.org/10.1103/PhysRevD.82.123001
http://dx.doi.org/10.1103/PhysRevD.87.043519
http://dx.doi.org/10.1103/PhysRevD.87.043519
http://dx.doi.org/10.1103/PhysRevD.85.123010
http://dx.doi.org/10.1111/j.1365-2966.2011.19477.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19477.x
http://dx.doi.org/10.1103/PhysRevD.93.063511
http://dx.doi.org/10.1103/PhysRevD.93.063511
http://dx.doi.org/10.1103/PhysRevD.91.123542
http://dx.doi.org/10.1103/PhysRevD.91.123542
http://dx.doi.org/10.1086/176550
http://dx.doi.org/10.1111/j.1365-2966.2009.15987.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15987.x
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1093/mnras/stt1575
http://dx.doi.org/10.1093/mnras/stt1575
http://dx.doi.org/10.1088/1475-7516/2016/04/047
http://dx.doi.org/10.1088/1475-7516/2016/04/047
http://dx.doi.org/10.1103/PhysRevD.73.083509
http://dx.doi.org/10.1103/PhysRevD.73.083509
http://dx.doi.org/10.1103/PhysRevD.61.023507
http://dx.doi.org/10.1103/PhysRevD.65.123505
http://dx.doi.org/10.1103/PhysRevD.65.123505
http://dx.doi.org/10.1103/PhysRevLett.93.142002

