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In the curvaton scenario, primordial curvature perturbations are produced by a second field that is
subdominant during inflation. Depending on how the curvaton decays [possibly producing baryon number,
lepton number, or cold dark matter (CDM)], mixtures of correlated isocurvature perturbations are
produced, allowing the curvaton scenario to be tested using cosmic microwave background (CMB) data.
Here, a full range of 27 curvaton-decay scenarios is compared with CMB data, placing limits on the
curvaton fraction at decay, rD, and the lepton asymmetry, ξlep. If baryon number is generated by curvaton
decay and CDM before (or vice versa), these limits imply specific predictions for non-Gaussian signatures
testable by future CMB experiments and upcoming large-scale-structure surveys.
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I. INTRODUCTION

The observed cosmic microwave background (CMB)
anisotropies and large-scale structure of the Universe are
thought to result from primordial curvature perturbations.
The prevailing model is that these perturbations are
produced during inflation, an epoch of accelerated cosmo-
logical expansion preceding the radiation-dominated era. In
the simplest scenarios, both the accelerated expansion and
the curvature perturbations result from the dynamics of a
single field (the inflaton) [1–3]. At the end of inflation, the
inflaton field is thought to decay and initiate the radiation-
dominated era, a process known as reheating [4,5].
Standard single-field models of inflation produce

nearly scale-invariant, Gaussian, and adiabatic primordial
fluctuations [2,3]. It may be challenging for the dynamics
of a single field to satisfy observational constraints to the
amplitude and scale dependence of the curvature pertur-
bations as well as constraints to the amplitude of a
background of primordial gravitational waves [6,7]. In
order to ease these requirements, a second field (the
curvaton) could source curvature perturbations and
later decay [3,6–9]. There are a variety of candidates
for the curvaton motivated by high-energy particle theory
[10–17]. In the curvaton scenario, constraints are more
permissive because the inflaton need only produce a
sufficiently long epoch of acceleration to dilute topologi-
cal defects and does not have to be the main source of
perturbations [3,6–8,18].
This scenario is distinct from single-field models in

predicting a nonadiabatic and non-Gaussian component
to primordial fluctuations [7,18–25]. Depending on when
the curvaton decays relative to the production of baryon

number, lepton number, and cold dark matter (CDM),
primordial fluctuations in different species could carry
an isocurvature component, in which the relative number
densities of different species fluctuate in space. In the
simplest models, these isocurvature fluctuations are
totally correlated (or anticorrelated) with the dominant
adiabatic component. Curvaton density fluctuations are
non-Gaussian, and so the curvature perturbation is non-
Gaussian [20,23]. Less phenomenological realizations of
the curvaton model in higher-dimensional theories may
break the instantaneous decay approximation, modifying
non-Gaussian and possibly isocurvature signatures [26].
The level of non-Gaussianity is set by rD, a parameter

describing the curvaton energy density. The level of
isocurvature is set by rD and ξlep, the chemical potential
describing cosmological lepton number [7]. Both param-
eters are constrained by observations.
Isocurvature perturbations alter the phase structure and

large-scale amplitude of CMB power spectra [27–32].
Planck satellite observations therefore indicate that CMB
anisotropy power spectra are consistent with adiabatic
fluctuations, requiring that isocurvature fluctuations con-
tribute a fraction ≲10−3–0.1 of the total observed power,
depending on various assumptions [33–35]. Big-bang
nucleosynthesis abundances are altered if ξ2lep > 0, and

so the primordial 4He and deuterium abundances impose
the limit jξlepj ≤ 0.03 [33,36–39].
In past work comparing curvaton model predictions with

CMB data, isocurvature constraints were obtained consid-
ering a single mode (neutrino, CDM, or baryon) at a time,
with consideration limited to several curvaton-decay sce-
narios [33–35,40–42]. Priors and parameter-space explora-
tion were implemented on the cross-/auto-power spectrum
amplitudes and correlation coefficients of single isocurva-
ture modes, rather than rD and ξlep, and then mapped to the
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curvaton parameter space. Neutrino isocurvature perturba-
tions were not included.1

In fact, each curvaton-decay scenario makes specific
predictions for the amplitudes and cross-correlations
(with ζ) of each isocurvature mode: the baryon isocurvature
mode, the CDM isocurvature mode, and the neutrino
isocurvature density mode [6,22,43]. We take a different
approach and separately consider all 27 curvaton-decay
scenarios. We use 2015 Planck CMB temperature and
polarization data to determine the allowed parameter space
of rD and ξlep (breaking degeneracies with other data),
computing the full set of isocurvature mode amplitudes and
cross-correlation spectra (with ζ) for each set of parameter
values. We use a Monte Carlo Markov Chain (MCMC)
analysis to obtain constraints to all these scenarios. We also
perform a Fisher-matrix analysis to determine the sensi-
tivity of a future cosmic-variance limited experiment to
these curvaton-decay scenarios.
The models fall into several categories. Some decay

scenarios generate purely adiabatic perturbations, and these
are always allowed, and these are unconstrained by limits
to isocurvature perturbations. Some generate order-unity
isocurvature fluctuations between nonrelativistic matter
and radiation, independent of rD and ξlep values, and these
are not allowed by the CMB data. Others generate
isocurvature perturbations that vanish when rD ¼ 1. Here,
the data impose lower limits to rD, with 95% confidence
regions given by rD > 0.93–0.99, depending on precise
model assumptions.
Finally, two cases lead to nonzero isocurvature pertur-

bations in both the baryon and CDM. The only way for
these scenarios to agree with the CMB data is for the
baryon and CDM isocurvature modes to have opposite
signs and nearly equal amplitudes, producing what is
known as a compensated isocurvature perturbation [44].
This naturally leads to a measured value of rD which is
significantly different from unity. For the curvaton-decay
scenario in which baryon number/CDM are generated
by/before curvaton decay, we find that rD¼0.1602þ:0051

−0.0047,
while for the scenario in which baryon number/CDM are
generated before/by curvaton decay, rD ¼ 0.8492þ0.0099

−0.0096 .
All of these decay scenarios (except the one where both

CDM and baryon number are produced after curvaton
decay) make specific predictions for the amplitude fnl of
local-type primordial non-Gaussianity, shown by the dis-
tributions in Fig. 1. These are all consistent with Planck
limits to fnl [45]. Future measurements of scale-dependent
bias in galaxy surveys (with sensitivity Δfnl ≃�1) [46,47]
and high-redshift 21-cm surveys (with sensitivity
Δfnl ≃�0.03) [48–50] could rule out these decay
scenarios.

We begin in Sec. II by reviewing basic aspects of the
curvaton model, including the production of curvature and
isocurvature perturbations. In Sec. III we continue with a
detailed discussion of curvaton-decay scenarios and the
resulting mixtures of curvature and isocurvature fluctua-
tions. The data sets, methodology, and resulting constraints
on these scenarios are presented in Sec. IV. We present our
conclusions in Sec. V.

II. THE CURVATON MODEL

The family of inflationary models is extremely rich.
Nonetheless, a successful inflationary model must meet
some fairly stringent requirements, producing a sufficient
number (∼60) of e-foldings to dilute dangerous early relics,
generating the observed value of As ¼ 2.2 × 10−9, and
agreeing with ever more precise measurements of the scalar
spectral index ns ≃ 0.96 [34]. Limits to the tensor-to-scalar
ratio (r < 0.11 [34]) must also be met. If these limits turn
into detections, single-field slow-roll models must further
obey a consistency relation, r ¼ 16ϵ (see Ref. [51] and
references therein), which relates r to the slow-roll
parameter ϵ. In fact, current data already rule out the
simplest of inflationary models [34].
One alternative to simple inflationary models is the

curvaton scenario, in which the inflaton (ϕ) drives
exponential cosmic expansion but is not the primary source
of the observed cosmological fluctuations. Instead, a
subdominant spectator field, the curvaton (σ), acquires
quantum fluctuations that are frozen after σ perturbation
modes cross the horizon during inflation. The curvaton
field then has a dimensionless fluctuation power-spectrum
of [7,18,40,52]

FIG. 1. Prediction for the amplitude fnl of primordial non-
Gaussianity in curvaton-decay scenarios allowed by isocurvature
constraints. The left panel shows models with fnl ∼ 1, which are
potentially testable by future high-redshift 21-cm surveys
[48–50]. The solid green curve shows the case in which baryon
number/CDM are generated after/by curvaton decay. The dotted
blue curve shows the case in which baryon number/CDM are
generated by/after curvaton decay. The solid black curve shows
the case in which baryon number/CDM are generated before/by
curvaton decay. The right panel shows the predicted fnl values if
baryon number/CDM are generated by/before curvaton decay,
which could be tested using scale-dependent bias measurements
from future galaxy surveys with sensitivity Δfnl ≃ 1.

1Exceptions are Refs. [33,37,42], which included isocurvature
in neutrinos but not other species.
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Δ2
σσðkÞ ¼

�
HI

2π

�
2

k¼aH
; ð1Þ

where HI is the inflationary Hubble parameter when the
mode with wave number k freezes out. Initially, these
fluctuations are isocurvature perturbations, as the curvaton
is energetically subdominant to the thermal bath (with
energy density ρR) produced at the end of inflation
[3,7–9,20,22]. The curvaton has mass mσ, and once the
condition mσ ≫ 3H is met (where H is the Hubble
parameter), σ begins to coherently oscillate. The curvaton
energy-density then redshifts as ρσ ≃ a−3, where a is the
cosmological scale factor. As the scaling ρσ ∼ a−3 is slower
than ρR ∼ a−4, the curvaton becomes increasingly ener-
getically important, converting the initial isocurvature
fluctuation into a gauge-invariant curvature perturbation
ζ [7,18,40,52]. Eventually the curvaton decays, initiating
the usual epoch of radiation domination.
During radiation domination, the cosmic equation of

state is constant, and it can be shown that this implies the
conservation of superhorizon modes of ζ, with value

ζ ¼ ð1 − rDÞζϕjD þ rDζσjD; ð2Þ
where

rD ¼ ρσ
ðρσ þ 4ρR=3Þ

����
D

ð3Þ

is the fractional contribution of the curvaton to the trace of
the stress-energy tensor just before curvaton decay. Here ζx
denotes the spatial-curvature perturbation on hypersurfaces
of constant x energy density (or equivalently, the energy-
density perturbation on surfaces of constant total ζ). The
notation ζxjD indicates that ζx is evaluated at the moment of
curvaton decay. For the duration of this paper, we neglect
the time dependence of the curvaton-decay rate [53] and
assume the usual instantaneous-decay approximation.
In principle, as we can see from Eq. (2), ζ has inflationary

and curvaton contributions. We follow the usual practice of
considering the scenario where the curvaton dominates the
curvature perturbation—that is, rDζσ ≫ ð1 − rDÞζϕ—and
so we may use the approximation [21,22]

ζ ≃ rDζσ: ð4Þ
Using expressions found in Ref. [54], and assuming a low
tensor-to-scalar ratio but detectable isocurvature and primor-
dial non-Gaussianity, it is straightforward to show that this
limit implies that the homogeneous curvaton field values are
sub-Planckian at horizon crossing.
Note that in this limit the spectral index of all perturba-

tion spectra (adiabatic and isocurvature) is given by one
value, ns. In general, there could also be a nonzero running
of the spectral index, αs ≡ dns=d ln k ≠ 0. In the context of
curvaton scenarios, αs is not a free parameter, but rather
depends on the functional form of the inflaton and curvaton

potential energies VðϕÞ and VðσÞ [55]. A survey of the
literature shows that for a wide range of curvaton potentials
that yield ns ≃ 0.96, the resulting αs value is not detectable
at Planck sensitivity levels [with a 68% confidence level
(C.L.) of Δα≃ 0.01] [34,56,57]. To isolate the effect of
isocurvature perturbations, to simplify our analysis, and to
leave our analysis unpinned to specific curvaton potentials,
we thus impose the restriction αs ¼ 0, which is consistent
with Planck data. In future work, it would be interesting to
simultaneously explore the diversity of curvaton potentials
and decay scenarios (including αs ≠ 0) in the analysis, with
an eye towards future cosmological data sets.
The curvaton is a massive scalar field, and so for the

simplest quadratic curvaton potentials, the curvaton energy
density is ρσ ∼ σ̄2 þ 2σ̄δσ þ ðδσÞ2, where σ̄ is the homo-
geneous value of σ and δσ is a spatial perturbation. As σ
itself is a Gaussian random field, ρσ is non-Gaussian.
The resulting non-Gaussianity is of local type—that is,
ζ ¼ ζgð~xÞ þ 3

5
fnl½ζ2gð~xÞ − hζ2gð~xÞi�, with

fnl ¼
5

4rD
−
5rD
6

−
5

3
; ð5Þ

where ζgð~xÞ is a Gaussian random field [6,7,23,24,34,40].
The stringent limits to local-type non-Gaussianity from
Planck temperature data, fnl ¼ 2.7� 5.8, impose the con-
straint rD > 0.12 [34,45]. These constraints do not depend
on the curvaton-decay scenario, and are thus relatively
model independent. In some curvaton-decay scenarios,
residual isocurvature perturbations would be excited, mak-
ing more stringent limits to rD possible. Additionally, limits
to or a detection of curvaton-type isocurvature would make
it possible to test the decay physics of the curvaton.
If the densities of all species are determined after

curvaton decay, then the density perturbations in all species
are set by ζ alone, leading to purely adiabatic fluctuations.
On the other hand, if some conserved quantum numbers are
generated by or before curvaton decay while others are not,
there is a mismatch in density fluctuations, leading to a
gauge-invariant entropy (or isocurvature) perturbation. In
particular [6,7,40],

~ζx ¼

8>><
>>:

0; if x is produced before σ decay;
~ζσ; if x is produced by σ decay;

ζ; if x is produced after σ decay:

ð6Þ

Here the index x denotes b (baryon number), L (lepton
number), or c (CDM). The ~ζx indicates initial curvature
fluctuations on hypersurfaces of constant particle number
(for CDM) or conserved quantum number (in the case of
baryons or leptons). The curvaton is assumed to behave as
matter at the relevant epochs, and so ~ζσ ¼ ζσ.
We distinguish between quantum numbers (like baryon

and lepton number) and densities, as baryon and lepton
number could be generated at very early times, long before
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quarks bind to produce actual baryons. Indeed, baryo-
genesis (which refers to the creation of baryon number)
could be related to curvaton physics, even if the production
of actual baryons happens much later.
The gauge-invariant entropy fluctuation between x and

photons is given by

Sxγ ≡ 3ðζx − ζγÞ ð7Þ

and is conserved on superhorizon scales [3,58,59], as long
as the equation of state of the species i (or the carriers of the
relevant quantum number) is constant and the quantum
numbers are conserved. Photon perturbations are described
by ζγ, the spatial curvature perturbation on hypersurfaces of
constant photon energy-density. For baryons or leptons, ζx
is the curvature perturbation on surfaces of constant energy
density of whichever species carries the quantum number
(at late times, these would be actual surfaces of constant
baryon energy density).

The constant superhorizon values of ζ and Sxγ are “initial
conditions” which precede horizon entry and determine the
spectra of CMB anisotropies, as computed by CAMB [60] or
any other CMB Boltzmann code. We take the initial values
Sxγ to be defined at some time after the relevant species
thermally decouple and reach their final equation of state
(for example, if x ¼ c, we consider Scγ at some time after
CDM has become nonrelativistic). After the quantum
number associated with x thermally freezes out, ~ζx is
conserved on superhorizon scales because the relevant
quantum numbers are conserved. If x ∈ fc; bg, Sxγ is set
long after actual baryons and CDM become nonrelativistic,
and so ζx ¼ ~ζx, because surfaces of constant energy and
number density coincide. We discuss the subtler case of
lepton-number fluctuations and neutrino isocurvature in
Sec. III.
For any quantum number/species, there are then three

scenarios [22]:

Sxγ ¼

8>>><
>>>:

−3ζ − 3ðζγ − ζÞ; if x is produced before σ decay;

3
�

1
rD
− 1

�
ζ − 3ðζγ − ζÞ; if x is produced by σ decay;

−3ðζγ − ζÞ; if x is produced after σ decay:

ð8Þ

When fluctuations are set by the curvaton, as we can see
from Eq. (8), entropy fluctuations are set completely by the
adiabatic fluctuation (as we would expect when only
fluctuations in a single field are important), and are thus
totally correlated or anticorrelated to ζ.
Anticorrelated isocurvature perturbations can lower the

observed CMB temperature anisotropy at low multipole l,
improving the mild observed tension between the best-fit
ΛCDM model and large-scale CMB observations [61,62].
To see what this fact implies for curvaton physics, and to
more broadly test the curvaton model using CMB obser-
vations, we now derive the isocurvature amplitudes in
different curvaton-decay scenarios. To simplify the dis-
cussion, we will describe curvaton-decay scenarios with the
notation ðbyb; cyc ; LyLÞ, where yL ∈ fbefore; by; afterg. For
example, ðbby; cafter; LbeforeÞ indicates a curvaton-decay
scenario in which baryon number is generated by curvaton
decay, cold dark-matter after curvaton decay, and lepton
number before curvaton decay.

III. CURVATON-DECAY SCENARIOS

The various curvaton-decay scenarios can be divided
into cases where the production of either the baryon
number, lepton number, or CDM occurs before the curva-
ton decays, by the curvaton decay, or after the curvaton
decays. This naturally leads to a total of 3 × 3 × 3 ¼ 27

distinct scenarios. As discussed in the previous section,
curvaton decay can occur at any time after inflation ends.
Curvaton decay must certainly also occur before big-bang
nucleosynthesis (BBN). This means that within the single-
field slow-roll inflationary models, the curvaton may decay
at temperatures ranging from 1016 GeV [34] down to
∼4 MeV [63], at which point the primordial light elements
must be produced. In order for all 27 scenarios to be
realized, there must be mechanisms that generate baryon
number, lepton number, and CDM over this wide range of
energy scales, as we now discuss.
A persistent mystery is the origin of baryon number—

i.e., the observed net asymmetry of baryons over anti-
baryons in the Universe. Plausible models bracket a range
of energy scales, from baryogenesis at the electroweak
scale [64] to direct production of baryon number through a
coupling to the inflaton or curvaton (see Ref. [65] and
references therein). The energy scale of baryogenesis could
thus be anywhere in the range 1 TeV–1016 GeV. Since
both the inflationary energy scale and the energy scale of
curvaton relevance/decay are poorly constrained, it is
possible for baryon number to be produced before, by,
or after curvaton decay.
The observed baryon asymmetry could be produced

through partial conversion of a much larger primordial
lepton asymmetry. One of the ways (reviewed at length in
Ref. [66]) to account for the observed nonzero neutrino
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mass is to invoke the seesaw mechanism [67,68]. The
seesaw mechanism generically introduces a hierarchy of
neutrinos with masses above the electroweak scale, leading
to the generation of lepton number at temperatures greater
than ∼100 GeV.
Alternatively, lepton number could be produced near

the end of inflation (at energies as high as ∼1016 GeV),
perhaps by Chern-Simons (parity-violating) terms in the
gravitational sector [69] or by a novel coupling of chiral
fermions to an axion-like field [70]. On the other hand,
the νMSM model [71] allows for lepton number to be
generated at lower energies. Finally, as discussed in the
previous section, it is possible that the decay of the curvaton
field produces lepton number, leading to isocurvature
perturbations in the neutrino density perturbations.
The identity and production mechanism of the CDM is

also a mystery [72–75]. One possibility is that the CDM
consists of weakly interacting massive particles (WIMPs)
thermally produced by physics at the ∼TeV scale [76].
If this is so, the CDM would be produced around the
electroweak energy scale. Direct-detection experiments,
however, have placed increasingly stringent limits on
WIMP couplings. The most natural WIMP candidate
(a stable superpartner in supersymmetric models) is also
under increasing pressure from experiment, due to the
lack of evidence for low-energy supersymmetry from the
Large Hadron Collider (LHC) (see Ref. [77] and references
therein). This motivates the consideration of other CDM
candidates.
One possible CDM candidate is a stable extremely

massive particle (or wimpzilla) with mass in the range
1012 GeV < m < 1016 GeV [78]. The wimpzilla might be
produced by gravitational particle production during infla-
tion or directly from inflaton decay [4,78]. Similarly, even a

standard lighter supersymmetric WIMP could be produced
by curvaton decay if WIMPs couple to the curvaton field
[7]. Just as with baryon and lepton numbers, CDM could
thus be produced before, by, or after curvaton decay [40].
Altogether, there is a variety of logically possible

scenarios for producing the correlated isocurvature fluctu-
ations discussed in Sec. II. Our goal in this work is to test
these scenarios using CMB data. We assemble for the first
time in one work expressions for the amplitude of corre-
lated baryon, CDM, and neutrino isocurvature-density
(NID) perturbations in all 27 possible curvaton-decay
scenarios, as shown in Table I and Eq. (22). This allows
us to build on past work, which explored only one
isocurvature mode at a time [42] or neglected NID
perturbations [40,79], and self-consistently test for the first
time the full parameter space of rD and ξlep in all 27
curvaton-decay scenarios.
We recognize that in the context of specific particle

physics models for baryogenesis, leptogenesis, or dark
matter production, some of these scenarios are more viable
than others. For example, in the νMSM [71], the lepton
asymmetry and dark matter are produced nearly concur-
rently, and so scenarios of the form ðbbefore; cbefore; LafterÞ do
not apply. With this caveat in mind, we have considered
all possible curvaton-decay scenarios without theoretical
restrictions, in order to determine the most general
constraints.
At the level of observable power spectra in linear

perturbation theory, the CDM and baryon isocurvature
modes are indistinguishable [40,44,60,79,80], but the NID
mode has a distinct physical imprint [42,81] from the others
that can be separately probed using the data. We begin with
the simplest curvaton-decay scenarios, in which there is
no lepton asymmetry L ¼ ΔnL=nL. (Here ΔnL ¼ nL − nL̄,

TABLE I. Baryon and CDM isocurvature amplitudes (in terms of the curvature perturbation ζ) for the various
curvaton-decay scenarios. If the lepton chemical potential ξlep ¼ 0, then Sνγ ¼ 0. Otherwise, if ξlep ≠ 0 and there is
a net lepton number L ≠ 0, then Sνγ is given by Eq. (21), taking nonzero values only if L is generated by curvaton
decay—that is, yL ¼ by. This is discussed in detail in Secs. III A and III B. The notation ðbyb ; cyc ; LyLÞ for various
curvaton-decay scenarios is introduced in Sec. II.

Scenario Sbγ
ζ

Scγ
ζ

Smγ

ζ

ðbby; cbefore; LyLÞ 3ð 1
rD
− 1Þ þ Rν

Sνγ
ζ −3þ Rν

Sνγ
ζ 3ð Ωb

ΩmrD
− 1Þ þ Rν

Sνγ
ζ

ðbbefore; cby; LyLÞ −3þ Rν
Sνγ
ζ 3ð 1

rD
− 1Þ þ Rν

Sνγ
ζ 3ð Ωc

ΩmrD
− 1Þ þ Rν

Sνγ
ζ

ðbby; cafter; LyLÞ 3ð 1
rD
− 1Þ þ Rν

Sνγ
ζ Rν

Sνγ
ζ 3 Ωb

Ωm
ð 1
rD
− 1Þ þ Rν

Sνγ
ζ

ðbafter; cby; LyLÞ Rν
Sνγ
ζ 3ð 1

rD
− 1Þ þ Sbγ

ζ 3 Ωc
Ωm

ð 1
rD
− 1Þ þ Rν

Sνγ
ζ

ðbbefore; cafter; LyLÞ −3þ Rν
Sνγ
ζ Rν

Sνγ
ζ −3 Ωb

Ωm
þ Rν

Sνγ
ζ

ðbafter; cbefore; LyLÞ Rν
Sνγ
ζ −3þ Sbγ

ζ −3 Ωc
Ωm

þ Rν
Sνγ
ζ

ðbbefore; cbefore; LyLÞ −3þ Rν
Sνγ
ζ

Sbγ
ζ

Sbγ
ζ

ðbby; cby; LyLÞ 3ð 1
rD
− 1Þ þ Rν

Sνγ
ζ

Sbγ
ζ

Sbγ
ζ

ðbafter; cafter; LyLÞ Rν
Sνγ
ζ Rν

Sνγ
ζ Rν

Sνγ
ζ
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where nL and nL̄ denote the number densities of the lepton
number and antilepton number, respectively.

A. No lepton asymmetry

During radiation domination, the total curvature pertur-
bation is given by

ζ ¼ ð1 − RνÞζγ þ Rνζν; ð9Þ

where Rν ≡ ρν=ðργ þ ρνÞ is the energy fraction in massless
neutrinos, a constant after electron-positron annihilation.
Neutrinos carry lepton number and thermally decouple near
temperatures T ∼ 2 MeV. If there is no lepton asymmetry,
spatial fluctuations in lepton-number density track the total
energy density, and so ζν ¼ ζ. From Eq. (9) we then see
that ζ ¼ ζγ ¼ ζν, and thus Sνγ ¼ 0. It is then straightfor-
ward to obtain the relationships between baryon/CDM
entropy fluctuations and curvature fluctuations for a variety
of curvaton-decay scenarios by applying Eq. (8). The
resulting amplitudes are shown in Table I. Later, to interpret
constraints, it is useful to define the total isocurvature in
nonrelativistic matter:

Smγ ≡ 3

��
Ωb

Ωm
ζb þ

Ωc

Ωm
ζc

�
− ζ

�

¼
�
Ωb

Ωm
Sbγ þ

Ωc

Ωm
Scγ

�
: ð10Þ

Here Ωb and Ωc are the usual relic densities of baryons and
CDM relative to the cosmological critical density.
We note that the scenarios ðbby; cbefore; LyLÞ and

ðbbefore; cby; LyLÞ lead to correlated (or anticorrelated)
isocurvature perturbations. These scenarios mitigate some
of the tension between CMB data (for l≲ 50) and the
best-fit ΛCDM model [35,61,62]. We discuss this further
in Sec. IV.
The near cancellation of baryon and CDM isocurvature

contributions to Smγ in these scenarios requires fine-tuned
values of rD ∼Ωb=Ωm and rD ∼Ωc=Ωm. This yields a
relatively large CIP amplitude of Sbc ¼ 3ðζb − ζcÞ ¼
3ζ=rD and −3ζ=rD in the ðbby; cbefore; L=yLÞ and
ðbbefore; cby; LyLÞ scenarios, respectively, or more explicitly,
Sbc ≃ 20ζ and Sbc ≃ 3.5ζ. These CIP amplitudes could
leave observable imprints on off-diagonal correlations
(or equivalently, the CMB bispectrum and trispectrum),
a possibility discussed further in Refs. [44,80].
The cases ðbbefore;cafter;LyLÞ, ðbafter;cbefore;LyLÞ, and
ðbbefore;cbefore;LyLÞ are completely ruled out by the data,
as already shown in Ref. [40]. We do not consider them
further.
The situation is considerably richer if there is a net lepton

asymmetry. As we see in Sec. III B, if the lepton symmetry
is generated before or after σ decay, the ratios Sbγ=ζ, Scγ=ζ,
and Smγ=ζ are given (to very good or perfect accuracy,

respectively) by the values shown in Table I with Sνγ ¼ 0.
On the other hand, if the lepton asymmetry is generated by
σ decay, there is a residual neutrino isocurvature perturba-
tion Sνγ [6,22,43].

B. Lepton asymmetry

Each neutrino species carries the lepton number of the
corresponding lepton flavor, and so in the presence of a
lepton asymmetry, fluctuations in ΔnL result in neutrino
isocurvature perturbations. For massless neutrinos, the
occupation number is

fjðEÞ ¼ ½eE=Tν∓ξj þ 1�−1; ð11Þ

where the flavor label takes values j ¼ e, μ, or τ;
the corresponding chemical potential ξj parameterizes the
primordial lepton asymmetry; the minus sign applies for
neutrinos; and the plus sign applies for antineutrinos. Unlike
the cosmological baryon asymmetry η≃ 6 × 10−10, ξj is
rather poorly constrained. Some models of baryogenesis
require comparable levels of lepton and baryon asymmetry,
but others convert a much larger lepton asymmetry into the
experimentally known baryon asymmetry. Electron neutri-
nos (whose number density depends on ξe−) set the rates of
β-decay processes active during BBN, and so the value of
ξe− affects the primordial neutron-to-proton ratio n=p ∝
expð−ξe−Þ and the resulting abundance of 4He [36,37].
A lepton asymmetry also alters Neff , the number of

relativistic degrees of freedom during BBN, although this
effect is less important for setting abundances than the
altered n=p ratio. Neutrinos are now known to have mass
and as a result exhibit flavor oscillations. Independent of
initial conditions, solar neutrino observations and results
from the KamLAND experiment [36,38] indicate ν mass
splittings and mixing angles that would lead to near flavor
equilibrium early on, and so ξe− ¼ ξμ ¼ ξτ ≡ ξlep. BBN
abundances (including the 4He abundance YHe) depend not
only on the primordial values ξlep, but also on the mixing
angles between neutrinos [36], and in particular on the
value of θ13. Current reactor and long-baseline neutrino
experiments indicate that sin2ðθ13Þ≃ 0.03, giving a
95% confidence BBN limit of ξlep ≤ 0.03 [39].
The resulting ν energy and lepton-number densities are

[7,42,43]

ρi
ργ

¼ 7

8

�
Tν

Tγ

�
4

Ai; ð12Þ

Δni
nγ

¼ 2.15

�
Tν

Tγ

�
3

Bi; ð13Þ

Ai ¼
�
1þ 30

7

�
ξlep
π

�
2

þ 15

7

�
ξlep
π

�
4
�
; ð14Þ
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Bi ¼
��

ξlep
π

�
2

þ
�
ξlep
π

�
4
�
; ð15Þ

which can also be parameterized as [7]

Neff ¼ 3.046þ 3

�
30

7

�
ξlep
π

�
2

þ 15

7

�
ξlep
π

�
4
�
: ð16Þ

Past forecasts and recent analyses of Planck data
show that if the only effects of ξlep are to alter Neff and
the free-electron fraction (by altering YHe) at decoupling,
CMB constraints to ξlep (shown in Fig. 2) will remain less
sensitive than constraints from astronomical measurements
of primordial element abundances [82–88]. In the curvaton
scenario, however, if the lepton asymmetry is generated by
curvaton decay, the amplitude of neutrino-isocurvature-
density fluctuations depends on the values of ξlep, offering
an additional possible channel for constraining this param-
eter. Neutrino experiments may still yield surprises as to
the precise values of quantities like θ13. We thus explore
what constraints to the neutrino sector are possible from
CMB observations alone. In the future, measurements of
the 21 cm emission/absorption power spectrum from
neutral hydrogen (during the epoch of reionization or
during the cosmic dark ages) could be useful probes of
the value of ξlep [89].
We assume that the cosmic thermal history is conven-

tional between neutrino decoupling and electron-positron
annihilation, and thus neglect fluctuations in the neutrino-
photon temperature ratio Tν=Tγ ≃ ð4=11Þ1=3. It is then
straightforward to show that for neutrinos [43]

ζi − ζγ ¼
1

4

A0
i

Ai

δξlep
π

; ð17Þ

~ζi − ζγ ¼
1

3

B0
i

Bi

δξlep
π

: ð18Þ

Neutrinos inherit the lepton asymmetry and its fluctuations,
and so δξlep ¼ πBi

~SL=B0
i, where ~SL ¼ 3ð~ζL − ζγÞ. We then

see that

Sνγ ≃ 15

7

X
i¼μ;e;τ

�
ξlep
π

�
2
~SL; ð19Þ

where we have assumed that ξlep=π ≪ 1 and assumed that
flavor mixing of the cosmic neutrino background is
negligible after neutrino decoupling. We thus have that
[42,43]

Sνγ ≃ 45

7

�
ξ2lep
π2

�
~SL ¼ 135

7

�
ξ2lep
π2

�
ð~ζL − ζγÞ: ð20Þ

To proceed further, we must specify when lepton number
(L) is generated. Applying Eq. (6), we obtain [42,43]

Sνγ ¼

8>>>>><
>>>>>:

−135
7

�
ξlep
π

�
2
ζγ if L is generated beforeσdecay;

135
7

�
ξlep
π

�
2
�

ζ
rD
−ζγ

�
if Lis generated byσdecay;

135
7

�
ξlep
π

�
2ðζ−ζγÞ if L is generated afterσdecay:

ð21Þ

Substituting into Eq. (9) and solving for Sνγ, we then
obtain [to lowest order in ðξlep=πÞ2] [43]:

Sνγ
ζ
¼

8>>><
>>>:

0 if Lis generated beforeσdecay;

135
7

�
ξlep
π

�
2
�

1
rD
−1

�
if Lis generated byσdecay;

0 if Lis generated afterσdecay:

ð22Þ

The expression for the case of L generated before σ
decay is approximate, and has corrections of order
Sνγ ∼ 10−2ζ which are negligible at the level of accuracy
needed for the MCMC analysis of Sec. IV. The expression
for the case of L generated after σ decay results from the
requirement that the penultimate equation hold independent
of the true values of Rν and ξlep.
In scenarios where L is generated by σ decay, there is a

mismatch between the total ζ (which has contributions
from neutrinos and photons) and ζγ . This must be self-
consistently included in Eq. (9) to obtain the correct
expressions for the relationships between Sbγ (or Scγ)
and ζ, shown in Table I. If lepton number is generated

FIG. 2. The relationship between Neff and ξ2lep [Eq. (16)]. The
black dashed line indicates the 95% C.L. upper limit to ΔNeff
from the 2015 Planck analysis using TTþ LowPþ BAO and
corresponds to a 95% C.L. upper limit ξ2lep ≤ 0.5; the red dashed
line indicates the 95% C.L. upper limit using TTþ AllPþ BAO.
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before or after σ decay, the amplitudes are given as before
in Table I with Sνγ ¼ 0.

IV. DATA

The main effect of the curvaton model is to introduce
totally correlated (or anticorrelated) isocurvature modes
into the initial conditions of the cosmological perturbations.
In order to test the various curvaton decay channels, we use
the CMB temperature and E-mode polarization power-
spectra measured by the Planck satellite [35,90,91]. The
large-scale E-mode measurements mainly constrain the
optical depth to the surface of last scattering, τ, while
the small-scale E-mode measurements provide additional
constraints on the allowed level of isocurvature [92]. We
also use measurements of baryon acoustic oscillations
(BAOs) [93,94] to break geometric degeneracies in the

CMB data and thus improve the sensitivity of the Planck
data to isocurvature perturbations.
The introduction of matter isocurvature modes, shown

by the blue curves in Fig. 3, has its most significant effect
on the large-scale TT and TE power spectra, where it
changes the height of the Sachs-Wolfe plateau and alters
the shape/amplitude of the Integrated Sachs-Wolfe (ISW)
effect. On the other hand, neutrino-density isocurvature
with a comparable amplitude, shown by the orange curves
in Fig. 3, affects CMB anisotropies more dramatically at all
scales.
The Planck data have been divided up into a large

angular-scale data set (low multipole number) and a small
angular-scale data set (high multipole number) [91]. For all
constraints, we use the entire range of measurements for the
TT power spectrum as well as the low multipole polari-
zation (TE and EE) data, which we denote as LowP. We

FIG. 3. A comparison of the differences between a purely adiabatic mode and a totally correlated (solid) or anticorrelated
(dashed) matter- (blue) or neutrino-density (orange) isocurvature mode. Each panel shows the binned residuals ΔDXY

l ≡
lðlþ 1ÞΔCXY

l =ð2πÞ (see Ref. [91] for details on the binning procedure). The matter isocurvature has an amplitude Smγ ¼ 0.2,
and the neutrino-density isocurvature has an amplitude Sνγ ¼ 0.1. We also show the residuals for the power spectrum measured by the
Planck satellite [91]. Note that the horizontal scale is logarithmic up to l ¼ 29 and then is linear; the vertical scales on the left- and right-
hand sides are different.
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also compute constraints using the entire multipole range of
polarization measurements, denoted by AllP. The division
between these two data sets is the multipole number
l ¼ 29, which approximately corresponds to an angular
scale of ≃5°.
As demonstrated in Fig. 3, polarization data can break

degeneracies present in a temperature-only analysis. This
statement is especially true for tests of the adiabaticity of
the initial conditions [92]. The analysis in Sec. 11 of
Ref. [34] and Sec. VI. 2. 3 of Ref. [35] includes constraints
to isocurvature modes using the Planck 2015 data. As they
point out, the addition of AllP greatly improves the
constraint to isocurvature modes which are correlated to
the adiabatic mode.
For example, the fractional contribution to the temper-

ature power spectrum is constrained to α¼−0.0025þ0.0035
−0.0047

at 95% C.L. using Planck TTþ LowP, where the sign
of α indicates whether the isocurvature contribution is
totally correlated (α > 0) or anticorrelated (α < 0) with the
adiabatic mode. The preference for an anticorrelated mode
comes from the well-known deficit of power on large
angular scales [90,95]. When all polarization data are
included in the analysis, the centroid shifts upward and
the overall uncertainty on α is reduced by more than 50%:
α ¼ 0.0003þ0.0016

−0.0012 at 95% C.L. As noted by the Planck
team [35], these effects may both be driven by a signifi-
cantly low point in the TE cross power spectrum, which
may be due to unidentified systematic effects (see,
e.g., Ref. [96]).
In order to highlight the effects of including all of the

publicly available Planck data, we divide our analysis into
two sets of data: Planck TTþ BAOþ LowP and Planck
TTþ BAOþ AllP. Given the uncertainty around system-
atic effects in the high-l polarization power spectrum, we
take the Planck TTþ BAOþ LowP constraints to be more
robust.
In order to compare the data to our model, we use a

modified version of the publicly available Boltzmann
code COSMOMC [97] along with the publicly available
Planck likelihood code [91] included with the 2015 Planck
data release. We made modifications to these codes in order
to include the two curvaton parameters rD and ξlep. As
discussed previously, the parameter rD only affects the
initial conditions, whereas the lepton asymmetry, ξlep,
affects both the initial conditions and the effective number
of neutrino species, as well as β-decay processes occurring
during BBN. This latter effect alters the primordial
light-element abundances, so that from measurements of
primordial 4He and deuterium abundances, we have an
independent constraint jξlepj≲ 0.03 at 95% C.L. [36,39], as
discussed in Sec. III.
In our analysis, we try three different priors on ξlep: first,

we consider the constraints to ξlep from the CMB only
imposing a flat prior on ξ2lep of 0 ≤ ξ2lep ≤ 4; second, we

impose the BBN constraint by placing a Gaussian prior on ξ
with a mean of zero and a standard deviation of 0.03; third,
we consider the case where ξlep ¼ 0, removing the neutrino
isocurvature mode. We find that both current CMB mea-
surements by Planck and a future cosmic-variance limited
experiment (with maximum l ¼ 2200) are less sensitive to
ξ2lep than measurements of the light-element abundances.
The observed CMB power spectra can be written in terms

of the primordial curvature perturbation power spectrum,
Δ2

ζðkÞ, and the photon transfer function Θi;X
l ðkÞ for each

initial condition i, as

CXY
l ¼ 4π

Z
∞

0

dk
k
Δ2

ζðkÞ
�X

i

AiγΘi;X
l ðkÞ

�

×

�X
j

AjγΘ
j;Y
l ðkÞ

�
; ð23Þ

where X ∈ fT; Eg denotes the relevant observable (CMB
temperature or E-mode polarization anisotropy).
The primordial curvature perturbation is given in terms

of the amplitude parameter As:

Δ2
ζðkÞ≡ k3

2π2
PζðkÞ ¼ As

�
k
k0

�
ns−1

; ð24Þ

where PζðkÞ is the dimensional power spectrum of ζ, As

is the primordial scalar amplitude and ns is the primordial
scalar spectral index, and the pivot wave number is taken to
be k0 ¼ 0.05 Mpc−1. As discussed in Sec. II, we set the
running αs ¼ 0. The amplitude parameters

Aiγ ≡ fAad; Acγ; Abγ; Aνγg ð25Þ

are used to set the mixture of adiabatic and isocurvature
modes in the CMB Boltzman code CAMB. It is important to
set all these amplitudes correctly in the presence of neutrino
isocurvature, as neutrinos contribute to the relativistic
energy density at early times, and the neutrino isocurvature
density mode is excited in the curvaton model, as we saw in
Sec. III. As discussed in the Appendix, using the initial
perturbation values δc, δb, δγ , and δν for each perturbation
mode used in CAMB, we have that Abγ ¼ Sbγ=ζ − RνSνγ=ζ,
Acγ ¼ Scγ=ζ − RνSνγ=ζ, and Aνγ ¼ 3SνγRγ=4ζ, where
Rγ ≡ 1 − Rν is the fraction of relativistic energy in photons.
We apply these relations when running our MCMCs for
each of the curvaton-decay scenarios enumerated in
Sec. III, along with Table I and Eq. (16).
Before presenting constraints to rD and ξlep, it is

instructive to consider a “model independent” parameter-
ization of the totally correlated (or anticorrelated) isocur-
vature modes. Figure 3 gives us a sense of what to expect
from this exercise. First, note that a 20% contribution
from totally correlated CDM isocurvature (blue curves) can
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produce a deficit of power on large scales while also
causing a significant change at around the first peak in the
TT power spectrum. Given the mild tension between
the best-fit theoretical power spectrum and the relatively
low-temperature quadrupole (at the level of a little more
than 1 standard deviation), we expect the data to prefer a
slightly negative value for Smγ. The matter isocurvature
also has a significant effect on the TE power spectrum
between 100≲ l≲ 500.
The introduction of a 10% contribution from neutrino

isocurvature (orange curves) significantly changes the TT
power spectrum at nearly all scales, as well as the TE and
EE power spectrum on scales with l≳ 100. We therefore
expect that the CMB data will be more sensitive to Sνγ than
to Smγ .
The results presented in Fig. 4 confirm our expectations:

the Planck TTþ BAOþ LowP (red curves) prefers a
slightly anticorrelated matter isocurvature amplitude, and
when all of the polarization data are included (blue curves),
the constraints shift towards a purely adiabatic spectrum.
We find that the Planck TTþ BAOþ LowP places a
constraint Smγ ¼−0.19�0.18 and Sνγ ¼ 0.04þ0.18

−0.16 , whereas
Planck TTþ BAOþ AllP gives Smγ ¼ −0.06� 0.16 and
Sνγ ¼ 0.05� 0.11 at 68% C.L.

As was noted in Ref. [35], the difference between these
constraints may be driven by a handful of data points
around l≃ 160. This can be seen by eye in Fig. 3: in the
top panel, which shows the TT spectrum, the large-scale
residuals are significantly below zero, preferring totally
anticorrelated matter and neutrino-density isocurvature
(dashed curves); in the TE spectrum, there are a few data
points around l≃ 160 which have residuals significantly
above and below zero. As the isocurvature curves show,
these data introduce a tension between totally correlated
and anticorrelated isocurvature modes. We note that this
tension may be a significant driver in the difference
between the LowP and AllP constraints on isocurvature
perturbations, although we do not explore this issue further.
As the data are well fit by a Universe with purely

adiabatic perturbations, curvaton scenarios that fit have rD
and ξlep values that produce adiabatic perturbations. This
immediately eliminates the scenarios ðbafter; cafter; LyLÞ and
ðbbefore; cbefore; LyLÞ. We also note that the case where
ðbbefore; cafter; LyLÞ will produce a huge isocurvature per-
turbation, unless rD exceeds the bounds from non-
Gaussianity and ξlep exceeds the BBN bounds. This
scenario is thus ruled out to high significance as well.
We are then left with 18 scenarios which may be consistent
with the data.
Each of the allowed 18 scenarios yields zero-isocurvature

contributions to CMB power spectra if Amγ ¼ 0—i.e., as
long as they correspond to a compensated isocurvature
mode. We show the value of rD in each of these scenarios
for which Amγ ¼ 0 in Table II, along with the constraints to
rD when ξlep ¼ 0.
In addition to running MCMCs to obtain constraints, we

perform a Fisher-matrix analysis to forecast the sensitivity
of CMB data to lnðrDÞ and ξ2lep. We include these
parameters, as well as the standard six ΛCDM parameters.
We apply the Fisher-matrix formalism as described in
Ref. [98]. In this analysis, we also include a BBN prior
on the primordial 4He abundance, with error σYHe

¼ 0.005.

TABLE II. Constraints to rD (with ξ2lep ¼ 0) using Planck
TTþ BAO þ LowP to those models which can yield vanishing
isocurvature perturbations as seen in any two-point correlation
function. Note that in the scenario ðbafter; cafter; LyLÞ, we quote a
constraint to χD which is related to rD, as discussed in more detail
in Sec. IV B.

Scenario rD (Amγ ¼ 0) rD (95% CL)

ðbby; cbefore; LyLÞ 0.1580þ0.0042
−0.0040 0.1602þ0.0051

−0.0047
ðbbefore; cby; LyLÞ 0.8373þ0.0042

−0.0043 0.8492þ0.0099
−0.0096

ðbby; cafter; LyLÞ 1 >0.9578
ðbafter; cby; LyLÞ 1 >0.9919
ðbby; cby; LyLÞ 1 >0.9931
ðbafter; cafter; LyLÞ 1 >0.9973

FIG. 4. The posteriors for the correlated isocurvature ampli-
tudes Smγ and Sνγ; the red curves show constraints using Planck
TTþ BAO þ LowP, and the blue curves show constraints using
Planck TTþ BAO þ AllP. Note that at the level of about 1
standard deviation, the LowP case is better fit by a totally
anticorrelated matter isocurvature component, which leads to a
suppression of power on large angular scales. When all of the
polarization data are included, this preference is less dramatic.

TRISTAN L. SMITH and DANIEL GRIN PHYSICAL REVIEW D 94, 103517 (2016)

103517-10



Numerical derivatives are evaluated using a standard
two-sided two-point numerical derivative, except for the
parameters ln rD and ξ2lep, for which a one-sided seven-point
rule was applied to obtain sufficiently convergent numerical
derivatives. Additionally, forΩbh2, a two-sided seven-point
rule was used to guarantee numerical convergence. For
ln ð1010AsÞ, the derivative dCXY

l =dAs was evaluated ana-
lytically, as CXY

l ∝ As, obviating the need to compute a
numerical derivative for this parameter. These results are
used both to verify that our MCMC results for Planck data
are reasonable and to forecast the ideal sensitivity of a
cosmic-variance limited CMB polarization experiment to
curvaton-generated isocurvature perturbations.
Fiducial values for Ωbh2, Ωch2, ΩΛ, As, ns, and τ were

set to the marginalized means for these parameters in a
ΛCDM-only MCMC run. For the lepton asymmetry,
we used ξ2lep ¼ 0 as the fiducial value. For all curvaton
scenarios except (bby, cbefore, LyL) and (bbefore, cby, LyL),
we used the fiducial value rD ¼ 1, guaranteeing that the
fiducial model has adiabatic perturbations. For the scenar-
ios (bby, cbefore, LyL) and (bbefore, cby, LyL), we used fiducial
values corresponding to zero isocurvature between radia-
tion and nonrelativistic matter (i.e., Amγ ¼ 0), correspond-
ing to the rD values given in the middle column of Table II.
We now present our constraints to curvaton-decay

scenarios, grouped by the character of their effects on
CMB power spectra. We begin by discussing scenarios for
which there is nonzero isocurvature unless ξ ¼ 0 and
rD ¼ Ωi=Ωm, where i denotes baryons or CDM. We then
move on to a scenario showing a total degeneracy between
ξ2lep and rD at the level of isocurvature amplitudes. We
finish by discussing scenarios for which all isocurvature
modes vanish when rD ¼ 1.

A. Constraints to baryon number or CDM
production before curvaton decay

The two decay scenarios which produce compen-
sated isocurvature modes are ðbby; cbefore; LyLÞ and
ðbbefore; cby; LyLÞ. As shown in Table I, the isocurvature
contribution vanishes (i.e., is purely compensated) when
ξlep ¼ 0 and rD ¼ Ωb=Ωm for ðbby; cbefore; LyLÞ or rD ¼
Ωc=Ωm for ðbbefore; cby; LyLÞ. In addition to this, if rD is
greater than the previous values, the matter isocurvature is
anticorrelated with the adiabatic mode, leading to a
suppression of the large-scale temperature power spectrum.
As expected, constraints from Planck TTþ BAOþ LowP
lead to values of rD which are slightly larger than
the purely compensated case, since that leads to a
suppression of the large-scale temperature power spectrum.
Marginalizing over ξ2lep for ðbby; cbefore; LyLÞ, we find that at
95% C.L., rD ¼ 0.1619þ0.0055

−0.0053 andΩb=Ωm¼ 0.1580þ0.0043
−0.0041 ;

for ðbbefore; cby; LyLÞ we find that rD ¼ 0.856þ0.015
−0.014 and

Ωc=Ωm ¼ 0.8401þ0.0063
−0.0059 .

Constraints to rD in these two scenarios are significantly
different when all of the polarization data are included.
In this case, marginalizing over ξ2lep for ðbby; cbefore; LyLÞ,
we find that at 95% C.L., rD ¼ 0.1595þ0.0044

−0.0041 and
Ωb=Ωm ¼ 0.1570þ0.0035

−0.0033 ; for ðbbefore; cby; LyLÞ we find that
rD ¼ 0.853þ0.015

−0.014 and Ωc=Ωm ¼ 0.8455þ0.0052
−0.0045 . We can see

that in both scenarios, rD is constrained to be significantly
closer to its compensated values when all of the polariza-
tion data are used.
The constraint to ξ2lep in these two scenarios is particu-

larly interesting, since the compensated isocurvature leads
to a stricter Planck/BAO constraint. Looking at Eq. (22),
we can see that the smaller rD is, the larger the neutrino
isocurvature contribution. This means that the Planck/BAO
constraints to ξ2lep for the scenario ðbby; cbefore; LyLÞ are the
most constraining with ξ2lep ≤ 0.0164 at 95% C.L., as seen
in Fig. 5. Although this is not competitive with constraints
inferred from measurements of the primordial light-element
abundances [33,36–39], ξ2lep ≤ 0.001 at 95% C.L., it is the
tightest constraint to ξ2lep using only Planck/BAO data.
Since the value of rD is larger in the scenario

ðbbefore; cby; LyLÞ, the constraint to ξ2lep in this case is not
as restrictive, giving ξ2lep ≤ 0.368 at 95% C.L. As shown in
Fig. 2, however, this is more restrictive than the upper limit
placed on ξ2lep ≤ 0.5 from its contribution to the total
radiative energy density of the Universe, showing that this
constraint is driven by the effect the lepton asymmetry has
on neutrino isocurvature perturbations.
The constraint to ξ2lep does not change significantly when

including all of the polarization data: for the scenario
ðbbefore; cby; LyLÞ, the constraint becomes ξ2lep ≤ 0.0165;
and for ðbbefore; cby; LyLÞ, it becomes ξ2lep ≤ 0.348.
As shown in the bottom panels of Figs. 5 and 6, the

marginalized 1D constraint on rD is fairly insensitive to
how we treat ξ2lep. In those panels, the red curve shows the
constraint arising from flat priors on ξ2lep. The blue curve
shows the constraint that arises when ξ2lep has the BBN prior
ξ2lep ≤ 0.001 at 95% C.L. The orange curve shows the
constraint obtained when we assume ξ2lep ¼ 0.
The values of rD allowed by Planck/BAO data in these

scenarios also imply a non-Gaussian signature in the
CMB. The predicted level of this signature can be
determined through Eq. (5). We show the predicted
ranges for the amplitude of this signal, fnl, in Fig. 7.
The scenario ðbbefore; cby; LyLÞ predicts fnl ¼ 5.92� 0.26,
and ðbbefore; cby; LyLÞ predicts that fnl ¼ −0.919þ0.034

−0.040
at 95% C.L.
Current data impose the constraint fnl ¼ 2.5� 5.7 [45].

The scenario ðbby; cbefore; LyLÞ implies a particularly large
fnl value, which could be sensitively tested using mea-
surements of scale-dependent bias in future galaxy surveys
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[46,47] or measurements of the matter bispectrum from
high-redshift 21 cm experiments [48–50]. The scenario
ðbbefore; cby; LyLÞ, which makes more modest predictions,
could be tested with high-redshift 21 cm experiments
[48–50].
Future CMB measurements will greatly improve upon

these constraints. As shown by the black ellipses in Figs. 5
and 6, a cosmic-variance limited CMB experiment which
measures both the temperature and polarization power
spectra out to lmax ¼ 2200will give a factor of 4.3 increase
in sensitivity to ξ2lep, a factor of 3.5 increase in sensitivity to
rD for the scenario ðbby; cbefore; LyLÞ, a factor of 11 increase
in sensitivity to ξ2lep, and a factor of 4 increase in sensitivity
to rD for the scenario ðbbefore; cby; LyLÞ. Note that even with

the increased sensitivity, CMB/BAO measurements of ξ2lep
are still not as sensitive as measurements of the primordial
light-element abundances.

B. Constraints to baryon and CDM production
after curvaton decay

In the scenario where both the baryon number and CDM
are produced after curvaton decay, while lepton number is
produced by its decay, the initial conditions are completely
determined by the level of neutrino isocurvature alone, as
shown in Table I. Looking at Eq. (22), we can see this
produces a perfect degeneracy between rD and ξ2lep: the
level of isocurvature can be made to be arbitrarily small for
any value of rD ≤ 1 with a small enough value for ξ2lep. In
order to determine the allowed region of parameter space, it
is convenient to define a new parameter, χD:

FIG. 5. Constraints to rD and ξ2lep for scenario ðbby; cbefore; LyLÞ.
Top: The marginalized 2D constraints to both rD and ξlep. The red
regions show the current constraints using Planck TTþ BAOþ
LowP data, the blue regions show constraints using Planck
TTþ BAO þ AllP, and the black regions show the projected
constraints for a cosmic-variance limited CMB experiment which
measures out to lmax ¼ 2200, obtained from a Fisher-matrix
analysis. In this panel, a flat prior is imposed on ξ2lep, as discussed
in the text. The dashed vertical green line gives the value of rD for
which the isocurvature is totally compensated (i.e. Amγ ¼ 0); the
dashed horizontal purple line gives the 95% C.L. upper limit on
ξ2lep from measurements of the primordial light element abun-
dances. Bottom: Marginalized 1D constraints to rD using Planck
TTþ BAO þ LowP under a variety of assumptions for ξlep: flat
prior on ξ2lep (red), BBN prior on ξ2lep (blue), and ξ

2
lep ¼ 0 (orange).

FIG. 6. Constraints to rD and ξ2lep for the scenario
ðbbefore; cby; LyLÞ. Top: The marginalized 2D constraints to both
rD and ξlep. The red regions show the current constraints using
Planck TTþ BAOþ LowP data, the blue regions show con-
straints using Planck TTþ BAOþ AllP, and the black regions
show the projected constraints for a cosmic-variance limited
CMB experiment which measures out to lmax ¼ 2200, obtained
from a Fisher-matrix analysis. In this panel, a flat prior is imposed
on ξ2lep, as discussed in the text. Bottom: Marginalized 1D
constraints to rD using Planck TTþ BAO þ LowP under a
variety of assumptions for ξlep: flat prior on ξ2lep (red), BBN
prior on ξ2lep (blue), and ξ2lep ¼ 0 (orange).
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1

χD
− 1≡ ξ2lep

π2

�
1

rD
− 1

�
: ð26Þ

The constraints to χD and ξ2lep are shown in Fig. 8.
As discussed in Sec. III B, even in the absence of

neutrino isocurvature, Planck/BAO data impose the

constraint ξ2lep ≤ 0.49 (at 95% C.L.), due to the effect of
ξ2lep on Neff . We have also seen that measurements of the
primordial light-element abundances further constrain
ξ2lep ≤ 0.001 at 95% C.L. The unshaded region of the
rightmost panel of Fig. 8 shows the currently allowed
region of the rD − ξ2lep parameter space in this scenario.
The Planck TTþ BAOþ LowP data place the con-

straints 1−χD ≤ 0.0027 and ξ2lep ≤ 0.5 at 95% C.L. These
data have a slight preference for nonzero ξ2lep due to its
additional contribution to the radiative energy density. This
preference has been seen in previous analyses [35,99,100].
When all the polarization data are used, the preference for a
nonzero ξ2lep disappears but is replaced by a slight prefer-
ence for χD < 1, as can be seen in the blue curves in the
left panel of Fig. 8. In this case, we have 1 − χD ≤ 0.0025
and ξ2lep ≤ 0.33 at 95% C.L.
Given that any value of rD is consistent with the Planck/

BAO data, this scenario does not make a specific prediction
for a level of non-Gaussianity. Instead, current data
(fnl¼ 2.5�5.7 [45]) allow us to conclude that rD ≥ 0.12
at 95% C.L. This constraint is shown in the left-hand panel
of Fig. 8 as the vertical dashed line.
Future measurements of the CMB will more sensitive to

this curvaton-decay scenario, as shown by the black curves
in the left and center panels of Fig. 8. Using a Fisher-matrix
analysis, we find that a cosmic-variance limited experiment
which measures both the temperature and polarization

FIG. 7. Predicted value of the non-Gaussianity parameter fnl
for the scenarios ðbby; cbefore; LyLÞ and ðbbefore; cby; LyLÞ for
parameter values which are consistent with our limits (on
isocurvature and the radiative energy density at decoupling)
from Planck/BAO data (red). The vertical dashed lines indicate
the 95% C.L. range of these predictions.

FIG. 8. Marginalized 1D constraints to a scenario in which lepton number is produced by curvaton decay, while baryon number and
CDM are produced after curvaton decay. For the left and middle panels, the red curve shows constraints using Planck
TTþ BAO þ LowP, the blue curve shows constraints using Planck TTþ BAOþ AllP, and the black curve shows projected
constraints for a cosmic-variance limited CMB experiment which measures out to lmax ¼ 2200, obtained from a Fisher-matrix analysis.
The vertical dashed lines indicate the 95% C.L. upper limit to each parameter using the Planck TTþ BAOþ LowP data. Left-hand
panel: The 1D marginalized posterior for 1 − χD, where χD is defined in Eq. (26). Middle panel: The 1D marginalized posterior on ξ2lep
from CMB/BAO observations only. Right-hand panel: A contour plot showing the relationship between χD, rD, and ξ2lep. The dotted red
contour shows the 68% C.L. upper limit on 1 − χD from Planck TTþ BAOþ LowP; the dashed red contour shows the 95% C.L. upper
limit on 1 − χD from Planck TTþ BAO þ LowP. The vertical dashed line shows the 95% C.L. lower limit on rD from constraints to the
level of non-Gaussianity in the CMB; the horizontal dashed lines show the 95% C.L. upper limits on ξ2lep from the Planck
TTþ BAO þ LowP data (black) and measurements of the primordial light-element abundances (red). The shaded region is currently
ruled out at 95% C.L.
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power spectra out to l ¼ 2200 will be 4 times more
sensitive to χD and 3 times more sensitive to ξ2lep.

C. Constraints to remaining scenarios

As shown in Table I, unlike the other cases considered,
these three scenarios yield purely adiabatic initial condi-
tions when rD ¼ 1. This has important implications for
Planck/BAO constraints to ξ2lep in these scenarios. From
Eq. (22), it is clear that the level of neutrino isocurvature in
these models is negligible. As a result, the sensitivity of
Planck/BAO data to ξ2lep comes solely from its contribution
to the total radiative energy density of the Universe.
This expectation is borne out in Fig. 9, since all three

scenarios give nearly the same 95% C.L. upper limit
from the Planck/BAO data for ξ2lep: for ðbafter; cby; LyLÞ,
ξ2lep ≤ 0.42; for ðbby; cafter; LyLÞ, ξ2lep ≤ 0.40; for
ðbby; cby; LyLÞ, ξ2lep ≤ 0.44. When using all of the polari-
zation data (blue regions in Fig. 9), the sensitivity to ξ2lep is
significantly improved. In all three cases, the 95% con-
fidence upper limit to ξ2lep is a factor of ≃0.75 of its value
for less complete polarization data.
The constraint to rD in each scenario varies because of

the specific prefactor generated in each case. Looking at
Table I, we can see that the overall matter isocurvature in
scenario ðbby; cafter; LyLÞ is suppressed by the small factor
Ωb=Ωm ≃ 0.15. Because of this, we expect the constraint to
rD in that case to be the least restrictive. The factor
Ωc=Ωm ≃ 0.8 appears in the expression for the isocurvature
amplitude in the scenario ðbafter; cby; LyLÞ, leading to a
moderate suppression of the matter isocurvature. Finally,
since the scenario ðbby; cby; LyLÞ contains no suppression,
we expect the most restrictive constraint on rD to occur in
this case. All of these expectations are borne out, as shown

in Fig. 9. The 95% C.L. lower limit for ðbafter; cby; LyLÞ is
rD ≥ 0.992. For ðbby; cafter; LyLÞ, the limit is rD ≥ 0.963.
Finally, for ðbby; cby; LyLÞ, the limit is rD ≥ 0.993. When
using all of the polarization data (blue regions in Fig. 9), the
sensitivity to rD is nearly unchanged.
The values of rD in these scenarios which are consistent

with the Planck/BAO data lead to a non-Gaussian signal.
The predicted level of this signal can be determined through
Eq. (5). Note that the predicted values of fnl are bounded
from below, since when rD ¼ 1 we have fnl ¼ −1.25. We
show the predicted ranges for the amplitude of this signal,

FIG. 9. Constraints to the three cases where the baryon number and/or CDM is produced after the curvaton decays. The red regions
show the current constraints using Planck TTþ BAOþ LowP data, the blue regions show constraints using Planck TTþ BAO þ AllP,
and the black regions show the projected constraints for a cosmic-variance limited CMB experiment which measures out to
lmax ¼ 2200, obtained from a Fisher-matrix analysis. In all cases, the inner contour corresponds to 68% C.L., and the outer contour
corresponds to 95% C.L. In this panel, a flat prior is imposed on ξ2lep, as discussed in the text. In these three cases, the initial conditions
are purely adiabatic when rD ¼ 1.

FIG. 10. Predicted value of the non-Gaussianity parameter fnl
for the scenarios ðbafter; cby; LyLÞ and ðbby; cafter; LyLÞ for param-
eter values which are consistent with our limits (on isocurvature
and the radiative energy density at decoupling) from Planck/BAO
data (red). The vertical dashed lines indicate the 95% C.L. range
of these predictions. The results for the ðbby; cby; LyLÞ scenario
are indistinguishable from those for the ðbafter; cby; LyLÞ scenario.
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fnl, in Fig. 10. Since the upper limit on rD for the scenarios
ðbafter; cby; LyLÞ and ðbby; cby; LyLÞ is more restrictive, the
95% C.L. upper limit on the predicted level of non-
Gaussianity in these scenarios is more restrictive with
−1.25 ≤ fnl ≤ −1.23, whereas for ðbby; cafter; LyLÞ, we
have −1.25 ≤ fnl ≤ −1.17. Current Planck data indicate
that fnl ¼ 2.5� 5.7 [45], and so both of these scenarios
are consistent with current constraints to primordial
non-Gaussianity. These fnl values could, however, be tested
using future measurements of the matter bispectrum from
high-redshift 21 cm experiments [48–50].
Future CMB measurements will greatly improve these

constraints. As shown by the black ellipses in Fig. 9, a
cosmic-variance limited CMB experiment which mea-
sures both the temperature and polarization power spectra
out to lmax ¼ 2200 will give a factor of 3.5 increase in
sensitivity to ξ2lep and a factor of 2 increase in sensitivity
to rD for each of the three scenarios considered in this
subsection.

V. CONCLUSIONS

The curvaton scenario presents a rich and interesting
alternative to standard single-field slow-roll inflationary
models of early-Universe physics. There are 27 curvaton-
decay scenarios, distinguished by whether baryon number,
lepton number, and CDM are produced before, by, or after
curvaton decay. Although some are better motivated
theoretically than others, we have presented constraints
to all logical possibilities to fully explore the curvaton
parameter space. Of these, 18 are currently allowed by
CMB and large-scale structure measurements.
Sensitivity to rD, a parameter describing the curvaton

energy density, comes from the effects of nonadiabatic
initial conditions on the CMB, as well as the introduction
of non-Gaussian statistics. Constraints on ξ2lep, the lepton-
number chemical potential, come from the effects of
nonadiabatic initial conditions on the CMB, as well as
its contribution to the total radiative energy density.
We compared predictions for CMB anisotropy power

spectra in these 18 scenarios with Planck CMB measure-
ments and the location of the BAO peak. The CMB data is
divided between large-scale and small-scale measurements.
As noted in Refs. [34,35], the inclusion of the small-scale
polarization data significantly improves sensitivity to iso-
curvature perturbation. We find that, when the small-scale
polarization data is also used to measure the curvaton
scenario parameters, the improved sensitivity is less sig-
nificant, due, in part, to degeneracies between parameters.
For cases where rD ¼ 1 restores totally adiabatic

perturbations, we find limits of rD > 0.96 − 0.997 at
95% C.L., depending on the precise decay scenario. In
these cases, constraints to ξ2lep are primarily driven by its
effect on the relativistic energy density with ξ2lep ≤ 0.5 at
95% C.L. These scenarios (with the exception of the decay

scenario in which both CDM and baryons are produced
after curvaton decay) predict fnl ∼ −1.25, a value which
could be tested by future high-redshift 21-cm surveys
[48–50]. When both CDM and baryons are produced after
curvaton decay, rD and ξ2lep are completely degenerate and
no specific prediction for fnl can be made.
The most interesting cases from an observational point of

view are those in which baryon number is produced by
curvaton decay, and CDM before, or vice versa. The data
then require that rD ¼ 0.160� 0.004 or rD ¼ 0.850�
0.009 at 95% confidence for these two cases, respectively.
This window results from the requirement that the baryon
and CDM isocurvature fluctuations nearly cancel, making
testable predictions for future experiments.
First of all, there must be a compensated isocurvature

perturbation between baryons and CDM to obtain a small
overall isocurvature amplitude [41]. In the curvaton model,
this CIP must be totally correlated with ζ, and a future
CMB experiment (such as CMB Stage IV [101]) could test
the scenario in which baryon number is generated by
curvaton decay and CDM before [79]. The scenario in
which CDM is generated by curvaton decay and baryon
number before is inaccessible to CMB searches for com-
pensated isocurvature perturbations [79].
Second of all, in these decay scenarios the perturbations

are non-Gaussian. The non-Gaussian signal is larger than
in the cases where rD ¼ 1, since the limit of adiabatic
perturbations corresponds to rD < 1 in these scenarios. We
find that when baryon number is produced by curvaton
decay and CDM before, the parameter values allowed
by the CMB power spectra/BAO data predict that
fnl ¼ 5.92� 0.26. This is still within the current limits
to fnl from the CMB bispectrum and may be detected by
future galaxy surveys [46] (through scale-dependent bias)
and high-redshift 21 cm experiments [48–50]. If CDM
is produced by and baryon number is produced before
curvaton decay, the model predicts fnl ¼ −0.919þ0.034

−0.04 ;
detection is more challenging, but perhaps possible with
high-redshift 21 cm experiments [48–50].
If lepton number is produced by curvaton decay,

the requirement that neutrino isocurvature perturbations
satisfy constraints imposes a limit on ξlep. If baryon number
is produced by curvaton decay, CDM after, and lepton
number by the decay, the Planck data require ξlep ≤ 0.13,
much tighter than the constraint to ξlep obtained from the
overall radiation energy density at the surface of last
scattering.
Conservatively speaking, future CMB experiments may

bring an additional factor of ∼3 improvement in sensitivity
to deviations of rD from values consistent with purely
adiabatic fluctuations. Depending on the precise character
of small-scale polarized foregrounds [102], primary CMB
polarization anisotropies could be measured at multipole
scales as high as l ∼ 4000, further improving sensitivity
to curvaton-generated isocurvature. As such, it would be
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interesting to repeat the Fisher analysis of this paper for a
variety of specific curvaton potentials, self-consistently
including isocurvature as well as variations in the
spectral index ns and running αs of primordial density
perturbations.
Furthermore, primordial initial conditions should have

an imprint on the shape of the BAO peak, going beyond
the simple location of the peak in real space. This effect
could yield an additional test of the curvaton model,
if it can be disentangled from redshift-space distortions
and nonlinearities.
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APPENDIX: DERIVATION OF RELATION
BETWEEN ISOCURVATURE AMPLITUDE AND

INITIAL MODE AMPLITUDE

We now derive relationships between the mode ampli-
tudes Aiγ used in CAMB and the physical isocurvature
amplitudes Siγ predicted by the curvaton-decay scenarios in
Table I. In terms of the curvature perturbation on hyper-
surfaces of constant single-species energy density (ζi), we
have

Siγ ≡ 3ðζi − ζγÞ ¼ −3H
�
δρi
ρ0i

−
δργ
ρ0γ

�
; ðA1Þ

where δρi ¼ ρiΔi, the prime indicates a derivative with
respect to conformal time, and H is the conformal Hubble
rate (and H ¼ aH).
The continuity equation dictates that

_ρi ¼ −3Hρið1þ wiÞ → ρ0i ¼ −3Hρið1þ wiÞ: ðA2Þ

Therefore, we can write the isocurvature perturbation in
terms of the relative energy-density perturbation Δi:

Siγ ¼
1

1þ wi
Δi −

3

4
Δγ: ðA3Þ

We can now see that adiabatic initial conditions take the
usual form

Δc ¼ Δb ¼
3

4
Δγ ¼

3

4
Δν: ðA4Þ

Now we can also see how to translate the conditions
given here to the initial conditions specified in a Boltzmann
solver such as CAMB. For example, with CDM isocurvature
we have

Scγ ¼Δc−
3

4
Δγ

¼Acγ

�
1−2Ωc;0τþ3Ωc;0τ

2−
3

4

�
−
8

3
Ωc;0τþ4Ωc;0τ

2

��

¼Acγζ; ðA5Þ

where we have applied the superhorizon power-series
solution for the CDM isocurvature mode from Ref. [103]
and then evaluated it at initial conformal time τ ¼ 0. This
means that if this mode is excited with an amplitude Acγ

(relative to the adiabatic mode), then Scγ ¼ Acγζ.
When we excite multiple isocurvature modes, then the

overall isocurvature is the linear combination of each mode.
Exciting both the CDM (with amplitude Acγ) and baryon
isocurvature (with amplitude Abγ) modes leads to

Scγ ¼ Δc −
3

4
Δγ ¼ Acγζ; ðA6Þ

Sbγ ¼ Δb −
3

4
Δγ ¼ Abγζ: ðA7Þ

Things get more interesting when we consider the excita-
tion of both matter and neutrino-density isocurvature. The
linear combination of CDM, baryon, and neutrino-density
isocurvature gives initial density contrasts (applying the
power-series solutions from Ref. [103] again):

Δγ ¼ AcγΔγ;0 þ
Rb

Rc
AbγΔγ;0 − Aνγ

Rν

Rγ
; ðA8Þ

Δc ¼ Acγ

�
1þ 3

4
Δγ;0

�
þ 3

4

Rb

Rc
Δγ;0Abγ; ðA9Þ

Δb ¼
3

4
Δγ;0Acγ þ

�
1þ 3

4
Δγ;0

Rb

Rc

�
Abγ; ðA10Þ

Δν ¼ AcγΔγ;0 þ
Rb

Rc
Δγ;0Abγ þ Aνγ; ðA11Þ

where Δγ;0 is a constant, Rc ¼ ρc=ðρc þ ρbÞ, Rb ¼
ρb=ðρc þ ρbÞ, and Rν ¼ ρν=ðργ þ ρνÞ.
Applying Eq. (A3), we then find that

Scγ=ζ ¼
�
Acγ þ

3

4

Rν

Rγ
Aνγ

�
; ðA12Þ
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Sbγ=ζ ¼
�
Abγ þ

3

4

Rν

Rγ
Aνγ

�
; ðA13Þ

Sνγ=ζ ¼ AbγRb þ AcγRc þ
3

4

Rν

Rγ
: ðA14Þ

Solving this set of equations for the initial condition
amplitudes in terms of the isocurvature amplitudes, we
obtain

Acγ ¼ Scγ=ζ þ ðRγ − 1ÞSνγ=ζ; ðA15Þ

Abγ ¼ Sbγ=ζ þ ðRγ − 1ÞSνγ=ζ; ðA16Þ

Aνγ ¼
3

4
RγSνγ=ζ: ðA17Þ
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