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Probing a panoply of curvaton-decay scenarios using CMB data
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In the curvaton scenario, primordial curvature perturbations are produced by a second field that is
subdominant during inflation. Depending on how the curvaton decays [possibly producing baryon number,
lepton number, or cold dark matter (CDM)], mixtures of correlated isocurvature perturbations are
produced, allowing the curvaton scenario to be tested using cosmic microwave background (CMB) data.
Here, a full range of 27 curvaton-decay scenarios is compared with CMB data, placing limits on the
curvaton fraction at decay, rp, and the lepton asymmetry, &, If baryon number is generated by curvaton
decay and CDM before (or vice versa), these limits imply specific predictions for non-Gaussian signatures
testable by future CMB experiments and upcoming large-scale-structure surveys.
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I. INTRODUCTION

The observed cosmic microwave background (CMB)
anisotropies and large-scale structure of the Universe are
thought to result from primordial curvature perturbations.
The prevailing model is that these perturbations are
produced during inflation, an epoch of accelerated cosmo-
logical expansion preceding the radiation-dominated era. In
the simplest scenarios, both the accelerated expansion and
the curvature perturbations result from the dynamics of a
single field (the inflaton) [1-3]. At the end of inflation, the
inflaton field is thought to decay and initiate the radiation-
dominated era, a process known as reheating [4,5].

Standard single-field models of inflation produce
nearly scale-invariant, Gaussian, and adiabatic primordial
fluctuations [2,3]. It may be challenging for the dynamics
of a single field to satisfy observational constraints to the
amplitude and scale dependence of the curvature pertur-
bations as well as constraints to the amplitude of a
background of primordial gravitational waves [6,7]. In
order to ease these requirements, a second field (the
curvaton) could source curvature perturbations and
later decay [3,6-9]. There are a variety of candidates
for the curvaton motivated by high-energy particle theory
[10-17]. In the curvaton scenario, constraints are more
permissive because the inflaton need only produce a
sufficiently long epoch of acceleration to dilute topologi-
cal defects and does not have to be the main source of
perturbations [3,6-8,18].

This scenario is distinct from single-field models in
predicting a nonadiabatic and non-Gaussian component
to primordial fluctuations [7,18-25]. Depending on when
the curvaton decays relative to the production of baryon
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number, lepton number, and cold dark matter (CDM),
primordial fluctuations in different species could carry
an isocurvature component, in which the relative number
densities of different species fluctuate in space. In the
simplest models, these isocurvature fluctuations are
totally correlated (or anticorrelated) with the dominant
adiabatic component. Curvaton density fluctuations are
non-Gaussian, and so the curvature perturbation is non-
Gaussian [20,23]. Less phenomenological realizations of
the curvaton model in higher-dimensional theories may
break the instantaneous decay approximation, modifying
non-Gaussian and possibly isocurvature signatures [26].

The level of non-Gaussianity is set by rp, a parameter
describing the curvaton energy density. The level of
isocurvature is set by rp and &, the chemical potential
describing cosmological lepton number [7]. Both param-
eters are constrained by observations.

Isocurvature perturbations alter the phase structure and
large-scale amplitude of CMB power spectra [27-32].
Planck satellite observations therefore indicate that CMB
anisotropy power spectra are consistent with adiabatic
fluctuations, requiring that isocurvature fluctuations con-
tribute a fraction <107°-0.1 of the total observed power,
depending on various assumptions [33-35]. Big-bang
nucleosynthesis abundances are altered if flzep > 0, and

so the primordial “He and deuterium abundances impose
the limit |&,| < 0.03 [33,36-39].

In past work comparing curvaton model predictions with
CMB data, isocurvature constraints were obtained consid-
ering a single mode (neutrino, CDM, or baryon) at a time,
with consideration limited to several curvaton-decay sce-
narios [33-35,40-42]. Priors and parameter-space explora-
tion were implemented on the cross-/auto-power spectrum
amplitudes and correlation coefficients of single isocurva-
ture modes, rather than rp and &, and then mapped to the
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curvaton parameter space. Neutrino isocurvature perturba-
tions were not included.'

In fact, each curvaton-decay scenario makes specific
predictions for the amplitudes and cross-correlations
(with ) of each isocurvature mode: the baryon isocurvature
mode, the CDM isocurvature mode, and the neutrino
isocurvature density mode [6,22,43]. We take a different
approach and separately consider all 27 curvaton-decay
scenarios. We use 2015 Planck CMB temperature and
polarization data to determine the allowed parameter space
of rp and &, (breaking degeneracies with other data),
computing the full set of isocurvature mode amplitudes and
cross-correlation spectra (with §) for each set of parameter
values. We use a Monte Carlo Markov Chain (MCMC)
analysis to obtain constraints to all these scenarios. We also
perform a Fisher-matrix analysis to determine the sensi-
tivity of a future cosmic-variance limited experiment to
these curvaton-decay scenarios.

The models fall into several categories. Some decay
scenarios generate purely adiabatic perturbations, and these
are always allowed, and these are unconstrained by limits
to isocurvature perturbations. Some generate order-unity
isocurvature fluctuations between nonrelativistic matter
and radiation, independent of rj, and &, values, and these
are not allowed by the CMB data. Others generate
isocurvature perturbations that vanish when r, = 1. Here,
the data impose lower limits to rp, with 95% confidence
regions given by rp > 0.93-0.99, depending on precise
model assumptions.

Finally, two cases lead to nonzero isocurvature pertur-
bations in both the baryon and CDM. The only way for
these scenarios to agree with the CMB data is for the
baryon and CDM isocurvature modes to have opposite
signs and nearly equal amplitudes, producing what is
known as a compensated isocurvature perturbation [44].
This naturally leads to a measured value of r, which is
significantly different from unity. For the curvaton-decay
scenario in which baryon number/CDM are generated
by/before curvaton decay, we find that rp, =0.16027 o4,
while for the scenario in which baryon number/CDM are
generated before/by curvaton decay, rp, = 0.849270.0009.

All of these decay scenarios (except the one where both
CDM and baryon number are produced after curvaton
decay) make specific predictions for the amplitude f; of
local-type primordial non-Gaussianity, shown by the dis-
tributions in Fig. 1. These are all consistent with Planck
limits to f,; [45]. Future measurements of scale-dependent
bias in galaxy surveys (with sensitivity A f,; = £1) [46,47]
and high-redshift 21-cm surveys (with sensitivity
Afy = £0.03) [48-50] could rule out these decay
scenarios.

lExceptions are Refs. [33,37,42], which included isocurvature
in neutrinos but not other species.
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FIG. 1. Prediction for the amplitude f; of primordial non-
Gaussianity in curvaton-decay scenarios allowed by isocurvature
constraints. The left panel shows models with f,; ~ 1, which are
potentially testable by future high-redshift 21-cm surveys
[48-50]. The solid green curve shows the case in which baryon
number/CDM are generated after/by curvaton decay. The dotted
blue curve shows the case in which baryon number/CDM are
generated by/after curvaton decay. The solid black curve shows
the case in which baryon number/CDM are generated before/by
curvaton decay. The right panel shows the predicted f; values if
baryon number/CDM are generated by/before curvaton decay,
which could be tested using scale-dependent bias measurements
from future galaxy surveys with sensitivity Af,; = 1.

We begin in Sec. II by reviewing basic aspects of the
curvaton model, including the production of curvature and
isocurvature perturbations. In Sec. III we continue with a
detailed discussion of curvaton-decay scenarios and the
resulting mixtures of curvature and isocurvature fluctua-
tions. The data sets, methodology, and resulting constraints
on these scenarios are presented in Sec. IV. We present our
conclusions in Sec. V.

II. THE CURVATON MODEL

The family of inflationary models is extremely rich.
Nonetheless, a successful inflationary model must meet
some fairly stringent requirements, producing a sufficient
number (~60) of e-foldings to dilute dangerous early relics,
generating the observed value of A; =2.2x 107, and
agreeing with ever more precise measurements of the scalar
spectral index n, = 0.96 [34]. Limits to the tensor-to-scalar
ratio (r < 0.11 [34]) must also be met. If these limits turn
into detections, single-field slow-roll models must further
obey a consistency relation, r = 16¢ (see Ref. [51] and
references therein), which relates » to the slow-roll
parameter e. In fact, current data already rule out the
simplest of inflationary models [34].

One alternative to simple inflationary models is the
curvaton scenario, in which the inflaton (¢) drives
exponential cosmic expansion but is not the primary source
of the observed cosmological fluctuations. Instead, a
subdominant spectator field, the curvaton (o), acquires
quantum fluctuations that are frozen after ¢ perturbation
modes cross the horizon during inflation. The curvaton
field then has a dimensionless fluctuation power-spectrum
of [7,18,40,52]
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a2 = (3) m

9
k=aH

where H; is the inflationary Hubble parameter when the
mode with wave number k freezes out. Initially, these
fluctuations are isocurvature perturbations, as the curvaton
is energetically subdominant to the thermal bath (with
energy density pg) produced at the end of inflation
[3,7-9,20,22]. The curvaton has mass m,, and once the
condition m, > 3H is met (where H is the Hubble
parameter), o begins to coherently oscillate. The curvaton
energy-density then redshifts as p, = a~>, where a is the
cosmological scale factor. As the scaling p, ~ a~> is slower
than pg ~a™*, the curvaton becomes increasingly ener-
getically important, converting the initial isocurvature
fluctuation into a gauge-invariant curvature perturbation
¢ [7,18,40,52]. Eventually the curvaton decays, initiating
the usual epoch of radiation domination.

During radiation domination, the cosmic equation of
state is constant, and it can be shown that this implies the
conservation of superhorizon modes of , with value

= (1=rp)ylp +7p8slps (2)
where
Po
-_  Fe 3
' (Ps +4pr/3)|p ®)

is the fractional contribution of the curvaton to the trace of
the stress-energy tensor just before curvaton decay. Here ¢,
denotes the spatial-curvature perturbation on hypersurfaces
of constant x energy density (or equivalently, the energy-
density perturbation on surfaces of constant total {). The
notation ¢, |, indicates that ¢, is evaluated at the moment of
curvaton decay. For the duration of this paper, we neglect
the time dependence of the curvaton-decay rate [53] and
assume the usual instantaneous-decay approximation.

In principle, as we can see from Eq. (2), { has inflationary
and curvaton contributions. We follow the usual practice of
considering the scenario where the curvaton dominates the
curvature perturbation—that is, rp¢, > (1 —rp){,—and
so we may use the approximation [21,22]

g = ngo' (4)

Using expressions found in Ref. [54], and assuming a low
tensor-to-scalar ratio but detectable isocurvature and primor-
dial non-Gaussianity, it is straightforward to show that this
limit implies that the homogeneous curvaton field values are
sub-Planckian at horizon crossing.

Note that in this limit the spectral index of all perturba-
tion spectra (adiabatic and isocurvature) is given by one
value, n. In general, there could also be a nonzero running
of the spectral index, @, = dn;/dInk # 0. In the context of
curvaton scenarios, a, is not a free parameter, but rather
depends on the functional form of the inflaton and curvaton
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potential energies V(¢) and V(o) [55]. A survey of the
literature shows that for a wide range of curvaton potentials
that yield n, = 0.96, the resulting a, value is not detectable
at Planck sensitivity levels [with a 68% confidence level
(C.L.) of Aa=0.01] [34,56,57]. To isolate the effect of
isocurvature perturbations, to simplify our analysis, and to
leave our analysis unpinned to specific curvaton potentials,
we thus impose the restriction @, = 0, which is consistent
with Planck data. In future work, it would be interesting to
simultaneously explore the diversity of curvaton potentials
and decay scenarios (including a, # 0) in the analysis, with
an eye towards future cosmological data sets.

The curvaton is a massive scalar field, and so for the
simplest quadratic curvaton potentials, the curvaton energy
density is p, ~ 5% + 26506 + (56)?, where & is the homo-
geneous value of ¢ and do is a spatial perturbation. As o
itself is a Gaussian random field, p, is non-Gaussian.
The resulting non-Gaussianity is of local type—that is,

§=¢,(%) + 3 fmleG(X) = (G5 (X)), with

5 Srp 5
fanT——D—— (5)

where ¢ g(?c) is a Gaussian random field [6,7,23,24,34,40].
The stringent limits to local-type non-Gaussianity from
Planck temperature data, f; = 2.7 4+ 5.8, impose the con-
straint rp > 0.12 [34,45]. These constraints do not depend
on the curvaton-decay scenario, and are thus relatively
model independent. In some curvaton-decay scenarios,
residual isocurvature perturbations would be excited, mak-
ing more stringent limits to r;, possible. Additionally, limits
to or a detection of curvaton-type isocurvature would make
it possible to test the decay physics of the curvaton.

If the densities of all species are determined after
curvaton decay, then the density perturbations in all species
are set by ¢ alone, leading to purely adiabatic fluctuations.
On the other hand, if some conserved quantum numbers are
generated by or before curvaton decay while others are not,
there is a mismatch in density fluctuations, leading to a
gauge-invariant entropy (or isocurvature) perturbation. In
particular [6,7,40],

0, if xis produced before o decay,

¢, =14 &, if xis produced by o decay, (6)

¢, if xis produced after o decay.

Here the index x denotes b (baryon number), L (lepton

number), or ¢ (CDM). The Z’X indicates initial curvature
fluctuations on hypersurfaces of constant particle number
(for CDM) or conserved quantum number (in the case of
baryons or leptons). The curvaton is assumed to behave as

matter at the relevant epochs, and so EG ={,.

We distinguish between quantum numbers (like baryon
and lepton number) and densities, as baryon and lepton
number could be generated at very early times, long before
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quarks bind to produce actual baryons. Indeed, baryo-
genesis (which refers to the creation of baryon number)
could be related to curvaton physics, even if the production
of actual baryons happens much later.

The gauge-invariant entropy fluctuation between x and
photons is given by

Sxy = 3(€x - C}/) (7)

and is conserved on superhorizon scales [3,58,59], as long
as the equation of state of the species i (or the carriers of the
relevant quantum number) is constant and the quantum
numbers are conserved. Photon perturbations are described
by ¢, the spatial curvature perturbation on hypersurfaces of
constant photon energy-density. For baryons or leptons, ¢,
is the curvature perturbation on surfaces of constant energy
density of whichever species carries the quantum number
(at late times, these would be actual surfaces of constant
baryon energy density).

=33, -9,
Sw=13(%-1)¢-3 -9
_3(Cy_é’)’

When fluctuations are set by the curvaton, as we can see
from Eq. (8), entropy fluctuations are set completely by the
adiabatic fluctuation (as we would expect when only
fluctuations in a single field are important), and are thus
totally correlated or anticorrelated to {.

Anticorrelated isocurvature perturbations can lower the
observed CMB temperature anisotropy at low multipole /,
improving the mild observed tension between the best-fit
ACDM model and large-scale CMB observations [61,62].
To see what this fact implies for curvaton physics, and to
more broadly test the curvaton model using CMB obser-
vations, we now derive the isocurvature amplitudes in
different curvaton-decay scenarios. To simplify the dis-
cussion, we will describe curvaton-decay scenarios with the
notation (b, . c,_,L,, ), where y, € {before, by, after}. For
example, (buy, Cafiers Lvefore) indicates a curvaton-decay
scenario in which baryon number is generated by curvaton
decay, cold dark-matter after curvaton decay, and lepton
number before curvaton decay.

III. CURVATON-DECAY SCENARIOS

The various curvaton-decay scenarios can be divided
into cases where the production of either the baryon
number, lepton number, or CDM occurs before the curva-
ton decays, by the curvaton decay, or after the curvaton
decays. This naturally leads to a total of 3 x 3 x 3 =27
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The constant superhorizon values of { and S, are “initial
conditions” which precede horizon entry and determine the
spectra of CMB anisotropies, as computed by cAMB [60] or
any other CMB Boltzmann code. We take the initial values
Sy, to be defined at some time after the relevant species
thermally decouple and reach their final equation of state
(for example, if x = ¢, we consider S, at some time after
CDM has become nonrelativistic). After the quantum
number associated with x thermally freezes out, Z’x is
conserved on superhorizon scales because the relevant
quantum numbers are conserved. If x € {c, b}, S,, is set
long after actual baryons and CDM become nonrelativistic,
and so ¢, = Ex, because surfaces of constant energy and
number density coincide. We discuss the subtler case of
lepton-number fluctuations and neutrino isocurvature in
Sec. III.

For any quantum number/species, there are then three
scenarios [22]:

if xis produced before o decay,
if xis produced by o decay, (8)

if xis produced after o decay.

distinct scenarios. As discussed in the previous section,
curvaton decay can occur at any time after inflation ends.
Curvaton decay must certainly also occur before big-bang
nucleosynthesis (BBN). This means that within the single-
field slow-roll inflationary models, the curvaton may decay
at temperatures ranging from 10' GeV [34] down to
~4 MeV [63], at which point the primordial light elements
must be produced. In order for all 27 scenarios to be
realized, there must be mechanisms that generate baryon
number, lepton number, and CDM over this wide range of
energy scales, as we now discuss.

A persistent mystery is the origin of baryon number—
i.e., the observed net asymmetry of baryons over anti-
baryons in the Universe. Plausible models bracket a range
of energy scales, from baryogenesis at the electroweak
scale [64] to direct production of baryon number through a
coupling to the inflaton or curvaton (see Ref. [65] and
references therein). The energy scale of baryogenesis could
thus be anywhere in the range 1 TeV-10'® GeV. Since
both the inflationary energy scale and the energy scale of
curvaton relevance/decay are poorly constrained, it is
possible for baryon number to be produced before, by,
or after curvaton decay.

The observed baryon asymmetry could be produced
through partial conversion of a much larger primordial
lepton asymmetry. One of the ways (reviewed at length in
Ref. [66]) to account for the observed nonzero neutrino
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TABLE L

PHYSICAL REVIEW D 94, 103517 (2016)

Baryon and CDM isocurvature amplitudes (in terms of the curvature perturbation ¢) for the various

curvaton-decay scenarios. If the lepton chemical potential &, = 0, then S, = 0. Otherwise, if £, # 0 and there is

anet lepton number L # 0, then S,
decay—that is, y; =
curvaton-decay scenarios is introduced in Sec. IL

is given by Eq. (21), taking nonzero values only if L is generated by curvaton
by. This is dlscussed in detail in Secs. IIl A and III B. The notation (b

y,» Cy,» Ly, ) for various

Scenario Sby Sey Sy
5 3 ¢
(boy: Coefores Ly, ) (L-1)+R,>% —34R, 3g— 1)+ R,
(Dbefore- oy Ly, ) ~3+R, 3(L-1)+R,% (e - 1)+ R,
(B Catter: Ly,) 3(L-1)+R, % R, 3&(L-1)+R%
S N Q, S,
(Bater oy Ly,) R, 3(E-1D+% 3 -1 +R%
(bbeforev aftervL ) -3 +RD% RD% 3%+RUL
(bdfterv Chefore > LyL) R, % -3+ % -3 g—:" + R, %
(bbeforev Chefore s L ) -3+R, S—g % %
(Dy: Coys Ly, ) 3(L-1)+R,% S S
( after> Cafter> Ly,_) R, % R, % R, %

mass is to invoke the seesaw mechanism [67,68]. The
seesaw mechanism generically introduces a hierarchy of
neutrinos with masses above the electroweak scale, leading
to the generation of lepton number at temperatures greater
than ~100 GeV.

Alternatively, lepton number could be produced near
the end of inflation (at energies as high as ~10'® GeV),
perhaps by Chern-Simons (parity-violating) terms in the
gravitational sector [69] or by a novel coupling of chiral
fermions to an axion-like field [70]. On the other hand,
the vMSM model [71] allows for lepton number to be
generated at lower energies. Finally, as discussed in the
previous section, it is possible that the decay of the curvaton
field produces lepton number, leading to isocurvature
perturbations in the neutrino density perturbations.

The identity and production mechanism of the CDM is
also a mystery [72-75]. One possibility is that the CDM
consists of weakly interacting massive particles (WIMPs)
thermally produced by physics at the ~TeV scale [76].
If this is so, the CDM would be produced around the
electroweak energy scale. Direct-detection experiments,
however, have placed increasingly stringent limits on
WIMP couplings. The most natural WIMP candidate
(a stable superpartner in supersymmetric models) is also
under increasing pressure from experiment, due to the
lack of evidence for low-energy supersymmetry from the
Large Hadron Collider (LHC) (see Ref. [77] and references
therein). This motivates the consideration of other CDM
candidates.

One possible CDM candidate is a stable extremely
massive particle (or wimpzilla) with mass in the range
102 GeV < m < 10'® GeV [78]. The wimpzilla might be
produced by gravitational particle production during infla-
tion or directly from inflaton decay [4,78]. Similarly, even a

standard lighter supersymmetric WIMP could be produced
by curvaton decay if WIMPs couple to the curvaton field
[7]. Just as with baryon and lepton numbers, CDM could
thus be produced before, by, or after curvaton decay [40].

Altogether, there is a variety of logically possible
scenarios for producing the correlated isocurvature fluctu-
ations discussed in Sec. II. Our goal in this work is to test
these scenarios using CMB data. We assemble for the first
time in one work expressions for the amplitude of corre-
lated baryon, CDM, and neutrino isocurvature-density
(NID) perturbations in all 27 possible curvaton-decay
scenarios, as shown in Table I and Eq. (22). This allows
us to build on past work, which explored only one
isocurvature mode at a time [42] or neglected NID
perturbations [40,79], and self-consistently test for the first
time the full parameter space of rp and &, in all 27
curvaton-decay scenarios.

We recognize that in the context of specific particle
physics models for baryogenesis, leptogenesis, or dark
matter production, some of these scenarios are more viable
than others. For example, in the YMSM [71], the lepton
asymmetry and dark matter are produced nearly concur-
rently, and so scenarios of the form (bpegore Chefores Laier) 4O
not apply. With this caveat in mind, we have considered
all possible curvaton-decay scenarios without theoretical
restrictions, in order to determine the most general
constraints.

At the level of observable power spectra in linear
perturbation theory, the CDM and baryon isocurvature
modes are indistinguishable [40,44,60,79,80], but the NID
mode has a distinct physical imprint [42,81] from the others
that can be separately probed using the data. We begin with
the simplest curvaton-decay scenarios, in which there is
no lepton asymmetry L = An; /n;. (Here An; = n; — nj,
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where n; and n; denote the number densities of the lepton
number and antilepton number, respectively.

A. No lepton asymmetry

During radiation domination, the total curvature pertur-
bation is given by

C = (1 - RL/)Z:}/ + Rugw (9)

where R, = p,/(p, + p,) is the energy fraction in massless
neutrinos, a constant after electron-positron annihilation.
Neutrinos carry lepton number and thermally decouple near
temperatures 7 ~ 2 MeV. If there is no lepton asymmetry,
spatial fluctuations in lepton-number density track the total
energy density, and so {, = ¢{. From Eq. (9) we then see
that { = ¢, = {,, and thus §,, = 0. It is then straightfor-
ward to obtain the relationships between baryon/CDM
entropy fluctuations and curvature fluctuations for a variety
of curvaton-decay scenarios by applying Eq. (8). The
resulting amplitudes are shown in Table I. Later, to interpret
constraints, it is useful to define the total isocurvature in
nonrelativistic matter:

Q Q.
Smyz3[(g—”cb+g—‘cc) —4
Qb QC

= |:Q—Sby+g—scy:|. (10)

Here Q;, and Q. are the usual relic densities of baryons and
CDM relative to the cosmological critical density.

We note that the scenarios (bpy, CheforesLy,) and
(Dbefore» Coy» Ly, ) lead to correlated (or anticorrelated)
isocurvature perturbations. These scenarios mitigate some
of the tension between CMB data (for [ < 50) and the
best-fit ACDM model [35,61,62]. We discuss this further
in Sec. IV.

The near cancellation of baryon and CDM isocurvature
contributions to S,,, in these scenarios requires fine-tuned
values of rp ~Q,/Q, and rp~Q./Q,,. This yields a
relatively large CIP amplitude of S,.=3({, —¢.) =
3(/rp and =3{/rp in the (buy. Cpefores Lyy,) and
(Dbefore» Coy» Ly, ) scenarios, respectively, or more explicitly,
Spe =20¢ and S, =3.5¢. These CIP amplitudes could
leave observable imprints on off-diagonal correlations
(or equivalently, the CMB bispectrum and trispectrum),
a possibility discussed further in Refs. [44,80].
The cases (bbeforwcafter»LyL)’ (baftencbeforevLyL)’ and
(Dbefore Coefores Ly, ) are completely ruled out by the data,
as already shown in Ref. [40]. We do not consider them
further.

The situation is considerably richer if there is a net lepton
asymmetry. As we see in Sec. III B, if the lepton symmetry
is generated before or after o decay, the ratios Sy, /¢, S, /¢,
and S, /¢ are given (to very good or perfect accuracy,
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respectively) by the values shown in Table I with §,, = 0.
On the other hand, if the lepton asymmetry is generated by
o decay, there is a residual neutrino isocurvature perturba-
tion §,, [6,22,43].

B. Lepton asymmetry

Each neutrino species carries the lepton number of the
corresponding lepton flavor, and so in the presence of a
lepton asymmetry, fluctuations in An; result in neutrino
isocurvature perturbations. For massless neutrinos, the
occupation number is

fH(E) = [PTF8 1], (11)

where the flavor label takes values j=e, u, or t;
the corresponding chemical potential &; parameterizes the
primordial lepton asymmetry; the minus sign applies for
neutrinos; and the plus sign applies for antineutrinos. Unlike
the cosmological baryon asymmetry 7 =6 x 107, &; is
rather poorly constrained. Some models of baryogenesis
require comparable levels of lepton and baryon asymmetry,
but others convert a much larger lepton asymmetry into the
experimentally known baryon asymmetry. Electron neutri-
nos (whose number density depends on &,-) set the rates of
p-decay processes active during BBN, and so the value of
£,- affects the primordial neutron-to-proton ratio n/p
exp(—&,-) and the resulting abundance of “He [36,37].

A lepton asymmetry also alters Ny, the number of
relativistic degrees of freedom during BBN, although this
effect is less important for setting abundances than the
altered n/p ratio. Neutrinos are now known to have mass
and as a result exhibit flavor oscillations. Independent of
initial conditions, solar neutrino observations and results
from the KamLAND experiment [36,38] indicate v mass
splittings and mixing angles that would lead to near flavor
equilibrium early on, and so &,- =¢, =&, = &,. BBN
abundances (including the *He abundance Y};.) depend not
only on the primordial values &p, but also on the mixing
angles between neutrinos [36], and in particular on the
value of #5. Current reactor and long-baseline neutrino
experiments indicate that sin?(6;3) = 0.03, giving a
95% confidence BBN limit of &, < 0.03 [39].

The resulting v energy and lepton-number densities are

[7,42,43]
. T(T,\*
& s <_D> Ai? (12)
Py 8\T,
An: T \3
- 2.15(—”) B, (13)
ny T,

30 (B 1S (G
Ai—[1+7<”> +7<”>], (14)
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FIG. 2. The relationship between N and flzep [Eq. (16)]. The
black dashed line indicates the 95% C.L. upper limit to AN
from the 2015 Planck analysis using TT 4+ LowP 4+ BAO and
corresponds to a 95% C.L. upper limit ffep < 0.5; the red dashed
line indicates the 95% C.L. upper limit using TT + AIIP + BAO.

ORI

which can also be parameterized as [7]

3006432 (3) L B (5Y ] g

T 7 V3

Past forecasts and recent analyses of Planck data
show that if the only effects of &, are to alter N and
the free-electron fraction (by altering Yy,.) at decoupling,
CMB constraints to &, (shown in Fig. 2) will remain less
sensitive than constraints from astronomical measurements
of primordial element abundances [8§2—88]. In the curvaton
scenario, however, if the lepton asymmetry is generated by
curvaton decay, the amplitude of neutrino-isocurvature-
density fluctuations depends on the values of &, offering
an additional possible channel for constraining this param-
eter. Neutrino experiments may still yield surprises as to
the precise values of quantities like #5. We thus explore
what constraints to the neutrino sector are possible from
CMB observations alone. In the future, measurements of
the 21 cm emission/absorption power spectrum from
neutral hydrogen (during the epoch of reionization or
during the cosmic dark ages) could be useful probes of
the value of &, [89].

We assume that the cosmic thermal history is conven-
tional between neutrino decoupling and electron-positron
annihilation, and thus neglect fluctuations in the neutrino-
photon temperature ratio 7,/T, = (4/11)'/3. 1t is then
straightforward to show that for neutrinos [43]

llié 5§lep

Ci—Cy=4Ai o (17)
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P lB§5éle
G-t =352

(18)

Neutrinos inherit the lepton asymmetry and its fluctuations,
and 50 6y, = 7B;S; /B, where §; = 3({; — {,). We then
see that

15 ep )22
s,=2 3 (%)%, (19

i=u.et

where we have assumed that &i.,/7 < 1 and assumed that
flavor mixing of the cosmic neutrino background is
negligible after neutrino decoupling. We thus have that
[42,43]

45 (8 N\~ 135 (&N -
s,=7 ()5 =7 (F)e-an e

/2 T

To proceed further, we must specify when lepton number
(L) is generated. Applying Eq. (6), we obtain [42,43]

vy T(T
<\

N~— ~—— §
(3]
S
|
)
g
N———
—.
lanr}
t~
—.
w
0q
(]
=
(€]
-
o
=3
o
o
o
<«
Q
o
o
(e
o
=<

(1)

Substituting into Eq. (9) and solving for §,,, we then
obtain [to lowest order in (&e,/ 7)?] [43]:

0 if Lis generated beforesdecay,
% = 1% (f'%) ? (% — 1> if Lis generated by odecay,
0 if Lis generated afterodecay.
(22)

The expression for the case of L generated before o
decay is approximate, and has corrections of order
Sy, ~ 1072¢ which are negligible at the level of accuracy
needed for the MCMC analysis of Sec. IV. The expression
for the case of L generated after ¢ decay results from the
requirement that the penultimate equation hold independent
of the true values of R, and &,

In scenarios where L is generated by ¢ decay, there is a
mismatch between the total { (which has contributions
from neutrinos and photons) and ¢,. This must be self-
consistently included in Eq. (9) to obtain the correct
expressions for the relationships between S, (or S.,)
and ¢, shown in Table I. If lepton number is generated

103517-7



TRISTAN L. SMITH and DANIEL GRIN

before or after ¢ decay, the amplitudes are given as before
in Table I with §,, =

IV. DATA

The main effect of the curvaton model is to introduce
totally correlated (or anticorrelated) isocurvature modes
into the initial conditions of the cosmological perturbations.
In order to test the various curvaton decay channels, we use
the CMB temperature and E-mode polarization power-
spectra measured by the Planck satellite [35,90,91]. The
large-scale E-mode measurements mainly constrain the
optical depth to the surface of last scattering, z, while
the small-scale E-mode measurements provide additional
constraints on the allowed level of isocurvature [92]. We
also use measurements of baryon acoustic oscillations
(BAOs) [93,94] to break geometric degeneracies in the

PHYSICAL REVIEW D 94, 103517 (2016)

CMB data and thus improve the sensitivity of the Planck
data to isocurvature perturbations.

The introduction of matter isocurvature modes, shown
by the blue curves in Fig. 3, has its most significant effect
on the large-scale TT and TE power spectra, where it
changes the height of the Sachs-Wolfe plateau and alters
the shape/amplitude of the Integrated Sachs-Wolfe (ISW)
effect. On the other hand, neutrino-density isocurvature
with a comparable amplitude, shown by the orange curves
in Fig. 3, affects CMB anisotropies more dramatically at all
scales.

The Planck data have been divided up into a large
angular-scale data set (low multipole number) and a small
angular-scale data set (high multipole number) [91]. For all
constraints, we use the entire range of measurements for the
TT power spectrum as well as the low multipole polari-
zation (TE and EE) data, which we denote as LowP. We

500 — " | 1¢'[" 100
< LE o0
S = HT 50
< =500 = ] bl —-100
1 10
[ L =
10 s
. - i
a 0 S 0
< — i
-10 | 1 _5
. 11 1111 II| T
1 10 500 1000 1500 2000
N L |
02 I'l l 4
= - H <
S 0 — I__I_LLLT _ 0
< - 1'"11'[1 i
0.2 — H —2
B v nl MW —4
1 10 500 1000 1500 2000
14
FIG. 3. A comparison of the differences between a purely adiabatic mode and a totally correlated (solid) or anticorrelated

(dashed) matter- (blue) or neutrino-density (orange) isocurvature mode. Each panel shows the binned residuals AD);Y =
£(¢+ 1)ACX /(2z) (see Ref. [91] for details on the binning procedure). The matter isocurvature has an amplitude S, = 0.2,

and the neutrino-density isocurvature has an amplitude S,

= 0.1. We also show the residuals for the power spectrum measured by the

Planck satellite [91]. Note that the horizontal scale is logarithmic up to £ = 29 and then is linear; the vertical scales on the left- and right-

hand sides are different.
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also compute constraints using the entire multipole range of
polarization measurements, denoted by AlIP. The division
between these two data sets is the multipole number
¢ =29, which approximately corresponds to an angular
scale of =5°.

As demonstrated in Fig. 3, polarization data can break
degeneracies present in a temperature-only analysis. This
statement is especially true for tests of the adiabaticity of
the initial conditions [92]. The analysis in Sec. 11 of
Ref. [34] and Sec. VI. 2. 3 of Ref. [35] includes constraints
to isocurvature modes using the Planck 2015 data. As they
point out, the addition of AlIP greatly improves the
constraint to isocurvature modes which are correlated to
the adiabatic mode.

For example, the fractional contribution to the temper-
ature power spectrum is constrained to = —0.0025"000:
at 95% C.L. using Planck TT + LowP, where the sign
of a indicates whether the isocurvature contribution is
totally correlated (o > 0) or anticorrelated (o < 0) with the
adiabatic mode. The preference for an anticorrelated mode
comes from the well-known deficit of power on large
angular scales [90,95]. When all polarization data are
included in the analysis, the centroid shifts upward and
the overall uncertainty on « is reduced by more than 50%:
a = 0.0003700015 at 95% C.L. As noted by the Planck
team [35], these effects may both be driven by a signifi-
cantly low point in the TE cross power spectrum, which
may be due to unidentified systematic effects (see,
e.g., Ref. [96]).

In order to highlight the effects of including all of the
publicly available Planck data, we divide our analysis into
two sets of data: Planck TT 4+ BAO + LowP and Planck
TT 4+ BAO + AlIP. Given the uncertainty around system-
atic effects in the high-Z polarization power spectrum, we
take the Planck TT + BAO + LowP constraints to be more
robust.

In order to compare the data to our model, we use a
modified version of the publicly available Boltzmann
code CosMOMC [97] along with the publicly available
Planck likelihood code [91] included with the 2015 Planck
data release. We made modifications to these codes in order
to include the two curvaton parameters rp and &p,. As
discussed previously, the parameter r, only affects the
initial conditions, whereas the lepton asymmetry, &p,
affects both the initial conditions and the effective number
of neutrino species, as well as f-decay processes occurring
during BBN. This latter effect alters the primordial
light-element abundances, so that from measurements of
primordial 4He and deuterium abundances, we have an
independent constraint |£.,| < 0.03 at 95% C.L. [36,39], as
discussed in Sec. III.

In our analysis, we try three different priors on &j,,: first,
we consider the constraints to &, from the CMB only

imposing a flat prior on & of 0 < & < 4; second, we

PHYSICAL REVIEW D 94, 103517 (2016)

impose the BBN constraint by placing a Gaussian prior on &
with a mean of zero and a standard deviation of 0.03; third,
we consider the case where ¢, = 0, removing the neutrino
isocurvature mode. We find that both current CMB mea-
surements by Planck and a future cosmic-variance limited
experiment (with maximum ¢ = 2200) are less sensitive to
/jlzep than measurements of the light-element abundances.

The observed CMB power spectra can be written in terms
of the primordial curvature perturbation power spectrum,
AZ(k), and the photon transfer function ®.% (k) for each
initial condition i, as

CXY = 4z A ” %A%(k} [ZAWGQX(I()]
x [;A”@{;Y(k)} , (23)

where X € {T, E} denotes the relevant observable (CMB
temperature or E-mode polarization anisotropy).

The primordial curvature perturbation is given in terms
of the amplitude parameter A;:

3

A =2 P(k) = A, (ki) (24)

27*

where P,(k) is the dimensional power spectrum of £, A,
is the primordial scalar amplitude and 7, is the primordial
scalar spectral index, and the pivot wave number is taken to
be ky = 0.05 Mpc~!. As discussed in Sec. II, we set the
running @, = 0. The amplitude parameters

Aiy = {AadvAcyvay’Aw} (25)

are used to set the mixture of adiabatic and isocurvature
modes in the CMB Boltzman code CAMB. It is important to
set all these amplitudes correctly in the presence of neutrino
isocurvature, as neutrinos contribute to the relativistic
energy density at early times, and the neutrino isocurvature
density mode is excited in the curvaton model, as we saw in
Sec. III. As discussed in the Appendix, using the initial
perturbation values 6., 6, 6,, and 6, for each perturbation
mode used in CAMB, we have that A, = S,,,/{ - R,S,, /¢,
Ay =8,/C-R,)S,/{, and A, =3S,R, /4], where
R, =1 — R, is the fraction of relativistic energy in photons.
We apply these relations when running our MCMCs for
each of the curvaton-decay scenarios enumerated in
Sec. III, along with Table I and Eq. (16).

Before presenting constraints to rp and &y, it is
instructive to consider a “model independent” parameter-
ization of the totally correlated (or anticorrelated) isocur-
vature modes. Figure 3 gives us a sense of what to expect
from this exercise. First, note that a 20% contribution
from totally correlated CDM isocurvature (blue curves) can
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produce a deficit of power on large scales while also
causing a significant change at around the first peak in the
TT power spectrum. Given the mild tension between
the best-fit theoretical power spectrum and the relatively
low-temperature quadrupole (at the level of a little more
than 1 standard deviation), we expect the data to prefer a
slightly negative value for S§,,,. The matter isocurvature
also has a significant effect on the TE power spectrum
between 100 < #Z < 500.

The introduction of a 10% contribution from neutrino
isocurvature (orange curves) significantly changes the TT
power spectrum at nearly all scales, as well as the TE and
EE power spectrum on scales with #Z 2 100. We therefore
expect that the CMB data will be more sensitive to S,, than
to S,

The results presented in Fig. 4 confirm our expectations:
the Planck TT 4 BAO + LowP (red curves) prefers a
slightly anticorrelated matter isocurvature amplitude, and
when all of the polarization data are included (blue curves),
the constraints shift towards a purely adiabatic spectrum.
We find that the Planck TT + BAO + LowP places a
constraint §,,, =—0.19+0.18 and S, = 0.04f8'11§, whereas
Planck TT + BAO + AlIP gives Smy —0.06 £0.16 and
S,, =0.05+0.11 at 68% C.L.

1 1 1
—0.75 —-0.50 —0.25 0.00 0.25 0.50

S

—0.4 ] =

—0.75 -0.50 —0.25 0.00 0.25 0.50 —0.4 -0.2 0.0 0.2 04 0.6
Sy Sy

FIG. 4. The posteriors for the correlated isocurvature ampli-
tudes S,,, and S,,; the red curves show constraints using Planck
TT + BAO + LowP, and the blue curves show constraints using
Planck TT + BAO + AlIP. Note that at the level of about 1
standard deviation, the LowP case is better fit by a totally
anticorrelated matter isocurvature component, which leads to a
suppression of power on large angular scales. When all of the
polarization data are included, this preference is less dramatic.
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As was noted in Ref. [35], the difference between these
constraints may be driven by a handful of data points
around ¢ == 160. This can be seen by eye in Fig. 3: in the
top panel, which shows the TT spectrum, the large-scale
residuals are significantly below zero, preferring totally
anticorrelated matter and neutrino-density isocurvature
(dashed curves); in the TE spectrum, there are a few data
points around £ = 160 which have residuals significantly
above and below zero. As the isocurvature curves show,
these data introduce a tension between totally correlated
and anticorrelated isocurvature modes. We note that this
tension may be a significant driver in the difference
between the LowP and AlIP constraints on isocurvature
perturbations, although we do not explore this issue further.

As the data are well fit by a Universe with purely
adiabatic perturbations, curvaton scenarios that fit have rp
and &y, values that produce adiabatic perturbations. This
immediately eliminates the scenarios (Pyfier: Cafier» Ly, ) and
(Dbefore» Coefores Ly, ). We also note that the case where
(Dbefores Cafier» Ly, ) Will produce a huge isocurvature per-
turbation, unless rp exceeds the bounds from non-
Gaussianity and &, exceeds the BBN bounds. This
scenario is thus ruled out to high significance as well.
We are then left with 18 scenarios which may be consistent
with the data.

Each of the allowed 18 scenarios yields zero-isocurvature
contributions to CMB power spectra if A,,, = 0—i.e., as
long as they correspond to a compensated isocurvature
mode. We show the value of rp in each of these scenarios
for which A,,, = 0 in Table II, along with the constraints to
rp when &, = 0.

In addition to running MCMC:s to obtain constraints, we
perform a Fisher-matrix analysis to forecast the sensitivity
of CMB data to In(rp) and & . We include these

parameters, as well as the standard six ACDM parameters.
We apply the Fisher-matrix formalism as described in
Ref. [98]. In this analysis, we also include a BBN prior
on the primordial *He abundance, with error oy, = 0.005.

TABLE II. Constraints to rp (with élzep = 0) using Planck
TT 4+ BAO + LowP to those models which can yield vanishing
isocurvature perturbations as seen in any two-point correlation
function. Note that in the scenario (Duger» Cafier» Ly, ), W€ quote a
constraint to y, which is related to rp, as discussed in more detail
in Sec. IV B.

Scenario rp (A, =0)
0.1580 56040

083732

rp (95% CL)

0160205047

0.0099
0.8492 ) (0oc

bbya Cbetorev y )
Doefore Chy> VL)

(
(
(bby7 after» y,)
(
(
(b

1 >0.9578

Dageer bea ) 1 >0.9919
bby’ Chy> ‘L) 1 >0.9931
after> Cafter» Ly ) 1 >0.9973
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Numerical derivatives are evaluated using a standard
two-sided two-point numerical derivative, except for the
parameters In 7 and 512ep’ for which a one-sided seven-point
rule was applied to obtain sufficiently convergent numerical
derivatives. Additionally, for Q,h?, atwo-sided seven-point
rule was used to guarantee numerical convergence. For
In (101°4;), the derivative dC%XY/dA, was evaluated ana-
lytically, as CX¥ o A, obviating the need to compute a
numerical derivative for this parameter. These results are
used both to verify that our MCMC results for Planck data
are reasonable and to forecast the ideal sensitivity of a
cosmic-variance limited CMB polarization experiment to
curvaton-generated isocurvature perturbations.

Fiducial values for Q,h?, Q. h%, Q,, A,, n,, and 7 were
set to the marginalized means for these parameters in a
ACDM-only MCMC run. For the lepton asymmetry,
we used flzep =0 as the fiducial value. For all curvaton
scenarios except (byy, Chefores Ly,) and (Dyefores Cpys> Ly, ),
we used the fiducial value rp = 1, guaranteeing that the
fiducial model has adiabatic perturbations. For the scenar-
108 (Dyy, Chefores Ly, ) and (Dpefore, Chy» Ly, ), we used fiducial
values corresponding to zero isocurvature between radia-
tion and nonrelativistic matter (i.e., A,,, = 0), correspond-
ing to the rp values given in the middle column of Table II.

We now present our constraints to curvaton-decay
scenarios, grouped by the character of their effects on
CMB power spectra. We begin by discussing scenarios for
which there is nonzero isocurvature unless £ =0 and
rp = Q;/Q,,, where i denotes baryons or CDM. We then
move on to a scenario showing a total degeneracy between
f;‘lzep and rp at the level of isocurvature amplitudes. We
finish by discussing scenarios for which all isocurvature
modes vanish when rp = 1.

A. Constraints to baryon number or CDM
production before curvaton decay

The two decay scenarios which produce compen-
sated isocurvature modes are (byy, Chefores Ly,) and
(Dbefore» Coys Ly, ). As shown in Table I, the isocurvature
contribution vanishes (i.e., is purely compensated) when
glep =0 and rp = Q,/Q,, for (bbyv CbefoeryL) or rp =
Q./Q,, for (Pyefore: Chy» Ly, ). In addition to this, if rp is
greater than the previous values, the matter isocurvature is
anticorrelated with the adiabatic mode, leading to a
suppression of the large-scale temperature power spectrum.
As expected, constraints from Planck TT + BAO + LowP
lead to values of rp which are slightly larger than
the purely compensated case, since that leads to a
suppression of the large-scale temperature power spectrum.
Marginalizing over flzep for (byy. Coefore Ly, )» we find that at
95% C.L., rp = 0.1619 03933 and Q,/Q,, = 0.15801 0-3043;
for (Bpefore: oy Ly,) we find that rp = 0.856107!7 and
Q./Q,, = 0.84017 %083

PHYSICAL REVIEW D 94, 103517 (2016)

Constraints to 7 in these two scenarios are significantly
different when all of the polarization data are included.
In this case, marginalizing over .flzep for (bpy., Chefores Ly, )
we find that at 95% C.L., rp=0.159570%4 and
Q,/Q,, = 0.15701 00053 for (Dpefore: Chy Ly, ) we find that
rp = 0.85370913 and Q,/Q,, = 0.84557 09022, We can see
that in both scenarios, rp is constrained to be significantly
closer to its compensated values when all of the polariza-
tion data are used.

The constraint to 512ep in these two scenarios is particu-
larly interesting, since the compensated isocurvature leads
to a stricter Planck/BAO constraint. Looking at Eq. (22),
we can see that the smaller rp is, the larger the neutrino
isocurvature contribution. This means that the Planck/BAO
constraints to élzep for the scenario (byy. Coefores Ly, ) are the
most constraining with flzep <0.0164 at 95% C.L., as seen
in Fig. 5. Although this is not competitive with constraints
inferred from measurements of the primordial light-element
abundances [33,36-39], éfep <0.001 at 95% C.L., it is the
tightest constraint to ffep using only Planck/BAO data.

Since the value of rp is larger in the scenario
(Dbefore» Coys Ly, )» the constraint to §lzep in this case is not
as restrictive, giving .flzep <0.368 at 95% C.L. As shown in
Fig. 2, however, this is more restrictive than the upper limit
placed on §lzep <0.5 from its contribution to the total
radiative energy density of the Universe, showing that this
constraint is driven by the effect the lepton asymmetry has
on neutrino isocurvature perturbations.

The constraint to ffep does not change significantly when
including all of the polarization data: for the scenario
(Dbefore» Coys Ly, ), the constraint becomes élzep <0.0165;
and for (Dpefore, Coys Ly, ), it becomes & < 0.348.

As shown in the bottom panels of Figs. 5 and 6, the
marginalized 1D constraint on rj, is fairly insensitive to
how we treat 512ep. In those panels, the red curve shows the
constraint arising from flat priors on f%ep. The blue curve
shows the constraint that arises when flzep has the BBN prior
‘flzep <0.001 at 95% C.L. The orange curve shows the
constraint obtained when we assume ‘flzep = 0.

The values of rp allowed by Planck/BAO data in these
scenarios also imply a non-Gaussian signature in the
CMB. The predicted level of this signature can be
determined through Eq. (5). We show the predicted
ranges for the amplitude of this signal, f,;, in Fig. 7.
The scenario (bpegores Coys Ly, ) predicts fr; = 5.92 £0.26,
and  (Dpefores Coy Ly, ) predicts that f = —0.9197903
at 95% C.L.

Current data impose the constraint f; = 2.5 + 5.7 [45].
The scenario (byy, Cpefore- Ly, ) implies a particularly large
fu value, which could be sensitively tested using mea-
surements of scale-dependent bias in future galaxy surveys
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FIG.5. Constraints to rp and Zjlzep for scenario (byy, Chefores Ly, )-
Top: The marginalized 2D constraints to both 7, and &,. The red
regions show the current constraints using Planck TT + BAO +
LowP data, the blue regions show constraints using Planck
TT + BAO + AlIP, and the black regions show the projected
constraints for a cosmic-variance limited CMB experiment which
measures out to Zp.x = 2200, obtained from a Fisher-matrix
analysis. In this panel, a flat prior is imposed on flzep, as discussed
in the text. The dashed vertical green line gives the value of r, for
which the isocurvature is totally compensated (i.e. A,,, = 0); the
dashed horizontal purple line gives the 95% C.L. upper limit on
§lzep from measurements of the primordial light element abun-
dances. Bottom: Marginalized 1D constraints to 7, using Planck
TT + BAO + LowP under a variety of assumptions for &,,: flat
prior on ijlzep (red), BBN prior on 512ep (blue), and Zjlzep = 0 (orange).

[46,47] or measurements of the matter bispectrum from
high-redshift 21 cm experiments [48-50]. The scenario
(bbefore» Coy» Ly, ), which makes more modest predictions,
could be tested with high-redshift 21 cm experiments
[48-50].

Future CMB measurements will greatly improve upon
these constraints. As shown by the black ellipses in Figs. 5
and 6, a cosmic-variance limited CMB experiment which
measures both the temperature and polarization power
spectra out to £, = 2200 will give a factor of 4.3 increase
in sensitivity to flzep, a factor of 3.5 increase in sensitivity to
rpp for the scenario (byy, Chefore» Ly, ), @ factor of 11 increase
in sensitivity to cflzep, and a factor of 4 increase in sensitivity
to rp for the scenario (byefore» Cuy» Ly, ). Note that even with

PHYSICAL REVIEW D 94, 103517 (2016)
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FIG. 6. Constraints to rp and 5126[) for the scenario
(Dbefore» Coys Ly, ). Top: The marginalized 2D constraints to both
rp and &p,. The red regions show the current constraints using
Planck TT + BAO + LowP data, the blue regions show con-
straints using Planck TT 4+ BAO + AlIP, and the black regions
show the projected constraints for a cosmic-variance limited
CMB experiment which measures out to ¢,,, = 2200, obtained
from a Fisher-matrix analysis. In this panel, a flat prior is imposed
on &, as discussed in the text. Bottom: Marginalized 1D
constraints to rp using Planck TT + BAO + LowP under a
variety of assumptions for &p: flat prior on 51261) (red), BBN

prior on &, (blue), and &, = O (orange).

the increased sensitivity, CMB/BAO measurements of éflzep

are still not as sensitive as measurements of the primordial
light-element abundances.

B. Constraints to baryon and CDM production
after curvaton decay

In the scenario where both the baryon number and CDM
are produced after curvaton decay, while lepton number is
produced by its decay, the initial conditions are completely
determined by the level of neutrino isocurvature alone, as
shown in Table I. Looking at Eq. (22), we can see this
produces a perfect degeneracy between rp and §lzep: the

level of isocurvature can be made to be arbitrarily small for
any value of r,, < 1 with a small enough value for élzep. In

order to determine the allowed region of parameter space, it
is convenient to define a new parameter, yp:
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constraint 512ep <0.49 (at 95% C.L.), due to the effect of
cffep on N.;. We have also seen that measurements of the

primordial light-element abundances further constrain

feps0.00I at 95% C.L. The unshaded region of the

rightmost panel of Fig. 8 shows the currently allowed

region of the rp — aflzep parameter space in this scenario.
The Planck TT + BAO + LowP data place the con-

straints 1 —yp <0.0027 and flzep <0.5 at 95% C.L. These

data have a slight preference for nonzero 512ep due to its

| additional contribution to the radiative energy density. This
! ! preference has been seen in previous analyses [35,99,100].

1
T TR T TR TR T Y When all the polarization data are used, the preference for a

. Jul Jul nonzero f]zep disappears but is replaced by a slight prefer-

T LI T T
(bby7 cb}:forey LyL)

T T T T T T 1
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ence for yp < 1, as can be seen in the blue curves in the

FIG. 7. Predigted value of the non-Gaussianity parameter [, left panel of Fig. 8. In this case, we have 1 — yp < 0.0025
for the scenarios (byy. Coefores Ly,) and (Dpeores Chy. Ly, ) for and 512 <033 at 95% C.L
op < 0. .L.

parameter values which are consistent with our limits (on ; . . .
isocurvature and the radiative energy density at decoupling) Given that any value of rj, is consistent with the Planck/

from Planck/BAO data (red). The vertical dashed lines indicate BAO data, this scenario does not make a specific prediction
the 95% C.L. range of these predictions. for a level of non-Gaussianity. Instead, current data

(fu1=2.5%5.7 [45]) allow us to conclude that rp >0.12
£ at 95% C.L. This constraint is shown in the left-hand panel
1_ 1 =2l (i - 1>. (26)  of Fig. 8 as the vertical dashed line.

Future measurements of the CMB will more sensitive to
this curvaton-decay scenario, as shown by the black curves
The constraints to yp and ffep are shown in Fig. 8. in the left and center panels of Fig. 8. Using a Fisher-matrix

As discussed in Sec. III B, even in the absence of analysis, we find that a cosmic-variance limited experiment
neutrino isocurvature, Planck/BAO data impose the  which measures both the temperature and polarization

: 10°

(baftcn Cafter Lyl_)

-
.-

%107 1.2x107°

.

Probability
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p

FIG. 8. Marginalized 1D constraints to a scenario in which lepton number is produced by curvaton decay, while baryon number and
CDM are produced after curvaton decay. For the left and middle panels, the red curve shows constraints using Planck
TT + BAO + LowP, the blue curve shows constraints using Planck TT + BAO + AllP, and the black curve shows projected
constraints for a cosmic-variance limited CMB experiment which measures out to Z,,,,, = 2200, obtained from a Fisher-matrix analysis.
The vertical dashed lines indicate the 95% C.L. upper limit to each parameter using the Planck TT + BAO + LowP data. Left-hand
panel: The 1D marginalized posterior for 1 — yp,, where y, is defined in Eq. (26). Middle panel: The 1D marginalized posterior on éﬁap
from CMB/BAO observations only. Right-hand panel: A contour plot showing the relationship between yp, rp, and flzep. The dotted red
contour shows the 68% C.L. upper limit on 1 — yp from Planck TT + BAO + LowP; the dashed red contour shows the 95% C.L. upper
limiton 1 — yp from Planck TT + BAO + LowP. The vertical dashed line shows the 95% C.L. lower limit on rp, from constraints to the
level of non-Gaussianity in the CMB; the horizontal dashed lines show the 95% C.L. upper limits on Zjlzep from the Planck
TT + BAO + LowP data (black) and measurements of the primordial light-element abundances (red). The shaded region is currently
ruled out at 95% C.L.
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FIG. 9. Constraints to the three cases where the baryon number and/or CDM is produced after the curvaton decays. The red regions
show the current constraints using Planck TT 4+ BAO + LowP data, the blue regions show constraints using Planck TT + BAO + AlIP,
and the black regions show the projected constraints for a cosmic-variance limited CMB experiment which measures out to
' max = 2200, obtained from a Fisher-matrix analysis. In all cases, the inner contour corresponds to 68% C.L., and the outer contour
corresponds to 95% C.L. In this panel, a flat prior is imposed on Zjlzep, as discussed in the text. In these three cases, the initial conditions

are purely adiabatic when rp = 1.

power spectra out to Z = 2200 will be 4 times more
sensitive to yp and 3 times more sensitive to flzep.

C. Constraints to remaining scenarios

As shown in Table I, unlike the other cases considered,
these three scenarios yield purely adiabatic initial condi-
tions when rp = 1. This has important implications for
Planck/BAO constraints to cf%ep in these scenarios. From
Eq. (22), it is clear that the level of neutrino isocurvature in
these models is negligible. As a result, the sensitivity of
Planck/BAO data to (flzep comes solely from its contribution
to the total radiative energy density of the Universe.

This expectation is borne out in Fig. 9, since all three
scenarios give nearly the same 95% C.L. upper limit
from the Planck/BAO data for Zjlzep: for (byfeer- Chy- Ly, ),
§lep <042; for (bby, Cafter» L\L) 51ep <0.40; for
(bpy, Coy» Ly, )s §1ep < 0.44. When using all of the polari-
zation data (blue regions in Fig. 9), the sensitivity to flep
significantly improved. In all three cases, the 95% con-
fidence upper limit to flzep is a factor of =0.75 of its value
for less complete polarization data.

The constraint to rp in each scenario varies because of
the specific prefactor generated in each case. Looking at
Table I, we can see that the overall matter isocurvature in
scenario (byy, Cyfiers Ly, ) is suppressed by the small factor
Q,/Q,, = 0.15. Because of this, we expect the constraint to
rp in that case to be the least restrictive. The factor
Q./Q,, = 0.8 appears in the expression for the isocurvature
amplitude in the scenario (byfiers Coys Ly, ), leading to a
moderate suppression of the matter 1socurvature. Finally,
since the scenario (bby, Chys LyL) contains no suppression,
we expect the most restrictive constraint on 7 to occur in
this case. All of these expectations are borne out, as shown

in Fig. 9. The 95% C.L. lower limit for (byger, Cpy. Ly, ) is
rp > 0.992. For (bby, Cafier» Ly, ) the limit is rp, > 0.963.
Finally, for (byy., cyy. Ly, ) the limit is rp > 0.993. When
using all of the polanzatlon data (blue regions in Fig. 9), the
sensitivity to rp is nearly unchanged.

The values of rp in these scenarios which are consistent
with the Planck/BAO data lead to a non-Gaussian signal.
The predicted level of this signal can be determined through
Eq. (5). Note that the predicted values of f,,; are bounded
from below, since when r, = 1 we have f,; = —1.25. We
show the predicted ranges for the amplitude of this signal,

T
(bafter ) cby )

T T T T T T
yL) (bbya Cafters DyL)

Probability

1 1 1 1
-1.25 -1.24 -1.23 -1.22  -1.25 -1.20 -1.15 -1.10

fnl fnl

FIG. 10. Predicted value of the non-Gaussianity parameter f
for the scenarios (bygier» Coy» Ly, ) and (Byy. Cafier» Ly, ) for param-
eter values which are consistent with our limits (on isocurvature
and the radiative energy density at decoupling) from Planck/BAO
data (red). The vertical dashed lines indicate the 95% C.L. range
of these predictions. The results for the (bby, Chy> Ly;‘) scenario
are indistinguishable from those for the (byger, Coy» Ly, ) Scenario.

103517-14



PROBING A PANOPLY OF CURVATON-DECAY SCENARIOS ...

S, in Fig. 10. Since the upper limit on 7, for the scenarios
(Daier» Coy» Ly, ) and (byy, cyy. Ly, ) is more restrictive, the
95% C.L. upper limit on the predicted level of non-
Gaussianity in these scenarios is more restrictive with
—-1.25 < fy < =123, whereas for (byy, Cyfier- Ly, ), We
have —1.25 < f; < —1.17. Current Planck data indicate
that f,; = 2.5 £5.7 [45], and so both of these scenarios
are consistent with current constraints to primordial
non-Gaussianity. These £, values could, however, be tested
using future measurements of the matter bispectrum from
high-redshift 21 cm experiments [48-50].

Future CMB measurements will greatly improve these
constraints. As shown by the black ellipses in Fig. 9, a
cosmic-variance limited CMB experiment which mea-
sures both the temperature and polarization power spectra
out to £ = 2200 will give a factor of 3.5 increase in
sensitivity to cffep and a factor of 2 increase in sensitivity
to rp for each of the three scenarios considered in this
subsection.

V. CONCLUSIONS

The curvaton scenario presents a rich and interesting
alternative to standard single-field slow-roll inflationary
models of early-Universe physics. There are 27 curvaton-
decay scenarios, distinguished by whether baryon number,
lepton number, and CDM are produced before, by, or after
curvaton decay. Although some are better motivated
theoretically than others, we have presented constraints
to all logical possibilities to fully explore the curvaton
parameter space. Of these, 18 are currently allowed by
CMB and large-scale structure measurements.

Sensitivity to rp, a parameter describing the curvaton
energy density, comes from the effects of nonadiabatic
initial conditions on the CMB, as well as the introduction
of non-Gaussian statistics. Constraints on flzep, the lepton-

number chemical potential, come from the effects of
nonadiabatic initial conditions on the CMB, as well as
its contribution to the total radiative energy density.

We compared predictions for CMB anisotropy power
spectra in these 18 scenarios with Planck CMB measure-
ments and the location of the BAO peak. The CMB data is
divided between large-scale and small-scale measurements.
As noted in Refs. [34,35], the inclusion of the small-scale
polarization data significantly improves sensitivity to iso-
curvature perturbation. We find that, when the small-scale
polarization data is also used to measure the curvaton
scenario parameters, the improved sensitivity is less sig-
nificant, due, in part, to degeneracies between parameters.

For cases where rp =1 restores totally adiabatic
perturbations, we find limits of rp > 0.96 —0.997 at
95% C.L., depending on the precise decay scenario. In
these cases, constraints to 512ep are primarily driven by its

effect on the relativistic energy density with flzep <0.5 at
95% C.L. These scenarios (with the exception of the decay

PHYSICAL REVIEW D 94, 103517 (2016)

scenario in which both CDM and baryons are produced
after curvaton decay) predict f,; ~—1.25, a value which
could be tested by future high-redshift 21-cm surveys
[48-50]. When both CDM and baryons are produced after
curvaton decay, rp and fip are completely degenerate and

no specific prediction for f; can be made.

The most interesting cases from an observational point of
view are those in which baryon number is produced by
curvaton decay, and CDM before, or vice versa. The data
then require that rp = 0.160 £0.004 or rp = 0.850 =
0.009 at 95% confidence for these two cases, respectively.
This window results from the requirement that the baryon
and CDM isocurvature fluctuations nearly cancel, making
testable predictions for future experiments.

First of all, there must be a compensated isocurvature
perturbation between baryons and CDM to obtain a small
overall isocurvature amplitude [41]. In the curvaton model,
this CIP must be totally correlated with £, and a future
CMB experiment (such as CMB Stage IV [101]) could test
the scenario in which baryon number is generated by
curvaton decay and CDM before [79]. The scenario in
which CDM is generated by curvaton decay and baryon
number before is inaccessible to CMB searches for com-
pensated isocurvature perturbations [79].

Second of all, in these decay scenarios the perturbations
are non-Gaussian. The non-Gaussian signal is larger than
in the cases where r, = 1, since the limit of adiabatic
perturbations corresponds to r, < 1 in these scenarios. We
find that when baryon number is produced by curvaton
decay and CDM before, the parameter values allowed
by the CMB power spectra/BAO data predict that
S = 5.92 +0.26. This is still within the current limits
to f, from the CMB bispectrum and may be detected by
future galaxy surveys [46] (through scale-dependent bias)
and high-redshift 21 cm experiments [48-50]. If CDM
is produced by and baryon number is produced before
curvaton decay, the model predicts fy = —0.9197007%;
detection is more challenging, but perhaps possible with
high-redshift 21 cm experiments [48—50].

If lepton number is produced by curvaton decay,
the requirement that neutrino isocurvature perturbations
satisfy constraints imposes a limit on &,,. If baryon number
is produced by curvaton decay, CDM after, and lepton
number by the decay, the Planck data require &, < 0.13,
much tighter than the constraint to £, obtained from the
overall radiation energy density at the surface of last
scattering.

Conservatively speaking, future CMB experiments may
bring an additional factor of ~3 improvement in sensitivity
to deviations of rp from values consistent with purely
adiabatic fluctuations. Depending on the precise character
of small-scale polarized foregrounds [102], primary CMB
polarization anisotropies could be measured at multipole
scales as high as Z ~ 4000, further improving sensitivity
to curvaton-generated isocurvature. As such, it would be
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interesting to repeat the Fisher analysis of this paper for a
variety of specific curvaton potentials, self-consistently
including isocurvature as well as variations in the
spectral index n; and running @, of primordial density
perturbations.

Furthermore, primordial initial conditions should have
an imprint on the shape of the BAO peak, going beyond
the simple location of the peak in real space. This effect
could yield an additional test of the curvaton model,
if it can be disentangled from redshift-space distortions
and nonlinearities.
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APPENDIX: DERIVATION OF RELATION
BETWEEN ISOCURVATURE AMPLITUDE AND
INITIAL MODE AMPLITUDE

We now derive relationships between the mode ampli-
tudes A;, used in CAMB and the physical isocurvature
amplitudes S;, predicted by the curvaton-decay scenarios in
Table I. In terms of the curvature perturbation on hyper-
surfaces of constant single-species energy density (£;), we
have

op; O
S, =3 -¢) = —3H<§—ﬁ), (A1)

i 4

where dp; = p;A;, the prime indicates a derivative with
respect to conformal time, and H is the conformal Hubble
rate (and 'H = aH).
The continuity equation dictates that
pi = =3Hpi(1 +w;) = p; = =3Hp;(1 +w;). (A2)
Therefore, we can write the isocurvature perturbation in
terms of the relative energy-density perturbation A;:

1 3

S. = A —ZA . A3
iy 1+Wi i ( )

We can now see that adiabatic initial conditions take the
usual form

PHYSICAL REVIEW D 94, 103517 (2016)

3 3
== Ah == ZAY — ZAI/
Now we can also see how to translate the conditions
given here to the initial conditions specified in a Boltzmann
solver such as cAMB. For example, with CDM isocurvature
we have

(A4)

3
Ser=8c=38,
2 3 8 2
:Acy 1 —ZQC’()T—F:SQC.()T —Z _§QC.0T+4QC,OT
=A,/¢, (AS)

where we have applied the superhorizon power-series
solution for the CDM isocurvature mode from Ref. [103]
and then evaluated it at initial conformal time z = 0. This
means that if this mode is excited with an amplitude A,
(relative to the adiabatic mode), then S, = A.,C.

When we excite multiple isocurvature modes, then the
overall isocurvature is the linear combination of each mode.
Exciting both the CDM (with amplitude A.,) and baryon
isocurvature (with amplitude A,,) modes leads to

3

Sep =B =78, = Ay, (A6)
3
Sby - Ab - ZAY - Ab;,Z:. (A7)

Things get more interesting when we consider the excita-
tion of both matter and neutrino-density isocurvature. The
linear combination of CDM, baryon, and neutrino-density
isocurvature gives initial density contrasts (applying the
power-series solutions from Ref. [103] again):

R R
A, =AyA 0+ =LALA G- A, =L, (A8)
R, R,
3 3R,
Ac = AC}/ <1 +ZA70> +ZR_CA7’0Aby’ (Ag)

3 3 R,
Ay =38 0Aq + (1 + 7800 R—C)Ahy, (A10)

(Al1)

Ry,
Azx = AcyAy.O + R_ Ay,OAhy + Av;ﬂ
where A,, is a constant, R.=p./(p.+ps), R, =

pu/(Pe +pp), and R, = p,/(p, +p, ).
Applying Eq. (A3), we then find that

3R,
Scy/C = (Acy + ZR_yAvy> ’ (A]Z)
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3R,
Spy /¢ = <Aby + ZR_AW)’ (A13)
v
3R,
SW/C = Abbe + AcyRc + ZR_ (A14)
v

Solving this set of equations for the initial condition
amplitudes in terms of the isocurvature amplitudes, we
obtain

PHYSICAL REVIEW D 94, 103517 (2016)

Acy = Scy/z: + (Ry - I)Svy/C7 (AIS)

Ap, = Sb},/Z_: + (Ry - I)SW/C, (A16)
3

Auy =R S,y /5. (A17)
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