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General nonsingular accelerating cosmological solutions for an initial cosmic period of pure vacuum
birth era are derived. This vacuum era is described by a varying cosmological “constant” suggested by the
renormalization group flow of asymptotic safety scenario near the ultraviolet fixed point. In this scenario, a
natural exit from inflation to the standard decelerating cosmology occurs when the energy scale lowers and
the cosmological constant becomes insignificant. In the following period where matter is also present,
cosmological solutions with characteristics similar to the vacuum case are generated. Remarkably the set of
equations allows for particle production and entropy generation. Alternatively, in the case of nonzero bulk
viscosity, entropy production and reheating is found. As for the equations of motion, they modify Einstein
equations by adding covariant kinetic terms of the cosmological constant which respect the Bianchi
identities. An advance of the proposed framework is that it ensures a consistent description of both a
quantum vacuum birth of the universe and a subsequent cosmic era in the presence of matter.
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I. INTRODUCTION

An interesting framework for the discovery of a theory of
everything is the renormalization group approaches to
quantum gravity [1] that encapsulate perturbative and
nonperturbative field theoretic techniques and functional
renormalization group flow investigations. A concrete and
minimal scheme for quantum gravity that includes no
inconsistencies is the asymptotic safety (AS) program, or
otherwise called quantum Einstein gravity [2]. It is a model
that keeps the same fields and symmetries from general
relativity and it was first proposed as an idea by Weinberg
[3]. The key issue is the existence of a non-Gaussian fixed
point (NGFP) of the renormalization group (RG) flow for
gravity. Due to this NGFP that determines the behavior of
the theory at the UV, all measured quantities are free from
nonphysical divergences.
The asymptotic safety scenario is based on the math-

ematical technique of the functional renormalization group
equation for gravity [4], which enables the detailed analysis
of the gravitational RG flow at a nonperturbative level
[5,6]. It was possible to prove that the scaling behavior
of the dimensionful Newton’s constant is antiscreened
at high energies [7], a behavior that leads to the NGFP
which is necessary for asymptotic safety. Further studies
include matter and more gravitational operators in the
action [8–13]. The key ingredient of the theory is the

gravitational effective average action Γk. This keeps only the
effect of the quantum fluctuations with momenta p2 > k2,
thus Γk expresses an approximate description of physics at
the momentum scale p2 ≈ k2. The truncated RG flow
equations leave two running couplings (with respect to
energy), the gravitational constant GðkÞ and the (positive)
cosmological constant ΛðkÞ. Near the non-Gaussian UV
fixed point the couplingG is known to approach a zero value,
while on the other hand, the coupling Λ goes to infinity.
The description with the help of the effective average

action and the functional RG flow enables also the
development of phenomenological investigations in the
context of the asymptotic safety proposal. Various inves-
tigations of “RG improved” black holes first appeared in
[14]. Other works extended the studies to the Vaidya metric
[15] and to the modified Kerr metric [16]. The thermody-
namic properties of these black holes were described in
[17]. Black hole solutions from the inclusion of higher
derivative terms in the effective average action were
presented in [18]. Other works analyzing black holes with
RG improvements have been proposed in [19–25].
Of particular interest are investigations of the nature of

the microscopic structure of the asymptotically safe quan-
tum spacetime [26–29]. It seems that quantum corrections
at high energies (near the nontrivial UV fixed points)
modify drastically the classical picture since fractal dimen-
sionality seems to appear.
An important phenomenological topic that can also test the

properties and the new point of view of AS gravity is the
study of RG improved cosmologies, which first appeared
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in [30], and was further studied in [31–37] (see also
review [38]). Along these lines of research it was possible to
propose a solution of the cosmic entropy issue [39]. Another
interesting outcome is that RG improved cosmologies admit
exponential or power-law inflationary solutions [40].
The scope of this work is to investigate in the context of

AS gravity the evolution of the universe at high energies.
First, wework on the assumption that cosmos had a quantum
vacuum birth, first speculated in [41]. Furthermore, the
consequent period in the presence of matter is analyzed.
Matter is expected to appear due to energy transfer from
vacuum to matter fields as the expansion proceeds. In
summary, we hypothesize that the universe starts in a
vacuum state that is characterized by an energy dependent
cosmological constant ΛðkÞ. Subsequently, Einstein equa-
tions include a nonzero matter energy momentum tensor
with an energy dependent Newton’s constant. BothΛ andG
respect the energy dependence that is predicted in the
context of AS at the NGFP. It will be shown that the matter
solutions predict particle production and entropy generation
or negative viscous pressure associated with entropy pro-
duction and reheating.
It is common in AS literature, in order to improve existing

solutions of Einstein equations to set ΛðkÞ and GðkÞ as
functions of energy k. The simple input of ΛðkÞ and GðkÞ
into the classical vacuumequations results inviolation of the
Bianchi identities, while this same input into a classical
solution creates a metric which is not a solution of a well-
defined theory. In [42], the formalism of obtaining RG
improved solutions that respect Bianchi identities is pre-
sented at the action level, while in [43] an alternative and
mathematically more solvable approach was developed at
the level of equations of motion. In [43] the formalism
includes the appropriate covariant kinetic terms that support
an arbitrary source field ΛðkÞ without any symmetry
assumption. Here, we extend the formalism presented in
[43], beyond the vacuum case, to also include matter. The
present study provides novel quantum gravity inspired
modified Einstein equations capable of describing both
absence of matter cases and configurations where vacuum
and matter contributions are realized. This new scheme
proposes a consistent way to respect Bianchi identities in
both alternatives.
Consequently, an important question is how to relate the

RG scale parameter k to cosmological time/proper length in
order for the differential equations to make sense. The first
works [30] have chosen in cosmology theRG scale inversely
proportional to cosmological time, and subsequently, the
more favorable connection with the Hubble scale was
investigated. In other works the RG scale is linked with
the fourth root of the energy density [44], the cosmological
event/particle horizons [45], or curvature invariants like
Ricci scalar [46–48].
The novel scheme that is encapsulated in the presented

new quantum inspired equations of motion exhibits various

new interesting features. The modified Einstein equations,
together with the modified energy-momentum conserva-
tion, suggest a constraint on the allowed/compatible matter
content, and either set a constraint or not on the allowed
functional dependence kðLÞ between the energy scale k and
the geometrical scale/length L that is connected to the
expansion of the universe. Remarkably both alternatives
result in interesting consequences. When kðLÞ is left free, it
is possible to get entropy generation from particle produc-
tion and nonsingular accelerating solutions, while when the
energy dependence kðLÞ is restricted, similar cosmologies
with bulk viscosity, entropy generation and reheating arise.
One should notice that the presented modified Einstein
equations in the spirit of AS program is an effective
description of gravity near the NGFP and they do not
describe the low energy cosmic expansion.
The organization of the paper is as follows. In Sec. II we

solve at high energies near the NGFP the consistent RG
improved equations that govern the homogeneous and
isotropic universe with energy dependent cosmological
constant for different choices of the energy-length scaling.
In Sec. III we present the modified equations which contain
both vacuum energy and matter and are consistent with the
vacuum equations. The full space of solutions is found with
either particle production or bulk viscosity. In Sec. IV a
discussion of the inflation and the thermodynamics of the
universe is presented. Finally, we conclude in Sec. V.

II. VACUUM COSMOLOGICAL SOLUTIONS

In [43] consistent modified Einstein equations have been
presented which describe how a classical spacetime is
affected/shaped in the presence of a quantum vacuum. The
quantum vacuum is modeled through a nonzero cosmo-
logical constant term which is energy dependent according
to the AS program. Several interesting spherically sym-
metric solutions have also been derived there, with some of
them exhibiting nonsingular behavior. In this section we
solve the same vacuum field equations but for the case of a
homogenous and isotropic metric. Vacuum solutions with
the cosmological constant as the only source are of
particular importance. The reason is that the birth of our
universe from a vacuum fluctuation is a favored scenario in
various quantum gravity inspired cosmological models. An
extension of the vacuum field equations appears in the next
sections, capable to describe consistently the cosmic
evolution including both a vacuum and a matter content,
using a positive cosmological “constant” ΛðkÞ and a
gravitational Newton’s constant GðkÞ in the spirit of AS.
Thus, the same set of equations will be able to describe both
cosmological eras, namely an initial quantum vacuum birth
and a subsequent period with nonzero vacuum and matter
contributions.
The proposed modified vacuum Einstein equations can

be seen as a general Λ varying model of modified gravity. It
is not related to a specific energy dependent RG running
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law of the coupling Λ and that is why it can be useful to
describe all types of running laws of Λ. Usually in the AS
literature RG improved Einstein equations (or solutions
thereof) are taken to give an effective description of physics
at a characteristic energy scale k. The same is true for our
equations. Since our vacuum equations contain no matter,
they are perfect for the theoretical description of a semi-
classical analysis of AS spacetime near the center of black
holes or in the big bang trans-Planckian regime. Thus, the
produced vacuum cosmological solutions do not contradict
with other proposed AS inspired cosmologies that appear in
the literature; they might be seen that describe the very
initial period of the universe before the period described by
other asymptotic safe gravity cosmologies that appear in
the literature.
Let us begin modeling the quantum vacuum dominated

initial cosmic era. The mathematical description of this era
is based on the modified vacuum Einstein equations
derived in [43]

Gμν ¼ −Λ̄eψgμν −
1

2
ψ ;μψ ;ν −

1

4
gμνψ ;ρψ ;ρ þ ψ ;μ;ν − gμν□ψ :

ð2:1Þ

The field ψðxÞ is related to the cosmological constant
through Λ ¼ Λ̄eψ , where Λ̄ is an arbitrary constant refer-
ence value. Equations (2.1) form a minimal extension of
Einstein equations containing first and second derivatives
of ψ . They are by construction identically covariantly
conserved for any ψðxÞ, so the Bianchi identities are
satisfied. Since ψðxÞ does not have its own equation of
motion, it can be determined externally, e.g. as implied by
the AS scenario. Indeed, geometry independent RG flow
equations predict the running of both ΛðkÞ, GðkÞ at high
energies near the NGFP, where the cosmological constant/
coupling is given by [49]

Λ ¼ λ�k2 ð2:2Þ

with λ� > 0 a dimensionless constant.
We will be interested in the present work in the

investigation of cosmology at very high energies, so that
Eq. (2.2) can be applied. The spatially homogeneous and
isotropic cosmological metric is

ds2 ¼ −nðtÞ2dt2 þ aðtÞ2
�

dr2

1 − κr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
;

ð2:3Þ

where nðtÞ is the lapse function and κ ¼ −1, 0, 1 character-
izes the spatial curvature. The coupling ΛðxÞ carries the
same symmetries, so it is Λ ¼ ΛðtÞ. For the metric (2.3) the
nonvanishing components of the Einstein tensor Gμ

ν are

Gt
t ¼ −3

�
H2 þ κ

a2

�

Gi
j ¼ −

�
2

n
_H þ 3H2 þ κ

a2

�
δij; ð2:4Þ

where the indices i, j refer to the spatial coordinates,
H ¼ _a

na is the Hubble parameter and a dot denotes a
differentiation with respect to t. It is also possible to
evaluate

ψ ;ρψ ;ρ ¼ −
_ψ2

n2
; □ψ ¼ −

1

n

�
_ψ

n

�
·
− 3H

_ψ

n
ð2:5Þ

and the nonvanishing components of ψ ;μ;ν by

ψ ;t;t ¼ n

�
_ψ

n

�
·
; ψ ;r;r ¼ −

Ha2

1 − κr2
_ψ

n
;

ψ ;θ;θ ¼ −Ha2r2
_ψ

n
; ψ ;ϕ;ϕ ¼ −Ha2r2sin2θ

_ψ

n
: ð2:6Þ

Therefore, the two components of (2.1) are

3

�
H2 þ κ

a2

�
¼ Λ̄eψ − 3H

_ψ

n
−
3 _ψ2

4n2
ð2:7Þ

2

n
_H þ 3H2 þ κ

a2
¼ Λ̄eψ − 2H

_ψ

n
−

_ψ2

4n2
−
1

n

�
_ψ

n

�
·
: ð2:8Þ

Equations (2.7) and (2.8) are satisfied by construction for
any ψðtÞ. Equation (2.8) is not independent, since by
differentiating Eq. (2.7) with respect to t and using (2.7)
itself, we get (2.8) multiplied by 1þ _ψ

2nH. Hereafter, in the
following vacuum solutions we consider t to be the cosmic
time and take n ¼ 1. In order to proceed with the solution
of (2.7) we have to determine ψ as a function of e.g. t,H, a,
using Eq. (2.2). This will come by the selection of a scaling
that associates the energy of RG scale k to a characteristic
time or length of the solution.
It is worth mentioning that k as a function of cosmic time

starts with an infinite or a very high value and should
decrease as the universe departs from the NGFP. However,
it is possible that during the cosmic evolution, still in the
proximity of the NGFP, kðtÞ may increase for some era.

A. Scaling k ∝ 1=t

In cosmological models of asymptotically safe gravity it
is common to use as a reasonable scaling the following
expressions [30] and [31]:

k ¼ ξ

t
; ð2:9Þ

where ξ > 0 is a dimensionless parameter and time t is
considered positive valued. We are interested in under-
standing the cosmological behavior in a regime where time
takes sufficiently small values so that k takes its high
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energy values. From (2.9) obviously k decreases with time.
The relation of ψ with time is eψ ¼ λ�ξ2=ðΛ̄t2Þ and the
Friedmann equation (2.7) becomes

H2 þ κ

a2
¼ λ�ξ2 − 3

3t2
þ 2H

t
: ð2:10Þ

Equation (2.10) is invariant under the transformation
t → λt, a → λa, therefore defining

z ¼ a
t
; ð2:11Þ

we find the equation

_z2 ¼ ω2z2 − κ

t2
; ð2:12Þ

where

ω ¼
ffiffiffiffiffiffiffiffiffi
λ�ξ2

3

r
: ð2:13Þ

For κ ¼ 0, the solution is

aðtÞ ¼ ct1�ω; ð2:14Þ
where c > 0 is the integration constant. For the upper
branch, or for the lower branch with ω < 1, the solutions
are expanding starting for t ¼ 0 at zero scale factor. These
solutions have divergent Ricci scalar R at t ¼ 0, therefore
they are typical singular solutions. Note that the upper
branch describes a power law inflation which becomes
stronger as ω ≫ 1. Especially the lower branch for ω ¼ 1

2

has R ¼ 0 for t ¼ 0, but the divergencies appear in higher
curvature invariants. For the lower branch with ω > 1 the
solution is contracting starting for t ¼ 0 at infinite scale
factor. An interesting general comment can be made at this
point. In the AS scenario, an inflationary period is always
followed by a natural exit from inflation and this occurs
when the energy scale becomes smaller than the inflation
scale. Then, the quantum modifications of ΛðkÞ start to
become insignificant and its value is rapidly decreasing,
leading to the standard decelerating cosmology.
For κ ¼ þ1 it should be from (2.12) a > ω−1t. The

solution of (2.12) gives

aðtÞ ¼ t
2ω

ðct�ω þ c−1t∓ωÞ; ð2:15Þ

where c > 0 is the integration constant, under the constraint
a < cω−1t1�ω, i.e. ct�ω > 1. Due to this constraint it is seen
that the upper branch describes a nonsingular (finite curva-
ture invariants) expanding universe with amin ¼ ω−1c−

1
ω,

tmin ¼ c−
1
ω, where the maximum value kmax ¼ ξc

1
ω can be

made as large as desired choosing c sufficiently large.
Moreover, it is seen that this solution has ä > 0 which
means that it is accelerating. For the lower branch with
ω < 1, the solution is expanding starting for t ¼ 0 at zero

scale factor; at t ¼ 0 there is a singularity with divergent
Ricci scalar and close to t ¼ 0 it is to leading order
a ≈ c

2ω t
1−ω. Moreover, this universe enters from a deceler-

ating to an accelerating phase. The lower branch for ω > 1
describes a universe which starts from infinite volume,
collapses, and at a finite scale factor bounces to an expand-
ing universe which has an end; at the bounce it is t ∼ c

1
ω,

a ∼ c
1
ω and the energy scale k ∼ ξc−

1
ω can be as large as

desired choosing c sufficiently small. This branch is also
accelerating. The lower branch with ω ¼ 1 describes also a
nonsingular expanding universe.
Finally, for κ ¼ −1, the solution is

aðtÞ ¼ t
2ω

ðct�ω − c−1t∓ωÞ; ð2:16Þ

where c > 0 is the integration constant. Since a > 0 it
should be ct�ω > 1. For the upper branch the solution is
expanding starting for t ¼ c−

1
ω at zero scale factor where

there is a curvature singularity; this solution is accelerating.
For the lower branch with ω < 1 the solution initially
expands from a singularity starting for t ¼ 0 at zero scale
factor and finally bounces and collapses again to a singular
zero volume; this solution is decelerating. For the lower
branch with ω > 1 the solution is contracting starting for
t ¼ 0 at infinite scale factor and results to a singular big
crunch.
We resume with the most interesting general solutions of

the scaling k ∝ 1=t. For the spatially flat 3-space topology a
strong power law inflation can occur close to the initial
singularity. For the positively curved case all solutions have
accelerating phases which can support an inflationary
epoch; they either avoid the initial big bang singularity
or they possess a big bang or during a collapsing phase
avoid the big crunch towards expansion. For the negatively
curved topology a singular accelerating cosmology can
appear.
For the alternative scaling k ¼ ξ

aðtÞ, where k is inversely
proportional to the proper distance at fixed t, Eq. (2.7) is

satisfied for any aðtÞ given that κ ¼ 1 ¼ λ�ξ2
3
, so it does not

provide useful information. This is also an outcome of other
AS cosmology studies found in the literature [30,31].

B. Scaling k ∝ HðtÞ
In order to investigate the time evolution of the cosmic

scale factor using the full effective action ΓðgμνÞ, we can
use the fact that the Hubble parameter appears as a mass in
propagators. Therefore, a sensible approximation is to
disregard the contributions of quantum fluctuations with
wavelengths greater than H−1 since they are suppressed.
This leads to use as a connection of energy scale to the
length scale a relation of the form k ∼HðtÞ [31]. Thus, we
assume here

k ¼ ξHðtÞ; ð2:17Þ
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where the dimensionless parameter ξ is ξ > 0 for H > 0
and ξ < 0 for H < 0. It is obvious that a bouncing solution
is not possible in this case. Then, eψ ¼ λ�ξ2=ðΛ̄H2Þ and the
Friedmann equation (2.7) becomes

ð1 − ω2ÞH2 þ 2 _H þ
_H2

H2
þ κ

a2
¼ 0; ð2:18Þ

where

ω ¼
ffiffiffiffiffiffiffiffiffi
λ�ξ2

3

r
: ð2:19Þ

Equation (2.18) is written as

a2ä2 − ω2 _a4 þ κ _a2 ¼ 0: ð2:20Þ
Setting

u ¼ _a; ð2:21Þ
Eq. (2.20) takes the form

a
du
da

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2u2 − κ

p
: ð2:22Þ

If κ ¼ 1 it should be juj > ω−1.
For κ ¼ 0 the solution of (2.22) is

u ¼ ca�ω; ð2:23Þ
with c an integration constant, and thus

aðtÞ ¼ ½cð1 ∓ ωÞðt − t0Þ�
1

1∓ω; ð2:24Þ
where t0 is an integration constant. The constant c should
be positive for expanding solutions. The upper branch with
ω < 1 or the lower branch describe typical power law
singular expanding solutions. However, this upper branch
is inflationary and the inflation can become very strong if
ω → 1. Moreover, in both cases it can be seen that k
decreases with time. The upper branch with ω > 1
describes a collapsing universe which asymptotically goes
to zero scale factor with finite however curvature invariants.
Especially for the upper branch with ω ¼ 1 we get the

nonsingular de Sitter solution a ∝ ect which describes a
typical inflationary period with the main advance, as
referred previously, that a natural exit occurs.
For κ ¼ þ1 the solution of (2.22) is

u ¼ 1

2ω
ðca�ω þ c−1a∓ωÞ; ð2:25Þ

where c > 0 is the integration constant. Since u > 0, there
are only expanding solutions and it is ξ > 0. For the upper
branch it is a > c−

1
ω which means that the solution avoids

the zero scale factor regime. It is obvious from equa-
tions (2.17), (2.21), and (2.25) that this solution has a finite
kmax. Moreover, it can be shown that the energy scale k
decreases with time. For the lower branch it is a < c

1
ω.

Using (2.25), the Ricci scalar as a function of the scale
factor can be found to be

R ¼ 3

2ω2a2
½c2ð1� ωÞa�2ω þ c−2ð1 ∓ ωÞa∓2ω

þ 2ð1þ 2ω2Þ�: ð2:26Þ

Therefore, the upper branch has finite scalar curvature and
leads to a nonsingular cosmology, while the lower branch
has a curvature singularity at a ¼ 0. From (2.22) it is seen
that the upper branch is accelerating and the lower
decelerating.
Integrating (2.25),1 the dependence on time can be

obtained as

t − t0 ¼
2cω
1� ω

a1�ωfð−c2a�2ωÞ; ð2:27Þ

where t0 is an integration constant which can be absorbed
into a redefinition of t. Here the function fðxÞ satisfies the
hypergeometric differential equation

xð1 − xÞ d
2fðxÞ
dx2

þ ½αþ 2 − ðαþ 3Þx� dfðxÞ
dx

− ðαþ 1ÞfðxÞ ¼ 0; ð2:28Þ

where α ¼ �1−ω
2ω . Equation (2.28) has (for α not an integer)

two independent solutions,2 one is x−α−1 and the other

2F1ð1; αþ 1; αþ 2; xÞ. The first solution just contributes
to the constant t0, thus

t − t0 ¼ σ
2cω
1� ω

a1�ω
2F1

�
1;
ω� 1

2ω
;
3ω� 1

2ω
;−c2a�2ω

�
;

ð2:29Þ

where σ is a proportionality constant to be determined from
some limiting process where the time integral can be
computed exactly and it arises because the hypergeometric
equation is homogeneous.
For the upper branch, since a > c−

1
ω, in the limit a → ∞ it

can be found the behavior t − t00 ≈ 2c−1ω
1−ω a1−ω. On the other

hand, the hypergeometric function in (2.29) is expressed3

as 2F1ð1;αþ 1;αþ 2;−xÞ ¼ αþ1
α

1
x 2F1ð1;−α; 1− α;− 1

xÞþ
Γðαþ2ÞΓð−αÞ

xαþ1 , therefore for x→þ∞ it is 2F1ð1;αþ1;αþ2;−xÞ≈
αþ1
α

1
xþΓðαþ2ÞΓð−αÞ

xαþ1 . Comparing the two asymptotic expressions
it is found σ ¼ 1 and (2.29) becomes

1The differential equation (2.25) or (2.32) 2ω _a ¼ ca�ω þ
κc−1a∓ω is integrated through the transformation x ¼ c2a�2ω to
t − t0 ¼ �c∓1

ω

R
xα
xþκ dx, thus t − t0 ¼ �c∓1

ω xαþ1

αþ1
fð−κxÞ, where

fðxÞ satisfies Eq. (2.28).
2See [50], p. 71, formula 8.
3See [51], p. 559, formula 15.3.7.
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t − t0 ¼
2cω
1þ ω

a1þω
2F1

�
1;
ωþ 1

2ω
;
3ωþ 1

2ω
;−c2a2ω

�
:

ð2:30Þ
For ω < 1 this solution expresses a nonsingular universe
starting at a finite t and expanding to infinity at infinite proper
time, while for ω > 1 it is again a nonsingular universe
expanding to infinity in finite proper time, so it develops a big
rip (of course this big rip is not true since the validity of the
approximation terminates after some time).
For the lower branch, since a < c

1
ω, in the limit a → 0 it

can be found the behavior t − t00 ≈ 2c−1ω
1þω a1þω. Similarly as

before, approximating the hypergeometric function in the
neighborhood of a ¼ 0, we find σ ¼ 1, thus (2.29)
becomes

t − t0 ¼
2cω
1 − ω

a1−ω2F1

�
1;
ω − 1

2ω
;
3ω − 1

2ω
;−c2a−2ω

�
:

ð2:31Þ
This solution represents a singular expanding cosmology.
For ω ¼ 1 the above analysis does not work since α

becomes an integer. In this case the analytic solution of

(2.25) is simpler, a ¼ c∓1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ec

�1ðt−t0Þ − 1
p

. The upper
branch is an expanding nonsingular solution and the lower
an expanding singular one.
For κ ¼ −1 the solution of (2.22) is

u ¼ 1

2ω
ðca�ω − c−1a∓ωÞ; ð2:32Þ

where c > 0 is the integration constant. In this case there is
no bound for a. Integrating (2.32) the dependence on time
can be obtained as

t − t0 ¼
2cω
1� ω

a1�ωfðc2a�2ωÞ; ð2:33Þ

where fðxÞ satisfies again the differential equation (2.28).
Similarly to the case κ ¼ 1 it arises for α noninteger

t − t0 ¼ σ
2cω
1� ω

a1�ω
2F1

�
1;
ω� 1

2ω
;
3ω� 1

2ω
; c2a�2ω

�
:

ð2:34Þ
There are no expanding solutions in this case, since for
H > 0 it is from (2.32) that ca�ω > 1, but then, the
argument of the hypergeometric function in (2.34) is larger
than 1 and the hypergeometric function gets complex
values. Concerning the collapsing solutions, for the upper
branch it is a < c−

1
ω and from the limiting behavior for

a ≈ 0 it arises σ ¼ −1, thus the collapsing solution starts
with the finite initial scale factor with t → −∞ and results
to a ¼ 0 at finite time. Concerning the collapsing solutions
of the lower branch it is a > c

1
ω and from the limiting

behavior for a → ∞ it arises σ ¼ −1. Thus for ω > 1 the

collapsing solution starts with the infinite initial scale factor
at finite time and results to the finite scale factor at infinite t.
For ω < 1 the solution starts with an infinite scale factor at
t ¼ −∞ and results to finite a with t ¼ þ∞.
We summarize with the most interesting solutions of

the scaling k ∝ H. For the spatially flat 3-space topology
a strong power law inflation can happen close to the initial
singularity. For the positively curved case there are general
expanding solutions which are nonsingular and accelerating,
so they can support inflation.

III. COSMOLOGICAL MATTER SOLUTIONS

In this section we add, beyond the spacetime-dependent
cosmological constant ΛðxÞ, some extra matter carrying
an energy-momentum tensor Tμν. The full gravitational
equation is now obtained by supplementing the vacuum
equations (2.1) with Tμν in the following minimal way:

Gμν ¼ −Λ̄eψgμν −
1

2
ψ ;μψ ;ν −

1

4
gμνψ ;ρψ ;ρ þ ψ ;μ;ν

− gμν□ψ þ 8πGTμν: ð3:1Þ
The Newton’s constant G will also be assumed to be
spacetime dependent, GðxÞ, while again the field ψðxÞ is
defined through Λ ¼ Λ̄eψ with Λ̄ an arbitrary constant
reference value. In the scenario of asymptotic safety bothΛ,
G are supposed to be determined uniquely as functions of
the energy scale from the RG flow equations, so it is
ΛðkÞ; GðkÞ, but at present we construct a formulation where
Λ, G can be kept arbitrary functions. Later, we will employ
for the early-times cosmological period the energy depen-
dent couplings predicted at the NGFP of AS scenario to be

Λ ¼ λ�k2; G ¼ g�
k2

; ð3:2Þ

where λ�; g� > 0 are dimensionless constants (the above
scalings are also consistent with dimensional analysis
without the introduction of a new energy scale). Since in
the absence of Tμν, Eq. (3.1) is identically covariantly
conserved for any ψðxÞ, the following conservation equa-
tion for Tμν holds:

ðGTμνÞ;ν ¼ 0; ð3:3Þ
which provides an interaction between Tμν and G. This
way, Eq. (3.1) is meaningful either in the absence or in the
presence of a matter content. The main advance of our
theory is indeed that it encapsulates the vacuum case,
something that has not appeared so far in the literature of
varying constants or AS gravities.
An alternative option, assumed often in the literature,

other than Eq. (3.3), would be to ignore the ψ -kinetic terms
in (3.1), and then, the Bianchi identities would imply
another conservation equation for Tμν containing both Λ, G
and their derivatives. Another option, also met in the
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literature, would be, besides ignoring again the ψ-kinetic
terms, to assume the exact conservation of matter T ;ν

μν ¼ 0,
and then, Λ, G cannot be picked arbitrarily and are usually
incompatible with AS relation G ∼ Λ−1. However, both of
these two approaches are not satisfactory since in the
absence of matter the system would be inconsistent.
Considering a variation of an action principle, equations
containing different than (3.1) ψ -kinetic terms, as well as
G-kinetic terms, could in principle arise, however, such a
scheme cannot be explicitly implemented for a general case
matter content Tμν. Finally, in the literature [52,53] another
approach considers specific form for the metric (cosmo-
logical, spherically symmetric, etc.), solves some RG-like
differential equations together with the Einstein equations
and finds different than (3.2) functional dependences
ΛðkÞ; GðkÞ. In the scheme that we follow we have the
advantage that we use the functions (3.2) suggested by the
background independent [4] running of RG equations.
As in the previous section with the vacuum solutions, we

also here assume a spatially homogeneous and isotropic
metric for the cosmic spacetime of the form (2.3). Since the
external fields ΛðxÞ; GðxÞ carry the same symmetries, they
will be of the form ΛðtÞ; GðtÞ. We consider a diagonal
energy-momentum tensor Tμ

ν, so we take as matter content a
nonperfect fluid with energy density ρ, thermodynamic
pressure p and a nonequilibrium part π [54–57]. Due to the
working symmetries of isotropy and homogeneity shear
viscosity and energy fluxes are disregarded. The energy
momentum tensor is

Tμν ¼ ρuμuν þ ðpþ πÞðgμν þ uμuνÞ ð3:4Þ

with uμ the fluid 4-velocity. The extra pressure π can either
be associated to a pressure due to particle production/
destruction or to a bulk viscous pressure. In the next two
subsections these two cases will be discussed together with
the assumption (3.2) of AS at the very early high energy
universe. The term π could indeed be important during the
transition phase that connects the quantum vacuum stage of
the universe to the subsequent era with nonzero matter
density.
The two independent components of (3.1) are

3

�
H2 þ κ

a2

�
¼ Λ̄eψ − 3H

_ψ

n
−
3 _ψ2

4n2
þ 8πGρ ð3:5Þ

2

n
_H þ 3H2 þ κ

a2
¼ Λ̄eψ − 2H

_ψ

n
−

_ψ2

4n2
−
1

n

�
_ψ

n

�
·
− 8πGP;

ð3:6Þ

where the total effective pressure is P ¼ pþ π. The
conservation equation (3.3) takes the form

_ρþ 3nHðρþ PÞ þ ρ
_G
G

¼ 0: ð3:7Þ

The system of equations (3.5) and (3.6) is satisfied by
construction for any ψðtÞ. However, the effective pressure P
is constrained to be P ¼ − 1

3
ρ. Indeed, differentiating (3.5)

with respect to t and using (3.7) to substitute _ρ and also
(3.5) itself we find�
1þ _ψ

2nH

��
2

n
_H þ 3H2 þ κ

a2
− Λ̄eψ þ 2H

_ψ

n
þ _ψ2

4n2

þ 1

n

�
_ψ

n

�
·
þ 8πGP

�
¼ 4πG

_ψ

nH

�
Pþ 1

3
ρ

�
: ð3:8Þ

From (3.6) and (3.8) it arises the constraint

pþ 1

3
ρþ π ¼ 0: ð3:9Þ

Therefore, given this consistency condition, Eq. (3.6) is
redundant due to the time reparametrization and can be
omitted. So, we remain with Eqs. (3.5), (3.7), and (3.9) and
the gauge n ¼ 1 will be adopted.
We find that the constraint (3.9) is an interesting issue of

the proposed framework, providing restrictions on the
acceptable forms of equations of state. Although it may
look as a disadvantage at first sight, however such con-
straints could be desired in modified gravities and orient us
to the specification of the physical content of the theory. It
is well known that in the context of conventional quantum
field theory, renormalizability poses constraints in the
allowed fields or interactions. Physics is still unknown
in the trans-Planckian regime where our solutions are
supposed to be valid and it may be that this constraint
equation provides an insight about this regime through
handable equations. There may also be a concern how one
will be able, following our framework, to retrieve classical
Friedmann-Robertson-Walker (FRW) cosmology, since
Eq. (3.9) restricts some equations of states of matter that
appear afterwards. The answer to this puzzle is that the
proposed framework is valid only near the NGFP and not
afterwards at lower energies. It is expected that the
transition from the trans-Planckian regime to the classical
regime will be explained through a quantum process of the
type of decoherence on the ensemble of superimposed
quantum spacetimes instead of a set of modified Einstein
equations. Thus, such a transition requires to be modeled
with a set of quantum field equations of motion. Anyway,
the asymptotic safety scenario guarantees that later on we
recover pure general relativity (GR) equations without
modification. Our equations do not describe neither the
passage regime nor the FRW period. We note that one
should always keep in mind that at large k the existence of a
NGFP is more a mathematical issue, as it provides a starting
point for a well-defined quantum-gravitational path inte-
gral. The fundamental Lagrangian and the underlying
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physical processes are not yet known. It is expected that a
quantum gravity interpretation will be fully resolved/
understood when it will be possible to analyze how the
classical spacetime at low energies arises from the
quantum ensemble of gμν states in a meaningful way,
allowing a measurement theory in the fully quantum
regime where no classical time and clocks exist. The
present work proposes a new framework to obtain
modified Einstein equations with varying Λ, G and finds
nonsingular spacetimes assuming that Λ, G have the
behavior proposed by AS near the NGFP; such
classical nonsingular solutions should contribute only at
the quantum-gravitational path integral.
Note that for simplicity we have not included G-kinetic

terms in (3.1). In a more complete treatment, however, such
terms should be added. If we parametrize G by G ¼ Ḡeχ,

an extra energy-momentum tensor ϑðGÞμν of G would be
added on the right-hand side of (3.1), constructed out of χ
and its first and second derivatives,

ϑðGÞμν ¼ AðχÞχ;μχ;ν þ BðχÞgμνχ;ρχ;ρ þ CðχÞχ;μ;ν
þ EðχÞgμν□χ þ FðχÞgμν: ð3:10Þ

The Bianchi identities imply θðGÞ;μμν ¼ 0, which provides
the following equations, following the process appeared
in [43]

A ¼ C0 −
1

2
C2; B ¼ −C0 −

1

4
C2;

E ¼ −C; F ¼ 0; ð3:11Þ
where a prime means differentiation with respect to χ. The
various ψ-kinetic terms in (3.1) arise from the demand
that their total covariant derivative cancels against the
cosmological constant term Λgμν and this is enough in
order to determine their form uniquely. The important point
is that the covariant cancellation of the χ-kinetic terms
occurs against zero, and therefore, a new arbitrary field C
arises. At the cosmological level that we elaborate it is
χ ¼ χðtÞ, C ¼ CðtÞ and C0 ¼ _C=_χ. Then, the consistency
of Eqs. (3.5) and (3.6) will provide a differential equation of
second order forCðtÞ. Indeed, the presence of the χ terms in
the field equations will add extra terms on the right-hand
sides of (3.5) and (3.6). Each such term contains products
of mth time derivatives of C with nth time derivatives of χ
(m, n ¼ 0, 1, 2), where let us denote such products as
CðmÞχðnÞ for convenience. The conservation equation (3.7)
remains the same. Following the same process which led to
(3.8), instead of the constraint (3.9), we will obtain a
differential equation of second order forCðtÞ. This equation
will still contain Pþ 1

3
ρ as one term, while all the others

will be CðmÞχðnÞ terms. If we choose the initial conditions
Cð0Þ≃ 0, _Cð0Þ≃ 0 for the differential equation, then in a
short time interval around t ¼ 0, Eq. (3.9) will arise

approximatively. At the same time, in this interval the

tensor θðGÞμν will be approximately zero and Eq. (3.1) will
arise. The result is that our inclusion of only the Λ-kinetic
terms, implying the constraint (3.9), simplifies the analysis
without mixing up with extra integration constants, and
moreover is a consistent option at early times.
Let us finish with a few comments. First, a nonconser-

vation equation of the form (3.7) implies an energy transfer
between the energy density ρ and the gravitational coupling

G. Consistently with the scaling (3.2), it is _G
G ¼ −2 _k

k ¼ − _Λ
Λ,

and it will be verified from the following matter solutions
that in most cases kðtÞ decreases. Thus, Λ also decreases
with time and there is an energy transfer from ρ toG. In one
matter solution it is found that kðtÞ increases and the
opposite behavior of a transfer from G to ρ occurs.
Moreover, the above equation can lead to entropy produc-
tion and reheating, as will be discussed in Sec. IV. Second,
a constraint of the form (3.9) does not appear in other
studies of AS inspired cosmologies and it implies an extra
negative pressure π (whenever ρþ 3p > 0). Then, from
Eq. (3.7) it turns out that the decay rate of the energy
density ρ becomes smaller compared to the free dilution.
One way to interpret this negative pressure is due to particle
production and matter creation and another way is due to
bulk viscosity (both mechanisms can be present simulta-
neously, but this situation will not be considered here due to
complexity). Third, in the case of particle production, π is
solely given by Eq. (3.9) and then, Eqs. (3.5) and (3.7)
provide the solution assuming the AS scaling (3.2) as well
as an energy-length scaling (this case will be examined in
Sec. III A). The subcase π ¼ 0 has the same treatment and
provides the cosmic stringlike equation of state p ¼ − 1

3
ρ,

which for a standard dilution of ρ is also the equation of
state for the curvature term; this equation of state also arises
out of dimensional arguments assuming that the massM of
a spherical region obeys in the early universe a Machian
expression where GNM is proportional to the radius r [58].
In the case of bulk viscosity, π is additionally given by
another expression, and Eqs. (3.5), (3.7), and (3.9) provide
the solution given the scaling properties (3.2), but with the
difference that now the energy-length scale is determined
by these equations (this case will be examined in
Sec. III B).
At the NGFP (3.2), the conservation equation (3.7),

together with the constraint (3.9), is written as

_ρ ¼ 2ρ

�
_k
k
−H

�
: ð3:12Þ

Thus, depending on the sign of _k, the energy density ρ can
either decrease or increase. Usually k, ρ decrease with time,
but since in the present work it is proposed that the vacuum
solutions probably describe the initial stage of the universe,
it can be allowed to have k temporarily increasing in a
subsequent stage of matter solutions.
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A. Particle production

As explained above, the model at hand possesses
naturally a nonequilibrium pressure π given in terms of
the energy density ρ and pressure p by the expression (3.9),

π ¼ −
�
1

3
ρþ p

�
: ð3:13Þ

This pressure turns out to be negative (as long as
ρþ 3p > 0). Equation (3.13) is also written as

π ¼ −
ρþ p
3H

_N
N

¼ −
ρþ p
n

dN
dV

; ð3:14Þ
where the ratio of the change of the number N of particles
in the proper comoving volume V ∝ a3 is

_N
N

¼ ρþ 3p
ρþ p

H ð3:15Þ

and n ¼ N
V is the particle number density. Due to the second

equation in (3.14), the conservation equation (3.7) is
written as

dðρVÞ þ pdV −
ρþ p
n

dN þ ρV
G

dG ¼ 0: ð3:16Þ
The third term in this equation expresses the presence of
matter creation in the context of open systems [59], with the
important difference that here the form of this creation is
predicted by the theory itself, as given by Eq. (3.15).
Therefore, one way to interpret the supplementary pressure
π of Eq. (3.13) is that it corresponds to particle production.
Equation (3.16) expresses the thermodynamical energy
conservation of an open system in the case of adiabatic
transformation (dQ ¼ 0) and the “heat” exchanged by the
system in our case is due not only to the change of the
number of particles but also to the change of the gravita-
tional constant G. Equation (3.15) is of a special form
among the various models in the literature parametrizing
the particle change rate in the case of isentropic particle
production as _N

N ¼ 3βH�ðHH�
Þα [60,61], where α, β are Oð1Þ

dimensionless constants and H� is a reference value, e.g.
the present Hubble rate. So, for p ¼ wρ, in our case it is
α ¼ 1 and β ¼ 1þ3w

3ð1þwÞ (for example, for a reasonable

equation of state in the early universe that of relativistic
matter p ¼ 1

3
ρ it is π ¼ − 2

3
ρ). Therefore, it is remarkable

that the very same modified Einstein equations suggest a
transfer of energy from the gravitational field to matter
through particle production.
Integration of the nonconservation equation (3.7), using

(3.13), gives

ρ ¼ ρo
Ga2

; ð3:17Þ
where ρo > 0 is an integration constant (note that no
particular w has been chosen). Finally, the Friedmann
equation (3.5) is written as

H2 þ κ

a2
¼ Λ̄

3
eψ −H _ψ −

1

4
_ψ2 þ 8π

3

ρo
a2

: ð3:18Þ

Note that G has disappeared in (3.18) and no particular
form for GðkÞ has been assumed. However, according to
AS, the formsG ¼ g�

ξ2
t2 for the scaling k ¼ ξ

t, orG ¼ g�
ξ2
H−2

for k ¼ ξH are needed for the determination of ρ in (3.17).
Setting

μ ¼ κ −
8πρo
3

; ð3:19Þ
Eq. (3.18) is written as

H2 þ μ

a2
¼ Λ̄

3
eψ −H _ψ −

1

4
_ψ2: ð3:20Þ

If μ ¼ 0, which means κ ¼ 1 and ρo ¼ 3
8π, Eq. (3.20) is

identical with the vacuum equation (2.7) with κv ¼ 0 (we
denote by κv the curvature index of the vacuum case); thus
the solutions in this case coincide with the vacuum
solutions of the previous section with κv ¼ 0. Therefore,
in this case there are strong power law inflationary
solutions close to the initial singularity.
If μ ≠ 0, Eq. (3.20) takes the form

1

a2

�
da
dt0

�
2

þ sgnðμÞ
a2

¼ Λ̄0

3
eψ −

1

a
da
dt0

dψ
dt0

−
1

4

�
dψ
dt0

�
2

;

ð3:21Þ
where t0 ¼ ffiffiffiffiffiffijμjp

t, Λ̄0 ¼ Λ̄=jμj and sgnðμÞ denotes the sign
of μ. Equation (3.21) coincides with the vacuum equa-
tion (2.7) given that sgnðμÞ ¼ κv ≠ 0 and t0 is replaced by t.
So, for κ ¼ 1, ρo <

3
8π, the solutions coincide with the

vacuum solutions with κv ¼ 1, just rescaling time.
Therefore, in this case there are accelerating (inflationary)
solutions which either avoid the big bang singularity, or
possess a big bang, or during a collapsing phase avoid the
big crunch towards expansion. Note from Eq. (3.17) that
when a ≠ 0 and kmax < ∞, as happens with the non-
singular vacuum solutions found previously, the energy
density ρ remains finite. For κ ¼ 1, ρo > 3

8π or for κ ≤ 0

with any ρo, the solutions coincide with the vacuum
solutions with κv ¼ −1, just rescaling time. In this case
a singular accelerating cosmology can occur. The property
of a decreasing kðtÞ shown for the vacuum expanding
solutions is also transferred to the associated matter
solutions discussed here. As for the energy density ρ, it
decreases with time due to (3.12).
To summarize with the most interesting matter solutions

with particle production, they refer to the positively curved
case and have power law inflation or are nonsingular and
accelerating.

B. Bulk viscosity

Since detailed physics in the proximity of the NGFP is
still unknown, it is worth exploring the possibility that the

ASYMPTOTICALLY SAFE GRAVITY AND NONSINGULAR … PHYSICAL REVIEW D 94, 103514 (2016)

103514-9



negative nonequilibrium pressure π of Eq. (3.9) is due to
nonzero bulk viscosity through dissipative processes. In
this case the bulk viscous pressure π has the form

π ¼ −ζuu;μ ¼ −3ζH; ð3:22Þ
where ζ is the bulk viscosity coefficient, which will be
assumed here to be constant. Bulk pressures could be the
consequence of the process where different matter compo-
nents cool with the expansion of the universe with different
rates and the system moves away from equilibrium. The
expression (3.22) arises in some limit in the context of the
second-order theory of nonequilibrium thermodynamics
[62]. If we assume ρþ 3p > 0, for an expanding phase of
the universe the expression (3.22) is consistent with the
constraint (3.9) given that ζ > 0. This means that there are
no contracting parts in a solution at all, and all solutions are
expanding. A reasonable equation of state in the early
universe is that of relativistic matter p ¼ 1

3
ρ. However, this

restriction is not essential for the following analysis, so we
assume a general barotropic fluid with p ¼ wρ and
1þ 3w > 0. Then, from Eqs. (3.9) and (3.22) it arises a
direct connection between the energy density and the
Hubble parameter

ρ ¼ 9

1þ 3w
ζH: ð3:23Þ

Integration of the nonconservation equation (3.7) gives

ρ ¼ ρo
Ga2

; ð3:24Þ

where ρo > 0 is an integration constant. The combination
of (3.23) and (3.24) gives

H ¼ ð1þ 3wÞρo
9ζ

1

Ga2
: ð3:25Þ

Close to the NGFP defined by (3.2) it arises from (3.25)
that

eψ ¼ νHa2; ν ¼ 9ζg�λ�
ð1þ 3wÞρoΛ̄

> 0: ð3:26Þ

Finally, the Friedmann equation (3.5) gives due to (3.24)

H2 þ κ

a2
¼ Λ̄

3
eψ −H _ψ −

1

4
_ψ2 þ 8π

3

ρo
a2

: ð3:27Þ

Plugging (3.26) into (3.27) and converting the time
derivatives to a-derivatives we get the equation

a2
�
dH
da

�
2

þ 8aH
dH
da

þ 16H2 −
4νΛ̄
3

a2H

þ 4

�
κ −

8πρo
3

�
1

a2
¼ 0: ð3:28Þ

Setting

z ¼ a4H > 0; x ¼ a3; ð3:29Þ

Eq. (3.28) gets the form

dz
dx

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4νΛ̄
27

zþ 4

9

�
8πρo
3

− κ

�s
; ð3:30Þ

where the square root has to be positive. Integration of
(3.30) gives

H ¼ βa2 � c
a
þ γ

a4
; ð3:31Þ

where c is integration constant and

β ¼ νΛ̄
27

> 0; γ ¼ 27

4νΛ̄

�
c2 −

4

9

�
8πρ0
3

− κ

��
; ð3:32Þ

under the constraints c� 2βa3 > 0, βa6 � ca3 þ γ > 0.
For y ¼ c� 2βa3, the first of these constraints becomes
y > 0 and the second y2 > c2 − 4βγ ¼ 4

9
ð8πρo

3
− κÞ.

(i) If c2 − 4βγ < 0⇔κ ¼ 1, ρo <
3
8π, the only constraint

is c� 2βa3 > 0 and there are three cases: (i) for the
upper branch with c < 0 it is a > ðjcj

2βÞ1=3, (ii) for the
upper branch with c > 0 there is no bound on a, and
(iii) for the lower branch it is c > 0 and a < ð c

2βÞ1=3.
(ii) If c2 − 4βγ > 0⇔κ ≤ 0, or κ ¼ 1, ρo > 3

8π, the only
constraint is c� 2βa3 >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 4βγ

p
. For the upper

branch there are two cases: (i) if c < 0, or if c > 0,
γ < 0 it is a > ½ 1

2β ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 4βγ

p
− cÞ�1=3 and (ii) if

c > 0, γ > 0 there is no bound on a. For the
lower branch it has to be c > 0, γ > 0 and
a < ½ 1

2β ðc −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 4βγ

p
Þ�1=3.

From Eqs. (3.23) and (3.31) it is obvious that the energy
density is finite for the solutions which avoid the zero scale
factor, so the universe avoids the infinite density singu-
larity. Moreover, from Eq. (3.31) we can calculate the Ricci
scalar, which takes the form

R
6
¼ 4β2a4 � 5βcaþ 2βγ þ c2 þ κ

a2
∓ γc

a5
−
2γ2

a8
: ð3:33Þ

Therefore, the solutions which avoid an infinite density
singularity avoid also a curvature singularity. Concerning
the acceleration it is found similarly

ä
3a2

¼ βðβa3 � cÞ − γ

a9
ðγ � ca3Þ: ð3:34Þ

For case (i) above with c2 − 4βγ < 0 the universe at its
minimum scale factor starts decelerating and enters into
acceleration. For case (i) with c2 − 4βγ > 0 the universe at
its minimum scale factor starts with zero acceleration, and
immediately after, it accelerates.
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We summarize saying that there are branches of sol-
utions for any spatial topology which are expanding,
nonsingular and accelerating.
The dependence of the scale factor with time can be

found integrating Eq. (3.31),

t − t0 ¼
Z

da
βa3 � cþ γa−3

ð3:35Þ

¼ 1

3β

Z ðuþ σÞ13
u2 − τ

du; ð3:36Þ

where t0 is integration constant and

u ¼ a3 � c
2β

; σ ¼∓ c
2β

; τ ¼ c2 − 4βγ

4β2
: ð3:37Þ

In the case c2 − 4βγ > 0, this integral can be performed
analytically in closed form. First, it is

6β
ffiffiffi
τ

p ðt − t0Þ ¼ θ
1
3

Z
v

1
3

v − ϵ
dv − ~θ

1
3

Z
~v
1
3

~v − ~ϵ
d~v; ð3:38Þ

where v ¼ θ−1a3, ~v ¼ ~θ−1a3, θ ¼ jσ þ ffiffiffi
τ

p j, ~θ ¼ jσ −
ffiffiffi
τ

p j,
ϵ ¼ sgnðσ þ ffiffiffi

τ
p Þ, ~ϵ ¼ sgnðσ −

ffiffiffi
τ

p Þ. We write

2ϵ

Z
v

1
3

v − ϵ
dv ¼

Z
1þ 2ϵv

1
3

v − ϵ
dv −

Z
1

v − ϵ
dv

¼
Z

1

v
1
3 − ϵ

dv −
Z

v
1
3

v
2
3 þ ϵv

1
3 þ 1

dv

−
Z

1

v − ϵ
dv ð3:39Þ

¼ 3

Z
q2

q − ϵ
dq − 3

Z
q3

q2 þ ϵqþ 1
dq

− ln jv − ϵj; q ¼ v
1
3 ¼ θ−

1
3a ð3:40Þ

¼ 6ϵv
1
3 þ ln

jv1
3 − ϵj3
jv − ϵj − 2

ffiffiffi
3

p
ϵ arctan

2v
1
3 þ ϵffiffiffi
3

p :

ð3:41Þ

Finally,

6β
ffiffiffi
τ

p ðt− t0Þ¼
1

2
ln

��jθ−1
3a− ϵj3

jθ−1a3− ϵj
�ϵθ1=3�j~θ−1a3− ~ϵj

j~θ−1
3a− ~ϵj3

�~ϵ~θ1=3�

−
ffiffiffi
3

p �
θ

1
3 arctan

2θ−
1
3aþ ϵffiffiffi
3

p

− ~θ
1
3 arctan

2~θ−
1
3aþ ~ϵffiffiffi
3

p
�
: ð3:42Þ

Note that in the present case of bulk viscosity, it was
nowhere assumed some energy-length scaling. Actually
kðtÞ is determined from Eq. (3.26) as follows:

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9ζg�
ð1þ 3wÞρo

s
a

ffiffiffiffi
H

p
: ð3:43Þ

For small scale factors with γ > 0, due to (3.31), Eq. (3.43)
implies k ∼ 1

a, so k scales inversely proportional to the
proper distance at fixed time. It is worth emphasizing that
the physical characteristics of the fluid determine kðtÞ. This
property is reasonable since different matter content should
necessarily result to different scaling laws due to concrete
physical reasons. Indeed, in reality the details of the
“thermodynamic” (or the essential relevant parameters in
case of nonequilibrium evolution) properties of the stat-
istical ensemble of quantum particles should determine
how “strong” the relation is between the measure of mean
energy k and the geometrical cosmological measure of the
“distance.” For the solution with c2 − 4βγ < 0 which
possesses a minimum scale factor, it can be shown that
the scale kðtÞ decreases in a region near the minimum (and
also ρ decreases). However, for larger values of a the
function kðtÞ increases. For the nonsingular solution with
c2 − 4βγ > 0 the function kðtÞ is found to increase near the
minimum scale factor (and also ρ increases). Both cases
with increased k can be interpreted as intermediate stages in
the cosmic evolution.

IV. INFLATION, REHEATING AND
ENTROPY GENERATION

Here, a short discussion about the inflationary period and
the possible subsequent reheating and entropy production
will be given. Contrary to the aim of several other works
concerning global cosmological solutions in the AS pro-
gram, the focus here is the cosmic period near the NGFP
regime. This high energy regime is of particular importance
for the possibility of an inflationary period. Fortunately,
this is also a regime where the behavior of Λ and G is
known much better and there are geometry independent
methods handling the running of these couplings. The
solutions found in the previous sections possess accelerat-
ing phases either in the vacuum or the matter sector. The
cosmic scenario we are going to analyze is based on the
assumption that the universe first starts in a pure vacuum
(perhaps creation of the universe from a vacuum fluc-
tuation), where the relevant equations of motion contain
only a vacuum contribution. Subsequently, it enters a
period where matter starts to become more important (still
inside the NGFP regime) that ends when k ≈mpl. At this
energy scale there is a transition towards a third stage of
conventional FRW universe with negligible Λ and constant
G. The derived solutions appearing in the preceding
sections can model both the first and the second stage of
cosmic evolution. The second stage can be modeled either
by solutions that suggest, as it will be seen, particle
production with entropy generation or by solutions with
bulk viscosity associated with entropy production and
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possible reheating. Both of these matter solutions are
described by equations which are consistent with the
vacuum case equations.

A. First stage: Inflationary cosmogenesis

An acceptable approximation [40] to describe the RG
improved UV early cosmological history is to work
separately at the different three stages using the developed
solutions. It remains to the details of a full RG running to
prove that the derived classical cosmological solutions
(used to describe the first two stages of cosmic evolution),
inspired by the energy scaling of the couplings Λ and G,
are indeed fair approximations of the quantum average
spacetime that describes the early universe.
Some long-standing qualitative arguments speculate that

due to Heisenberg’s uncertainty principle, the universe was
created from “empty” spacetime. A small true vacuum
bubble/void of expanding vacuum space can be created
probabilistically by quantum fluctuations of a metastable
false vacuum through a first/second order phase transition.
If this initial bubble/void cannot expand rapidly, it will
disappear soon. In case this initial baby universe expands
rapidly to a large enough size, the universe can then be
created irreversibly. This baby universe created probabil-
istically by quantum vacuum fluctuations starts with a finite
volume. Thus, it is expected that the energy scale kmay not
initiate from infinity and the corresponding ΛðkÞ is finite.
In more detail we consider a time interval t0 < t < t1,

where t0 is the initial time of quantum birth and t1 is the
transition time to the second stage of matter appearance.
From the derived vacuum solutions, we will pick the simple
power-law spatially flat solution (2.14) to model this era,

aðtÞ ¼ a0

�
t
t0

�
1þω

; for t ≥ t0; ð4:1Þ

where a0 is the initial scale factor at t0. The larger the value
of ω, the stronger the inflation is. For a structure of
comoving length Δx, the corresponding physical (proper)
length at any t is LðtÞ ¼ aðtÞΔx. Due to Eq. (4.1) it is

LðtÞ ¼
�
t
t1

�
1þω

Lðt1Þ: ð4:2Þ

Now, the Hubble radius lHðtÞ≡ 1
HðtÞ is given by

lHðtÞ ¼
t

1þ ω
: ð4:3Þ

In order to study when LðtÞ crosses the Hubble radius
lHðtÞ we evaluate their ratio:

LðtÞ
lHðtÞ

¼
�
t
t1

�
ω Lðt1Þ
lHðt1Þ

: ð4:4Þ

It is obvious that the proper length of a part of the universe
increases fast enough to cross the Hubble radius. The

desired 60 e-folds can be easily achieved for moderate
values of ω. Indeed, let us assume for simplicity that all the
required 60 e-foldings are achieved during the first cos-
mological stage, although it is possible to have a second
inflationary period with different characteristics during the
second stage. Then, at t ¼ t1 we need Lðt1Þ to be e60 times
the Hubble radius lHðt1Þ and we get

LðtÞ
lHðtÞ

¼ e60
�
t
t1

�
ω

: ð4:5Þ

The time when L crosses the Hubble radius happens for
t ¼ tcr with LðtcrÞ ¼ lHðtcrÞ, and Eq. (4.5) becomes

tcr ¼ t1e−
60
ω : ð4:6Þ

It is obvious from the above equation that for moderate
values of ω, the time tcr can be much shorter than the
transition time t1.

B. Second stage: Heat transfer and entropy production

Subsequently, a second cosmic period holds for
t1 < t < t2, where t2 is the transition to the FRW universe.
Here, apart from the vacuum contribution there is also
matter. The study of the matter solutions derived previously
reveals the existence of either deceleration or inflationary
eras. Since now matter is present, it is essential to analyze
the thermodynamics of the universe.

1. Entropy production through particle production

In the case of particle production, thermodynamics of
open systems, as applied to cosmology, takes into account
both matter and entropy creation on a macroscopical level.
This consideration generalizes the standard thermodynam-
ics in cosmology, since beyond ρ and p, the particle density
n also enters naturally. If U ¼ ρV is the internal energy in a
proper comoving volume V with corresponding entropy S
and temperature T, the entropy change dS is given by

TdS ¼ dðρVÞ þ pdV − μdN ¼ ρþ p
n

dN − μdN −
ρV
G

dG

¼ T
s
n
dN −

ρV
G

dG: ð4:7Þ

The second equation arises do to (3.16) and the third
equation arises due to that the chemical potential μ is given
by the Euler’s equation μn ¼ ρþ p − Ts, where s ¼ S

V is
the entropy per unit volume. As long as the right-hand side
of Eq. (4.7) is positive, the second law of thermodynamics
is satisfied, dS > 0. Using (3.15), Eq. (4.7) reduces to a
differential equation for the entropy S:

_S ¼ ρþ 3p
ρþ p

HS −
ρV
T

_G
G
: ð4:8Þ

It is not an easy issue [40] to succeed at the same time
entropy and particle production and in the present work we
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have managed this. Assuming a radiation equation of state,
w ¼ 1

3
, the Boltzmann law ρ ¼ σBT4 holds, and Eq. (4.8),

due to (3.17), takes the form

dS
dα

¼ 3

2
Sþ 4

3
vσ

1
4

Bρ
3
4
oe

3α
2
dG−3

4

dα
; ð4:9Þ

where α ¼ ln a and V ¼ va3 with v being the comoving
volume. Integration of (4.9) gives the solution

S ¼ va
3
2

�
cþ 4σ

1
4

Bρ
3
4
o

3G
3
4

�
; ð4:10Þ

where c is the integration constant. Using the NGFP scaling
(3.2) of G, we find

S ¼ va
3
2ðcþ νk

3
2Þ; ð4:11Þ

where ν ¼ 4σ1=4B ρ3=4o

3g3=4�
. From (4.11) it arises

_S ¼ 3

2
va

3
2

�
cH þ νk

3
2

�
H þ

_k
k

��
: ð4:12Þ

For the case of particle production we adopted two energy-
length scalings. For the first one, k ¼ ξ

t, it is

_S ¼ 3

2
va

3
2

�
cH þ νk

3
2

�
H −

1

t

��
: ð4:13Þ

It can be easily seen that all the corresponding interesting
matter solutions with particle production for any spatial
topology κ have H − 1

t > 0 in the expanding phase (this
property applies also for the nonsingular solution found).
So, for c ≥ 0 there is a natural entropy production. For the
second scaling, k ¼ ξH, it is

_S ¼ 3

2
va

3
2

�
cH þ νk

3
2
ä
aH

�
: ð4:14Þ

Therefore, if c ≥ 0, whenever there is acceleration, at
the same time there is an entropy production. Now, the
accelerating solutions found previously, with either κ ¼ 0
or κ ¼ 1, share this property (the nonsingular solution is
included).

2. Entropy production through bulk viscosity

In the case of bulk viscosity, one can use the standard
thermodynamic relation of closed systems dU þ pdV ¼
TdS, from where it arises immediately

T
V
_S ¼ _ρþ 3Hðρþ pÞ: ð4:15Þ

Making use of the conservation equation (3.7) it turns out

T
V
_S ¼ −ρ

_G
G
− 3Hπ: ð4:16Þ

In conventional FRW cosmology where the right-hand side
of Eq. (4.16) is zero, it can be concluded that the entropy of a
comoving volume remains the same as the universe expands,
_S ¼ 0. In our model, in the NGFP regime it is _G

G ¼ −2 _k
k, and

since usually k drops with the expansion, in order to have
increasing entropy we need π < 0 which is offered by the
mechanism of bulk viscosity. Moreover, in the study of bulk
viscosity, we found previously one case where kðtÞ
increases, and thus, SðtÞ also increases.
Equation (4.16), making use of (3.9) with w ¼ 1

3
, takes

the form

T
V
_S ¼ ρ

�
2H −

_G
G

�
¼ 2ρ

�
H þ

_k
k

�
: ð4:17Þ

Finally, Eq. (4.17), using (3.43), gives

T
V
_S ¼ ρ

�
_H
H

þ 4H

�
¼ ρ

H

�
ä
a
þ 3H2

�
: ð4:18Þ

It is possible to prove that all the upper branch solutions
(3.31) are associated with entropy increase (the nonsingular
solution is included).

3. Reheating

Now, we are going to discuss the evolution of the
temperature. If we consider a radiation equation of state,
the Boltzmann law of radiation is ρ ¼ σBT4, and it follows
from (3.12) that

_T ¼ T
2

�
_k
k
−H

�
: ð4:19Þ

Therefore, in order to have reheating, _T > 0, the time
derivative _k has to be sufficiently positive. For the particle
production this is not true, since we have found that kðtÞ is
permanently decreasing; in this case reheating could be
realized by other means, perhaps with the occurrence of
possible phase transitions. For the bulk viscosity, Eq. (4.19)
takes the form

_T ¼ T
4H

_H: ð4:20Þ

Thus, in order to have a temperature raise, a superaccel-
eration, _H > 0, should occur. For the nonsingular solutions
it can be shown that, depending on the parameters, the
universe can have _T > 0 already from its minimum scale
factor onwards, or the temperature raise can appear later.
In summary, the first period cosmic evolution can be

described by vacuum AS modified equations with Λ
present. This period of cosmic genesis is associated with
strong inflation. At the second period the universe evolu-
tion is described by modified equations which include
matter and is able to solve the cosmological entropy
problem. In the case of bulk viscosity there is also heat
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transfer from vacuum to the matter sector. Finally, the third
stage of cosmic evolution, which is not described by the set
of modified Einstein equations presented here, happens
when k departs from mpl. At this point another semi-
classical description of the spacetime applies where bothG,
Λ are almost constant. The framework of the AS program
ensures that for lower energies the conventional FRW
universe is recovered with negligible Λ.

V. DISCUSSION AND CONCLUSIONS

General branches of new cosmological solutions have
been obtained in the context of asymptotic safe gravity
(quantum Einstein gravity) at high energies close to the
NGFP. The derived solutions arise from a new consistent
system of modified Einstein equations. The framework
handles two different cosmic periods. First a possible
quantum birth from a vacuum state and second the addition
of a matter component at high energies. However, the
presented framework has to be modified to treat physics
away from the trans-Planckian regime.
In the first cosmic era the source is an energy-dependent

cosmological constant that scales at high energies as the AS
scenario suggests near the NGFP, i.e. ΛðkÞ ∝ k2. This
scaling is also the unique one which is consistent with
dimensional analysis without the introduction of a new
energy scale. The cosmological constant becomes time
dependent under the assumption of an energy-length
scaling. The modified Einstein equations are uniquely
defined and arise by adding appropriate covariant kinetic
terms of Λ in order to ensure the satisfaction of the Bianchi
identities. The importance of the presented vacuum sol-
utions, consistent with a quantum birth, lies on the fact that
they provide inflationary expansion and at the same time
completely remove the initial singularity in all scale factor,
energy density and curvature invariants. Exit from inflation
is a natural output of AS scenario and occurs when the
energy scale becomes lower, and then, ΛðkÞ becomes
insignificant and standard decelerating cosmology arises.
In the second cosmic era the inclusion of matter close to

the NGFP was possible to be modeled generalizing the
vacuum equations of motion. An energy exchange arises
between the matter and the varying gravitational constant
GðkÞ ∝ k−2. A negative nonequilibrium pressure beyond
the thermodynamic one is also an outcome and can be
attributed to either a particle production or to a mechanism
of bulk viscosity. In both cases, there are general solutions
which are inflationary (with different characteristics than
those arising during the first period) and nonsingular, and
such behaviors can be found for any spatial topology. The
barotropic equation of state is not particularly significant.
In the case of bulk viscosity the relation between the energy

scale and the time is implied by the theory itself. The most
interesting feature of the matter solutions is that they
suggest either particle production with entropy generation
or bulk viscosity with entropy production and reheating.
Since the presented solutions cover two consecutive

cosmic eras, both close to the NGFP, various phenomeno-
logical investigations are worth being investigated. It would
certainly be interesting also to study with the help of RG
flow equations the transition between the two eras.
Extending/generalizing appropriately the present frame-
work of modified Einstein equations and the associated
energy conservation, it may also be possible to describe the
sub-Planckian cosmic evolution with emerging high energy
corrections to the conventional expansion rate that could
explain baryogenesis [63], or dark energy [64].
Let us close with a few general comments. First, note that

physical predictions, e.g. on the early universe, should
actually depend on universal quantities, like the critical
exponent at a fixed point, but not the fixed-point values
themselves. This means that all the presented cosmological
solutions (vacuum and matter) are phenomenological in the
same sense as the standard model of Weinberg-Salam.
Although the formalism and all the derived solutions are
general and do not depend on specific values of the
parameters g� and λ�, at the end, the analysis of the results
depends on these parameters through inequalities in the
parameter space and not through fine-tuning. For example,
the nonsingular or the inflationary behavior are not proper-
ties that arise from specific values of the parameters. Only
when the asymptotic safety program will be able to provide
the final Lagrangian and critical exponents [65], precision
conclusions about the characteristics of the inflation will be
possible. Note, however, that the final picture regarding the
understanding of the gravitational field would be much
more conceptually different than the case of the rest
fermion/bosonic content [65]. The reason is that we have
to answer how measurements are performed, something
that results in radical new physical requirements. Thus, the
presented solutions can be regarded as useful phenomeno-
logical models of metrics that would probably describe a
quantum gravity inspired prototype model of the average
spacetime near the NGFP, or possibly describe some state
spacetimes of the quantum ensemble. Nevertheless, it is
natural and not problematic (in the context of AS) to expect
that near the NGFP there is a quantum superposition of
nonsingular spacetimes.
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