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Spherically symmetric equilibrium configurations of perfect fluid obeying a polytropic equation of state
are studied in spacetimes with a repulsive cosmological constant. The configurations are specified in terms
of three parameters—the polytropic index n, the ratio of central pressure and central energy density of
matter σ, and the ratio of energy density of vacuum and central density of matter λ. The static equilibrium
configurations are determined by two coupled first-order nonlinear differential equations that are solved by
numerical methods with the exception of polytropes with n ¼ 0 corresponding to the configurations with a
uniform distribution of energy density, when the solution is given in terms of elementary functions. The
geometry of the polytropes is conveniently represented by embedding diagrams of both the ordinary space
geometry and the optical reference geometry reflecting some dynamical properties of the geodesic motion.
The polytropes are represented by radial profiles of energy density, pressure, mass, and metric coefficients.
For all tested values of n > 0, the static equilibrium configurations with fixed parameters n, σ, are allowed
only up to a critical value of the cosmological parameter λc ¼ λcðn; σÞ. In the case of n > 3, the critical
value λc tends to zero for special values of σ. The gravitational potential energy and the binding energy of
the polytropes are determined and studied by numerical methods. We discuss in detail the polytropes with
an extension comparable to those of the dark matter halos related to galaxies, i.e., with extension
l > 100 kpc and mass M > 1012 M⊙. For such largely extended polytropes, the cosmological parameter
relating the vacuum energy to the central density has to be larger than λ ¼ ρvac=ρc ∼ 10−9. We demonstrate
that the extension of the static general relativistic polytropic configurations cannot exceed the so-called
static radius related to their external spacetime, supporting the idea that the static radius represents a natural
limit on the extension of gravitationally bound configurations in an expanding universe dominated by the
vacuum energy.
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I. INTRODUCTION

Data from cosmological observations indicate that in the
framework of the inflationary paradigm [1] a very small
relict repulsive cosmological constant Λ > 0, i.e., vacuum
energy or, generally, a dark energy demonstrating a
repulsive gravitational effect, has to be invoked in order
to explain the dynamics of the recent Universe [2–8]. The
total energy density of the Universe is very close to the
critical energy density ρcrit corresponding to an almost flat
universe predicted by the inflationary scenario [9].
Observations of distant Ia-type supernova explosions indi-
cate that starting at the cosmological redshift z ≈ 1

expansion of the Universe is accelerated [10]. The cosmo-
logical tests demonstrate convincingly that the dark
energy represents about 70% of the energy content of
the observable Universe [9,11]. These results are confirmed
by recent measurements of cosmic microwave background
anisotropies obtained by the space satellite observatory
PLANCK [12,13].
There are strong indications that the dark energy equa-

tion of state is very close to those corresponding to the
vacuum energy, i.e., to the repulsive cosmological constant
[11]. Therefore, it is important to study the cosmological
and astrophysical consequences of the effect of the
observed cosmological constant implied by the cosmologi-
cal tests to be Λ ≈ 1.3 × 10−56 cm−2 and the related
vacuum energy ρvac ∼ 10−29 g=cm3 that is comparable to
the critical density of the Universe. The presence of a
repulsive cosmological constant dramatically changes the
asymptotic structure of black hole, naked singularity, or any
compact-body backgrounds as such backgrounds become
asymptotically de Sitter spacetimes, not flat spacetimes. In
such spacetimes, an event horizon (cosmological horizon)
always exists, behind which the geometry is dynamic.
The repulsive cosmological constant was discussed

mainly in the scope of the cosmological models [14].
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Its role in the vacuola models of mass concentrations
immersed in the expanding universe has been considered
in Refs. [15–20]. Recently, relevance of the repulsive
cosmological constant has been found in the McVittie
model [21] of mass concentrations immersed in the
expanding universe [22–28]. A significant role of the
repulsive cosmological constant has been demonstrated
also for astrophysical situations related to active galactic
nuclei and their central supermassive black holes [29]. The
black-hole spacetimes with the Λ term are described in the
spherically symmetric case by the vacuum Schwarzschild–
(anti-)de Sitter (SdS) geometry [30,31], while the internal,
uniform density SdS spacetimes are given in Refs. [32,33].
In the axially symmetric, rotating case, the vacuum space-
time is determined by the Kerr-de Sitter (KdS) geometry
[34]. In the spacetimes with the repulsive cosmological
term [and the related solutions of the f(R) gravity], motion
of photons is treated in a series of papers [35–40,40–45],
while motion of test particles was studied in Refs. [15,31,
46–68]. Oscillatory motion of current carrying string loops
in SdS and KdS spacetimes was treated in Refs. [69–75].
The cosmological constant can be relevant in both the

geometrically thin Keplerian accretion disks [29,31,47,
76,77] and the geometrically thick toroidal accretion disks

]76–85 ] orbiting supermassive black holes in the central
parts of giant galaxies or in the recently discussed ringed
accretion disks [86,87]. Spherically symmetric, stationary
polytropic accretion in the spacetimes with the repulsive
cosmological constant has been studied in Refs. [88–92].
In spherically symmetric spacetimes, Keplerian and

toroidal disk structures can be described with high pre-
cision by an appropriately chosen pseudo-Newtonian
potential [93,94] that appears to be useful also in studies
of motion of interacting galaxies [95–97]. It should be
mentioned that the KdS geometry can be relevant also in
the case of Kerr superspinars representing an alternate
explanation of active galactic nuclei [98–101]. The super-
spinars breaking the black-hole bound on the spin exhibit a
variety of unusual physical phenomena [102–110].
Besides the vacuum black-hole (naked-singularity)

spacetimes, we have to study the role of a repulsive
cosmological constant also in nonvacuum spacetimes
representing static mass configurations. Such general
relativistic nonvacuum solutions can be interesting, e.g.,
in connection to the cold dark matter (CDM) halos that
have been recently widely discussed as an explanation of
the hidden structure of galaxies enabling the correct treat-
ment of the motion in the external parts of galaxies
[111,112] and are at present assumed usually in the
Newtonian approximation [95,113–116]. There is a variety
of candidates for the CDM [117]; nevertheless, none of
these candidates is considered to be confirmed in the
present state of knowledge. Therefore, it is important to
test the possibility to represent such CDM halos in a
relatively simple manner that enables us to estimate easily

the role of the cosmological constant. We shall discuss the
most simple case of spherically symmetric static configu-
rations of perfect fluid with a polytropic equation of state
generalizing thus the standard discussion of Tooper [118]
by introducing the vacuum energy represented by the
repulsive cosmological constant. Outside of these poly-
tropic spheres, the spacetime is described by the vacuum
SdS geometry.
Choosing the polytropic equation of state means that

details of the processes inside the polytropic spheres are not
considered, and a simple power law relating the total
pressure to the total energy density of matter is assumed.
Such an approximation seems to be applicable in the dark
matter models that assume weakly interacting particles
(see, e.g., Refs. [116,119,120]). In fact, such a simple
assumption enables us to obtain basic properties of the
nonvacuum configurations governed by the relativistic
laws. For example, the equation of state of the ultra-
relativistic degenerate Fermi gas is determined by the
polytropic equation with the adiabatic index Γ ¼ 4=3
corresponding to the polytropic index n ¼ 3, while the
nonrelativistic degenerate Fermi gas is determined by the
polytropic equation of state with Γ ¼ 5=3, and n ¼ 3=2
[121]. It should be noted that a similar case of the adiabatic
equation of state can be used in the case of a general ideal
gas. This case was appropriately applied to describe the
(test) perfect fluid toroidal configurations orbiting black
holes [94] and can be, in principle, applied for the modeling
of self-gravitating adiabatic spherically symmetric general
relativistic configurations. The special case of polytropes
with polytropic index n ¼ 0 corresponding to the simplest,
although rather unphysical and artificial, case of spheres
with uniform distribution of energy density (but radius-
dependent distribution of pressure) can be treated as a very
useful model—it can serve as a test bed for properties of
general relativistic polytropes (GRPs) because its structure
equations can be solved in terms of elementary functions
[32,33,122–124]. For nonzero values of the polytropic
index, the structure equations have to be solved by
numerical methods.
The Einstein equations with a nonzero cosmological

constant lead in the case of spherically symmetric, static
equilibrium configurations to generalized Tolman-
Oppenheimer-Volkoff (TOV) equation. By using the stan-
dard ansatz for the polytropic equation of state, the
equations are transferred into dimensionless form of two
coupled first-order nonlinear differential equations that are
solved by numerical methods under boundary conditions
requiring regularity of the solution at the center of the
polytrope and smooth matching of the internal spacetime at
the surface of the polytrope to the external SdS spacetime
characterized by the same mass parameter (and the cos-
mological constant) as the internal spacetime. The con-
figurations are specified in terms of three parameters: the
polytropic index n, the ratio of central pressure and central
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energy density of matter σ, and the ratio of energy density
of vacuum and central density of matter λ. By simulta-
neously solving the coupled equations, the structure of the
polytrope is obtained; it is characterized by the profiles of
the energy density, pressure, mass, and two metric coef-
ficients (gtt; grr) giving the geometry of the internal
spacetime of the polytropic sphere. The spacetime structure
can be reflected by the embedding diagrams of the ordinary
space and the optical reference geometry reflecting some
hidden properties of the spacetime [125,126]. The other
relevant characteristics of the polytropes are the gravita-
tional potential energy and the binding energy [118].

II. EQUATIONS OF STRUCTURE

In terms of the standard Schwarzschild coordinates, the
line element of a spherically symmetric, static spacetime is
given in the form

ds2 ¼ −e2Φc2dt2 þ e2Ψdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ ð1Þ

with just two unknown functions of the radial coordinate,
ΦðrÞ and ΨðrÞ. Matter inside the configuration is assumed
to be a perfect fluid with ρ ¼ ρðrÞ being the density of mass
energy in the rest frame of the fluid and p ¼ pðrÞ being the
isotropic pressure. The stress-energy tensor of the perfect
fluid reads

Tμ
ν ¼ ðpþ ρc2ÞUμUν þ pδμν ; ð2Þ

where Uμ denotes the 4-velocity of the fluid. We consider
here the simplest direct relation between the energy density
and pressure of the fluid given by the polytropic equation of
state

p ¼ Kρ1þ1
n; ð3Þ

where n is the “polytropic index” assumed to be a given
constant (not necessarily an integer) andK is a constant that
has to be determined by the thermal characteristics of a
given fluid sphere, by specifying the density ρc and
pressure pc at the center of the polytrope. Since the density
is a function of temperature for a given pressure,K contains
the temperature implicitly. It can be shown that K is
determined by the total mass, radius, and pc=ρcc2 ratio.
(The polytropic equation represents a limiting form of the
parametric equations of state for a completely degenerate
gas at zero temperature, relevant, e.g., for neutron stars.
Then, both n and K are universal physical constants [118].)
In a static configuration, each element of the fluid must

remain at rest in the static coordinate system where the
spatial components of 4-velocity field dr=dτ, dθ=dτ, dϕ=dτ
vanish, leaving the temporal component

ut ¼ dt
dτ

¼ e−Φ ð4Þ

as the only nonvanishing one. The structure of a relativistic
star is determined by the Einstein field equations

Gμν ≡ Rμν −
1

2
Rgμν þ Λgμν ¼

8πG
c4

Tμν ð5Þ

and by the law of local energy-momentum conservation

Tμν
;ν ¼ 0: ð6Þ

It is convenient to express the equations in terms of the
orthonormal tetrad components using the 4-vectors carried
by the fluid elements:

~eðtÞ ¼
1

eΦ
∂
∂t ; ~eðrÞ ¼

1

eΨ
∂
∂r ;

~eðθÞ ¼
1

r
∂
∂θ ; ~eðϕÞ ¼

1

r sin θ
∂
∂ϕ : ð7Þ

Projection of Tμν
;ν ¼ 0 orthogonal to uμ (by the projection

tensor Pμν ¼ gμν þ uμuν) gives the relevant equation

ðρc2 þ pÞ dΦ
dr

¼ −
dp
dr

; ð8Þ

which is the equation of hydrostatic equilibrium describing
the balance between the gravitational force and pressure
gradient.
There are two relevant structure equations following

from the Einstein equations. These are determined by the
ðtÞðtÞ and ðrÞðrÞ tetrad components of the field equations
[the ðθÞðθÞ and ðϕÞðϕÞ components give dependent
equations]. First, we shall discuss the ðtÞðtÞ component:

GðtÞðtÞ ¼
1

r2
−
e−2Ψ

r2
−
1

r
d
dr

e−2Ψ − Λ ¼ 8πG
c2

ρ: ð9Þ

This can be transferred into the form

d
dr

�
rð1 − e−2ΨÞ − 1

3
Λr3

�
¼ d

dr
2G
c2

mðrÞ; ð10Þ

where

mðrÞ ¼
Z

r

0

4πr02ρdr0: ð11Þ

The integration constant in (11) is chosen to be mð0Þ ¼ 0
because then the spacetime geometry is smooth at the
origin (see Ref. [14]), and we arrive at the relation

e2Ψ ¼
�
1 −

2GmðrÞ
c2r

−
1

3
Λr2

�
−1
: ð12Þ

The ðrÞðrÞ component of the field equations reads
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GðrÞðrÞ ¼ −
1

r2
þ e−2Ψ

r2
þ 2e−2Ψ

r
dΦ
dr

þ Λ ¼ 8πG
c4

p: ð13Þ

Using Eq. (12), we obtain the relation

dΦ
dr

¼
G
c2 mðrÞ − 1

3
Λr3 þ 4πG

c4 pr3

r½r − 2G
c2 mðrÞ − 1

3
Λr3� ; ð14Þ

which enables us to put the equation of hydrostatic
equilibrium (8) into the TOV form modified by the
presence of a nonzero cosmological constant [32]:

dp
dr

¼ −ðρc2 þ pÞ
G
c2 mðrÞ − 1

3
Λr3 þ 4πG

c4 pr3

r½r − 2G
c2 mðrÞ − 1

3
Λr3� : ð15Þ

The ðtÞðtÞ component of the Einstein equations can be
expressed and applied in the form

dmðrÞ
dr

¼ 4πρðrÞr2: ð16Þ

For integration of the structure equations, it is convenient
to introduce, following the approach of Ref. [118], a new
variable θ related to the density radial profile ρðrÞ and the
central density ρc, by

ρ ¼ ρcθ
n ð17Þ

with n being the polytropic index. The boundary condition
on θðrÞ reads θðr ¼ 0Þ ¼ 1. The pressure dependence is
given by the relation

p ¼ Kρc
1þ1

nθnþ1: ð18Þ

The conservation law (16) can be expressed in the form

σðnþ 1Þdθ þ ðσθ þ 1ÞdΦ ¼ 0; ð19Þ

where the parameter σ is given by the relation

σ ¼ K
c2

ρc
1=n ¼ pc

ρcc2
: ð20Þ

At the edge of the configuration, r ¼ R, there is
ρðRÞ ¼ pðRÞ ¼ 0. Outside the mass configuration with
mass parameter M related to the mass of the polytrope by
M ¼ mðRÞ, the spacetime is described by the vacuum
Schwarzschild–(anti-)de Sitter metric. Solving Eq. (19) and
using the boundary condition that the internal and external
metric coefficients are smoothly matched at r ¼ R, we
obtain

e2Φ ¼ ð1þ σθÞ−2ðnþ1Þ
�
1 −

2GM
c2R

−
1

3
ΛR2

�
: ð21Þ

Thus, the internal metric coefficient gtt is determined by the
function θðrÞ and the parameter σ. The function e2Ψ

remains to be expressed in terms of θ, and we need to
find the function θ ¼ θðrÞ using the structure equations.
First, we rewrite Eq. (19) in the form

dΦ
dr

¼ σðnþ 1Þ
1þ σθ

dθ
dr

: ð22Þ

Then, we can express the ðrÞðrÞ component of the Einstein
equations and Eq. (16) in the form

σðnþ 1Þ
1þ σθ

r
dθ
dr

�
1 −

2GmðrÞ
c2r

−
1

3
Λr2

�
þ GmðrÞ

c2r

−
1

3
Λr2 ¼ −

G
c2

σθ
dm
dr

; ð23aÞ

dm
dr

¼ 4πr2ρcθn: ð23bÞ

Introducing factor L giving a characteristic length scale of
the polytrope

L ¼
�ðnþ 1ÞKρ1=nc

4πGρc

�1=2
¼

�
σðnþ 1Þc2
4πGρc

�
1=2

ð24Þ

and factor M giving a characteristic mass scale of the
polytrope

M ¼ 4πL3ρc ¼
c2

G
σðnþ 1ÞL; ð25Þ

Eq. (23) can be transformed into dimensionless form by
introducing a dimensionless radial coordinate

ξ ¼ r
L

ð26Þ

and dimensionless quantities

vðξÞ ¼ mðrÞ
4πL3ρc

¼ mðrÞ
M

; ð27aÞ

λ ¼ ρvac
ρc

; ð27bÞ

where vðξÞ represents a dimensionless mass parameter and
λ represents a dimensionless cosmological constant related
to the polytrope. The vacuum energy density is related to
the cosmological constant by

ρvacc2 ¼
Λc4

8πG
¼ 8πG

c2
ρcλ: ð28Þ

The dimensionless form of Eq. (23) determining the
polytrope structure then can be written down as
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dθ
dξ

¼
2
3
λξ3 − σξ3θnþ1 − v

ξ2ð1þ σθÞ−1 grrðξ; v; n; σ; λÞ; ð29aÞ

dv
dξ

¼ ξ2θn; ð29bÞ

where

grrðξ; v; n; σ; λÞ≡ 1

1 − 2σðnþ 1Þðvξ þ 1
3
λξ2Þ ð30Þ

coincides with the radial metric coefficient (12). For given
n, σ, and λ, Eq. (29) have to be simultaneously solved under
the boundary conditions

θð0Þ ¼ 1; vð0Þ ¼ 0: ð31Þ

It follows from Eqs. (29b) and (31) that vðξÞ ∼ ξ3 for ξ → 0
and, according to Eq. (29a),

lim
ξ→0þ

dθ
dξ

¼ 0: ð32Þ

The boundary of the fluid sphere (r ¼ R) is represented by
the first zero point of θðξÞ, say at ξ1:

θðξ1Þ ¼ 0: ð33Þ

The solution ξ1 determines the surface radius of the
polytrope, and the solution vðξ1Þ determines its gravita-
tional mass.
In the Newtonian limit (σ ≪ 1), the structure equations

can be transformed to one differential equation of the
second order,

1

ξ2
d
dξ

�
ξ2

dθ
dξ

�
þ θn − 2λ ¼ 0; ð34Þ

that is reduced to the Lane-Emden equation, if the
cosmological term vanishes (λ ¼ 0),

d
dξ

�
ξ2

dθ
dξ

�
þ ξ2θn ¼ 0: ð35Þ

The differential equations governing the structure of GRPs
have to be solved by numerical methods (even in the
Newtonian limit). Only polytropes with the polytropic
index n ¼ 0, corresponding to configurations having uni-
form distribution of the energy density but nonuniform
pressure profile, allow for solutions of the differential
equations in terms of elementary functions.

III. PROPERTIES OF THE POLYTROPES

The general relativistic polytropic spheres with given
polytropic index n are determined by the functions θðξÞ

and vðξÞ of the dimensionless coordinate ξ and by the
length and mass scales, L (24) and M (25). The functions
θðξÞ and vðξÞ are governed by the structure equations, the
values of the central energy density ρc, and the parameters σ
and λ. A concrete polytropic sphere is then given by the first
(lowest) solution ξ1 of the equation θðξÞ ¼ 0 that deter-
mines all the characteristics of the polytropic configuration
and the radial profiles of its energy density, pressure, metric
coefficients, or gravitational and binding energy.
Assuming Λ, n, σ, and ρc are given, then massM, radius

R, and the internal structure of the polytropes can be easily
determined. First, the length scale L given by Eq. (24) has
to be found. By numerical integration of Eq. (29), functions
θðξÞ and vðξÞ are found, and ξ1, where θðξ1Þ ¼ 0, is
determined together with vðξ1Þ. The radius of the sphere is

R ¼ Lξ1; ð36Þ

and the mass of the sphere is given by

M ¼ Mvðξ1Þ ¼
c2

G
Lσðnþ 1Þvðξ1Þ: ð37Þ

The density, pressure, and mass-distribution profiles are
determined by the relations

ρðξÞ ¼ ρcθ
nðξÞ; ð38aÞ

pðξÞ ¼ σρcθ
nþ1ðξÞ; ð38bÞ

MðξÞ ¼ M
vðξÞ
vðξ1Þ

: ð38cÞ

The temporal and radial metric coefficients can be
expressed in the form

e2Φ ¼
1 − 2σðnþ 1Þ

h
vðξ1Þ
ξ1

þ λξ2
1

3

i
ð1þ σθÞ2ðnþ1Þ ; ð39aÞ

e−2Ψ ¼ 1 − 2σðnþ 1Þ
hvðξÞ

ξ
þ 1

3
λξ2

i
ð39bÞ

[see also Eq. (30)].
One of the basic characteristics of the polytropes is the

mass-radius (M-R) relation. Using Eq. (27), we obtain

vðξÞ ¼ mðrÞ
4πρcL2

ξ

r
¼ G

c2σðnþ 1Þ ξ
mðrÞ
r

; ð40Þ

and the M-R relation can be expressed by the formula

C≡ GM
c2R

¼ 1

2

rg
R

¼ σðnþ 1Þvðξ1Þ
ξ1

; ð41Þ

where
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rg ¼
2GM
c2

ð42Þ

is the gravitational radius of the polytropic configuration
determined by its total gravitational massM. The quantity C
determines the compactness of the sphere, i.e., effective-
ness of the gravitational binding, and it can be represented
by the gravitational redshift of radiation emitted from the
surface of the polytropic sphere [127].
The external vacuum SdS spacetime, with the same mass

parameter M and the cosmological constant Λ as those
characterizing the internal spacetime of the polytrope, has
the metric coefficients

e2Φ ¼ e−2Ψ ¼ 1 −
2GM
c2r

−
1

3
Λr2: ð43Þ

There are two pseudosingularities of the external vacuum
geometry that give two length scales related to the poly-
tropic spheres. The first one is determined by the radius of
the black-hole horizon

rh ¼
2ffiffiffiffi
Λ

p cos
π þ α

3
; ð44Þ

and the second one is given by the cosmological horizon

rc ¼
2ffiffiffiffi
Λ

p cos
π − α

3
; ð45Þ

there is

α ¼ arccos
�
3

2

ffiffiffiffiffiffiffiffi
Λr2g

q �
: ð46Þ

In astrophysically realistic situations, even for the most
massive black holes in the central part of giant galaxies,
such as the one observed in the quasar TON 618 with the
massM ∼ 6.6 × 1010M⊙ [128], or for whole giant galaxies
containing an extended CDM halo and having mass up to
M ∼ 1014M⊙, the black-hole horizon and the cosmological
horizon radii are given with very high precision by the
simplified formulas

rh ¼ rg; rc ¼
�
1

3
Λ

�
1=2

: ð47Þ

The horizons (black hole and cosmological) thus give two
characteristic length scales of the SdS spacetimes. Clearly,
the radius corresponding to the black hole horizon is
located inside the polytropic spheres, while the cosmo-
logical horizon is located outside the polytropic sphere,
usually at an extremely large distance from the polytrope
for the observationally given value of the relict cosmo-
logical constant.

The Schwarzschild-de Sitter geometry can be charac-
terized by a dimensionless parameter [31],

y ¼ 1

12
Λr2g: ð48Þ

Considering the observationally given repulsive cosmo-
logical constant Λ ¼ 1.3 × 10−56 cm−2, the cosmological
parameter y takes extremely small values for astrophysi-
cally relevant objects such as the stellar mass black holes
and galactic center black holes and even for the largest
compact objects of the Universe, i.e., the central super-
massive black holes in the active galactic nuclei or for the
related giant galaxies [29,78]. However, we can introduce a
third characteristic length scale determining the boundary
of the gravitationally bound system, where cosmic repul-
sive effects start to be decisive. This is the so-called static
radius [31,47,95,97,129,130] defined as

rs ¼
rg

2y1=3
: ð49Þ

At the static radius, the gravitational attraction of the central
mass source is just balanced by the cosmic repulsion, and
behind the static radius, the cosmic repulsive acceleration
prevails [29].
It is relevant and instructive to relate the three character-

istic length scales of the external vacuum spacetime to the
length scale of the general relativistic polytrope L and its
radius R ¼ Lξ1. In the case of polytropes with very large
central density, related to the central densities of neutron
stars, quark stars, or other very compact objects, the
polytrope length scale is comparable to the scale of the
black-hole horizon, while with decreasing central density
the polytrope length scale increases in comparison to the
black-hole horizon scale. In the case of extremely low
central densities related to extremely extended polytropes
that could represent, e.g., the CDM halos, their length scale
is comparable to the static radius of the external spacetime.
We shall see that the static radius cannot be exceeded by the
polytrope extension. For observationally given cosmologi-
cal constant, the length scale (extension) of all astrophysi-
cally relevant polytropes is much lower than the length
scale of the cosmological horizon.

IV. GRAVITATIONAL ENERGY AND BINDING
ENERGY OF THE POLYTROPIC SPHERES

Properties of the GRPs are well characterized by their
gravitational potential energy and binding energy. The
latter reflects amount of the microscopic kinetic energy
bounded in the relativistic polytropes. Both the (negative)
gravitational potential energy and the binding energy are
related to the total energy given by the mass parameter of
the polytropes and are expressed in terms of the parameters
characterizing the polytropes that can be determined
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numerically. In the case of the n ¼ 0 polytropes, the
binding energy must be just negatively valued gravitational
potential energy, because the polytropic configurations
with uniform distribution of energy density have to be
considered as incompressible.

A. Gravitational potential energy

Because of the equivalence of matter and energy, the
total energy E of the mass configuration, including the
internal energy and gravitational potential energy, is given
by the gravitational mass M generating the external
gravitational field:

E ¼ Mc2 ¼ 4πc2L3ρcvðξ1Þ ¼ 4πc2
Z

R

0

ρr2dr: ð50Þ

The proper energy E0 is defined as the integral of the
energy density over the proper volume of the fluid sphere

E0 ¼ 4πc2L3ρc

Z
ξ1

0

g1=2rr θnξ2dξ ð51Þ

with grrðξ; v; n; σ; λÞ given by Eq. (30). The gravitational
potential energy is thus given by

G ¼ E − E0: ð52Þ

Since eΨ ≥ 1, there is E0 ≥ E and G ≤ 0—the gravitational
potential energy is always negative. Following the basic
work of Tooper [118], we can consider the negatively
valued gravitational potential energy, ð−GÞ, as the gravi-
tational binding energy, i.e., the energy representing the
work that has to be applied to the system in order to
disperse the matter against the gravitational forces. The
intensity of the gravitational binding of the polytropic
spheres can be represented by the ratio

g ¼ G
E
¼ 1 −

1

vðξ1Þ
Z

ξ1

0

g1=2rr θnξ2dξ: ð53Þ

The proper energy of a relativistic polytrope consists of
the rest energy of gas, the kinetic energy of microscopic
motion of the gas, and the radiation energy. The simple
polytropic law relates the total energy density and the total
pressure, which consists of gas pressure related to the
kinetic energy of the microscopic motion, and the radiation
pressure. Therefore, we have to determine the gas density
of the polytropic matter.

B. Adiabatic processes and speed of sound

In the relativistic polytropes, the special case of adiabatic
processes implies a unique relation between the gas density
ρg and the total mass density ρ, or between ρg and θ [118].
The assumption of an adiabatic process is consistent with
the absence of heat terms in the energy-momentum tensor.

For an adiabatic process, the relativistic generalization of
the first law of thermodynamics takes the form

dϵþ ðpþ ϵÞ dV
V

¼ 0; ð54Þ

where dϵ is the change in the energy density due to a
change dV in the specific volume. Since

dV
V

¼ −
dρg
ρg

; ð55Þ

we arrive at

dρg
ρg

¼ dϵ
pþ ϵ

; ð56Þ

and using the variable θ, we find the equation

dρg
ρg

¼ ndθ
θð1þ σθÞ : ð57Þ

Because the internal energy density is small compared to
the rest energy density near the boundary of the polytropic
sphere, we obtain the profile of the rest mass density in the
form

ρg ¼ ρc

�
θ

1þ σθ

�
2

¼ ρ

ð1þ σθÞn : ð58Þ

In the nonrelativistic limit (σ ≪ 1), the gas density and the
total density are nearly equal.
The standard relativistic (Landau-Lifshitz) formula for

the phase velocity of sound in an adiabatic process [131]

v2s ¼
�
dp
dρ

�
adiabatic

ð59Þ

yields the phase sound speed at the center of the polytrope
to be given by

vsc ¼ c

�
nþ 1

n
σ

�
1=2

: ð60Þ

For a given n, there is a maximum value of the parameter σ
that guarantees vsc < c:

σ ≤
n

nþ 1
: ð61Þ

For the nonrelativistic Fermi gas n ¼ 3=2, we have
σN ≤ 3=5, while for the ultrarelativistic Fermi gas n ¼ 3,
we have σU ≤ 3=4; for the case of n ¼ 4, there is σ ≤ 4=5.
However, these limits hold for the phase sound velocity, not
the group velocity, so they should not be taken too
literally [118].
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C. Binding energy

The proper mass and the total rest energy of gas in a
polytropic sphere are determined by the relation

E0g ¼ M0gc2 ¼ 4πc2
Z

R

0

ρgeΨr2dr: ð62Þ

The energy E0g represents the sum of the rest masses of the
elementary particles in the polytrope in units of energy, and
M0g gives the number of nucleons in the polytrope
multiplied by the nucleon rest mass. The proper rest energy
of the gas in the polytropic configuration is given by
integration over the proper volume and is determined by the
relation

E0g ¼ 4πc2L3ρc

Z
ξ1

0

g1=2rr θnξ2dξ
ð1þ σθÞn ð63Þ

with grrðξ; v; n; σ; λÞ given by Eq. (30). The binding energy
Eb of the gas of the polytropic sphere is then given by the
formula

Eb ¼ E0g − E: ð64Þ

Considering an “initial” state where the particles are widely
dispersed and the system has zero internal energy, and
assuming conservation of the number of nucleons, the
binding energy represents the difference in energy between
the initial state and the “final” state in which the particles
with given internal energy are bounded by gravitational
forces.
We can consider the quantity giving the difference of the

proper energy E0 and the proper rest energy E0g, describing
the internal “kinetic” energy of the polytropic sphere (more
precisely of particles constituting the polytrope):

Ek ¼ E0 − E0g: ð65Þ

Polytropic fluid spheres can be characterized by relating the
gravitational potential energy, the binding energy, and the
kinetic energy to the total energy, introducing the following
parameters: the internal energy parameter

i≡ E0g

E
¼ 1

vðξ1Þ
Z

ξ1

0

g1=2rr θnξ2dξ
ð1þ σθÞn ; ð66Þ

binding energy parameter

b≡ Eb

E
¼ E0g

E
− 1 ¼ i − 1; ð67Þ

and the kinetic energy parameter

k≡ Ek

E
¼ E0

E
−
E0g

E
: ð68Þ

Clearly, the parameters are not independent. They are
related by

k ¼ 1 − g − i ¼ −g − b: ð69Þ

It is not apparent if the binding energy is positive or
negative. The gas density ρg is smaller than the total density
ρ, but the radial metric coefficient is in general greater than
unity. Recall that in the Newtonian limit (with λ ¼ 0) we
obtain in the first approximation

E0 ≈ 4πc2
Z

R

0

ρðrÞ
�
1þ GmðrÞ

c2r

�
r2dr

¼ Eþ
Z

R

0

GmðrÞdmðrÞ
r

ð70Þ

and the binding energy is determined by the well-known
formula [121]

Eb ≈
3 − n
5 − n

GM2

R
≈
n − 3

3
G: ð71Þ

The Newtonian limit demonstrates immediately that the
binding energy can be positive or negative, in dependence
on the polytropic index n. Since the gravitational energy is
always negative, we can conclude that in this limit the
binding energy is positive (negative) for n < 3 (n > 3). In
the fully general relativistic polytropes, the situation is
clearly more complex. The fully general relativistic poly-
tropic spheres are characterized by the most important
quantity relating the binding energy and the gravitational
potential energy through the formula

Eb

G
¼

R ξ1
0

g1=2rr θnξ2dξ
ð1þσθÞn − vðξ1Þ

vðξ1Þ −
R ξ1
0 g1=2rr θnξ2dξ

ð72Þ

that enables us to find easily the regions of positively
valued binding energy since the gravitational energy is
again always negative.

V. EMBEDDINGS OF THE ORDINARY
AND OPTICAL SPACE

We concentrate our attention on the visualization of the
structure of the internal spacetime of the GRPs, considering
both the ordinary and the optical geometry of the
spacetime.
The curvature of the internal spacetime of the polytropes

can conveniently be represented by the standard embedding
of 2D, appropriately chosen, spacelike surfaces of the
ordinary 3-space of the geometry (here, these are t ¼
const sections of the central planes) into 3D Euclidean
space [14].
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The 3D optical reference geometry [132], associated
with the spacetime under consideration, enables the intro-
duction of a natural “Newtonian” concept of gravitational
and inertial forces and reflects some hidden properties of
the test particle motion [125,126,133,134]. (In accord with
the spirit of general relativity, alternative approaches to the
concept of inertial forces are possible, e.g., the “special
relativistic” one [135].) Properties of the inertial forces can
be reflected by the embedding diagrams of appropriately
chosen 2D sections of the optical geometry, as reviewed,
e.g., in Refs. [126,136]. The embedding diagrams of the
n ¼ 0 polytropes with the uniform distribution of the
energy density were presented in Ref. [122]; here, they
are constructed for typical GRPs with n > 0. Note that it
can be directly shown by using the optical reference
geometry that extremely compact configurations, allowing
the existence of bound null geodesics, can exist [122,137].
Such extremely compact relativistic polytropes have a turn-
ing point of the embedding diagram of the optical geometry
as shown in Ref. [126]. However, as we show later, such
configurations can have compactness parameter C > 1=3.
We embed the equatorial plane of the ordinary space

geometry and optical reference geometry into the 3D
Euclidean space with the line element

d ~σ2 ¼ dρ2 þ ρ2dα2 þ dz2: ð73Þ

The embedding is a rotationally symmetric surface z ¼
zðρÞ with the line element (2D):

dl2
ðEÞ ¼

�
1þ

�
dz
dρ

�
2
�
dρ2 þ ρ2dα2: ð74Þ

A. Ordinary space

Its equatorial plane has the line element

dl2
ðordÞ ¼ grrdr2 þ r2dϕ2; ð75Þ

where

grr ¼ e2ΨðrÞ ¼
�
1 − 2σðnþ 1Þ

�
vðξÞ
ξ

þ λ

3
ξ2
��

−1
ð76Þ

with vðξÞ being the solution of the TOV for the GRP. We
have to identify dl2

ðEÞ and dl2
ðordÞ. Clearly, α≡ ϕ, and

ρ≡ r. The embedding formula then takes the form

dz
dr

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grr − 1

p
; ð77Þ

different signs give isometric surfaces. We takeþ sign.
Using Eq. (76), we arrive at the dimensionless embedding
formula if we introduce

z ¼ z
L
; ξ ¼ r

L
ð78Þ

in the form

dz
dξ

¼
�

2σðnþ 1Þ½vðξÞξ þ λ
3
ξ2�

1 − 2σðnþ 1Þ½vðξÞξ þ λ
3
ξ2�

�1=2

: ð79Þ

This must be integrated numerically using a computer
code for vðξÞ. Clearly, the embedding is well defined in the
whole range of allowed ξ ∈ ð0; ξ1Þ, as grr > 1 there.

B. Optical space (optical reference geometry)

In the static spacetimes, the optical 3D space has its
metric coefficients determined by [132,138]

hik ¼
gik
−gtt

: ð80Þ

Its equatorial plane has the line element

dl2
ðoptÞ ¼ hrrdr2 þ hϕϕdϕ2 ð81Þ

that has to be identified with dl2
ðEÞ. Now, the azimuthal

coordinates still can be identified (α≡ ϕ); however, the
radial coordinates are related via

ρ2 ¼ hϕϕ; ð82Þ

and the embedding formula is given by

dz
dρ

¼ hrr

�
dr
dρ

�
2

− 1: ð83Þ

It is convenient to cast the embedding formula into a
parametric form zðρÞ ¼ zðrðρÞÞ. Then,

dz
dr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hrr −

�
dρ
dr

�
2

s
: ð84Þ

Because

dz
dρ

¼ dz
dr

dr
dρ

; ð85Þ

the turning points of the embedding diagrams are given by
the condition

dρ
dr

¼ 0: ð86Þ

The reality condition, determining the limits of embedd-
ability, reads
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hrr −
�
dρ
dr

�
2

≥ 0: ð87Þ

For the GRPs, the metric coefficients of the optical
geometry are given by the formulas

hrr ¼
e2Ψ

e2Φ
¼ ½1þ σθðξÞ�2ðnþ1Þ

1 − 2σðnþ 1Þ½vðξ1Þξ1
þ λ

3
ξ21�

×

�
1 − 2σðnþ 1Þ

�
vðξÞ
ξ

þ λ

3
ξ2
��

; ð88Þ

hϕϕ ¼ r2

e2Φ
¼ r2½1þ σθðξÞ�2ðnþ1Þ

1 − 2σðnþ 1Þ½vðξ1Þξ1
þ λ

3
ξ21�

: ð89Þ

Introducing a dimensionless coordinate η by

η ¼ ρ

L
; ð90Þ

we can write

η ¼ ξ½1þ σθðξÞ�nþ1

f1 − 2σðnþ 1Þ½vðξ1Þξ1
þ λ

3
ξ21�g1=2

ð91Þ

and

dη
dξ

¼ ξ½1þ σθðξÞ�nf1þ σ½θðξÞ þ ðnþ 1Þξ dθ
dξ�g

f1 − 2σðnþ 1Þ½vðξ1Þξ1
þ λ

3
ξ21�g1=2

: ð92Þ

The condition for the turning points of the embedding
diagrams thus reads

θðξÞ þ ðnþ 1Þξ dθ
dξ

¼ −
1

σ
: ð93Þ

The embedding formula takes the form

�
dz
dξ

�
2

¼
�
1 − 2σðnþ 1Þ

�
vðξ1Þ
ξ1

þ λ

3
ξ21

���
1 − 2σðnþ 1Þ

�
vðξÞ
ξ

þ λ

3
ξ2
��

2σðnþ 1Þ½1þ σθðξÞ�2n

×

��
1þ σ

�
θðξÞ þ ðnþ 1Þξ dθ

dξ

���
vðξÞ
ξ

þ λ

3
ξ2
�
− ξ

dθ
dξ

�
1þ σθðξÞ þ σ

2
ðnþ 1Þξ dθ

dξ

��
: ð94Þ

This has to be solved numerically, together with the
condition on the limits of embeddability given in the form

�
1þ σ

�
θðξÞ þ ðnþ 1Þξ dθ

dξ

���
vðξÞ
ξ

þ λ

3
ξ2
�

− ξ
dθ
dξ

�
1þ σθðξÞ þ σ

2
ðnþ 1Þξ dθ

dξ

�
≥ 0: ð95Þ

VI. CONFIGURATIONS OF UNIFORM DENSITY

There is a special class of GRPs of the index n ¼ 0
where the structure equations can be integrated in terms of
elementary functions. We shall discuss these polytropes in
detail because they can give an intuitive insight into the role
of the cosmological constant and can serve as a test bed for
the general case of polytropes with n > 0.
The n ¼ 0 polytropes correspond to the special class of

the internal Schwarzschild–(anti-)de Sitter spacetimes [32]
where the distribution of density ρ is uniform although the
pressure grows monotonically from its zero value on the
surface of the configuration to a maximum value at its
center. Recall that in the configurations with ρ ¼ const it is
not necessary to use the unrealistic notion of an incom-
pressible fluid—one can consider fluids with pressure
growing as radius decreases, being “hand tailored” [14].
Assuming n ¼ 0, Eq. (29b) can be integrated to give

vðξÞ ¼ 1

3
ξ3; ð96Þ

while Eq. (29a) takes the form

½3−2σð1þλÞξ2�dθ
dξ

þð1−2λþ3σθÞð1þσθÞ¼ 0 ð97Þ

and can be integrated directly after separation of variables.
Using the boundary condition θð0Þ ¼ 1, we obtain

σθ ¼
1 − ð1−2λÞð1þσÞ

ð1−2λþ3σÞ½1−2
3
σð1þλÞξ2�1=2

3ð1þσÞ
ð1−2λþ3σÞ½1−2

3
σð1þλÞξ2�1=2 − 1

: ð98Þ

This solution determines the dependence of pressure on the
radial coordinate, since for n ¼ 0 there is θ ¼ pðrÞ=pc. The
dependence is given in units of the energy density since
σ ¼ pc=ρc. From the condition θðξ1Þ ¼ 0, we find the
radius of the configuration to be determined by

ξ21ðσ; λÞ ¼
6½1þ 2σ − λð2þ σÞ�

ð1 − 2λþ 3σÞ2 : ð99Þ

We illustrate behavior of the function ξ21ðσ; λÞ in Fig. 1.
Clearly, the parameters σ and λ have to be restricted by the
condition
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λ ≤
1þ 2σ

2þ σ
: ð100Þ

However, the n ¼ 0 polytropic configurations should
behave regularly for all allowed values of the relativistic
parameter σ > 0, but ξ21ðσ; λÞ always diverges for σ low
enough, if λ > 1=2. Therefore, it is natural to put the
restriction of

λ ≤
1

2
: ð101Þ

We can express the pressure profile in terms of r, R,
instead of ξ, ξ1 and σ, λ, obtaining thus the form of the
expression of the n ¼ 0 polytrope as being discussed in
Ref. [32]. Introducing a new parameter a, having dimen-
sion of length, by the relation

1

a2
¼ 8π

3
ðρc þ ρvacÞ; ð102Þ

we find the relation of R, σ, and λ to be given by

�
1 −

R2

a2

�
1=2

¼ ð1 − 2λÞð1þ σÞ
1 − 2λþ 3σ

: ð103Þ

The central pressure pc and the pressure profile pðrÞ can be
then expressed in the known form [32,139]

pc ¼ ρc
ð1 − 2λÞ½1 − ð1 − R2

a2Þ1=2�
3ð1 − R2

a2Þ1=2 − ð1 − 2λÞ ; ð104aÞ

pðrÞ ¼ ρc
ð1 − 2λÞ½ð1 − r2

a2Þ1=2 − ð1 − R2

a2Þ1=2�
3ð1 − R2

a2Þ1=2 − ð1 − 2λÞð1 − r2

a2Þ1=2
: ð104bÞ

The presented results for the n ¼ 0 polytropes are relevant
for both the positive and negative values of the cosmo-
logical parameter λ describing thus also effects of the
attractive cosmological constant when λ < 0.
The radial metric coefficient is given by the relation

e2ΨðrÞ ¼
�
1 −

r2

a2

�−1
; ð105Þ

and the total mass reads

M ¼ 1

3
Lσξ31 ¼

4π

3
ρcr3: ð106Þ

The temporal metric coefficient is determined by the
relations

eΦðrÞ ¼ ½1 − 2
3
σð1þ λÞξ2�1=2
1þ σθ

; ð107aÞ

eΦðrÞ ¼ 3ð1 − R2

a2Þ1=2 − ð1 − 2λÞð1 − r2

a2Þ1=2
2ð1þ λÞ : ð107bÞ

The special case of the attractive cosmological constant
corresponding to λ ¼ −1 has to be treated separately as
1=a2 ¼ 0. In such a case, Eq. (97) reduces to

dθ
ð1þ σθÞ2 ¼ −ξdξ; ð108Þ

which leads, after integration with the boundary condition
θð0Þ ¼ 1, to the formula

θ ¼ 1 − 1
2
ð1þ σÞξ2

1þ 1
2
ð1þ σÞξ2 : ð109Þ

The boundary of the configuration is at

ξ21 ¼
2

1þ σ
: ð110Þ

The central pressure and the pressure profile can be
expressed in terms of the radial coordinates r, R in the form

pc ¼
ρc

ð2R
3M − 1Þ ; ð111aÞ

pðrÞ ¼ pc
1 − r2

R2

1þ 1
2R
3M−1

r2

R2

: ð111bÞ

The metric coefficients have a special form, too. The radial
grr component corresponds to the flat t ¼ const sections

e2ΨðrÞ ¼ 1; ð112Þ

FIG. 1. Dependence of the dimensionless radius ξ1 (99) for
configurations of uniform density on relativity parameter σ for
cosmological parameter λ¼0;10−2;5×10−2;10−1, respectively.
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while the temporal gtt component takes the form [32]

eΦðrÞ ¼ 1þ 3M
2R

�
r2

R2
− 1

�
: ð113Þ

Properties of the n ¼ 0 GRPs were discussed in
Refs. [32,122]. In the following, we concentrate on the
existence of these polytropes in dependence on the repul-
sive cosmological constant.

A. Existence conditions of the n= 0 polytropes
and their compactness

The reality conditions on the general solution, given by
Eqs. (104), (105), and (107b), must guarantee that the
pressure is positive and nondivergent, and the metric
coefficients have to be regular at r ≤ R. Therefore, two
conditions have to be satisfied:

1 − 2λ > 0 ð114Þ

and

3

�
1 −

R2

a2

�
1=2

− ð1 − 2λÞ > 0: ð115Þ

Considering the limiting case of λ ¼ 1=2, we find

θðξÞ ¼ ð1 − σξ2Þ1=2
1þ σ þ σð1 − σξÞ1=2 : ð116Þ

The boundary of such a polytrope configuration is at

ξ21 ¼
1

σ
; ð117Þ

and we can show that

R2 ¼ a2: ð118Þ

Therefore, the metric coefficients are singular because
there is

e−2ΨðRÞ ¼ e2ΦðRÞ ¼ e2ΦðrÞ ¼ 1 −
R2

a2
: ð119Þ

For polytrope configurations of a given M and Λ > 0,
condition (114) gives an upper limit on admissible values of
the external radius R. Configurations with λ ∼ 1=2 can be
considered as nearly “geodetical” since the pressure gra-
dient almost vanishes on the surface, which is close to
the static radius of the external geometry. (For λ ¼ 1=2, the
surface of the static configuration has to be located at the
horizon of the external spacetime, with R ¼ 3rg=3; how-
ever, no static configuration can have its boundary at a
black-hole horizon, and such configurations are forbidden.)

The lower limit on the external radius of the n ¼ 0
polytropes is determined by the condition (115) that can be
transformed into the relations

R2

a2
<

4ð1þ λÞð2 − λÞ
9

ð120Þ

and

R > 2M
9

4ð2 − λÞ : ð121Þ

For λ ¼ 0, we obtain the well-known limit R > ð9=4Þ
ðGM=c2Þ. The restrictions on physically realistic n ¼ 0
polytropes can also be transformed into a form containing
dimensionless quantities x≡ R=M, y≡ ΛM2=3 (see
Refs [32,122]).
Compactness of the polytropic spheres of the uniform

density is given by the relation

Cðσ; λÞ ¼ 2σ½1 − 2λþ σð2 − λÞ�
ð1 − 2λþ 3σÞ2 ð122Þ

that is reduced for λ ¼ 0 to the formula

CðσÞ ¼ 2σð1þ 2σÞ
ð1þ 3σÞ2 : ð123Þ

The extremely compact configurations with C > 1=3 can
exist, if the central parameter satisfies the relation

σ2 ≥ σ2ext ≡ 2

3
λ: ð124Þ

Note that extremely compact spherical configurations have
their surface located under the photon circular orbit of the
external spacetime [140]. It can be shown [122] that in
extremely compact configurations (with R < 3M) a stable
circular null geodesic exists around which null geodesics
captured by the strong gravitational field are concentrated.
Neutrinos, moving along these bound null geodesics, can
influence cooling of extremely compact neutron stars. The
potential well of the captured geodesics becomes deeper
with the repulsive cosmological constant increasing, while
it gets flatter with the attractive cosmological constant
decreasing [137].

B. Gravitational binding of the n= 0 polytropes

It is instructive to give the gravitational energy of the
n ¼ 0 polytropes and their gravitational binding factor g.
The total energy takes the simple form

E ¼ M ¼ 4π

3
ρcR3: ð125Þ

The formula for the total proper energy reads
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E0 ¼ 4πρc

Z
R

0

�
1 −

r2

a2

�−1=2
r2dr; ð126Þ

after integration, we obtain

E0 ¼
3M
2

�
a
R

�
3
�
arcsin

�
R
a

�
−
R
a

�
1 −

R2

a2

�
1=2

�
; ð127Þ

where

R
a
¼ 2ð1þ λÞ1=2

1 − 2λþ 3σ
fσ½1þ 2σ − λð2þ σÞ�g1=2: ð128Þ

The gravitational potential energy can be given in the form

G ¼ Mc2g; ð129Þ

where the negative gravitational binding factor g ¼ G=E is
given in terms of the R=a ratio,

g ¼ 1 −
3

2

�
a
R

�
3
�
arcsin

�
R
a

�
−
R
a

�
1 −

R2

a2

�
1=2

�
: ð130Þ

It expresses the gravitational binding in a “pure” form as
there in no internal energy in “incompressible” configura-
tions. We can directly conclude that the relation of the
binding energy of gas Eb and the gravitational energy is
given by

Eb

G
¼ −1: ð131Þ

The gravitational potential energy of the n ¼ 0 GRP is
represented in Fig. 2. The role of the cosmological constant is
illustrated by the sequence of lines constructed for appro-
priately chosen values of the cosmological parameter λ.
In polytropes with n > 0, the binding energy Eb differs

from the gravitational binding energy ð−GÞ, as some of the
work of the gravitational field is converted into the kinetic
energy of microscopic motion in these polytropes. The role
of the cosmological parameter λ > 0 in the effect of
gravitational binding will be discussed in the next section.

VII. GRPS WITH THE COSMOLOGICAL
CONSTANT

We construct models of the GRPs with n > 0 and discuss
their dependence on the cosmological parameter λ. We
present the length and mass scales of the polytropes and
determine the existence restrictions put on the parameters
characterizing their structure. Then, we discuss the poly-
trope global characteristics as the dimensionless mass and
dimensionless radius, compactness, and gravitational and
binding energy of the polytrope configuration. Finally, we
study the radial profiles of the energy density, pressure, and
metric coefficients and illustrate the polytrope curvature by
embedding diagrams of the ordinary projected geometry
and the optical geometry.

A. Length scale and mass scale

The polytropic spheres are determined by the dimen-
sionless structure equations that are governed by three
parameters—the polytropic index n, the relativistic param-
eter σ, and the cosmological parameter λ—and by the
central density ρc governing, simultaneously with the
parameters n, σ, the dimensional length and mass scale
of the polytropic spheres. The dimensional length and mass
scales are given by the respective relations

L ¼ 3.27
½σðnþ 1Þ�1=2

ρ1=2c

ð1013 cmÞ; ð132aÞ

M ¼ 4.41
½σðnþ 1Þ�3=2

ρ1=2c

ð1041 gÞ; ð132bÞ

ρc has to be substituted in units of g=cm3. The polytropic
spheres with given mass and length scales are determined
by solutions of the structure equations that are governed by

FIG. 2. Dependence of the gravitational binding factor (130) for
configurations of uniform density on relativity parameter σ for
cosmological parameter λ ¼ 0; 10−2; 5 × 10−2; 10−1, respec-
tively. The “1” index emphasizes the energies are related to
the whole configuration. Top:Wide range of relativity parameter.
Bottom: Zoom of the shaded region in the top plot.
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the dimensionless radial coordinate ξ1ðn; σ; λÞ and the
related dimensionless mass parameter vðξ1Þðn; σ; λÞ.

B. Integration of the structure equations

The differential structure equations have to be solved
numerically for any polytropic index n > 0. For each fixed
value of n, we obtain a sequence of polytropic spheres
determined by the central density ρc, the relativistic
parameter σ, and the cosmological parameter λ. For the
observationally fixed value of the repulsive cosmological
constant, Λ ¼ 1.3 × 10−56 cm−2, and the related vacuum
energy density, ρvac, the central density of the polytrope, ρc,
governs the value of the cosmological parameter λ, and it is
not a free parameter in such a situation. The first (lowest)
solution ξ1 of the equation θðξÞ ¼ 0 determines the
extension of the polytropic spheres in terms of the
dimensionless radius ξ; their dimensional radius reads
R ¼ Lξ1. The dimensionless mass parameter is given by
vðξ1Þ ¼ v1, and the polytrope gravitational mass is then
given by M ¼ Mvðξ1Þ. The radial profiles of the energy
density, pressure, gravitational mass parameter, and the
metric coefficients are determined by the functions
ρðξ; n; σ; λÞ, pðξ; n; σ; λÞ, vðξ; n; σ; λÞ, gttðξ; n; σ; λÞ, and
grrðξ; n; σ; λÞ—note that the metric coefficients depend
on ξ also through the mass parameter vðξÞ. These functions
are given by Eqs. (38) and (39). In a similar way,
the embedding diagrams of the ordinary and optical
geometry are given by the functions zordðξ; n; σ; λÞ and
zoptðξg1=2tt ; n; σ; λÞ. It is also instructive to illustrate the
dependence of the other global characteristics of the

polytropic spheres on the basic parameters, i.e., the functions
of compactness Cðξ ¼ ξ1; n; σ; λÞ, the gravitational potential
energy Gðξ ¼ ξ1; n; σ; λÞ, and the binding energy of the
polytropic gas Ebðξ ¼ ξ1; n; σ; λÞ.

C. Limit on existence of the GRPs

We have found the role of the cosmological parameter λ
as being concentrated in putting strong limits on the
existence of polytropic spheres in dependence on both
the polytropic index n and the relativistic parameter σ. The
critical, limiting values of the cosmological parameter,
given by the function λcrit ¼ λcritðn; σÞ, have been deter-
mined by numerical calculations and are represented for
selected representative values of n in Fig. 3; the polytropes
are allowed at regions of the parameter space below the
critical curves. We cover the range of standard values of the
polytropic index, starting at the nonrelativistic fluid with
n ¼ 3=2 and finishing at n ¼ 3 for the ultrarelativistic
fluid, and we add both some values of n < 3=2, and some
values of n > 3 when a special character of the polytrope
properties occurs. Extension of the critical curves is
restricted by the value of the relativistic parameter σ
corresponding to the equality of the velocity of sound
and the velocity of light (so-called causality limit).
We can see that the character of the critical function

λcritðn; σÞ strongly depends on the value of the polytropic
index n. Generally, it increases with n decreasing. For
n < 3, the function λcritðn; σÞ slightly monotonically
decreases with σ increasing; it is limited by the value of
λcrit ¼ 10−7 even in the limit of σ → 1. In the special case of

FIG. 3. Dependence of the critical value of the cosmological parameter on the relativity parameter σ for the polytropic index taken
from 0.5 to 4.0 with step of 0.5. For a particular polytropic index, the polytropic configurations can only exist for parameter points ðσ; λÞ
located below the corresponding curve. For polytropic configurations with n ≤ 3.34, critical values of the relativistic parameter, σf,
exist, giving infinitely extended configurations [141]. For polytropes with n ¼ 3.5, one such critical point is relevant, while for
polytropes with n ¼ 4, two such points are relevant.
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n ¼ 3, it decreases from the starting point λcritðn ¼ 3;
σ ¼ 0Þ ¼ 3 × 10−3 down to λcritðn ¼ 3; σ ¼ 0.7Þ ¼ 10−7

and remains constant with increasing values of σ.
For n > 3, the function λcritðn; σÞ loses its monotonic

character, and there are forbidden polytropes for some
special values of the relativistic parameter σ in dependence
on the polytrope index, since such polytropes should have
infinite extension. For example, for n ¼ 3.5 the polytropes
are forbidden for one specific value of σf ¼ 0.314, while
for n ¼ 4, there are two specific forbidden values of

σf1 ¼ 0.1503, σf2 ¼ 0.338. A third forbidden configuration
with n ¼ 4 corresponds to σ breaking the causality limit
and reads σf3 ¼ 0.834. These forbidden configurations
occur for the general relativistic polytropic configurations
in the spacetimes with Λ ¼ 0 and were discussed for the
first time in Refs. [123].
Notice that in the region of σ > σf1 there is

λcritðn; σÞ < 10−10. On the other hand, for nonrelativistic
polytrope spheres with σ < 0.1, there is λcritðn; σÞ > 10−5

for all polytropic indexes n < 4. In such situations, we can

FIG. 4. Dependences of the extension parameter ξ1 for the characteristic values of the polytropic index n ∈ f1.0; 1.5; 2; 2.5; 3; 3.5; 4g
with σ varying up to the causal limit for λ ¼ 10−12, λ ¼ 10−9 (top); λ ¼ 10−6, λ ¼ 10−4 (middle); and λ ¼ 10−3, λ ¼ 10−2 (bottom).
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see that the polytropic spheres with very small central
density have their structure strongly influenced by the
repulsive cosmological constant.

VIII. GLOBAL GRP CHARACTERISTICS

A. Extension and mass

The basic global characteristics of the GRPs are given by
the dimensionless extension and dimensionless mass. We

thus give dependences of the polytrope extension parameter
ξ1 and the polytrope mass parameter v1 ¼ vðξ1Þ on the
parameters n, σ, and λ and discuss their properties.
We first illustrate dependences of the extension param-

eter ξ1 for the characteristic values of the polytropic index
n ¼ 1, 1.5, 2, 2.5, 3, 3.5, 4, with σ varying up to the
causal limit. The dependence of the dimensionless radius
of the polytropes on the cosmological constant parameter λ
is presented in Fig. 4 where we vary the cosmological

FIG. 5. Dependences of the mass parameter v1 ≡ vðξ1Þ for the characteristic values of the polytropic index n ∈
f1.0; 1.5; 2; 2.5; 3; 3.5; 4g with σ varying up to the causal limit for λ ¼ 10−12, λ ¼ 10−9 (top); λ ¼ 10−6, λ ¼ 10−4 (middle); and
λ ¼ 10−3, λ ¼ 10−2 (bottom).
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parameter for the characteristic values of λ ¼ 10−12, 10−9,
10−6, 10−4, 10−3, 10−2. The curves ξ1ðσ; n; λÞ are compared
to the curves ξ1ðσ; n; λ ¼ 0Þ—we can see that at the critical
points of σf the dimensionless parameter ξ1 diverges for
λ ¼ 0, indicating that the critical polytrope cannot be
limited and is not well defined. The validity restriction
of the curves ξ1ðσ; n; λÞ at the causal limit is depicted by the
shaded points. The black points depict the limit of validity
of the curves ξ1ðσ; n; λÞ meaning that the polytrope radius
cannot exceed the static radius of the external spacetime.

Then, we illustrate dependences of the mass parameter
v1 ¼ vðξ1Þ for the same characteristic values of the
polytropic index n ¼ 1, 1.5, 2, 2.5, 3, 3.5, 4, with σ
varying up to the causal limit. The dependence of the
dimensionless mass parameter of the polytropes on the
cosmological constant parameter λ is presented in Fig. 5,
where we again vary the parameter for the characteristic
values of λ ¼ 10−12, 10−9, 10−6, 10−4, 10−3, 10−2.
In Fig. 5, the curves v1ðσ; n; λÞ are compared to the
curves v1ðσ; n; λ ¼ 0Þ. At the critical points of σf , the

FIG. 6. Dependences of the compactness C1 for the characteristic values of the polytropic index n ∈ f1.0; 1.5; 2; 2.5; 3; 3.5; 4g with σ
varying up to the causal limit for λ ¼ 10−12, λ ¼ 10−9 (top); λ ¼ 10−6, λ ¼ 10−4 (middle); and λ ¼ 10−3, λ ¼ 10−2 (bottom).
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dimensionless parameter v1 also diverges for λ ¼ 0 and
even faster than for the dimensionless radius, indicating
again that the critical polytrope has to be unlimited and is
not well defined for λ ¼ 0. The causal limit of validity of
the curves v1ðσ; n; λÞ is depicted by the shaded points.

1. Extension parameter

For λ ¼ 0, the polytropes with σ ≪ 1 have the dimen-
sionless radius ξ1 ∼ 1, and it slightly increases with
increasing n. With increasing σ, the radius ξ1 slightly
decreases for n ¼ 3=2, it remains almost constant for
n ¼ 2, and it has a minimum near σ ∼ 0.1 and then
increases up to values of ξ1 ¼ 10 for n ¼ 2.5 and
ξ1 ∼ 200 for n ¼ 3. For n ¼ 3.5, ξ1 diverges at
σf ¼ 0.314, and then it decreases to ξ1 ∼ 103 at the causal
limit. For n ¼ 4, the radius ξ1 diverges at the two critical
points; between the critical points, there is ξ1 > 104; and at
the causal limit, there is ξ1 ∼ 3 × 107.
The cosmological constant has a crucial influence on the

polytropic configurations, as it removes the singular
behavior of ξ1—for any value of λ > 0, the polytropes
with n ¼ 3.5 or n ¼ 4 are forbidden around the critical
values of σf .

For λ ¼ 10−12, the restriction implies ξ1 < 104 for all
values of polytrope index n. For n ¼ 4, the branch of ξ1ðσÞ
above the first critical point is forbidden, while for n ¼ 3.5,
the polytropes can exist both above and below the critical
values of σf . For n ≤ 3, the influence of λ > 0 in the
functions ξ1ðσ; n; λÞ is negligible—see the top-left plot
in Fig. 4.
A similar situation occurs for λ ¼ 10−9, but for n > 3,

the polytropes exist only under the critical value of the first
σf . The functions ξ1ðσ; n; λÞ are smaller than 103, and as in
the previous case, they follow closely those corresponding
to λ ¼ 0 (see the top-right plot in Fig. 4).
For λ ¼ 10−6, the functions ξ1ðσ; n; λÞ with n ¼ 3, 3.5, 4

have their terminal point at the same value of ξ1 ∼ 102 with
the terminal value of σ increasing with decreasing n; now,
the influence of λ > 0 slightly increases the ξ1ðσ; n; λÞ
functions above their counterparts with λ ¼ 0 (see the
middle-left plot in Fig. 4).
A similar situation occurs for λ ¼ 10−4, but in this case,

ξ1ðσ; nÞ < 30 (middle-right plot in Fig. 4).
For λ ¼ 10−3, the n ¼ 4 polytropes are fully suppressed,

the n ¼ 3.5 polytropes are allowed at vicinity of σ ¼ 0
only, while for n ¼ 3 (n ¼ 2.5), the polytropes are limited at

FIG. 7. Extended dependences of the compactness C1 for the characteristic values of the polytropic index n ∈
f1.0; 1.5; 2; 2.5; 3; 3.5; 4g with σ varying up to the causal limit for λ ¼ 10−6, λ ¼ 10−4 (top) and λ ¼ 10−3, λ ¼ 10−2 (bottom).
For n ≤ 3, the compactness C1 σ profiles are illustrated for the whole existence ranges, extending thus the detailed picture given
in Fig. 6.
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σ ∼ 0.15 (σ ∼ 0.45), and the functions ξ1ðσ; n; λÞ < 10
demonstrating slight influence of λ > 0 for σ near the
maximal allowed values; for the polytropes with n ¼ 2,
1.5, 1, the influence of the cosmological constant is
negligible—see the bottom-left plot in Fig. 4.
For λ ¼ 10−2, only the polytropes with n ≤ 2 are

allowed. The limiting value of the relativistic parameter
is shifted down to σ ∼ 0.35 in the case of n ¼ 2 polytropes,
while it is not influenced by the cosmological constant
for polytropes n ¼ 1.5, 1; generally, the functions
ξ1ðσ; n; λÞ < 8, and their σ profile is influenced by the

cosmological constant only for n ¼ 2—see the bottom-
right plot in Fig. 4.

2. Mass parameter

For λ ¼ 0, polytropes with σ ≪ 1 have the dimension-
less mass parameter v1 ¼ vðξ1Þ ∼ 1, decreasing from v1 ∼
2.75 for n ¼ 1.5 down to v1 ∼ 2 for n ¼ 4. For n ¼ 1.5,
2.2.5, the function v1ðσ; nÞ decreases with increasing σ,
down to values v1 ∼ 0.25 near the causal limit. For n ¼ 3,
v1ðσ; nÞ has a minimum at σ ∼ 0.45 and then slightly
increases with σ increasing to the causality limit.

FIG. 8. Dependences of the gravitational energy G1 for the characteristic values of the polytropic index n ∈ f1.0; 1.5; 2; 2.5; 3; 3.5; 4g
with σ varying up to the causal limit for λ ¼ 10−12, λ ¼ 10−9 (top); λ ¼ 10−6, λ ¼ 10−4 (middle); and λ ¼ 10−3, λ ¼ 10−2

(bottom).
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For n ¼ 3.5, 4, the mass parameter of the polytropes
demonstrates again divergence at the critical points σf .
At the causal limits, the mass parameter takes the value of
v1 ∼ 2 (v1 ∼ 30) for n ¼ 3.5 (n ¼ 4).
Similarly to the case of the extension parameter ξ1, the

role of the cosmological constant represented by the
parameter λ in the mass parameter function v1ðσ; n; λÞ is
given by the cutoffs governed by the existence limits on the
GRPs determined in Fig. 3. The cutoffs are illustrated in
Fig. 5 for the same values of the parameter λ as in the case
of the extension parameter ξ1. Now, we can see that in the
regions of validity the functions v1ðσ; n; λÞ almost coincide
with the functions v1ðσ; n; λ ¼ 0Þ. Notice that, even for
λ ¼ 10−12, the mass parameter v1ðσ; nÞ < 3 for all con-
sidered values of n and in the whole allowed region of σ.
Large values of the mass parameter v1ðσ; n; λÞ, say
v1 > 104, can be obtained for GRPs with n ¼ 3.5, 4 in
the vicinity of the critical values of σf, if λ < 10−17.

3. Compactness

Compactness is defined as the dimensionless ratio of the
mass and extension of the polytrope; i.e., it is governed by
the ratio v1=ξ1. As we consider here the global compactness
parameter, related to the complete polytropic configura-
tions given by the parameters ξ1 and v1, we use the notation
C1 ¼ Cðξ1Þ. Later, we study also the radial profiles of the
compactness CðξÞ, defined for ξ ∈ ð0; ξ1Þ with related vðξÞ.
The influence of the cosmological constant on the

compactness function C1ðn; σ; λÞ of the GRPs is repre-
sented in Figs. 6 and 7 for the same values of the polytrope
index n and the dimensionless parameter λ as in the case of
ξ1 and v1.
All the functions are compared to the compactness

function C1ðn; σ; λ ¼ 0Þ for the same values of the poly-
tropic index n. There is Cðn; σ ¼ 0; λÞ ¼ 0 for all values of
the cosmological parameter λ allowing the existence of the

static polytropes. In the case of λ ¼ 0, we can see that for
n ¼ 1.5 the compactness parameter increases with increas-
ing relativistic parameter σ reaching the largest value of
C1 ∼ 0.235 at the causality limit. For n ¼ 2, 2.5, 3, the
compactness parameter C1 reaches a maximal value in the
middle of the interval of allowed values of σ and then
decreases to a minimum at the causality limit of σ. The σ
profile of the compactness parameter strongly decreases
with increasing polytropic index n—for n ¼ 2, there is
C1 < 0.175, while for n ¼ 3, there is C1 < 0.1. For the
polytropes with n ¼ 3.5, 4, demonstrating the divergent
behavior of the extension parameter ξ1 at the critical values
of σf , the σ profile of the compactness parameter contains
zero points at the critical points σf , reaching a maximum
between σ ¼ 0 and σf points. The compactness parameter
C1 significantly decreases with increasing n. For n ¼ 3.5,
there is C1 < 0.04, while C1 < 0.17 for n ¼ 4 polytropes.
Notice that in the case of the n ¼ 4 polytropes there is
C1 < 10−4 for σ > σf2—polytropes with such extremely
low compactness parameter C1 occur, as their extension
parameter ξ1 has to be extremely high.
In the case of the compactness parameter function

C1ðn; σ; λÞ, the role of the repulsive cosmological constant
is again concentrated in the cutoff of the polytropes allowed
for fixed parameters n and σ, when strong restrictions
appear with n increasing. Further, we can observe in Figs. 6
and 7 significant modifications of the σ profile in addition
to the limits implied by the restriction on the existence of
the polytropic equilibrium configurations. The modifica-
tions of the C1ðn; σ; λÞ σ profiles become substantial for
λ ≥ 10−6, and the influence of the cosmological constant
always decreases compactness of the polytrope while the
other parameters are kept fixed.

B. Energy of polytropes

We can appropriately describe the GRPs by global
characteristics reflecting the result of interplay of the
gravitational forces and the forces governing properties
of matter constituting the polytrope. We consider now the
representative global characteristics, gravitational energy,
and binding energy of the complete equilibrium polytropic
configurations characterized by parameters ξ1 and v1. We
thus denote them as G1 ¼ Gðξ1Þ for the gravitational energy
and B1 ¼ Bðξ1Þ for the binding energy. Later, we shall
consider also their radial profiles GðξÞ and BðξÞ.

1. Gravitational energy

The dimensionless gravitational energy G1 represents a
global characteristic of binding effects of gravity in
equilibrium and has to be negative for any polytrope.
The role of the cosmological constant in the behavior of the
gravitational energy of the polytropes is represented in
Fig. 8 for the same values of the polytrope index n and the
dimensionless parameter λ as in the case of quantities ξ1

FIG. 9. Dependences of the relative gravitational energy G1=v1
for the characteristic values of the polytropic index n ∈
f1.0; 1.5; 2; 2.5; 3; 3.5; 4g with σ varying up to the causal limit
for λ ¼ 0.

STUCHLÍK, HLEDÍK, and NOVOTNÝ PHYSICAL REVIEW D 94, 103513 (2016)

103513-20



and v1. The gravitational energy function G1ðn; σ; λÞ is
always compared to the function G1ðn; σ; λ ¼ 0Þ. In the
case of λ ¼ 0, there is G1ðn; σ ¼ 0Þ ¼ 0, and the gravita-
tional energy of polytropes with n ¼ 1.5, 2, 2.5 reaches a
minimal value in the middle of the interval of allowed
values of the relativistic parameter σ and then increases to a
maximum at the causality limit on the value of σ. In the case
of n ¼ 3 polytropes, the σ profile of the gravitational
energy has a maximum following the minimum. At the
minimum of the σ profile, the gravitational energy signifi-
cantly decreases with decreasing polytropic index n

(gravitational binding increases), demonstrating a shift
from the value of G1 ∼ −0.17 in the case n ¼ 3 to the
value of G1 ∼ −0.21 in the case n ¼ 1.5. For the polytropes
with n ¼ 3.5, 4, having the divergence of ξ1 at the critical
values of σf , the σ profile of the gravitational energy is
continuous at the critical points, but its derivative has a
jump there. In the region of large values of σ, the
gravitational energy demonstrates a strong decrease, and
in the case of the n ¼ 4 polytropes, G1 ∼ −0.47 at the
causality limit, demonstrating thus strong gravitational
binding.

FIG. 10. Dependences of the relative gravitational energy G1=v1 for the characteristic values of the polytropic index n ∈
f1.0; 1.5; 2; 2.5; 3; 3.5; 4g with σ varying up to the causal limit for λ ¼ 10−12, λ ¼ 10−9 (top); λ ¼ 10−6, λ ¼ 10−4 (middle); and
λ ¼ 10−3, λ ¼ 10−2 (bottom).
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For G1ðn; σ; λÞ, Fig. 8 demonstrates that the role of the
cosmological constant parameter is again reflected mainly
by the cutoff in allowed values of the parameter σ for
polytropes with fixed parameter n—strong restrictions
occur with n increasing, in similarity with the previously
considered cases. We can also observe a slight modification
of the σ profile in addition to the limits implied by the
restriction on the existence of the polytropic equilibrium
configurations. However, modifications of the G1ðn; σ; λÞ σ
profiles large enough to be recognized occur only for
λ ≥ 10−3—increasing λ always decreases the gravitational
energy of the polytrope, while other parameters are fixed.

For completeness, we give also the σ profiles for the
relative gravitational energy defined as G1=v1ðn; σ; λÞ;
i.e., the gravitational energy is related to the dimension-
less gravitational mass of the polytrope. There is
G=v1ðn; σ ¼ 0Þ ¼ 0. For λ ¼ 0, the relative gravitational
energy G1=v1ðn; σ; λ ¼ 0Þ is illustrated in Fig. 9. We can
see that the character of the σ profiles for polytropes with
n ¼ 1, 1.5, 2, 2.5, 3 is the same as for the gravitational
energy, but its magnitude is larger than for the gravita-
tional energy. On the other hand, a substantial change
occurs in the G1=v1 σ profiles of the n ¼ 3.5, 4 polytropes,
as a jump to a zero point has to occur at the critical points

FIG. 11. Dependences of the binding energy B1 for the characteristic values of the polytropic index n ∈ f1.0; 1.5; 2; 2.5; 3; 3.5; 4g
with σ varying up to the causal limit for λ ¼ 10−12, λ ¼ 10−9 (top); λ ¼ 10−6, λ ¼ 10−4 (middle); and λ ¼ 10−3, λ ¼ 10−2 (bottom).
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of relativistic parameter σf due to the behavior of v1, and
the profiles of the n ¼ 3.5, 4 polytropes are located above
the profiles of polytropes with lower n at the region of
large values of σ, contrary to the case of gravitational
energy.
The influence of the cosmological constant on the σ

profiles of the relative gravitational energy G1=v1ðn; σ; λÞ is
illustrated in Fig. 10. We can see that for polytropes with
fixed parameter n the influence is represented mainly by the
cutoff at the allowed values of the parameter σ, while the

modifications of the profiles due to the nonzero λ term are
very small, and they decrease the global parameter G1=v1 of
the GRPs.

2. Binding energy

The dimensionless binding energy B1 represents the
combination of the binding effects of gravity and the
internal energy of the polytrope. It can be thus positive
or negative, according to domination of negative gravita-
tional or positive internal energy.

FIG. 12. Dependences of the relative binding energy B1=v1 for the characteristic values of the polytropic index n ∈
f1.0; 1.5; 2; 2.5; 3; 3.5; 4g with σ varying up to the causal limit for λ ¼ 10−12, λ ¼ 10−9 (top); λ ¼ 10−6, λ ¼ 10−4 (middle);
and λ ¼ 10−3, λ ¼ 10−2 (bottom).

GENERAL RELATIVISTIC POLYTROPES WITH A … PHYSICAL REVIEW D 94, 103513 (2016)

103513-23



The role of the cosmological constant in the behavior of
the binding energy of the polytropes is represented in
Fig. 11 for the same values of the polytrope index n and the
dimensionless parameter λ as in the case of quantities ξ1
and v1. The binding energy function B1ðn; σ; λÞ is always
compared to the function B1ðn; σ; λ ¼ 0Þ. In the case of
λ ¼ 0, there is B1ðn; σ ¼ 0Þ ¼ 0. For each of the n ¼ 1,
1.5, 2, 2.5 polytropes, the binding energy σ profile reaches
a maximum at some σ < 0.1 and then decreases to a
minimum at the causality limit of the relativistic parameter
σ. In the case of n ¼ 1, 1.5 polytropes, the σ profile gives
positive a dimensionless binding energy at the whole
allowed range of σ. For the n ¼ 2, 2.5 polytropes, there
is a zero point of the binding energy σ profile, and behind
this point, the binding energy is negative. On the other
hand, for the polytropes with n ¼ 3, 3.5, 4, the binding
energy is negative for all the allowed values of σ, and the
gravitational energy maintains the internal energy of the
configuration. For the polytropes with n ¼ 3.5, 4, having
divergence of ξ1 at the critical values of σf , the σ profiles of
the binding energy are continuous at the critical points,
but their derivative has a jump there. In the region of
large values of σ, the binding energy decreases in the case

of the n ¼ 4 polytropes to the value B1 ∼ −0.27 at the
causality limit.
The influence of the cosmological constant parameter λ

on the binding energy function B1ðn; σ; λÞ, demonstrated in
Fig. 11, is concentrated to the cutoff in allowed values of
the parameter σ for polytropes with fixed parameter n. We
can also observe slight modifications of the σ profile of the
binding energy function B1ðn; σ; λÞ, but modifications of
the σ profiles that are large enough to be recognizable occur
only for λ ≥ 10−3—increasing the parameter λ always
increases the binding energy of the polytrope, if its other
parameters are fixed.
For completeness, we present in Fig. 12 also the σ

profiles of the relative binding energy related to the
whole polytrope that is defined by B1=v1ðn; σ; λÞ; again,
the binding energy is related to the dimensionless gravi-
tational mass of the polytrope. For λ ¼ 0, there is
B1=v1ðn; σ ¼ 0Þ ¼ 0. We can see that the character of
the σ profiles of B1=v1 for the polytropes with n ¼ 1, 1.5,
2, 2.5 is the same as for the binding energy, but their
magnitude is larger since the gravitational mass parameter
v1 < 1. For the n ¼ 3 polytropes, the σ profiles of the
relative binding energy function B1=v1 have a clear

FIG. 13. Profile plots for polytropic index n ¼ 0.5. Left column: Mass, density, pressure, and metric coefficients. Middle column:
Gravitational, binding, and kinetic energy. Right column: Relative gravitational, binding, kinetic energy, and compactness.
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minimum, while for the n ¼ 3.5, 4 polytropes, they
demonstrate jump to the zero point at the critical points
of σf due to the behavior of mass parameter v1. For the
n ¼ 4 polytropes, the relative binding energy is extremely
small for σ > σf2.
The influence of the cosmological constant parameter λ

on the σ profiles of the relative binding energy function
B1=v1ðn; σ; λÞ is illustrated in Fig. 12. Again, there is the
cutoff in the allowed values of the parameter σ for
polytropes with fixed parameter n, and very small mod-
ifications of the σ profiles relative to those with λ ¼ 0
occur. They slightly grow with increasing λ, leading to a
small increase of the relative binding energy B1=v1.

IX. RADIAL PROFILES OF THE GRPS

Full understanding of the GRPs can be obtained by
studying in detail the character of their internal spacetime
structure represented by the metric coefficients and the
distribution of the physical quantities in their interior,
namely, the energy density; pressure; gravitational mass;
and profiles of the compactness, gravitational, binding, and
kinetic energy. The gravitational phenomena are properly
characterized also by the embedding diagrams of the
ordinary and the optical geometry of the central planes
of the polytropes. In the spherically symmetric spacetimes,
we have thus to find the radial profiles of the metric
coefficients and the physical quantities mentioned above.

A. Construction of the profiles

We illustrate the detailed behavior of the polytropic
spheres in dependence on the parameters n, σ, and λ,
demonstrating in appropriately selected cases the radial
profiles of the energy density, pressure, gravitational mass,
and metric coefficients. These are completed by the
embedding diagrams of the ordinary and optical geometry;
by the radial profiles of the gravitational energy, binding
energy, and the kinetic energy; and by the corresponding
radial profiles of these energies related to the dimensionless
mass parameter v1 of the polytropes and the radial profiles
of the compactness parameter. The results of the numerical
calculations of the radial profiles are presented in series of
figures. For fixed values of the parameters n and σ, the
radial profiles are constructed for λ ¼ 0 that are compared
to radial profiles constructed for the appropriately chosen
value of the cosmological parameter λ enabling clear
demonstration of the role of the cosmological constant—
naturally, for given values of the polytropic index n and the
relativistic parameter σ, we choose the value of the
cosmological parameter λ close to the critical cosmological
parameter limiting the polytropes, λcritðn; σÞ, guaranteeing
a clear illustration of the influence of the cosmological
constant.
We construct the radial profiles in the case of four

characteristic values of the polytropic index n, restricting
thus the wide selection of the polytropic indexes used in
constructing the global characteristics of the polytropes.

FIG. 14. Embedding diagrams for polytropic index n ¼ 0.5.
Left column: Ordinary geometry. Right column: Optical
geometry.

FIG. 15. Embedding diagrams for polytropic index n ¼ 1.5.
Left column: Ordinary geometry. Right column: Optical
geometry.
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We choose the most relevant polytropic indexes n ¼ 1.5, 3
and the indexes n ¼ 0.5, 3.5, enabling us to give a clear
illustration of all the possible cases of the behavior of the
GRPs. Note that the case of the n ¼ 1 polytropes is similar
to n ¼ 0.5 polytropes, and the polytropes n ¼ 2, 2.5
represent the transition of the n ¼ 1.5 polytropes to the
relativistic n ¼ 3 polytropes. The n ¼ 4 polytropes are
similar to the case of n ¼ 3.5 polytropes, but they are
more extreme in the vicinity of the critical points of the
relativistic parameter, σf . The values of the parameter σ are
selected from the whole allowed interval, up to the critical
value determined by the causality limit. For all of the
considered polytropic indexes n, we choose a very small
relativistic parameter representing the nonrelativistic limit
of the polytropes, σ ¼ 10−3, and the largest one represent-
ing the causal limit. We also select some intermediate value
of σ in order to represent the characteristic intermediate
polytropic configurations. We use one such σ for n < 3 but
more such intermediate values of σ for n ¼ 3 and n ¼ 3.5
polytropes. For each value of the polytropic index n, we
construct four sequences of radial profiles related to (a) the
metric coefficients −gtt, grr, energy density ρ=ρc, pressure

p=pc, and mass parameter v; (b) gravitational energy eg,
binding energy eb, and kinetic energy ek; (c) relative
gravitational energy eg=v, relative binding energy eb=v,
relative kinetic energy ek=v, and compactness C; and
(d) embedding diagrams of the ordinary space zord and
the optical space zopt.
All the radial profiles and the embedding diagrams are

given for the polytropes with n ¼ 0.5 in Figs. 13 and 14,
respectively. The polytrope n ¼ 1.5 case is reflected by
Figs. 16 and 15, respectively. The case of n ¼ 3 polytropes
is illustrated in Figs. 18 and 17, respectively. The case of
the n ¼ 3.5 polytropes is represented in Figs. 19 and 20,
respectively, where the profiles are given for the parameter
σ chosen on both sides of the critical value of σf .

B. Properties of the profiles

The dimensionless extension parameter ξ1 increases
with increasing polytropic index n and decreases with
increasing relativistic parameter σ, while the mass param-
eter v1 ¼ vðξ1Þ decreases with increasing polytropic index
n and increasing parameter σ. Notice that in the polytropes

FIG. 16. Profile plots for polytropic index n ¼ 1.5. Left column: Mass, density, pressure, and metric coefficients. Middle column:
Gravitational, binding, and kinetic energy. Right column: Relative gravitational, binding, kinetic energy, and compactness.
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with large values of ξ1 the density (and pressure) radial
profiles are strongly decreasing near the origin ξ ¼ 0,
reaching values ∼0 at ξ ∼ 2 and decreasing exponentially
slowly while approaching ξ1. Similar behavior can be
observed in such polytropes also for the mass parameter
vðξÞ that is nearly equal to its final value v1 starting from
ξ ∼ 2. We can see that for the nonrelativistic or slightly
relativistic polytropic configurations (having σ < 0.2) the

dimensionless parameters determining the polytropic
sphere, ξ1 and v1, are of the order of 1. For n ≤ 3
polytropes with the relativistic parameter increasing, the
mass parameter v1 takes values smaller than 1, while the
extension parameter ξ1 increases substantially, exceeding
1, even by orders, for large values of the relativistic
parameter, comparable to the value of causality limit. A
special behavior is demonstrated by polytropes having
high values of the polytropic index, e.g., n ¼ 3.5, espe-
cially for values of σ close to the critical values of σf . Such
configurations can have extremely large extension param-
eter ξ1 and mass parameter v1 > 1 even for large values of
the relativistic parameter, σ > σf . Recall that at the critical
values of the relativistic parameter, σf , static equilibrium
polytropic configurations are not well defined for λ ¼ 0,
while any nonzero value of the cosmological parameter
cuts out the polytropic configurations with σ ∼ σf—see
Fig. 3.
As can be intuitively expected, the metric coefficients are

nearly constant, grr ∼ 1 and −gtt ∼ 1, for very small values
of the relativistic parameter, σ < 0.01, being slightly
dependent on the polytropic index n; such spacetimes
are nearly flat, demonstrating clearly that the relativistic
parameter σ governs the intensity of the general relativistic
effects in the polytropes. For σ > 0.1, the general relativ-
istic effects described by the metric coefficients grr and gtt
become significant as the metric coefficients significantly
vary inside the polytrope. Outside the polytropes with
λ ∼ λcrit, the gravitational field varies strongly for small
values of the polytropic index n and large enough param-
eter σ > 0.1, as the polytropes are compact enough while
having their surface located near the static radius. For such
polytropes, also, the radial profiles are strongly influenced
by the cosmic repulsion (parameter λ), as demonstrated in
Figs. 13–20. With the increasing polytropic index, the
polytropes with λ ∼ λcrit demonstrate suppression of the
role of the cosmic repulsion in the character of the radial
profiles. This suppression is evident especially in the case
of the n ¼ 3.5 polytropes with σ > σf having large exten-
sion parameter ξ1 and v1 > 1.
The magnitude of the gravitational binding energy is

positive everywhere in the polytrope, similarly to the
kinetic energy of the polytrope. The binding energy is
negative in the central parts of the polytrope and becomes
positive in the outer region of the polytrope for the whole
allowed interval of σ, if n ¼ 0.5, 1.5. However, such a
behavior occurs in the polytropes with n ¼ 3 only for
appropriately low values of σ—the binding energy is
negative at all radii of such polytropes for a large enough
relativistic parameter. The critical value of σ for altering the
mixed to fully negative radial profile of the binding energy
strongly decreases with increasing n, being ∼10−2 for
n ¼ 3. Of course, the same properties are valid for the
gravitational, kinetic, and binding energy related to the
dimensionless gravitational mass v of the polytropes.

FIG. 17. Embedding diagrams for polytropic index n ¼ 3.0.
Left column: Ordinary geometry. Right column: Optical geom-
etry. The S-shaped part in the third row plot is zoomed in the
fourth row. The S-shaped part in the fifth row right plot is zoomed
in the bottom row.
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The embedding diagrams of the ordinary projected space
give an illustration of the curvature of the space inside the
polytrope. We can clearly see that the curvature of the
ordinary space increases slightly with increasing polytropic
index n, but it increases very strongly with the relativistic
parameter σ increasing while n is fixed. The embedding
diagrams of the optical space can be extremely useful for
understanding the properties of the polytropes related to the
possibility of the existence of extremely curved regions
containing trapped null geodesics. The existence of such
regions is indicated by the radial profile of the optical space
demonstrating two turning points that could occur even
deeply inside the polytrope, although no effect of this kind
has to be related to the external characteristics of the
polytrope, determined by its dimensionless radius ξ1

and dimensionless mass v1. Clearly, such extremely curved
regions can occur only in the highly relativistic spacetimes
with sufficiently high values of the relativistic parameter σ
related to the polytropes with high values of the polytropic
index, n ≥ 2. For such GRPs with extremely curved
regions, the global compactness factor does not demon-
strate the extremal compactness since such GRPs have
largely extended low-density regions near their surfaces.
Technically, this means that ξ1 ≫ 1 and vðξ1Þ ∼ 1 so that
the global compactness drops down to C ≪ 1=3.
Concerning the effects of the cosmological constant,

they can be clearly important only in the extremely low-
density polytropic configurations, having very small central
density and high enough cosmological parameter λ. We can
state that, quite generally, the influence of the cosmological

FIG. 18. Profile plots for polytropic index n ¼ 3.0. Left column: Mass, density, pressure, and metric coefficients. Middle column:
Gravitational, binding, and kinetic energy. Right column: Relative gravitational, binding, kinetic energy, and compactness.
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FIG. 19. Profile plots for polytropic index n ¼ 3.5. Left column: Mass, density, pressure, and metric coefficients. Middle column:
Gravitational, binding, and kinetic energy. Right column: Relative gravitational, binding, kinetic energy, and compactness.
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constant always increases the values of the extension and
mass parameters of the polytrope, its metric coefficients, or
the magnitude of the gravitational energy. The influence of
the cosmic repulsion on the structure of polytropic con-
figurations with the index n ≤ 3 can be relevant for
relatively large values of λ > 10−7 when some observable
effects could be expected, especially in the low-density
polytrope configurations; we have convinced ourselves that
the influence of the cosmological parameter is negligible
for λ < 10−7. Such GRPs could be relevant and applicable
for very massive and very extended objects with very low
density. The influence of the cosmological constant on the
extension, mass, and the radial profiles can be very large for
the polytropes with low values of the polytropic index,
especially for n ¼ 0.5. On the other hand, for the poly-
tropes with n ¼ 3, 3.5, the influence of the cosmological
constant is strong in the case of their extension, but it is
small in the case of the mass parameter and the radial
profiles of all quantities for polytropes with very small
values of σ, and it is even negligible for σ > 0.1.
It is quite natural to consider the possibility to model

dark matter halos as polytropic spheres with n ¼ 0.5 or
n ¼ 1.5 and test the role of the repulsive cosmological
constant in situations when λ ∼ λcrit. The large enough
cosmological parameter significantly restricts the poly-
tropes in dependence on the relativistic parameter σ. In
the case of the polytropes with index n ¼ 3, 3.5, the
situation is more complex, as these polytropes are influ-
enced in their extension by any λ > 0 in the vicinity of the
critical values of the relativistic parameter σf. Moreover, for
values of λ large enough, the existence of the polytropes is
forbidden—the n ¼ 4 polytropes cannot exist for λ > 10−3.
Further, we can conclude that the cosmological constant is
irrelevant for very dense polytropes with high central
densities and extremely small cosmological parameters,
except the effect of restricting the extension of the poly-
tropes with the relativistic parameter σ ∼ σf.

X. POLYTROPE RADIUS MODIFIED BY THE
COSMIC REPULSION

To illustrate clearly the role of the cosmological constant
(vacuum energy) in the character of the GRPs, it is
instructive to relate the extension of the polytropic spheres
to the so-called static radius of their external spacetime
[15]. The static radius is determined by the formula [31,95]

rs ¼
�
3rg
2Λ

�
1=3

: ð133Þ

At the static radius, the gravitational attraction of the central
mass source (i.e., the galaxy and its halo) is just balanced
by the cosmic repulsion. The static radius defines the region
of gravitational binding [31], and it should be stressed that
the region of strong cosmological-constant repulsion
effects starts behind the static radius where the cosmic

FIG. 20. Embedding diagrams for polytropic index n ¼ 3.5.
Left column: Ordinary geometry. Right column: Optical geom-
etry. The S-shaped parts in fifth and seventh rows are repeated in
zoomed form in sixth and eighth rows, respectively.
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repulsive acceleration maintains the gravitational attraction
and the cosmic expansion occurs [29,95,142,143]. Using
the quantities characterizing the spherical polytropes, we
can express the static radius of the external spacetime of the
polytropes in the form

rs ¼
3vðξ1Þ
2λ

1=3
�
σðnþ 1Þc2
4πGρc

�
1=2

¼ L
3vðξ1Þ
2λ

1=3
: ð134Þ

Then, we can introduce a dimensionless “cosmologically”
modified radius, i.e., the radius expressed in units of the
static radius

R ¼ R
rs

¼ ξ1ð2λÞ1=3
½3vðξ1Þ�1=3

ð135Þ

reflecting the role of the cosmic repulsion in the character
of the general relativistic polytropic spheres. It is clear that
this role is growing with the cosmologically modified
radius increasing, but the modified radius does not depend
on the central density ρc explicitly but only implicitly due
to magnitude of the cosmological parameter. We can see
immediately that the cosmological parameter λ is the most

relevant one; however, for relatively large values of the
polytropic index (n ≥ 3) and the relativistic parameter
(σ > 0.6), the dimensionless radius ξ1 can grow substan-
tially. The results of the numerical calculations are given
in Fig. 21. The limits on the dimensionless radius of the
polytrope expressed in units of the static radius of the
external spacetime are given in terms of the functions
Rðσ; n; λÞ considered for the characteristic values of the
cosmological parameter λ and the polytropic index n that
were used for the deduction of GRP global characteristics.
The restrictions have the upper limit at the ratio R ¼ 1
and become stronger with the increasing value of λ and
increasing value of n. For λ ¼ 10−12, the upper limit of
R ¼ 1 is relevant for polytropes with n ¼ 3.5, 4 from the
considered values of n, for λ ¼ 10−6, and also the n ¼ 3
polytropes can reach the upper limit of R ¼ 1, while for
λ ¼ 10−3, the polytrope n ¼ 2.5 reaches the limit of
R ¼ 1, too, but the polytropes with n ¼ 4 are completely
forbidden for such a high value of λ. Of course, the range
of allowed values of the relativistic parameter σ for a
polytrope with fixed index n decreases with increasing
parameter λ.

FIG. 21. The results of numerical computations of the configuration-to-static radius ratio R for λ ¼ 10−12 (top left), λ ¼ 10−6 (top
right), and λ ¼ 10−3 (left) with polytropic index n ranging from 1.0 to 4.0 with steps of 0.5. While the positions of the small terminating
points stem from the restriction on the sound speed at the configuration center, the larger black terminating points located at R ¼ 1
express the fact that the configuration radius cannot be extended behind the static radius. With λ increasing, the curves for higher n
gradually vanish.
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In the special case of uniform energy density spheres
(GRPs with the polytropic index n ¼ 0), the cosmologi-
cally modified dimensionless radius reads

R ¼ ð2λÞ1=3: ð136Þ

For the n ¼ 0 GRPs, the vacuum energy parameter must
satisfy the condition λ < 1=2—we see immediately that
extension of the n ¼ 0 polytropes cannot exceed the static
radius of the external spacetime. The same statement holds
for GRPs with any value of the polytropic index n as
demonstrated by numerical calculations presented above.
We have to stress that increasing the value of the vacuum
energy parameter λ means decreasing central density of the
polytrope, if the vacuum energy is assumed to be fixed by
the cosmological tests.
The analysis demonstrates that extension of the low-

density polytropes strongly increases with decreasing
central density related to the cosmic repulsion by the
cosmological parameter λ. The rate of the polytropic
extension decrease depends strongly on the polytropic

index n and the relativistic parameter σ. We can observe
in Fig. 4 that there can even be two branches of the
polytropes with fixed polytropic index n > 3.
We can summarize that the results of the numerical

analysis of the extension of the low-density polytropic
spheres, where the role of the cosmological parameter λ is
relevant, imply that extension of the GRPs cannot exceed
the static radius of their external spacetime. This is a
demonstration of the fact that the gravitationally bound
systems are limited by the static radius, indicated for the
first time in Ref. [31].
The cosmologically modified polytrope radius is the

most representative quantity when we relate the polytropes
to the most extended objects on the cosmic scales. On the
other hand, in the opposite extreme, related to the most
compact objects, we have to use as the proper measure the
dimensionless radius related to the gravitational radius of
the object, given by

Rg ¼
R
rg

¼ C−1: ð137Þ

FIG. 22. Comparison of contours R ¼ const (R in kpc, left) and M ¼ const (M in 1012M⊙, right) related to the observationally
established cosmological constant (solid) and vanishing cosmological constant (dashed) in the parameter space σ − ρc for polytropes
with n ¼ 1.5. The presence of cosmological constant increases the radius up to a percent and mass up to a few percent for a fixed σ and
ρc, particularly for small central densities ρc.
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For very compact objects with large central energy, the role
of the cosmological constant is quite negligible because the
cosmological parameter λ has to be extremely low.

XI. MODELS OF GALACTIC HALO

Finally, we present some comments on the possibility to
model galactic dark matter halos by the GRPs. For these
purposes, it is useful to express the length and mass scales
of the relativistic polytropes in the form adjusted to the
astrophysically relevant, galactic conditions. Therefore, we
express the length scales (132) in the form

L ¼ 1.06
½σðnþ 1Þ�1=2

ρ1=2c

ð100 kpcÞ; ð138Þ

M ¼ 2.22
½σðnþ 1Þ�3=2

ρ1=2c

ð1018M⊙Þ; ð139Þ

with ρc to be substituted in units of 10−20 g=cm3.
The length scale of galactic halos related to typical
galaxies, similar to the Milky Way galaxy, is estimated
to be 100–200 kpc, while the estimated mass of the halo is
considered to be about ð1–5Þ × 1012M⊙. Of course, in the
case of extremely large and massive galaxies and galaxy
clusters, the extension of the halo can be up to 1 Mpc, and
the halo mass could be as large as 1015M⊙ [144].
The polytropic spheres with given mass and length scales

are determined by the solution of the structure equations
given by the radial coordinate ξ1ðn; σ; λÞ and the related
mass parameter v1ðn; σ; λÞ. Generally, the exact solutions
can strongly modify the length and mass scales; however,
for low values of the parameter n and nonrelativistic
dark matter with σ ≪ 1, the length and mass scales are
decisive. Then, we can obtain the GRP extension and
mass in agreement with the galactic halo estimates for
σðnþ 1Þ < 10−4. However, the central density of such
polytropes has to be very small.
Detailed analysis of the possible matching of the GRP

extension and mass to the CDM halo extension and mass is
planned for a future paper. Here, using the numerical
methods, we give insight into the role of the observationally
given cosmological constant on the fitting of the length
and mass of the polytropes to the astrophysically relevant
values for a concrete polytrope model with parameter
n ¼ 3=2 corresponding to the nonrelativistic gas. In
Fig. 22, the constant values of the polytrope extension R
(and massM) are given as the functions of the parameters σ
and ρc that give also the parameter λ. The contours related
to the cosmological constant with the observationally given
value of Λ ∼ 10−56 cm−2 are related to those corresponding
to Λ ¼ 0. For the n ¼ 3=2 polytropes, the influence of the
cosmological constant is strongest for small values of σ,
being on the level of 1% for the extension and 3% for the
mass of the polytrope.

XII. CONCLUDING REMARKS

We have constructed fully general relativistic models
of polytropic spheres immersed in the spacetime with
the relict repulsive cosmological constant Λ ¼
1.3 × 10−56 cm−2, indicated by wide variety of recent
cosmological tests. The polytropic spheres are character-
ized by three dimensionless parameters, namely, by the
polytropic index n, the relativistic parameter σ ¼ pc=ρc
reflecting the role of the (special) relativistic effects in
their structure, and the cosmological parameter λ ¼
ρvac=ρc reflecting the role of the vacuum energy density
(the repulsive cosmological constant) in their structure.
We have demonstrated that in dependence on the poly-
tropic index n, and the relativistic parameter σ, the GRPs
are not allowed for the values of the cosmological
parameter λ > λcritðn; σÞ. The value of λcrit increases with
the polytropic index increasing and the relativistic param-
eter decreasing for the index n ≤ 3, while it exhibits more
complex behavior for n ¼ 3.5, 4, when it can grow with
increasing σ. There exist even some singular states for
n > 3.34 polytropes, when the solutions are not allowed
for special values of the relativistic parameter [141]. For
example, we have found that the n ¼ 3.5 polytropes are
forbidden for one specific value of σf ¼ 0.314, while for
the n ¼ 4 polytropes, there are two forbidden values of the
relativistic parameter σf1 ¼ 0.1503, σf2 ¼ 0.338. For these
special values of σ, the extension of the polytropes
diverges. However, the cosmological constant naturally
cutoffs these divergent radii, as the radius of the polytropic
configurations cannot exceed the static radius of the
external spacetime, determined by the combined effect
of the cosmological constant and the mass of the
polytrope.
The length and mass scales of the GRPs with fixed

polytropic index n are characterized by the central density
ρc and the relativistic parameter σ. Both of them grow with
the central density decreasing and the relativistic parameter
increasing. The real extension of the polytropic spheres is
influenced by the cosmological parameter λ, if it is high
enough (and the central density is low enough, allowing for
sufficiently high values of λ).
Since the dependence of mass and length scales on the

central density ρc is of the same character, while it has
inverse character in the case of the relativistic parameter σ,
we can find, for any value of the polytropic index n, the
parameters ρc and σ determining a polytropic sphere with
prescribed values of the radius R and massM. Of course, it
can be done in the region of allowed values of the
cosmological parameter λ.
Adjusting properly the central density of the polytrope,we

are able to simulate properties of astrophysical objects in a
wide range, starting in the region of extremely compact
(neutron or strange) stars for extremely high central densities,
through the standard stars and stellar clusters and finishing in
the region of extremely extended low-density polytropic
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structures that could represent large cold dark matter halos.
We demonstrate that both the extension andmass of themost
extended polytropic spheres, when the role of the cosmo-
logical constant has to be very important, putting even strong
limits on the extension of such structures, can be in agree-
ment with the data restricting dark matter halos—their
extension and mass have to be ∼100 kpc and ∼1012M⊙
for galaxies of the type of the Milky Way, going up to
∼1 Mpc and∼1014M⊙ for the largest galaxies [145] or even
larger radius andmass for galaxy clusters. It is interesting that
the polytropic spheres can be relevant also in the framework
of the so-called little inflation [146] related to the first-order
phase transition of quark-gluon plasma to the hadron phase at
non-negligible baryon number [147] that implies the exist-
ence of dark matter halos of massMcluster ∼ 106M⊙ relevant
for the physics of globular clusters and emergence of the
first stars [148].
We have demonstrated that the extension of the GRPs

cannot exceed the so-called static radius of their external
spacetimes. Such a result supports idea of the static radius
(or turnaround radius) representing an extension limit on
gravitationally bounded configurations in the expanding
universe governed by the cosmological constant [15,31,95].
In objects with a central density large enough, represent-

ing all the cases of compact objects, stars, and star clusters,
the role of the repulsive cosmological constant is clearly
quite negligible, since the cosmological parameter λ is
extremely small in such situations due to high central
densities. On the other hand, the numerical analysis shows
that the relict repulsive cosmological constant has a relevant
influence on the structure of GRPs when the length scale L
becomes comparable with the cosmological length scale
∼Λ−1=3. It is clear that L increases with σ increasing and ρc
decreasing, and thus we can expect a strong role of Λ in
very low-density polytropic configurations. The influence
of the relict cosmological constant can be also amplified for

polytropes with the polytropic index high enough. For
example, in the case of n > 3.5, the influence of λ > 0 can
lead to an instability of static polytropic configurations
found in the case of λ ¼ 0.
The stability of the general relativistic polytropic spheres

has been shortly discussed in Ref. [149]. In the case of
uniform density spheres, detailed discussion can be found
also in Ref. [150]. We shall discuss the stability of the
polytropes in detail in a future paper.
We also plan to study the influence of the repulsive

cosmological constant on the so-called adiabatic fluid
spheres, generalizing thus the results of Ref. [151], where
the equation of state is considered in the more “popular”
form that can be directly related to the perfect-gas equation
of state, p ¼ Kργg, with ρg being the rest-mass density of
gas and γ being the adiabatic index. We can expect that for
the nonrelativistic gas, when ρ ∼ ρg, the adiabatic spheres
will be of similar character as the GRPs considered in the
present paper, but significant differences occur for relativ-
istic gas. The adiabatic spheres are governed by two
structure equations with three parameters of the same
meaning as those related to the polytropic spheres.
However, the adiabatic structure equations are more com-
plex in comparison to the polytrope structure equations;
e.g., they do not alow for the existence of special solutions
determined by elementary functions, as is the case of the
n ¼ 0 polytropes.
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Gravity 26, 215013 (2009).
[95] Z. Stuchlík and J. Schee, J. Cosmol. Astropart. Phys. 09

(2011) 018.
[96] J. Schee, Z. Stuchlík, and M. Petrásek, J. Cosmol.

Astropart. Phys. 12 (2013) 026.
[97] Z. Stuchlík and J. Schee, Int. J. Mod. Phys. D 21, 1250031

(2012).
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