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We examine the degree to which observations of large-scale cosmic microwave background (CMB)
polarization can shed light on the puzzling large-scale power modulation in maps of CMB anisotropy. We
consider a phenomenological model in which the observed anomaly is caused by modulation of large-scale
primordial curvature perturbations and calculate Fisher information and error forecasts for future
polarization data, constrained by the existing CMB anisotropy data. Because a significant fraction of
the available information is contained in correlations with the anomalous temperature data, it is essential to
account for these constraints. We also present a systematic approach to finding a set of normal modes that
maximize the available information, generalizing the well-known Karhunen-Loève transformation to take
account of the constraints from the temperature data. A polarization map covering at least ∼60% of the sky
should be able to provide a 3σ detection of modulation at the level favored by the temperature data. A
significant fraction of the information in such a data set is contained in the single mode that optimally
encapsulates the signal due to temperature-polarization correlation.
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I. INTRODUCTION

The cosmic microwave background (CMB) radiation
provides much of the most important evidence in support of
the standard cosmological model [1–3]. However, there
have been claims of various “anomalies” on large angular
scales in the all-sky maps made by the WMAP and Planck
satellites, which appear to be in tension with certain aspects
of the model [4–9]. Some, such as the alignment of low-
order multipoles [4–7,10–13] and the dipolar modulation of
fluctuations [4–6,14–21], even appear to violate the
assumptions of homogeneity and isotropy. If there is indeed
strong evidence that these assumptions are violated, the
effect on cosmology would be revolutionary.
The statistical significance of these anomalies is con-

troversial (e.g., Refs. [4,22]), in large part because they are
quantified with a posteriori statistics—that is, the anoma-
lies were noticed in the data, and subsequently statistics
were devised to quantify their improbability. Such statistics
are problematic; in any large data set, some patterns will
arise merely by chance, and statistics designed after the fact
to characterize these patterns will have artificially low
p-values. (This problem is sometimes described as the
“look-elsewhere effect.”) One might therefore choose to
disregard the subject entirely. On the other hand, if the
anomalies are not mere flukes, the consequences would be
of the highest importance. It therefore seems reasonable to
examine them closely while maintaining skepticism.

When faced with the problem of a posteriori statistics,
the natural solution is to seek a new data set for which
the questions can be addressed a priori. The large-angle
CMB intensity has already been measured to the limit of
cosmic variance, but CMB polarization on the largest
angular scales has not yet been thoroughly characterized.
In this paper, we examine the degree to which all-sky or
partial-sky polarization data could help us to determine
the significance of the dipolar modulation in fluctuation
power.
Although measurements of CMB polarization have been

made, there are none that have reliable information on the
large angular scales of chief interest to us. We therefore
do not use existing polarization data to constrain theories.
(In contrast, see Refs. [23,24].) Rather, our focus is on
the question of how much light future polarization data,
with reliable large-angle information, would shed on the
modulation.
We focus specifically on the dipolar power modulation—

that is, the observation that the fluctuations in one half of
the sky appear to be slightly larger in amplitude than in the
other half. We choose to examine this anomaly because it
appears in some ways more robust than the others. In
particular, when maps that have been filtered to contain
nonoverlapping multipole ranges are used to calculate the
modulation direction, the results are remarkably consistent
[17]. Under the hypothesis of statistical isotropy, these
directions would be independent random variables. Even if
we regard the first of these determinations as besmirched*ebunn@richmond.edu
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with the stain of a posteriori statistics, the remainder are
untainted.
Possible explanations for any of the anomalies come in

three categories: an anomaly can be a fluke, the result of a
systematic error, or a sign of new physics. In this paper, we
disregard the possibility of systematic error, as the modu-
lation appears robustly in different data sets (WMAP and
Planck), analyzed in different ways. We are therefore
interested in the question of how well future polarization
data could distinguish between the fluke hypothesis and the
new-physics hypothesis.
Under the fluke hypothesis, the Universe is described by

the standard statistically isotropic Gaussian model, and the
probability distribution for polarization observations is
straightforward to calculate. Note that the relevant proba-
bility distribution is the conditional probability for the
future polarization data, constrained by the existing
anisotropy data, as emphasized in Refs. [25–27].
Previous work [25–27] has assessed the ability of

polarization data to test the fluke hypothesis. In this paper,
we go further by comparing this hypothesis with an
alternative in which statistical isotropy is broken. The most
straightforward candidates for the new-physics hypothesis
involve modulating the primordial perturbations with a
long-wavelength mode [28–34], although there are other
possibilities as well [35]. Such a modulation can be
produced in inflationary scenarios with a curvaton field,
among other ways. Rather than committing to a specific
physical model, we represent the new-physics hypothesis
with a phenomenological model originally explored by
Dvorkin et al. [28]. We suppose that the primordial
Newtonian curvature fluctuation Φ is modulated by a
multiplicative perturbation that breaks statistical homo-
geneity and isotropy. To be specific, we suppose that

ΦðrÞ ¼ g1ðrÞ½1þ hðrÞ� þ g2ðrÞ: ð1Þ

Here, g1 and g2 are homogeneous and isotropic Gaussian
random processes, of the sort found in the standard model.
The modulating field h contains only very long-wavelength
terms. In fact, to explain the dipolar modulation of the
CMB, it can be taken to be a simple gradient,

hðrÞ ¼ w · r
RLSS

; ð2Þ

for some constant vector w. Here, RLSS is the distance to the
last-scattering surface and is introduced to make w dimen-
sionless. Note that the magnitude of w differs from the
parameter w1 of Ref. [28] by a fixed normalization
factor: w≡ jwj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=ð4πÞp
w1.

The reason for the two fields g1, g2 is that the modulation
does not appear to persist to arbitrarily small length scales
[36,37]. As a result, we place the large-scale, modulated
Fourier modes in g1 and the small-scale, unmodulated

modes in g2. We adopt the simplest possible prescription:
we let g1 contain all Fourier modes below a fixed wave
number cutoff kmax and place all modes with k > kmax in
the unmodulated field g2. The power spectra of g1 and g2
are taken to be the standard power spectrum PðkÞ ¼ Akn−4

with spectral index n ¼ 1, for k < kmax and k > kmax
respectively.
We wish to quantify the new information that could be

gained about this theory by a future polarization data set.
Because CMB polarization is correlated with the temper-
ature anisotropy, which has already been well measured,
we should consider the conditional probability distribution
of the future polarization data, given the temperature
anisotropy data we already have. In the theories under
consideration, all of the probability distributions are
Gaussian. To be specific, the joint probability distribution
for temperature and polarization (whether expressed in
position space or in the spherical harmonic basis) is a
multivariate normal distribution with zero mean. The
conditional probability for polarization given temperature
is then a normal distribution with nonzero mean. Both the
mean and the covariance matrix of this distribution depend
on the theory under consideration. To assess the ability of
this data set to distinguish among competing theories, we
will examine the theory dependence of the distribution.
In particular, we will calculate the Fisher information for

the parameter w and show that for sufficiently large kmax a
polarization data set could measure a w-value at the level
suggested by the temperature data with ∼3σ significance,
even with incomplete sky coverage. We will also show that
a significant fraction of the information in such a data set is
contained in a single mode, resulting from the correlation of
the polarization with the known temperature data.

II. FORMALISM

A. Constrained Gaussian random processes

We begin by summarizing some results regarding con-
strained Gaussian random processes [38–43]. To be spe-
cific, we consider a set of data that can be modeled as a
sample of a Gaussian random process with zero mean.
Suppose that a subset of the data, represented by the vector
~d1, has been measured and that measurement of an addi-

tional data set ~d2 is planned. In the following sections of

this paper, ~d1 will be the CMB intensity data already

measured by Planck, and ~d2 will be a future set of
polarization data. We combine the two data sets into a
single vector:

~dall ¼
� ~d1
~d2

�
: ð3Þ

The combined data is a sample from a Gaussian random
process with mean zero and covariance matrix
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Mall ¼ h~dall~dTalli ¼
�
M11 MT

21

M21 M22

�
; ð4Þ

where T denotes the transpose and Mjk ¼ h~dj~dTk i.
The matrix Mall depends on a set of theory parameters
~θ. The likelihood function is pð~dallj~θÞ ∝ e−χ

2=2, with

χ2 ¼ ~dTallM−1
all
~dall: ð5Þ

Becausewe have already measured ~d1, we wish to know the

conditional probability pð~d2j~d1; ~θÞ. This is still propor-

tional to e−χ
2=2, but now we regard ~d1 as fixed.

Let

M−1
all ¼ N ¼

�
N11 NT

21

N21 N22

�
: ð6Þ

Then,

χ2 ¼ ~dT1N11
~d1 þ ~dT1NT

21
~d2 þ ~dT2N21

~d1 þ ~dT2N22
~d2 ð7Þ

¼ ð~d2 − ~μÞTN22ð~d2 − ~μÞ þ constant; ð8Þ

where

~μ ¼ −N−1
22N21

~d1: ð9Þ

In summary, when we take ~d1 as fixed, our theory gives a

Gaussian likelihood function for ~d2 with mean ~μ and
covariance matrix Mc ≡N−1

22 , both of which depend on

the theory parameters ~θ.
It is often convenient to use the block inversion formulas,

N−1
22 ¼ M22 −M21M−1

11M
T
21; ð10Þ

N−1
22N21 ¼ −M21M−1

11 ; ð11Þ

to write

~μ ¼ M21M−1
11
~d1; ð12Þ

Mc ¼ M22 −M21M−1
11M

T
21: ð13Þ

The full expression for the constrained likelihood is

pð~d2j~d1; ~θÞ ¼
exp ð− 1

2
ð~d2 − ~μð~θÞÞTMcð~θÞ−1ð~d2 − ~μð~θÞÞÞ

ð2πÞN=2det1=2Mcð~θÞ
;

ð14Þ

where N is the dimension of ~d2.

Because we will in general be interested only in this
constrained likelihood, we will simplify the notation by

writing ~d instead of ~d2 andM instead ofMc wherever there
is no risk of ambiguity.

B. Fisher information

Suppose that we are interested in measuring a single
parameter θ, such as the modulation level w. The expected
error on θ is F−1=2, where the Fisher information is

F≡ −hðln fÞ00i ¼ 1

2
TrðM−1M0M−1M0Þ þ ~μ0TM−1~μ0;

ð15Þ

and the primes denote derivatives with respect to θ. In this
expression, all quantities are to be evaluated at the “true”
value of θ.

C. Information-maximizing modes

It may be of interest to know what aspects of the new
data are most useful in measuring θ. Is it most useful to
know large-scale or small-scale information, for instance?
Are some parts of the sky more helpful than others? One
way to address this sort of question is to suppose that,
instead of measuring the entire N-dimensional data vector
~d, we measure only its projection onto a small set of normal

modes. To be specific, imagine that we measure δj ≡ ~vj · ~d
for some small set of mode vectors ~v1; ~v2;…. We can then
ask which modes maximize the information in the resulting
data set.
For a Gaussian random process whose mean is zero

(or more generally, whose mean is independent of θ),
the answer to this question is the Karhunen-Loève
transform [44], which has a long history in cosmology
[45–49]. The best modes are the “signal-to-noise eigenm-
odes” with the largest eigenvalues. For the constrained
data we are considering, the situation is more compli-
cated, as the mean of the distribution depends on the
parameter θ.
If there are K mode vectors ~vj, arranged in the columns

of an N × K matrix V, then the Fisher information in the

data set ~δ is

FV ¼ 1

2
TrðM−1

V M0
VM

−1
V M0

VÞ þ ~μ0TVM−1
V VT~μ0; ð16Þ

where

MV ¼ VTMV; M0
V ¼ VTM0V: ð17Þ

The information depends only on the subspace spanned by
the vectors; i.e., it is invariant under any invertible trans-
formation V → VA. We can therefore without loss of
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generality choose the vectors to be orthonormal with
respect to the inner product

h~x; ~yi ¼ ~xTM~y: ð18Þ

With this choice, MV is the identity matrix, and

FV ¼ 1

2
TrððVTM0VÞ2Þ þ jVT~μ0j2: ð19Þ

Consider first the case of a single mode (K ¼ 1), for
which

FV ¼ 1

2
ð~vTM0~vÞ2 þ ð~v · ~μ0Þ2; ð20Þ

subject to the constraint ~vTM~v ¼ 1. (When considering the
case K ¼ 1, we omit the subscript on ~v1.) We can solve the
problem of maximizing FV by a variety of standard
numerical methods, but if one of the two terms in this
expression is much larger than the other, then an approxi-
mate solution is easily found. The first term satisfies

1

2
ð~vTM0~vÞ2 ≤ 1

2
λ2max; ð21Þ

where λmax is the largest eigenvalue in the generalized
eigenvalue problem M0~u ¼ λM~u, with equality when ~v is
the corresponding eigenvector. The second term satisfies

ð~v · ~μ0Þ2 ≤ ð~μ0TM−1~μ0Þ2 ð22Þ

with equality when

~v ¼ M−1~μ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~μ0TM−1~μ0

p : ð23Þ

If one of the two expressions on the right side of these
inequalities is much larger than the other, then a good
approximation to the information-maximizing mode is the
mode that saturates that inequality.
As we will describe in detail in the next section, for all of

the cases we consider, the second term is much larger than
the first one, and the information-maximizing mode is
therefore well approximated by Eq. (23). Moreover, this
mode often contains a significant fraction of the total
information. This mode fully captures all of the information
that is contained in the way the mean of the probability
distribution varies as the parameter θ is changed. All of the
remaining modes will contain information associated only
with variations in the covariance matrix.
Having chosen the first mode, we can then seek a second

mode that supplies the most additional information. To be
specific, let ~v1 be given by Eq. (23), and let ~v2 be
orthonormal to ~v1 according to the inner product (18).
Then, Eq. (19) can be rewritten:

FV ¼ F~v1 þ
1

2
ð~vT2M0⊥~v2Þ2 þ ð~v2 · ~wÞ2: ð24Þ

Here, F~v1 is the information contained in mode ~v1 alone.
The matrix M0⊥ is the projection of M0 onto the subspace
orthogonal to ~v1, and ~w ¼ M0~v1. Choosing the optimal ~v2
therefore involves a maximization precisely analogous to
that required to find ~v1 [Eq. (20)]. This time, however, as
we will see in the next section, the two contributions are
comparable for the cases we consider, so neither simple
approximate vector is a good solution.
By an argument analogous to that which led to inequal-

ities (21) and (22), the new information is bounded by

F~v2 ≤
1

2
λ2⊥max þ ð~wTM−1⊥ ~wÞ2; ð25Þ

where λ⊥max is the maximum eigenvalue for the general-
ized eigenvalue problem M0⊥~u ¼ λM⊥~u. As we will see,
this quantity is small in the cases we will consider, so the
second-best mode is of little interest in comparison to
the first.

D. Application to CMB polarization

We will take the previously measured data ~d1 ≡ ~t to be
CMB temperature data, measured over a masked sky. The
jth measurement can be written

tj ¼
X

l;m

aTlmYlmðr̂jÞ þ nTj ; ð26Þ

where aTlm are the spherical harmonic coefficients, r̂j is the
location of the jth pixel, and nTj is the noise. (For the low-
resolution maps we will consider, noise is quite small. Its
primary effect is to regularize the inversion of the covari-
ance matrix.) We write this compactly as

~t ¼ Y~aþ ~nT: ð27Þ

Here, the vector ~a contains the real and imaginary parts of
the spherical harmonic coefficients aTlm, and the matrix Y
contains the real and imaginary parts of the corresponding
spherical harmonics evaluated at the pixel locations.
The covariance matrix is

M11 ≡ h~t~tTi ¼ YCTTYT þ NT; ð28Þ

where NT is the noise covariance matrix and CTT is the
covariance matrix of the aTlm coefficients.

The polarization data ~d2 will consist of polarization
measurements, which can be written

~d2 ¼ Z~eþ ~nP: ð29Þ
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Here, ~e contains the real and imaginary parts of the
E-mode polarization coefficients aElm, and ~nP is the noise.

(We neglect the contribution of B modes.) The vector ~d2
contains the Stokes parameters Q, U for each pixel. The
matrix Z contains the real and imaginary parts of the
contributions of the spin-2 spherical harmonics to each
Q- and U-value.
The remaining blocks of the covariance matrix are

M22 ¼ ZCEEZT þ NP; ð30Þ

M21 ¼ ZCETYT: ð31Þ

The matrices CEE and CET characterize the covariances of
the E coefficients and the ET cross-covariance, and NP is
the noise covariance matrix.
In the standard, statistically isotropic model, CTT , CEE,

and CET are diagonal matrices containing the three power
spectra. When isotropy is broken, these matrices acquire
off-diagonal elements, which are computed according to
the detailed recipe in Ref. [28]. In a coordinate system
aligned with the direction of isotropy breaking, the off-
diagonal elements are nonzero only when the twom-values
are equal and the l’s differ by 1.

III. RESULTS

We have performed computations for future polariza-
tion data sets, constrained by the existing Planck temper-
ature maps [1]. To be specific, we used the Planck
COMMANDER CMB map with HEALPix [50]
Nside ¼ 256, downgraded to Nside ¼ 32 and smoothed with
a Gaussian beam of width σbeam ¼ 2°. We keep all pixels
within the High Frequency Instrument Galactic emission
mask, retaining 80% of the pixels.
We imagine future polarization data with the same

smoothing and Nside, with signal-to-noise ratio per pixel
of 3. We consider five different sky coverage scenarios:

(i) An all-sky map.
(ii) A map with sky coverage fsky ¼ 0.8, with a straight

Galactic latitude cut, including all pixels whose
Galactic latitude satisfies jbj > sin−1ð1 − fskyÞ.

(iii) A map with fsky ¼ 0.6, with a similar Galactic
latitude cut.

(iv) Two maps with fsky ¼ 0.3, consisting of spherical
caps centered on the north and south Galactic poles.
(These two maps combined cover the same area as
the fsky ¼ 0.6 map.)

For the broken-isotropy hypothesis, we consider five
values for the cutoff wave number, namely kmaxc=H0 ¼ 10,
20, 30, 40, 50. We hold the modulation direction fixed at
Galactic coordinates ðl; bÞ ¼ ð226°;−17°Þ. All computa-
tions are performed after rotating the maps to a coordinate
system with this direction at the pole, so that the

covariances among the aðT;EÞlm coefficients are as simple
as possible.
The solid curves in Fig. 1 show the projected error

Δw≡ F−1=2, where F is the Fisher information. The long-
dashed line is the value w ¼ 0.07, which is roughly the
best-fit value from the temperature data. For kmax ≳
30H0=c, a strong detection is possible even with relatively
low sky coverage.
The dashed curves in the figure show the projected error

in the hypothetical scenario where only the information-
maximizing mode ~v1, defined in Eq. (23), is measured.
Although this single mode is never enough to provide a
definitive measurement, it contains a significant fraction of
the total Fisher information, ranging from approximately
48% when kmax ¼ 10H0=c to 9% when kmax ¼ 50H0=c.
As noted in Sec. II C, ~v1 is in fact an approximation to

the information-maximizing mode. The quality of the
approximation is determined by the ratio of the two bounds
in inequalities (21) and (22). For the models plotted in the
figure, this ratio always exceeds 30, which implies that
the information contained in mode ~v1 is within 3% of the
maximum possible.
The information contained in the second-best mode is

bounded by the inequality (25). In almost all of the cases
plotted, the ratio of this bound to the information
contained in the first mode is less than 8%, indicating
that far more information is contained in the first mode
than in any other individual mode. The only exceptions
occur when kmax ¼ 10H0=c and fsky ¼ 0.3, in which
case the total information is quite low. In all cases
considered, the two terms in (25) are comparable,
differing by no more than a factor of 3, so neither
simple approximation would work well for finding the

10 20 30 40 50
kmax c / H0

0.00

0.05

0.10

0.15

0.20

Δw

FIG. 1. The error forecast Δw. From bottom to top, the solid
curves correspond to polarization data sets with fsky ¼ 1 (black),
0.8 (red), 0.6 (blue), 0.3 (green). For fsky ¼ 0.3, two virtually
identical curves are shown, corresponding to the northern and
southern caps. The dashed curves show the error forecasts for a
hypothetical experiment in which only the single “best” mode of
the polarization data is measured. The horizontal long-dashed
line shows the value preferred by the existing temperature data.
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second-best mode. Since this mode is known to contain
little information, we do not pursue its calculation further.
The information-maximizing modes themselves are

shown in Figs. 2 and 3. Note that these maps are oriented
with the modulation direction, rather than the Galactic
north pole, at the top. Because these modes are measuring
primarily the correlation with the existing temperature data,
they have little power in the Galactic plane. Unsurprisingly,
they also have little power in the plane perpendicular to the
modulation direction, where the modulation is zero.

IV. DISCUSSION

We have presented Fisher matrix calculations and
resulting error forecasts for a future large-scale CMB
polarization data set, to assess the degree to which such
a data set can shed light on the puzzling large-scale power
modulation in the CMB temperature anisotropy. The
calculations are based on the probability distribution of

the polarization data, conditioned on the already-measured
temperature data.
If the observed hemispherical modulation in CMB

anisotropy power is not a fluke, a detection of it in
CMB polarization should be possible. In the model we
have considered, a roughly 3σ detection is possible with a
data set that covers at least ∼60% of the sky, as long as the
modulation affects modes with wave numbers up to
∼30H0=c. Because these calculations are for the polariza-
tion data conditioned on the existing temperature data, this
error is associated with the additional information available
in polarization, on top of what we have already seen in
temperature.
The future of CMB polarization measurement on large

scales is uncertain, but plans are underway for a ground-
based initiative known as CMB-S4 [51]. This experiment
would be based in the Atacama desert and would survey a
large fraction of the southern sky. The experimenters are
also considering including a second telescope in the

FIG. 2. The single mode that best constrains w, for an all-sky polarization data set. The top panel shows Stokes Q, and the bottom is
Stokes U. These modes are for an all-sky polarization data set, constrained by the existing temperature data with 80% sky coverage as
described in the text. The maps are oriented so that the modulation direction is at the top. The two bands where the mode is nearly zero
are the region of zero modulation (horizontal) and the vicinity of the Galactic plane. The mode has little power near the Galactic plane
because this region is unconstrained by temperature data. From left to right, kmax ¼ 10H0=c; 30H0=c; 50H0=c.

FIG. 3. The best w-constraining mode for polarization data sets with sky coverage fsky ¼ 0.8, 0.6, 0.3. For fsky ¼ 0.3, the data are
assumed to cover a spherical cap centered on the Galactic north pole; in the other cases, a cut in jbj is used. The maps are oriented as in
the previous figure.

BUNN, XUE, and ZHENG PHYSICAL REVIEW D 94, 103512 (2016)

103512-6



northern hemisphere to increase the sky coverage. With
only southern sky coverage, this experiment would be
roughly comparable to our fsky ¼ 0.3 calculations. With
the addition of a northern instrument, the sky coverage
would be closer to our fsky ¼ 0.6. The calculations for
larger sky fractions would correspond roughly to a hypo-
thetical satellite mission, which would be in the more
distant future. These comparisons are of course extremely
rough, as we have not tailored our calculations to match
any particular experiment design in detail.
Although the calculations presented herein are based on

a simple phenomenological model, we may expect quali-
tatively similar results from any model in which the
observed temperature power modulation is caused by
modulation of the large-scale density perturbation modes.
We have presented a formalism for identifying the

spatial modes in the data that best constrain the theory. A
significant fraction (9% or more) of the information in

such a data set is contained in the single “information-
maximizing” mode that optimally captures the correlation
between the known temperature data and the polarization.
The rest of the information is contained in the cova-
riances of the polarization measurements (e.g., the pre-
dicted mean-square amplitudes of the various modes),
although no single mode in this category contains an
amount of information comparable to the information-
maximizing mode. Because the correlation with the
anomalous temperature data is the source of much of
the available information, it is necessary to perform
constrained calculations as we have done in order to
get reliable forecasts.
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