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In the Ratra scenario of inflationary magnetogenesis, the kinematic coupling between the photon and the
inflaton undergoes a nonanalytical jump at the end of inflation. Using smooth interpolating analytical forms
of the coupling function, we show that such unphysical jump does not invalidate the main prediction of the
model, which still represents a viable mechanism for explaining cosmic magnetization. Nevertheless, there
is a spurious result associated with the nonanaliticity of the coupling, to wit, the prediction that the
spectrum of created photons has a power-law decay in the ultraviolet regime. This issue is discussed using
both semiclassical approximation and smooth coupling functions.
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I. INTRODUCTION

The ubiquitous presence of large-scale cosmological
magnetic fields is still un unexplained feature of the
Universe (for reviews on cosmic magnetic fields,
see [1–6]).
One possibility is that such fields are relics from

inflation, as first suggested by Turner and Widrow a long
time ago [7]. The idea that a spontaneous inflationary
magnetogenesis could be at the origin of cosmic magnetic
fields has been since then deeply investigated. After the
seminal works by Ratra [8] and Dolgov [9], numerous
suggestions have been put forward in an attempt to explain
cosmic magnetization [10–38], and to overcome a problem
associated with inflationary magnetogenesis, known as the
“strong coupling” problem [39].
Recently enough [40,41], we have reconsidered the

Ratra model and showed that it is a viable magnetogenesis
mechanism able to explain the presence of galactic and
extragalactic magnetic fields without suffering from the
aforementioned problem.
A necessary condition to creating large-scale magnetic

fields at inflation is to break the conformal invariance of
standard electromagnetism. In the Ratra model, this is
attained by kinematically coupling the photon field Aμ to
the inflaton field ϕ. The modified electromagnetic
Lagrangian turns to be [8]

LRatra ¼ −
1

4
fðϕÞFμνFμν; ð1Þ

where Fμν is the electromagnetic field strength tensor and,
assuming homogeneity and isotropy, the coupling function
fðϕÞ depends only on the (conformal) time. In real models
of magnetogenesis, such a coupling must (i) be a smooth

function of time,1 (ii) approach unity after reheating, so to
recover standard electromagnetism in radiation and matter
eras, and (iii) be greater than unity otherwise, so to avoid
the strong coupling problem.
In the original work by Ratra, and in its following

extensions, however, a simplified discontinuous form of
fðϕÞ was assumed. This is because of a complete lack of
any theoretical and/or phenomenological particle physics
model supporting the Ratra scenario, which could have
eventually justified and/or suggested a continuous form of
the coupling.
In Sec. IV, we argue, by using particular smooth forms

of fðϕÞ, that the assumption of a discontinuous coupling
does not invalidate the main predictions of the model.
Needless to say, such a conclusion does not represent a
general proof of this point, proof that could eventually be
given only if the exact form of the Ratra coupling
were known.
Finally, we show that there are spurious results asso-

ciated with a discontinuous coupling, such as the fact that
the spectrum of produced photons decays as a power law
in the ultraviolet regime, instead of falling off exponen-
tially as generally predicted by the standard theory of
quantum theory in curved spacetime. This latter feature of
the Ratra model will be discussed in Sec. III by using the
Wentzel-Kramers-Brillouin (WKB) approximation. In the
next section, we set our notations and we briefly review
the Ratra scenario in the light of the results obtained
in [40].
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1Here, we are not considering any possible discontinuous
photon-inflaton coupling which could arise if the inflaton under-
goes a first-order phase transition during inflation and/or reheat-
ing, namely we stay close to the original Ratra model (and its
extensions) where inflation and reheating are assumed to proceed
smoothly without discontinuous jumps.
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II. CREATION OF MAGNETIC FIELDS
IN THE RATRA MODEL

The creation of inflationary magnetic fields in the Ratra
model is a pure quantum effect [40]. It is understood as the
creation of photons out of the vacuum by the changing
gravitational field between two temporal regions, the
“in-region” and the “out-region,” possessing two different,
inequivalent vacua. For the sake of convenience, we may
define these regions by η →∓ ∞, respectively, where η is
the conformal time. Physically, the former represent the
temporal region where inflation starts and the latter any
temporal region after reheating.
Working in Fourier space, let us rescale the photon wave

functions Aðin;outÞ
k in the in- and out-regions as

ψ ðin;outÞ
k ¼

ffiffiffiffiffiffiffiffiffiffi
f=2k

p
Aðin;outÞ
k : ð2Þ

The in- and out-ψ modes reduce to plane waves in the

corresponding in- and out regions, ψ ðin;outÞ
k ¼ e−ikη=

ffiffiffiffiffi
2k

p
for η →∓ ∞, and satisfy the equation of motion [40]

ψ̈k ¼ Ukψk: ð3Þ

Here,

UkðηÞ ¼ −k2 þU0ðηÞ; ð4Þ

k is the comoving wave number, and

U0ðηÞ ¼
̈ ffiffiffifpffiffiffi
f

p ð5Þ

will be referred to as the “Ratra potential.” The in- and
out-modes are not independent but related trough the
Bogoliubov transformation [40]

ψ ðinÞ
k ¼ αkψ

ðoutÞ
k þ βkψ

ðoutÞ�
k ; ð6Þ

where the Bogoliubov coefficients αk and βk satisfy the
Bogoliubov condition

jαkj2 − jβkj2 ¼ 1: ð7Þ

The in-vacuum state will contain out-particles so long as
βk ≠ 0. It can be easily shown that the number of particles,
in this case, is [40,42]

nk ¼ jβkj2: ð8Þ

For a conformal theory, as the standard Maxwell theory in a
Friedmann-Robertson-Walker spacetime, the in- and out-
vacua are equivalent and one has βk ¼ 0, so that no particle
creation occurs (this is the content of the well-known
“Parker theorem” [42]).

Neglecting any possible effect of magnetohydrodynamic
turbulence [43–50] after reheating, the actual magnetic
field on a scale λ ¼ 1=k is [40] (see also [41,51])

Bk ∼ k2
ffiffiffiffiffi
nk

p
; ð9Þ

in the (quasiclassical) limit nk ≫ 1. The actual magnetic
field spectrum on large (cosmological) scales is then
completely determined by the density number of photons
with wave number k created at inflation.
In the (original) Ratra model, the coupling function is

fðηÞ ¼
�
f�ðηe=ηÞ2p; η ≤ ηe;

1; η > ηe;
ð10Þ

where f� > 1, ηe is the conformal time at the end of
inflation,2 and p is a real parameter which we assume, for
the sake of simplicity, to be less than −1. This, in turns,
gives for the Ratra potential the simple expression

U0ðηÞ ¼
� pðpþ1Þ

η2
; η ≤ ηe;

0; η > ηe:
ð11Þ

Modes well outside the horizon at the end of inflation,
−kηe ≪ 1, are efficiently produced [40,41],

nk ≃ ½2−pðpþ 1ÞΓð−p − 1=2Þ�2
16π

ð−kηeÞ2p; ð12Þ

where ΓðxÞ is the gamma function. Conversely, the
production of photons with wavelength much smaller than
the horizon length at the end of inflation, −kηe ≫ 1, is
suppressed as [40]

nk ≃
�
pðpþ 1Þ

4

�
2

ð−kηeÞ−4: ð13Þ

Such an unphysical power-law decay of the photon
spectrum in the ultraviolet regime can be attributed to
the nonanalyticity of the Ratra potential at the point ηe.
Indeed, for smooth potentials, the general expectation is
that of an exponential decay (see Sec. III B and the
discussion at the beginning of Sec. IV).

III. PARTICLE CREATION ANALOGY WITH
QUANTUM POTENTIAL SCATTERING

The equation of motion (3) of the ψ modes is formally
equal to the one-dimensional Schrodinger equation with
zero energy and potential energyUk, with η taking the place
of the spatial coordinate and k being an external parameter.

Continuing the analogy, Eq. (6) connecting the ψ ðinÞ
k

2Without loss of generality, we can assume that ηe is negative-
defined as in the case of pure de Sitter inflation.

L. CAMPANELLI and A. MARRONE PHYSICAL REVIEW D 94, 103510 (2016)

103510-2



and ψ ðoutÞ
k modes describes the scattering of ψ-waves off the

potential Uk, the incident, reflected, and transmitted waves

being αkψ
ðoutÞ
k , βkψ

ðoutÞ�
k , and αkψ

ðinÞ
k , respectively. This is

schematically illustrated in Fig. 1.
Moreover, one can define a density current associated to

any ψ-mode as

jk ¼ hψkjψ�
ki; ð14Þ

where the inner product of any two solutions ψ ð1Þ
k and ψ ð2Þ

k
of Eq. (6) is defined by [40]

hψ ð1Þ
k jψ ð2Þ

k i ¼ −iðψ ð1Þ
k _ψ ð2Þ

k − _ψ ð1Þ
k ψ ð2Þ

k Þ: ð15Þ

The conservation of the current (14), _jk ¼ 0, follows
directly from the conservation of the inner product. The
incident, reflected, and transmitted currents are then

jðincÞk ¼ hαkψ ðoutÞ
k jα�kψ ðoutÞ�

k i ¼ jαkj2; ð16Þ

jðrefÞk ¼ hβkψ ðoutÞ�
k jβ�kψ ðoutÞ

k i ¼ −jβkj2; ð17Þ

jðtrÞk ¼ hψ ðinÞ
k jψ ðinÞ�

k i ¼ 1; ð18Þ

where we used the fact that [40]

αk ¼ hψ ðinÞ
k jψ ðoutÞ�

k i; ð19Þ

βk ¼ −hψ ðinÞ
k jψ ðoutÞ

k i; ð20Þ

and hψ ðinÞ
k jψ ðinÞ�

k i ¼ hψ ðoutÞ
k jψ ðoutÞ�

k i ¼ 1.
Taking into account Eq. (8) and the Bogoliubov

condition (7), we find the reflection and transmission
coefficients

Rk ¼ −
jðrefÞk

jðincÞk

¼ nk
1þ nk

; ð21Þ

Tk ¼
jðtrÞk

jðincÞk

¼ 1

1þ nk
; ð22Þ

from which the unitarity condition Rk þ Tk ¼ 1 directly
follows.
Let us assume, for the sake of simplicity, that the Ratra

potential U0ðηÞ is positive and vanishes in the in- and out
regions η →∓ ∞. It is clear that if k2 < maxU0ðηÞ, then
the “particle” described by the wave function αkψ

ðoutÞ
k

will penetrate through the potential barrier UkðηÞ.
To “particles” which deeply penetrate into the barrier,
k2 ≪ maxU0ðηÞ, there will correspond a large reflection
coefficient and, in turn, by Eq. (21), a large particle
number nk. On the other hand, if k2 > maxU0ðηÞ,
the “particle” is reflected above the barrier. For
k2 ≫ maxU0ðηÞ, the reflection coefficient for scattering
above the barrier will be small. To this case, there will
correspond a small production of particles, nk ≪ 1.
The usefulness of Eqs. (21)–(22) resides in the fact that

if the potential Uk is slowly varying, in the sense specified
below, one can apply the standard semiclassical (WKB)
results for the reflection and transmission coefficients.
Using the formal equivalence of the two problems of
potential scattering in quantum mechanics and the crea-
tion of particle out from the vacuum in a curved space-
time, one can then find the expression for the particle
number nk.

A. Particle number in WKB approximation

The WKB approximation is valid whenever the potential
Uk satisfies the semiclassical condition [52]

���� _Uk

2U3=2
k

���� ≪ 1: ð23Þ

If this is the case, the reflection coefficient is either
small or large, and the reflection takes place either deeply
through the barrier or above it. Therefore, according to the
above discussion, the WKB approximation will provide us
with the interesting cases of large and small nk.

1. Large particle number

Let us assume, for the sake of simplicity, that the barrier
has a bell shape form, as in Fig. 1. Accordingly, there will
be two classical turning points, η1ðkÞ < η2ðkÞ, for a deep
penetration through the potential barrier. Since in this
case Rk ≃ 1, and then Tk ≪ 1, we have from Eq. (22),
nk ≃ T−1

k ≫ 1. Using the standard result for the expres-
sion of the transmission coefficient in WKB approxima-
tion [52], we find

nk ≃ e2Sk ; ð24Þ

Uk

2 k

k2

k k
out

k k
out

k
in

1 k

FIG. 1. Schematic illustration of the equivalence of the problem
of potential scattering in quantum mechanics and the creation of
particles in a curved background. The formal relations between
the spectrum of particles created out from the vacuum nk and the
reflection and transmission coefficients through the barrier UkðηÞ
is given in Eqs. (21)–(22). The points η1;2ðkÞ are the classical
turning points for the quantum-mechanical problem of penetra-
tion through the potential barrier.
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where3

Sk ¼
Z

η2ðkÞ

η1ðkÞ
dη

ffiffiffiffiffiffiffiffiffiffiffiffi
UkðηÞ

p
: ð25Þ

The magnetic field spectrum is proportional to the square
root of the particle number [see Eq. (9)], the latter
representing an amplification factor of the in-vacuum
magnetic fluctuations. As first noticed by Giovannini
[2], the amount of such an amplification depends, for a
given mode, on the “time spent” under the potential
barrier. From Eqs. (24)–(25), we see that this “time” is
indeed the area enclosed by the square root of the potential
between the two classical turning points.

2. Small particle number

The probability that a “particle” is scattered above the
potential barrier is small for large values of k2 compared to
the height of the Ratra barrier. Using Eq. (21), we then have
nk ≃ Rk ≪ 1. Using the standard result for the expression
of the reflection coefficient in WKB approximation [52],
we find

nk ≃ e−4σk ; ð26Þ

where

σk ¼ Im
Z

ηIðkÞ

ηR

dη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−UkðηÞ

p
: ð27Þ

Here, ηIðkÞ is the so-called imaginary turning point, the
complex solution of the equation UkðηÞ ¼ 0 for
k2 > maxU0ðηÞ, and ηR is an arbitrary and inessential real
parameter. The integration in Eq. (27) has to be performed
in the complex upper half-plane (Im½ηIðkÞ� > 0). If the
equation for the imaginary turning point admits more than
one solution, one must select the one for which σk is
smallest [52].
Let us finally observe that, for k → ∞ [namely for

sufficiently large wave numbers, k2 ≫ maxðU0; j _U0j2=3Þ],
condition (23) is satisfied whatever is the form of the Ratra
potential and the WKB approximation is then applicable.
Moreover, if there exists the limit limk→∞ηIðkÞ ¼ ηIð∞Þ,
Eq. (26) takes the simple form

nk ≃ e−4kIm½ηIð∞Þ�; ð28Þ

at the leading order in k → ∞. In the case of multiple
imaginary turning points, one has to take the one which has
the smallest (positive) imaginary part.

B. Ratra model in WKB approximation

As an application of the above results, let us consider in
semiclassical approximation the exactly solvable Ratra
model defined by the potential (11). The WKB applicabil-
ity condition (23) in this case reads

qj1 − ðkη=qÞ2j3=2 ≫ 1; ð29Þ

where we have defined q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðpþ 1Þp

. The classical
turning points are easily found,

η1ðkÞ ¼ −
q
k
; η2ðkÞ ¼ ηe; ð30Þ

for −kηe < q. At large scales, −kη ≪ q, far from the
turning points (where the WKB approximation cannot be
trustful), condition (29) is satisfied for q ≫ 1, namely for
p ≪ −1. Using Eqs. (24)–(25), we find

nðWKBÞ
k ¼ ð2q=eÞ2qð−kηeÞ−2q: ð31Þ

In the limit p → −∞, this approximate result and the exact
result (12) coincide.
However, the WKB expression (31) is not a good

approximation for values of jpj of order unity.4 This is
due to the fact that −kηe is a very small quantity, so that
even a small change in the value of its exponent produces a
large deviation of the particle number and, in turn, of the
actual magnetic field. To see this, let us use Eq. (9) and take
into account that [41]

−kηe ≃ 10−21
�

M
1016 GeV

�
−2=3

�
TRH

1010 GeV

�
−1=3 k

Mpc−1
;

ð32Þ

where M is the scale of inflation and TRH the reheat

temperature. We have BðWKBÞ
k =Bk ∼ ð−kηeÞq−jpj which, for

example, results in BðWKBÞ
k =Bk ∼ 1012 for p ¼ −2,

M ¼ 1016 GeV, TRH ¼ 1010 GeV, and λ ¼ 1=k ¼ Mpc.
At small scales, −kη ≫ q, the WKB approximation is

valid. Nevertheless, we cannot apply Eqs. (26)–(27) in the
model at hand, since they are valid only for smooth
potentials UkðηÞ. If there is a discontinuity in the Ratra
potential U0ðηÞ, as in Eq. (5), the reflection coefficient is
determined mainly by the wave function at that point [52].
In this case, the perturbation theory can be used to calculate
Rk in the case of a quasiclassical barrier. Using the standard
results in [52], we find that

nk ≃ Rk ≃ jU0ðη⋆Þj2
16k4

; ð33Þ3As it is straightforward to check, the quantity Sk gives, in the
out-region, the so-called “squeezing” parameter rkðηÞ defined in
[40], limη→þ∞rkðηÞ ¼ Sk þ ln 2. Large values of the squeezing
parameter indicate that the system (the magnetic field) is in a
(quasi-)classical state.

4In order to avoid the so-called backreaction problem of
inflationary magnetogenesis [39], one must take jpj ≤ 2 [40].
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where η⋆ is the discontinuity point. Applying this result to
the Ratra model, the discontinuity point being ηe, we find
that the perturbation theory gives the exact result for nk in
the limit −kηe ≫ q, namely Eq. (13).
We stress the fact that the perturbation theory is always

valid for sufficiently large wave numbers (as already
observed above). Hence, any smooth form of Ratra
coupling fðηÞ would lead to an exponential decay of the
particle number in the ultraviolet regime [see Eq. (28)], in
contrast to the k−4 law predicted by the discontinuous
coupling.

IV. SMOOTH COUPLING IN THE RATRA MODEL

As already noticed, the coupling fðηÞ must be a smooth
function of time in any real model of inflationary magneto-
genesis. If, moreover, such a coupling function is slowly
varying in the in- and out-regions, in the sense that

lim
η→�∞

dn

dηn
_f
f
¼ 0; ð34Þ

for all n ∈ N, then the in- and out- electromagnetic vacuum
states are vacua of infinite adiabatic order [40].5 This, in
turns, implies that the number of produced particle must go
to zero exponentially or, more precisely, faster than any
power of k in the limit k → þ∞ [42],

lim
k→∞

nk
knþ1

¼ 0; ð35Þ

for all n ∈ N. In this section, we consider examples of
coupling functions which smoothly interpolate the non-
analytical profile fðηÞ of the original Ratra model. We will
see that an exponential decay of the particle number at
large wave numbers will replace the (nonphysical) power-
law decay discussed in Secs. II and III B. At small wave
numbers, instead, all the results obtained in the discon-
tinuous case will be confirmed. This is to be expected,
since long wavelength modes should not be strongly
affected by variations of the coupling function on small
(time)scales.

A. Analytical example

As a first example, let us consider the following
coupling,

fðηÞ ¼ ð1þ eη=η�Þ2b½2F1ðb; b; 1;−eη=η� Þ�2; ð36Þ

where η� < 0 is a free parameter (that could represent, for
example, the time at the end of inflation ηe), 2F1ða; b; c; zÞ
is the Gauss hypergeometric function [53], and we assume
that the positive parameter b is in the range b ∈ ½1=2; 1�. A
plot of the coupling function, for two different values of b,
is given in Fig. 2. The asymptotic expansions of fðηÞ are

fðηÞ ¼
(	

sinðπbÞ η
η�þγb

π



2 þOðe−η=η� Þ; η → −∞;

1þ 2bð1 − bÞeη=η� þOðe2η=η� Þ; η → þ∞;

ð37Þ

where γb ¼ − sinðπbÞ½γ þH−b þ ψðbÞ� is a real increasing
function of b such that γ1=2 ¼ 4 ln 2 and γ1 ¼ π. Here, γ is
the Euler’s constant,Hn is the harmonic number of order n,
and ψðxÞ is the digamma function [53]. Therefore, fðηÞ
smoothly interpolates between the behaviors fðηÞ ∝ η2 for
η ≪ η� and fðηÞ ¼ 1 for η ≫ η� (see Fig. 2). This
analytical case, then, represents a smooth interpolation
of the Ratra discontinuous power-law case for p≃ −1.
Accordingly, we expect for the particle number the law
nk ∼ k−2 for small values of k and an “exponential” decay
for large wave numbers.
The shape of the Ratra potential follows from Eq. (36),

U0ðηÞ ¼
k2�

1þ coshðη=η�Þ
; ð38Þ

where we have defined k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
bð1 − bÞ

q
=jη�j.

A standard calculation gives, for the Bunch-Davies-
normalized out-ψ modes,

ψ ðoutÞ
k ðηÞ ¼ e−ikηffiffiffiffiffi

2k
p ð1þ eη=η� Þb

× 2F1ðb; b − 2ikη�; 1 − 2ikη�;−eη=η� Þ ð39Þ

b 0.5

b 0.9

30 20 10 0 10
0.0

0.5

1.0

1.5

2.0

L
og

10
f

FIG. 2. The smooth coupling fðηÞ in Eq. (36) as a function of
the conformal time for two different values of b. Dashed lines are
the corresponding asymptotic expansions in Eq. (37).

5It is also assumed that the (spatially flat, Friedmann-
Robertson-Walker) spacetime is slowly varying in the in- and
out-regions, limη→�∞

dn
dηn

_a
a ¼ 0, where aðηÞ is the expansion

parameter. This condition is automatically satisfied in (de Sitter
or power-law) inflation as well as in radiation and matter
dominated eras.
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and, for the Bunch-Davies-normalized in-ψ modes, the
expression in Eq. (6) with

αk ¼
coshð4πkη�Þ − cosð2πbÞ

2π2
Γð2ikη�ÞΓð1þ 2ikη�Þ

× Γðb − 2ikη�ÞΓð1 − b − 2ikη�Þ; ð40Þ

βk ¼ i
sinðπbÞ

sinhð2πkη�Þ
: ð41Þ

Equations (40) and (41) are precisely the Bogoliubov
coefficients defining the in-ψ modes in terms of the out-
ψ modes [a straightforward calculation shows that the
Bogoliubov condition (7) is satisfied]. Taking the square
modulus of βk we obtain the spectrum of the photons
created out from the vacuum,

nk ¼ sin2ðπbÞ
sinh2ð2πkη�Þ

: ð42Þ

For b ¼ 1 we have k� ¼ 0 so that U0ðηÞ ¼ 0, fðηÞ ¼ 1,

ψ ðin;outÞ
k ðηÞ ¼ e−ikη=

ffiffiffiffiffi
2k

p
, and in turn nk ¼ 0.

For small and large wave numbers, −kη� ≪ 1 and
−kη� ≫ 1, respectively, we find nk ∼ ð−kη�Þ−2 and
nk ∼ e−4πkjη�j, as we expected.

1. WKB approximation

Let us now apply the WKB approximation, which is
always valid for sufficiently large wave numbers, to the
case under consideration. The imaginary turning points in
the complex upper half-plane for the potential (38) are
easily found,

ηIðkÞ ¼ jη�j
�
arccosh

�
k2�
k2

− 1

�
þ 2πin

�
; ð43Þ

for k > k�=
ffiffiffi
2

p
and n ∈ N. In the limit k → ∞, we have

ηIð∞Þ ¼ πið1þ 2nÞjη�j. According to the general pre-
scription discussed in Sec. III A, we must take n ¼ 0, so
that, using Eq. (28), we obtain

nðWKBÞ
k ≃ e−4πkjη�j; ð44Þ

at the leading order in k=k� ∼ −kη� ≫ 1. The above WKB
result is in perfect agreement with the exact result (42) in
the large-wavenumber regime.

B. Numerical example

The analytical case discussed in the previous section
gives an example of smooth interpolation of the Ratra
discontinuous power-law case p≃ −1. The most important
case, that of scaling-invariant actual magnetic fields,
corresponds, however, to case p ¼ −2 (see [40]). We then
generalize the previous example by considering the cou-
pling function

fðηÞ ¼
�
2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eη=η�

p
Kð−eη=η� Þ

�
−2p

; ð45Þ

where, as before, η� < 0 is a free parameter, and KðmÞ is
the complete elliptic integral of the first kind [53]. Since

fðηÞ ¼
(	 η

η�þln 16

π


−2p þOðe−η=η� Þ; η → −∞;

1 − p
2
eη=η� þOðe2η=η�Þ; η → þ∞;

ð46Þ

fðηÞ smoothly interpolates between the behaviors fðηÞ ∝
η−2p for η ≪ η� and fðηÞ ¼ 1 for η ≫ η� (see Fig. 3).
The Ratra potential U0ðηÞ reads

U0ðηÞ ¼
k2�

1þ coshðη=η�Þ
upðηÞ; ð47Þ

where

upðηÞ ¼ 1 − ðpþ 1Þe−η=η�
�
1 −

Eð−eη=η�Þ
Kð−eη=η� Þ

�
2

; ð48Þ

k� ¼
ffiffiffiffi
jpj
8

q
=jη�j, and EðmÞ is the complete elliptic integral

of the second kind [53]. The case p ¼ −1 reduces to the
(analytically solvable) case (with b ¼ 1=2) of Sec. IVA.
The asymptotic expansions of the Ratra potential are

U0ðηÞ ¼
( pðpþ1Þ

ðηþη� ln 16Þ2 þOðe−η=η� Þ; η → −∞;

− p
4η2�

eη=η� þOðeŝη=η�Þ; η → þ∞:
ð49Þ

The equation of motion (3) for the ψ modes cannot be
integrated analytically for the general Ratra potential (47).
We then numerically integrate it by imposing the Bunch-
Davies boundary condition that the in-ψ mode reduces to

p 2

p 3 2
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FIG. 3. The smooth coupling fðηÞ in Eq. (45) as a function of
the conformal time for two different values of p. Dashed lines are
the corresponding asymptotic expansions in Eq. (46).
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the plane-wave solution e−ikη=
ffiffiffiffiffi
2k

p
in the in-region

η → −∞. In the same way, we may impose the Bunch-
Davies boundary condition in the out-region η → þ∞ to
find the out-ψ mode and then, using Eq. (6), we may obtain
the Bogoliubov coefficients. However, it is easier from a
numerical point of view to calculate the Bogoliubov
coefficients starting from the expressions

αk ¼ lim
η→þ∞

eikηffiffiffiffiffi
2k

p
�
kþ i

∂
∂η

�
ψ ðinÞ
k ; ð50Þ

βk ¼ lim
η→þ∞

e−ikηffiffiffiffiffi
2k

p
�
k − i

∂
∂η

�
ψ ðinÞ
k ; ð51Þ

which make use only of the in-ψ modes. Equations (50)
and (51) come from Eqs. (19) and (20), respectively, taking
the limit η → þ∞ and observing that in the out-

region ψ ðoutÞ
k ¼ e−ikη=

ffiffiffiffiffi
2k

p
.

In Fig. 4, we show the particle number nk ¼ jβkj2 for
two different values of p [we checked that the Bogoliubov
condition (7) holds]. Continuous lines in the small wave
number regime (−kη� ≪ 1) correspond to

nk ≃ 0.021ð−kη�Þ−3; ð52Þ

nk ≃ 0.022ð−kη�Þ−4; ð53Þ

for p ¼ −3=2 and p ¼ −2, respectively. The exponents of
these power laws agree with the results obtained in Ratra
discontinuous model [see, in particular, Eq. (12)]. For large
wave numbers (−kη� ≫ 1), instead, the continuous line is

nk ≃ 11e−4πkjη�j: ð54Þ

Such an exponential decay of the particle number agrees
well with the WKB solution discussed below.

1. WKB approximation

The imaginary turning points ηIð∞Þ ¼ πið1þ 2nÞjη�j
(n ∈ N) of the Ratra potential (38) are also imaginary
turning points of the potential (47) for p ≠ −2. This is
because the function upðηÞ tends to a nonvanishing con-
stant when η approaches ηIð∞Þ, limη→ηIð∞ÞupðηÞ ¼ 2þ p.
In the case p ¼ −2, instead, such a constant is zero and
one needs the next-to-leading order term in the expansion
of the imaginary turning points of (38), ηIðkÞ≃
ηIð∞Þ − i

ffiffiffi
2

p
k�=k. Inserting the above expression in

Eq. (48), we find that u−2 vanishes logarithmically as
u−2ðηIðkÞÞ≃ 8= lnðk=k�Þ in the limit k → ∞. The function
which multiplies upðηÞ in Eq. (47), instead, diverges
quadratically in k in the same limit. Accordingly, the
imaginary turning points of the Ratra potentials (38) and
(47) coincide in the limit k → ∞ also in the case p ¼ −2.
This result is confirmed by a direct numerical integration

of the equation defining the imaginary turning points of the
Ratra potential (47), U0ðηIðkÞÞ ¼ k2.
In Fig. 5, we show the imaginary part of the imaginary

turning point (with smallest positive imaginary part) for
two different values of p. For large values of k, the
imaginary part of ηIðkÞ approaches the value

Im½ηIð∞Þ�≃ πjη�j: ð55Þ

Using Eq. (28), then, we find that the particle number in
WKB approximation is given by Eq. (44) in the limit
k=k� ∼ −kη� ≫ 1, as in the (analytical) case of Sec. IVA.

V. CONCLUDING REMARKS

The Ratra model for the creation of magnetic fields
during inflation has received much interest in the last years.
This is primarily due to its simplicity and to its potential
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FIG. 4. The particle number nk as a function of kjη�j in the
Ratra model described by the coupling function (45). Continuous
lines refer to the asymptotic numerical solutions described in the
text [see Eqs. (52), (53), and (54)].
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FIG. 5. Imaginary part of the imaginary turning point ηIðkÞ as a
function of the wave number k in the model described by the
Ratra potential (47) for two different values of p.
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feature of explaining the origin of the observed galactic and
extragalactic large-scale magnetic fields.
In the original model, as well as in all subsequent variants

of it, the form of coupling function between the photon and
the inflaton plays the key role in the genesis of cosmological
magnetic fields. Such a nonstandard time-dependent cou-
pling, which is responsible for the breaking of the electro-
magnetic conformal invariance, has been always assumed to
instantaneously reduce to its standard constant value in
radiation era. Such a nonanalytical coupling could arise
only in particular inflationary models, where the inflaton, or
other background fields coupled to it, evolve discontinu-
ously, as for example in a first-order phase transition.
However, this in not the case for the Ratra and Ratra-like
models, since they are constructed and framed in a smoothly
evolving inflationary and reheated universe.
In this paper, we have investigated the consequences of

taking an analytical coupling function that smoothly
interpolates the (unphysical) discontinuous coupling usu-
ally used in the Ratra and Ratra-like models. Both using

particular smooth forms of the coupling and working in
WKB approximation, we have studied the behavior of the
inflation-produced photon spectrum at small and large
scales. We have found an exponential decay in the ultra-
violet part of such a spectrum, in contrast with the
(unphysical) power-law fall-off predicted in the discon-
tinuous case. At large cosmological scales, however, the
main results of the model remain unchanged in the
considered cases. Since only these scales are important
for cosmic magnetic fields, we conclude that the Ratra
model is still a viable mechanism of inflationary
magnetogenesis.
Nevertheless, it should be said that the form of the

coupling function used in this investigation as well as those
assumed in both the original work by Ratra and in its
developments do not have any solid theoretical and/or
phenomenological justification. Hence, as in the case of
(scalar field) inflation, the Ratra mechanism is just a
paradigm, although very elegant and attractive, in search
of a background particle physics model.
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