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Current measurements of the Higgs boson mass and top Yukawa coupling suggest that the effective
Higgs potential develops an instability below the Planck scale. If the energy scale of inflation is as high as
the grand unified theory (GUT) scale, inflationary quantum fluctuations of the Higgs field can easily
destabilize the standard electroweak vacuum and produce a lot of anti–de Sitter (AdS) domains. This
destabilization during inflation can be avoided if a relatively large nonminimal Higgs-gravity or inflaton-
Higgs coupling is introduced. Such couplings generate a large effective mass term for the Higgs, which can
raise the effective Higgs potential and suppress the vacuum fluctuation of the Higgs field. After primordial
inflation, however, such effective masses drops rapidly and the nonminimal Higgs-gravity or inflaton-
Higgs coupling can cause large fluctuations of the Higgs field to be generated via parametric resonance,
thus producing AdS domains in the preheating stage. Furthermore, thermal fluctuations of the Higgs field
cannot be neglected in the proceeding reheating epoch. We discuss the Higgs vacuum fluctuations during
inflation, preheating, and reheating, and show that the Higgs metastability problem is severe unless the
energy scale of the inflaton potential is much lower than the GUT scale.
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I. INTRODUCTION

With the discovery of the Higgs boson at the LHC, the
standard model has been completed, and elementary
particle physics has entered a new era. The recent mea-
surements of the Higgs boson mass, mh ¼ 125.09�
0.21ðstatÞ � 0.11ðsystÞ GeV [1–4] and top quark mass,
mt ¼ 173.34� 0.27ðstatÞ � 0.71ðsystÞ GeV [5] suggest
that the running of the quartic Higgs self-coupling λ
becomes negative, and the effective Higgs potential
becomes unstable at the scale ΛI ¼ 1010 ∼ 1011 GeV [6].
If the effective Higgs potential is unstable below the

Planck scale, our electroweak vacuum is metastable and
should eventually decay into the true vacuum through
quantum tunneling [7–9]. The time scale for this decay,
however, is longer than the age of the Universe, so it was
thought that the Higgs vacuum metastability does not
phenomenologically have any significant impact on the
observed universe [10–13]. However, recently it has been
argued that the electroweak vacuum instability during
inflation or at the end of inflation might threaten the
existence of the Universe [14–28]. Stochastic quantum
fluctuations produced during inflation can cause the Higgs
field value to grow as

hh2i≃H3t
4π2

; ð1Þ

where h is the value of the Higgs and H is the Hubble
expansion rate (or the Hubble scale). If the Higgs field
evolves beyond the instability scale ΛI before the end of
inflation, the Higgs field classically rolls down into the true
vacuum and anti–de Sitter (AdS) domains are formed,
which is potentially catastrophic.
Not all AdS domains generated during inflation threaten

the existence of our Universe [23–25], with the significance
highly depending on the number and the evolution of the
AdS domains. In Ref. [25], the authors discussed how AdS
domains evolve both during inflation and after the end
of inflation. The Higgs AdS domains can either shrink or
expand, eating other regions of the electroweak vacuum.
Although high-energy-scale inflation can lead to the gen-
eration of more expanding AdS domains during inflation,
such domains never take over all of the inflationary
dS space, because the inflationary expansion always
overcomes the expansion of the AdS domains. However,
after the inflationary epoch, although some AdS domains
harmlessly shrink, others expand and devour our whole
Universe. This indicates that the existence of AdS domains
in our observable universe is catastrophic, and so in this
paper we focus on the conditions for them not to be
generated.
The generation of Higgs AdS domains during inflation

can be suppressed by introducing a relatively large non-
minimal Higgs-gravity or inflaton-Higgs coupling. Such
couplings give rise to large inflationary effective mass
terms, which raise the effective Higgs potential and weaken
the Higgs vacuum fluctuations [17,21,25]. However, at the
end of the inflation, such mass terms drop rapidly, and
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become ineffective for stabilizing the Higgs field [21].
Nonminimal Higgs-gravity or inflaton-Higgs coupling can
also cause large Higgs fluctuations to be generated via
parametric resonance [27,28], thus producing a lot of AdS
domains in the preheating stage. Moreover, thermal Higgs
fluctuations are not negligible in the reheating epoch after
inflation. In this paper, we analyze the vacuum fluctuations
of the Higgs field during inflation, preheating, and reheat-
ing and show that the Higgs metastability is a serious
problem in the inflationary universe unless the energy scale
of the inflaton potential is much lower than the grand
unified theory (GUT) scale or the effective Higgs potential
is stabilized below the Planck scale. In this paper, we use
the reduced Planck mass, Mpl ¼ 2.4 × 1018 GeV.

II. INFLATIONARY HIGGS FLUCTUATIONS
AND HIGGS ADS DOMAINS

In this section, we discuss the evolution of the massless
Higgs field during inflation using the Fokker-Planck
equation, and determine the probability that Higgs AdS
domains are formed. In the large-field regime h ≫ v, where
v ¼ 246 GeV, the effective Higgs potential can be approxi-
mated by the following renormalization group (RG)-
improved tree-level expression1:

VeffðhÞ ¼
λeffðhÞ

4
h4; ð2Þ

where λeffðhÞ is the effective self-coupling including
the RG-improved couplings, the one-loop corrections.
The instability scale ΛI can be defined as the effective
self-coupling λeffðhÞ becomes negative at the scale. In
the RG-improved effective Higgs potential, the instability
scale is ΛI ≃ hmax where hmax defined as VeffðhÞ takes its
maximal value.2

When the Hubble scale H is smaller than the Higgs field
value at the maximum of the effective Higgs potential,
hmax, the Higgs field can tunnel into the true vacuum via the
Coleman-de Luccia instanton [32]. If the Hubble rate is as
large as the maximal Higgs field value hmax, the transition is
dominated by the Hawking-Moss instanton [33]. The
transition probability of the Higgs field during inflation
can also be obtained by statistical approaches using the
Fokker-Planck equation, with the result being approxi-
mately equal to that obtained using the Hawking-Moss
instanton [34].

The Fokker-Planck equation describes the evolution of
the probability Pðh; tÞ that the Higgs takes the value h in
one Hubble horizon-size region at cosmic time t, and takes
the following form:

∂P
∂t ¼ ∂2

∂h2
�
H3

8π2
P

�
þ ∂
∂h

�
V 0
effðhÞ
3H

P

�
; ð3Þ

where the prime 0 denotes the derivative with respect to the
field, i.e. V 0

effðhÞ ¼ dVeff
dh . According to Ref. [25], we may

ignore the gradient of the effective Higgs potential V 0
effðhÞ,3

with assuming that the field value is h ¼ 0 at t ¼ 0, which
gives

Pðh; tÞ ¼
ffiffiffiffiffiffiffiffi
2π

H3t

r
exp

�
−
2π2

H3t
h2
�
: ð4Þ

During inflation, if the Higgs in some region evolves to
values larger than ΛI, then it will roll into the true vacuum
and a potentially dangerous AdS region will be formed.
The survival probability of the electroweak vacuum at the
end of inflation is estimated to be [14,25]

Pðh < ΛI; NtotÞ≡
Z

ΛI

−ΛI

dhPðh; tendÞ; ð5Þ

¼ erf

� ffiffiffi
2

p
πΛI

H
ffiffiffiffiffiffiffiffi
Ntot

p
�
; ð6Þ

where tend denotes the time at the end of inflation, Ntot is
the total e-folding number, defined as Ntot ¼ H · tend, and
erfðxÞ is the error function, which for x ≫ 1 is approx-
imately given by

erfðxÞ≃ 1 −
1ffiffiffi
π

p
x
e−x

2

: ð7Þ

Note that the total e-folding number can be much larger
than the observable e-folding number Nhor, which is the
number of e-foldings before the end of inflation that the
largest observable scales left the horizon, i.e. we could have
Ntot ≫ Nhor.

4 This implies that our observable Universe is
only part of the whole Universe.
Pðh; tÞ in the Fokker-Planck equation describes the

probability distribution of the Higgs in one horizon-sized
region [35,36]. Inflation produces many such regions, and
our observable Universe contains e3Nhor of them. As such,
the survival probability can be estimated as

fPðh < ΛI; NtotÞge3Nhor >
1

2
; ð8Þ

1The effective Higgs potential is not gauge invariant, but
physical quantities extracted from the effective potential (Higgs
boson mass, S-matrix elements, tunneling rates) are gauge
invariant [29–31]. However, here we ignore the gauge depend-
ence of the effective Higgs potential for simplicity.

2If the effective Higgs potential has large effective mass terms
m2

effh
2=2 or includes one-loop thermal correction ΔVeffðh; TÞ at

the high temperature, the instability scale does not coincide with
hmax, i.e. hmax ≳ ΛI , and we cannot assume hmax ¼ ΛI .

3This assumption is reasonable for H2 ≳ 0.01V 00
eff.4The e-folding number that corresponds to when the

current horizon scale left the horizon is almost the same as that
associated with large-scale cosmic background radiation (CMB)
observations, and we have Nhor ≃ NCMB ≃ 60.
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which, using (6) and (7), can be approximately rewritten as�
1 −

H
ffiffiffiffiffiffiffiffi
Ntot

p

π
ffiffiffiffiffiffi
2π

p
ΛI

e
−

2π2Λ2
I

H2Ntot

�e3Nhor

>
1

2
: ð9Þ

If we set Nhor ¼ 60 and Ntot ¼ 103 in (9), we obtain the
following upper bound on the Hubble scale:

H
ΛI

< 1.1 × 10−2: ð10Þ

Alternatively, we can restrict H by using the probability
that the field rolls down into the true vacuum at the end of
inflation, Pðh > ΛI; NtotÞ, which is given as

Pðh > ΛI; NtotÞ ¼ 1 − Pðh < ΛI; NtotÞ; ð11Þ

≃ H
ffiffiffiffiffiffiffiffi
Ntot

p

π
ffiffiffiffiffiffi
2π

p
ΛI

e
−

2π2Λ2
I

H2Ntot : ð12Þ

Multiplying this by e3Nhor gives the number of AdS domains
in the local region corresponding to our observable
Universe. As such, the condition that there be no AdS
regions within the current horizon is expressed as

e3NhorPðh > ΛI; NtotÞ < 1; ð13Þ
which can be approximated as

e3NhorPðh > ΛI; NtotÞ ¼
H

ffiffiffiffiffiffiffiffi
Ntot

p

π
ffiffiffiffiffiffi
2π

p
ΛI

e
3Nhor−

2π2Λ2
I

H2Ntot : ð14Þ

Therefore, we have the upper bound on the Hubble scale,

H
ΛI

<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2

3NhorNtot

s
: ð15Þ

If we take Nhor ¼ 60 and Ntot ¼ 103 in (14), the upper
bound on the Hubble scale is numerically found to be

H
ΛI

< 1.1 × 10−2: ð16Þ

In Fig. 1, we plot the upper bound onH=ΛI as a function
of the total e-folding number Ntot, as determined by (13).
We assume that Nhor ¼ 60 and that the total e-folding
number is greater than Nhor, i.e. 60 ≤ Ntot. It is natural to
consider that the total e-folding number Ntot may be huge,
due to the stochastic nature of inflation, and the inflationary
Higgs vacuum fluctuations grow as time goes by.
Consequently, requiring the Higgs vacuum to remain stable
throughout inflation puts tight constraints on the Hubble
scale during inflation.
Although the AdS domains impact on the existence of

our observable Universe, the expansion of AdS domains
never takes over the expansion of inflationary dS space
[25], and therefore, it is impossible that one AdS domain
terminates the inflation on all the space of the Universe.
However, If the proportion of noninflating domains or the

AdS domains dominates all the space of the Universe
[24,37], the inflating space would crack, and inflation
comes to an end.

III. INFLATIONARY HIGGS VACUUM
FLUCTUATIONS DURING INFLATION

In the previous section we discussed the massless Higgs
vacuum fluctuations during inflation, and by solving the
Fokker-Planck equation we were able to determine the
probability for the formation of Higgs AdS domains. In
general, the inflationary Higgs fluctuations become as large
as the Hubble scale H during inflation. However, if the
Higgs field has a large effective mass, the Higgs vacuum
fluctuations are suppressed during inflation. Field fluctua-
tions in the massive case, particularly in the case where
m > 3H=2, have often been discussed using different
descriptions in the literature. In this section we introduce
mass terms for the Higgs field, determine its fluctuations,
calculate the probability for the formation of Higgs AdS
domains and obtain constraints on the model parameters by
requiring consistency with observations.

A. Fluctuations of light Higgs field

The Friedmann-Lemaître-Robertson-Walker metric is
given by

gμν ¼ diag

�
−1;

a2ðtÞ
1 − Kr2

; a2ðtÞr2; a2ðtÞr2 sin2 θ
�
; ð17Þ

where K is the curvature constant and a ¼ aðtÞ is the scale
factor. For simplicity we will take K ¼ 0. Then, the scalar
curvature is obtained as

R ¼ 6

��
_a
a

�
2

þ
�
ä
a

��
: ð18Þ

In a de Sitter universe where a ∝ eHt, the Ricci scalar is
estimated to be R≃ 12H2. We assume that the total scalar
potential for the inflaton and Higgs is given as follows:

FIG. 1. Plot of the upper bound on H=ΛI as a function of
the total e-folding number Ntot, as determined by (13). We set
Nhor ¼ 60 and 60 ≤ Ntot.
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Vðϕ; hÞ ¼ V infðϕÞ þ VeffðhÞ þ
1

2
ξh2Rþ 1

2
g2ϕ2h2; ð19Þ

where ϕ is the inflation field, ξ is the nonminimal Higgs-
gravity coupling constant, and g is the coupling constant
between h and ϕ. The Klein-Gordon equation for Fourier
modes of the Higgs field is given as

δḧk þ 3Hδ _hk þ
�
k2

a2
þ ξRþ g2ϕ2

�
δhk ¼ 0; ð20Þ

where we have assumed that we can neglect the contribu-
tion from VeffðhÞ in comparison with the other terms. A
finite value of ξ or g therefore generates an effective Higgs
mass, which during inflation is approximately given as

m2
eff ≃ 12H2ξþ g2ϕ2: ð21Þ

The additional Higgs mass can raise the effective Higgs
potential and suppress the vacuum fluctuation of the Higgs
field. The maximum of the Higgs potential gets shifted to
larger values of h.
We introduce the redefined field δσk which is related to

δhk as

δσk ¼ aδhk: ð22Þ

The Klein-Gordon equation for δσk takes the form

δσ00k þ
�
k2 −

1

τ2

�
ν2 −

1

4

��
δσk ¼ 0; ð23Þ

where the conformal time has been introduced and is
defined as dτ ¼ dt=a, and ν is defined to be

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−
m2

eff

H2

r
: ð24Þ

The general solution of Eq. (23) is expressed as

δσk ¼
ffiffiffiffiffiffi
−τ

p ½c1Hð1Þ
ν ð−kτÞ þ c2H

ð2Þ
ν ð−kτÞ�; ð25Þ

where Hð1Þ
ν∈CðxÞ and Hð2Þ

ν∈CðxÞ are Hankel functions of the
first and second kind.5 In order to determine the coefficients

c1 and c2, in the ultraviolet regime ð−kτ ≫ 1Þwe match the
solution with the positive-frequency plane-wave solution in
flat spacetime, e−ikτ=

ffiffiffiffiffi
2k

p
, which gives

c1 ¼
π

2
eiðνþ1

2
Þπ
2; c2 ¼ 0: ð26Þ

The choice of a particular set of coefficients c1, c2 is
equivalent to choosing the vacuum [38]. On superhorizon
scales ð−kτ ≪ 1Þ, the rescaled mode functions of the Higgs
take the form

δσk ¼
π

2
eiðνþ1

2
Þπ
2

ffiffiffiffiffiffi
−τ

p
Hð1Þ

ν ð−kτÞ; ð27Þ

¼ eiðν−1
2
Þπ
22ν−

3
2
ΓðνÞ

Γð3=2Þ
1ffiffiffiffiffi
2k

p ð−kτÞ12−ν: ð28Þ

If we consider the case where the Higgs mass is light, i.e.
meff ≤ 3H=2, the absolute value of δhk is given as

jδhkj ¼
Hffiffiffiffiffiffiffi
2k3

p 2ν−
3
2
ΓðνÞ

Γð3=2Þ
k
aH

�
k
aH

�1
2
−ν
;

≃ Hffiffiffiffiffiffiffi
2k3

p
�

k
aH

�3
2
−ν
: ð29Þ

Integrating over superhorizon modes we obtain the variance
of the Higgs field fluctuations a

hh2i ¼
Z

aH

H
jδhkj2

d3k
ð2πÞ3 ; ð30Þ

≃ 3H4

8π2m2
eff

ðmeff ≪ 3H=2Þ: ð31Þ

Next we assume that the Higgs probability distribution
function is Gaussian, i.e.

Pðh; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhh2i

p exp

�
−

h2

2hh2i
�
: ð32Þ

By using Eq. (5), the probability that the standard electro-
weak vacuum survives can be obtained as

Pðh < hmax; NtotÞ≡
Z

hmax

−hmax

dhPðh; tendÞ; ð33Þ

¼ erf

�
hmaxffiffiffiffiffiffiffiffiffiffiffi
2hh2i

p �
: ð34Þ

On the other hand, the probability that the Higgs falls into
the true vacuum is expressed as

5The Hankel functions of the first kind asymptotically
behave as

Hð1Þ
ν∈Cðx ≫ 1Þ ∼

ffiffiffiffiffi
2

πx

r
eiðx−π

2
ν−π

4
Þ;

Hð1Þ
ν∈Rðx ≪ 1Þ ∼

�
−
i
π

�
ΓðνÞ

�
1

2
x

�
−ν
;

Hð1Þ
ν∈Cðx ≪ 1Þ ∼ i

πν

�
e−iπνΓð1 − νÞ

�
1

2
x

�
ν

− Γð1þ νÞ
�
1

2
x

�
−ν
�
:
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Pðh > hmax; NtotÞ ¼ 1 − erf

�
hmaxffiffiffiffiffiffiffiffiffiffiffi
2hh2i

p �
; ð35Þ

≃
ffiffiffi
2

π

r ffiffiffiffiffiffiffiffiffi
hh2i

p
hmax

e
−h2max
2hh2i: ð36Þ

Imposing the condition shown in (13), we obtain the
relation

hh2i
h2max

<
1

6Nhor
: ð37Þ

If we substitute hh2i from Eq. (31) into this relation, we
find the upper bound on H to be

H
hmax

<
2πmeff

3H
ffiffiffiffiffiffiffiffiffi
Nhor

p ; ð38Þ

which is the same as the constraint given in Ref. [25]. We
plot this line in Fig. 2, where we assume hmax ∼ ΛI because
of the small nonminimal coupling ξ and it is labeled by
“Inflation Stage.”

B. Fluctuations of massive Higgs field

In this subsection, we consider the case of a large
effective Higgs mass, namely meff > 3H=2. We define ~ν as

~ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

eff

H2
−
9

4

r
: ð39Þ

On superhorizon scales, the rescaled Higgs fluctuations are
given by

δσk ¼
π

2
eiði~νþ1

2
Þπ
2

ffiffiffiffiffiffi
−τ

p
Hð1Þ

i~ν ð−kτÞ: ð40Þ

The absolute value of δσk is obtained as

jδσkj≃ 1ffiffiffiffiffi
2k

p ð−kτÞ1=2 e
π
2
~νffiffiffiffiffiffi

2π
p

~ν
jΓð1 − i~νÞj: ð41Þ

Using the relation jΓð1 − iyÞj2 ¼ πy= sinh ðπyÞ, the fluc-
tuations of the massive Higgs field are estimated to be

jδhkj2 ≃ 1

2a3 ~νH
: ð42Þ

As such, the variance of the vacuum fluctuations during
inflation is given as

hh2i ¼
Z

aH

H
jδhkj2

d3k
ð2πÞ3 ≃

H2

12π2 ~ν
; ð43Þ

≈
H3

12π2meff
: ð44Þ

Inflationary effective mass terms thus lift the effective
Higgs potential and suppress the Higgs vacuum fluctua-
tions. Substituting the above result into (37), in the case
of a massive Higgs field the requirement that our
observable Universe contains no AdS domains gives
us the condition

H
hmax

<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2meff

HNhor

s
: ð45Þ

The constraint on the nonminimal coupling ξ can be
estimated by those conditions shown in (38) and (45). If we
assume meff ¼

ffiffiffiffiffiffiffi
12ξ

p
H, we obtain a lower bound on the

FIG. 2. Constraints onH=ΛI as a function of the nonminimal coupling ξ. We have plotted the lines shown in (38) and (52). We took the
effective mass to be meff ¼

ffiffiffiffiffiffiffi
12ξ

p
H and set Nhor ¼ Ntot ¼ 60. In the left panel we neglect the constraint coming from the parametric

amplification of the Higgs field in order to remove model dependence. On the other hand, in the right panel we include the constraint
coming from broad resonance during the preheating stage, taking the quadratic chaotic inflation model V infðϕÞ≃ 1

2
m2

ϕϕ
2 and the

Hubble scale H ≃ 1013 GeV as an example.
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nonminimal coupling as ξ > 0.03 using the fact that
hmax ≃ 10meff .

6 This constraint corresponds to the vertical
line in Fig. 2. In the case of inflaton-Higgs coupling, where
meff ¼ gϕ, we can similarly obtain a constraint on g, but it
will depend on the inflaton field value ϕ and the Hubble
scale H.
While inflationary effective masses can prevent the

Higgs from evolving into the true vacuum during inflation,
after inflation they become ineffective, and the Higgs field
fluctuations generated as a result of resonant preheating
may destabilize the standard electroweak vacuum. We will
discuss this problem in the next section.

IV. HIGGS FLUCTUATIONS AFTER INFLATION
AND DURING THE PREHEATING STAGE

After the end of inflation, the inflaton field ϕ oscillates
near the minimum of its potential and produces a huge
amount of elementary particles that interact with each
other and eventually form a thermal plasma. The reheating
process is generally classified into several stages. In the
first stage, the classical, coherently oscillating inflaton
field ϕ may give rise to the production of massive
bosons due to parametric resonance. In most cases, this
first stage occurs extremely rapidly. This nonthermal
period is called preheating [39], and is different from
the subsequent stages of reheating and thermalization.
Parametric resonance in the preheating stage may some-
times produce topological defects or lead to nonthermal
phase transitions [40].
In Ref. [27], the authors discussed the resonant produc-

tion of Higgs fluctuations after inflation in the case that the
Higgs is nonminimally coupled to gravity. However,
the preheating dynamics is extremely complicated, and it
is difficult to estimate analytically the Higgs vacuum
fluctuations during the preheating stage.7 In this section,
we numerically analyze the Higgs fluctuations after infla-
tion and during the preheating stage. After inflation, the
rescaled Higgs mode solution is no longer given by

Eq. (25).8 Instead, we use the WKB approximation and
obtain the variance of the massive Higgs fluctuations which
correspond with the result given by Eq. (44).
The Klein-Gordon equation for k modes of the Higgs

field is given as

δḧk þ 3Hδ _hk þ
�
k2

a2
þm2

eff

�
δhk ¼ 0; ð46Þ

which can be rewritten in the useful form

d2ða3=2δhkÞ
dt2

þ
�
k2

a2
þm2

eff −
9

4
H2 −

3

2
_H

�
ða3=2δhkÞ ¼ 0:

ð47Þ

If we consider the massive Higgs field case, i.e.
meff > 3H=2, then the Higgs mode functions are given by

δhk ≃ e−iωkðtÞ·t

a3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðtÞ

p : ð48Þ

where ω2
k ≃ k2

a2 þm2
eff and we have assumed the adiabatic

condition _ωkðtÞ=ω2
kðtÞ ≪ 1 is satisfied, and ω2

kðtÞ > 0.
As such, the amplitude jδhkj2 after inflation is estimated
to be [41]

jδhkj2 ≃ 1

2a3ωk
: ð49Þ

Hence, the variance of the massive Higgs fluctuations
which are outside the Hubble radius after inflation is given
as

hh2iend ¼
1

2π2

Z
aendHend

0

k2jδhkj2dk; ð50Þ

≃ H3
end

12π2meff
: ð51Þ

This can be used as an estimate for the minimum
amplitude of the homogeneous Higgs field after inflation.
The above Higgs fluctuations are consistent with the result

6The total Higgs potential during inflation can be approxi-
mated by

VeffðhÞ≃ 1

2
m2

effh
2

�
1 −

1

2

�
h

hmax

�
2
�
;

where hmax is expressed to be

hmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−
m2

eff

λeff

s
:

Our assumption hmax ≃ 10meff is numerically valid for the
RG-improved effective potential.

7The authors of Ref. [28] gave a comprehensive study of the
parametric resonance of the nonminimal coupling ξ or the
inflaton-Higgs coupling g by using the lattice simulations, and
their results are consistent with ours.

8In a de Sitter background, the Klein-Gordon equation for δσk
takes the form

δσ00k þ
�
k2 −

1

τ2

�
2 −

m2
eff

H2

��
δσk ¼ 0:

However, during the preheating period, if we assume that the
inflaton potential is quadratic then the Universe behaves like that
of a matter-dominated universe, in which case the Klein-Gordon
equation takes the form

δσ00k þ
�
k2 þm2

effτ
4 −

2

τ2

�
δσk ¼ 0:
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given by Eq. (44)9 and exponentially amplified by para-
metric resonance. If we substitute Eq. (51) into (37), we
obtain the constraint

Hend

ΛI
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2meff

NhorHend

s
: ð52Þ

Note that the effective mass [meff ≃
ffiffiffiffiffiffiffiffiffiffiffi
ξRðtÞp 10 or

meff ≃ gϕðtÞ] decreases and sometimes disappears during
the preheating period. Therefore, the effective mass cannot
stabilize the effective Higgs potential VeffðhÞ, and we can
assume hmax ≃ ΛI .
Let us consider the amplification of the Higgs vacuum

fluctuations via parametric resonance. For simplicity, we
consider chaotic inflation with a quadratic potential as an
example, i.e.

V infðϕÞ ¼
1

2
m2

ϕϕ
2; ð53Þ

where mϕ ≃ 7 × 10−6Mpl. In the chaotic inflation scenario,
inflation occurs at super-Planckian field values, ϕ > 5Mpl.
Primordial density perturbations relevant for the CMB are
produced at around ϕ ∼ 15Mpl, and inflation terminates at
ϕ ∼ 3Mpl. After inflation, the inflaton field oscillates as

ϕðtÞ ¼ ΦðtÞ sinmϕt; ð54Þ

ΦðtÞ ¼
ffiffiffi
8

3

r
Mpl

mϕt
: ð55Þ

When the inflaton field oscillates, the effective masses of
the fluctuations of h evolve in a highly nonadiabatic way,
which leads to them being produced explosively via para-
metric resonance.
The Klein-Gordon equation for the Higgs field given in

Eq. (20) can be rewritten as

d2ða3=2δhkÞ
dt2

þ
�
k2

a2
þ g2ϕ2 þ 1

M2
pl

�
3

8
− ξ

�
_ϕ

−
1

M2
pl

�
3

4
− 4ξ

�
VðϕÞ

�
ða3=2δhkÞ ¼ 0: ð56Þ

Equation (56) can be reduced to the well-known Mathieu
equation as follows:

d2ða3=2δhkÞ
dz2

þ ðAk − 2q cos 2zÞða3=2δhkÞ ¼ 0; ð57Þ

where z ¼ mϕt and Ak and q are given as

Ak ¼
k2

a2m2
ϕ

þ g2Φ2ðzÞ
2m2

ϕ

þ Φ2ðzÞ
2M2

pl

ξ; ð58Þ

q ¼ 3Φ2ðzÞ
4M2

pl

�
ξ −

1

4

�
þ g2Φ2ðzÞ

4m2
ϕ

: ð59Þ

The properties of the solutions to the Mathieu equation
can be classified using a stability/instability chart. The
solutions of the Mathieu equation show broad resonance
when q ≫ 1 or narrow resonance when q < 1. In the
context of preheating, Ak and q are dependent on z due to
the expansion of the Universe, making it very difficult
to derive analytical solutions. However, we can roughly
estimate δhk by using the Floquet exponent μk. In the broad
resonance regime, where q ≫ 1, parametric resonance
amplifies the Higgs vacuum fluctuation after inflation,
giving [39,42]

hh2i ¼ hh2iend e2πμkmϕt

�
meffðtendÞ
meffðtÞ

��
HðtÞ
Hend

�
3

; ð60Þ

where the Floquet exponent μk is given as

μk ≃ 1

2π
ln ð1þ 2e−πκ

2Þ; κ2 ¼ Ak − 2q
2

ffiffiffi
q

p : ð61Þ

We can take κ2 ≪ 1 for all modes outside the horizon scale
after inflation. Then we obtain μk ≃ 1

2π ln 3≃ 0.17. The
broad resonance requires q ≫ 1. Therefore, the period

of the broad resonance is mϕt ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4
ðξ − 1

4
Þ þ g2M2

pl

4m2
ϕ

r
.

Then narrow resonance follows the broad resonance.

A. Parametric resonance via nonminimal
gravity-Higgs coupling ξ

In this subsection, we solve numerically the Mathieu
equation in the case of geometric preheating [43,44], where
m2

eff is dominated by the ξR term. We call this the
ξ-resonance scenario.11 In this case Ak and q are given by

Ak ≃ k2

a2m2
þ Φ2ðzÞ

2M2
pl

ξ; q≃ 3Φ2ðzÞ
4M2

pl

�
ξ −

1

4

�
: ð62Þ

9Note that if we consider the light Higgs field case, i.e.
meff < 3H=2, the Higgs vacuum fluctuations at the end of
inflation are consistent with the result given by Eq. (31).

10The scalar curvature RðtÞ is written as

RðtÞ ¼ 1

M2
pl

½4VðϕÞ − _ϕ2�:

11In the ξ-resonance scenario, in order to obtain parametric
resonance we require ξ ≫ 1 or ξ < 0. The parametric amplifi-
cation obtained for ξ < 0 is extremely strong compared with that
obtained for ξ ≫ 1 [43,44], but here we only consider positive ξ,
as we are interested in the case where the effective mass acts so as
to stabilize the Higgs during inflation.
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In Fig. 3 we show the evolution of the variance of the Higgs
vacuum fluctuations as obtained by numerically solving
Eq. (57) with Ak and q as given above. We take three
different values for the nonminimal coupling, namely
ξ ¼ 101.4; 101.6 and 101.8. We find that broad resonance
can occur strongly for ξ > 101.6. We see that the non-
minimal coupling ξ is constrained to be ξ < 101.6 in order
not to produce the Higgs AdS domains via the parametric
resonance.

B. Parametric resonance via inflaton-Higgs coupling g

In this subsection we solve numerically the Mathieu
equation in the standard preheating scenario, where m2

eff is
dominated by the g2ϕ2 term. We call this the g-resonance
scenario. In this case Ak and q are given by

Ak ≃ k2

a2m2
ϕ

þ g2Φ2ðzÞ
2m2

ϕ

; q≃ g2Φ2ðzÞ
4m2

ϕ

: ð63Þ

In Fig. 4 we show the evolution of the variance of the Higgs
vacuum fluctuations as obtained by numerically solving
(57) with Ak and q given as above. For the sake of
simplicity, here we have neglected backreaction effects,
which we comment further on below. We consider three
different values for the inflaton-Higgs coupling, namely
g ¼ 10−4.4; 10−4 and 10−3.6. Broad resonance can occur
strongly for g > 10−4. However, g is restricted in order
not to give rise to large radiative corrections to the inflaton
potential [45],

ΔV inf ≃ g4

64π2
ϕ4 log

g2ϕ2

m2
ϕ

: ð64Þ

Thus, for quadratic chaotic inflation-type models, the
inflaton-Higgs coupling is constrained to be g < 10−3.
Because g resonance can occur in the parameter range
10−4 < g < 10−3, we find an upper bound on g as g < 10−4.

In the early stages of parametric resonance, our semi-
classical approximation is valid. On the other hand, in the
later stages, backreaction effects and effects of scattering
among the created particles become important (see, e.g.
Ref. [46]). In this case, our semiclassical approximationmay
break down. However, well before the backreaction effects
become significant, the generated fluctuations of the Higgs
field immediately grow and exceed the hill of the effective
potential due to the parametric resonance. Actually, we
can estimate the maximal Higgs fluctuation hh2i ∼ hϕ2i ∼
m2

ϕ=g
2 where backreaction effects terminate the amplifica-

tion of the Higgs fluctuations. The maximal Higgs fluc-
tuation can be estimated as

ffiffiffiffiffiffiffiffiffi
hh2i

p
∼mϕ=g ∼ 1017 GeV

where mϕ ≃ 7 × 10−6Mpl and g ∼ 10−4 and the generated
Higgs fluctuations immediately overcomes the instability
scale ΛI before the backreaction effects become significant.
Therefore, the backreaction effects cannotmake a significant
contribution to the electroweak vacuum stability.
In Fig. 2, we plot the upper bounds on H=hmax as a

function of the nonminimal gravity-Higgs coupling ξ. We
have assumed that the effective mass is meff ¼

ffiffiffiffiffiffiffi
12ξ

p
H.

In the left panel, we do not include the constraint on ξ
coming from parametric amplification of the Higgs during
preheating, as this constraint is model dependent, i.e. it
depends on how the inflaton behaves after inflation. On
the other hand, in the right panel we have included the
constraint on ξ arising from broad resonance during
the preheating stages. For simplicity, here we assume the
quadratic chaotic inflation model with V infðϕÞ ¼ 1

2
m2

ϕϕ
2,

which gives us the constraint ξ < 101.6.

V. THERMAL FLUCTUATIONS DURING
THE REHEATING ERA

During the reheating stage, most of the inflaton energy is
transferred to the thermal energy of elementary particles.

FIG. 3. Higgs vacuum fluctuation variance in the ξ-resonance
scenario. In the lower, middle and upper curves we have used the
nonminimal couplings ξ ¼ 101.4, ξ ¼ 101.6 and ξ ¼ 101.8 respec-
tively. Broad resonance occurs strongly for ξ > 101.6.

FIG. 4. Higgs vacuum fluctuation variance in the g-resonance
scenario, where we ignore backreaction effects. In the lower,
middle and upper curves we have used the inflaton-Higgs
coupling g ¼ 10−4.4; 10−4 and 10−3.6 respectively. Broad reso-
nance occurs strongly for g > 10−4.

KAZUNORI KOHRI and HIROKI MATSUI PHYSICAL REVIEW D 94, 103509 (2016)

103509-8



The reheating process finishes approximately when
H ¼ Γtot. Therefore, the reheating temperature can be
expressed as

Treh ¼
�

90

π3g�

�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MplΓtot

p
; ð65Þ

where g� is the number of relativistic degrees of freedom.12

Thermal effects in the reheating can raise the effective
potential of the Higgs field. The RG-improved effective
Higgs potential at finite temperature is given by the familiar
zero-temperature corrections and the thermal corrections as

Veffðh; TÞ ¼ VeffðhÞ þ ΔVeffðh; TÞ: ð66Þ
The one-loop thermal corrections to the effective Higgs
potential is given as [47–49],

ΔVeffðh;TÞ ¼
X

i¼W;Z;t

niT4

2π2

Z
∞

0

dkk2 ln

�
1∓ e

−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

i
ðhÞ

T2

q �
;

¼
X
i¼W;Z

niJBðmi;TÞ þ
X
i¼t

niJFðmi;TÞ: ð67Þ

Here we concentrate on the contributions fromW bosons, Z
bosons and top quarks. JB (JF) is the thermal bosonic
(fermionic) function, miðhÞ is the background-dependent
mass of W, Z and t.
In Fig. 5 and Fig. 6, we plot the RG-improved effective

Higgs potential at finite temperature for a range of temper-
atures. In Fig. 5, we plot the potential for T ¼ 0 GeV and
109.0 GeV ≤ T ≤ 1010.5 GeV. In Fig. 6, we plot the poten-
tial for 1014.0 GeV ≤ T ≤ 1015.0 GeV. From the figures, we
see that although the high-temperature effects raise the
effective potential, it cannot be stabilized up to high energy
scales unless new physics emerges below the Planck scale.
Therefore, if the coherent Higgs field gets over hmax during
inflation or preheating stage, the generated coherent Higgs
field cannot go back to the electroweak vacuum by the
high-temperature effects.
In the high-temperature limit (T ≫ mi), the thermal

bosonic (fermionic) function JB (JF) can be approximately
written as

JBðmi; TÞ≃ −
π2T4

90
þm2

i T
2

24
−
m3

i T
12π

−
m4

i

64π2
log

m2
i

aBT2
;

JFðmi; TÞ≃ 7

8

π2T4

90
−
m2

i T
2

48
−

m4
i

64π2
log

m2
i

aFT2
; ð68Þ

where log aB ≃ 5.408 and logaF ≃ 2.635. Here we omit
the terms which are independent of h. As such, the

one-loop thermal corrections to the effective Higgs poten-
tial in the high-temperature limit (T ≫ mi) is approxi-
mately written as

ΔVeffðh; TÞ≃ 1

2
cTT2h2 þ 1

3
dTTh3 þ

1

4
λTh4; ð69Þ

where

cT ¼ 3g2 þ g02 þ 4y2t
16

; dT ¼ 6g3 þ 3ðg2 þ g02Þ3=2
32π

;

λT ¼ 3

64π2

�
−
g4

2
log

m2
WðhÞ
aBT2

−
ðg2 þ g02Þ2

4
log

m2
ZðhÞ

aBT2

þ 4y4t log
m2

t ðhÞ
aFT2

�
: ð70Þ

The variance of the thermal fluctuations of the Higgs is
given as [34,50–52]

hh2iT ¼ 1

2π2

Z
∞

0

k2dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

eff

p
½e

ffiffiffiffiffiffiffiffiffiffi
k2þm2

eff

p
T − 1�

;

≃ T2

12
−
meffT
4π

; ð71Þ

FIG. 5. RG-improved effective Higgs potential at finite temper-
ature for T ¼ 0 GeV and 109.0 GeV ≤ T ≤ 1010.5 GeV on the
present best-fit values of mh and mt.

FIG. 6. RG-improved effective Higgs potential at finite temper-
ature for 1014.0 GeV ≤ T ≤ 1015.0 GeV. The maximum of the
Higgs potential is hmax ¼ 2.62T for T ¼ 1015.0 GeV.

12When the effective mass of the inflaton field ϕ is too small to
start to oscillate, the thermal bath is not produced. Then there
would be a time lag for the production of the thermal bath until
the beginning for the oscillation of the inflaton field ϕ [21]. In this
case, we can adopt the constraints obtained in (52).

HIGGS VACUUM METASTABILITY IN PRIMORDIAL … PHYSICAL REVIEW D 94, 103509 (2016)

103509-9



where the thermal Higgs mass is meff ¼ c1=2T T and numeri-
cally we obtain cT ≃ 0.2.
We can estimate the relation with the thermal Higgs

fluctuation and the physical probability of the Higgs AdS
domains shown in (37) as

hh2iT
h2maxðTÞ

<
1

6Nhor
: ð72Þ

The maximum of the Higgs potential is moved out to larger
values of h when thermal corrections are taken into
account, and numerically we have found that hmax can
be well estimated as hmaxðTÞ ¼ 2 ∼ 6T. In Fig. 7, we show
hmaxðTÞ=T by using the RG-improved Higgs potential at
the high temperature.
For simplicity, we consider the following condition:

6Nhorhh2iT
h2maxðTÞ

< 1: ð73Þ

In Figs. 7 and 8, we assume Nhor ¼ 60
13 and plot

6Nhorhh2iT=h2maxðTÞ by using the RG-improved effective
Higgs potential at the high temperature. When we set
Nhor ¼ 60, the constraint (73) gives us the following upper
bound on the temperature T:

T < 2.4 × 1010 GeV: ð74Þ

It was previously thought that thermal Higgs fluctuations
do not destabilize the standard electroweak vacuum
because the probability for the thermal vacuum decay of
one Hubble-sized region via the instanton methods is
sufficiently small [53–56]. However, after inflation, there
are the large classical Higgs field and the early universe
contains huge number of independent Hubble-horizon

regions. Therefore, the total decay probability due to the
thermal Higgs fluctuations would be worse. Although, in
this paper, we do not conclude whether the variance of the
thermal Higgs fluctuation destabilizes or not, it is necessary
to investigate thoroughly the thermal vacuum metastability
during the reheating era. We plan to perform a detailed
analysis of the stochastic approach and instanton methods
in a separate paper. In the rest of this section, we assume
that the variance of thermal Higgs fluctuations destabilize
the standard electroweak vacuum and show how the
Hubble scale H is restricted in this case.
It is known that the reheating temperature Treh is not

the maximal temperature, unless the reheating process is
instantaneous. Just after inflation, although still subdomi-
nant, the decay products from the oscillating inflaton field
can become thermalized and produce a so-called dilute
plasma. Then, the maximal temperature Tmax can be
estimated by [57–59]

Tmax ¼
�
3

8

�
2=5

�
40

π2

�
1=8 g1=8� ðTrehÞ

g1=4� ðTmaxÞ
M1=4

pl H1=4
endT

1=2
reh ; ð75Þ

with the reduced Planck mass Mpl ¼ 2.4 × 1018 GeV and
g�ðTÞ is the number of relativistic degrees of freedom at the
temperature T. By using constraints (74) and assuming
Treh < Tmax, we can obtain the upper bound on the Hubble
scale H as a function of Treh.

VI. CONCLUSION

In this paper, we have discussed the stability of the
Higgs vacuum during primordial inflation, preheating, and
reheating. In the absence of any corrections to the Higgs
potential, inflationary vacuum fluctuations of the Higgs
field can easily destabilize the standard electroweak
vacuum and produce a lot of AdS domains. If a relatively
large nonminimal Higgs-gravity coupling or inflaton-Higgs
coupling is introduced, a sizable effective mass term is

FIG. 7. Plot of hmaxðTÞ=T by using RG-improved effective
Higgs potential at finite temperature.

FIG. 8. We set Nhor ¼ 60 and plot 6Nhor< h2 >T=h2maxðTÞ by
using the RG-improved Higgs potential at the high temperature.
We obtain the constraint of the temperature T < 2.4 × 1010 GeV.

13e3Nhor corresponds to the physical volume of our Universe at
the end of the inflation.
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induced, which raises the effective Higgs potential and
weakens the Higgs field fluctuations. Therefore, it is
possible to suppress the formation of Higgs AdS domains
during inflation. However, after inflation, such effective
masses are ineffective for stabilizing the large Higgs field.
Moreover, nonminimal Higgs-gravity coupling and infla-
ton-Higgs coupling can also give rise to the generation
of large Higgs fluctuations after inflaton via parametric
resonance. Hence, such couplings cannot suppress the
formation of Higgs AdS domains. We find that the para-
metric resonance during preheating excludes values of the
nonminimal coupling and inflaton-Higgs coupling as
ξ < 101.6 and g < 10−4. Furthermore, thermal Higgs fluc-
tuations during the reheating stage cannot be neglected on
the electroweak vacuum metastability. Our results show
that the thermal Higgs fluctuations produce AdS domains
in the reheating stage unless T < 2.4 × 1010 GeV. We
conclude that through the epochs of inflation, preheating
and reheating, a lot of Higgs AdS domains are inevitably
produced unless the energy scale of the inflaton potential is
much smaller than the GUT scale, or the effective Higgs
potential is stabilized below the Planck scale.
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APPENDIX: RG-IMPROVED EFFECTIVE
POTENTIAL

In this appendix we provide the RG-improved effective
potential for the Higgs [55,60,61], which is written in the
MS scheme and in the ’t Hooft-Landau gauge as

VeffðhÞ ¼ V treeðhÞ þ V1−loopðhÞ: ðA1Þ

The improved tree-level correction to the effective Higgs
potential take the form,

V treeðhÞ ¼
1

4
λðtÞh4ðtÞ; ðA2Þ

where the running Higgs field is hðtÞ ¼ GðtÞh. The wave
function renormalization factorGðtÞ is given in terms of the
anomalous dimension γ as

GðtÞ ¼ exp

�
−
Z

t

0

γðt0Þdt0
�
: ðA3Þ

The one-loop correction to the effective Higgs potential
at zero temperature is

V1−loopðhÞ ¼
X

i¼W;Z;t

ni
64π2

m4
i ðhÞ

�
ln
m2

i ðhÞ
μ2ðtÞ − Ci

�
; ðA4Þ

where the number of degrees of freedom ni; i ¼ W, Z, t,
and the coefficients Ci; i ¼ W, Z, t are given by

nW ¼ 6; nZ ¼ 3; nt ¼ −12;

CW ¼ CZ ¼ 5=6; Ct ¼ 3=2: ðA5Þ

The masses of W, Z and t depend on the background
Higgs field value h as follows:

m2
WðhÞ ¼

g2ðtÞ
4

h2ðtÞ; ðA6Þ

m2
ZðhÞ ¼

g2ðtÞ þ g02ðtÞ
4

h2ðtÞ; ðA7Þ

m2
t ðhÞ ¼

y2t ðtÞ
2

h2ðtÞ; ðA8Þ

where g, g0 and yt are the SUð2ÞL, Uð1ÞY , and top Yukawa
couplings, respectively.
We calculate the β functions and the anomalous dimen-

sion γ to two-loop order in the current study. The β
functions for a generic coupling parameter X are defined
through the relation

dXðtÞ
dt

¼
X
i

βðiÞX : ðA9Þ

The β functions and anomalous dimension γ at one- and
two-loop order are given as follows [62–68]:

βð1Þλ ¼ 1

ð4πÞ2
�
λð−9g2 − 3g02 þ 12y2t Þ þ 24λ2 þ 3

4
g4 þ 3

8
ðg2 þ g02Þ2 − 6y4t

�
; ðA10Þ

βð1Þyt ¼ 1

ð4πÞ2
�
9

2
y3t þ yt

�
−
9

4
g2 −

17

12
g02 − 8g2s

��
; ðA11Þ
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βð1Þg ¼ 1

ð4πÞ2
�
−
19

6
g3
�
; βð1Þg0 ¼ 1

ð4πÞ2
�
41

6
g03

�
; βð1Þgs ¼ 1

ð4πÞ2 ½−7g
3
s �; ðA12Þ

βð2Þλ ¼ 1

ð4πÞ4
�
−312λ3 − 144λ2y2t þ 36λ2ð3g2 þ g02Þ − 3λy4t þ λy2t

�
45

2
g2 þ 85

6
g02 þ 80g2s

�

−
73

8
λg4 þ 39

4
λg2g02 þ 629

24
λg04 þ 30y6t − 32y4t g2s −

9

4
y2t g4 −

8

3
y4t g02

þ 21

2
y2t g2g02 −

19

4
y2t g04 þ

305

16
g6 −

289

48
g4g02 −

559

48
g2g04 −

379

48
g06

�
; ðA13Þ

βð2Þyt ¼ 1

ð4πÞ4
�
yt

�
−12y4t þ y2t

�
225

16
g2 þ 131

16
g02 þ 36g2s − 12λ

�
þ 1187

216
g04

−
3

4
g2g02 þ 19

9
g02g2s −

23

4
g4 þ 9g2g2s − 108g4s þ 6λ2

��
; ðA14Þ

βð2Þg ¼ 1

ð4πÞ4
�
g3
�
35

6
g2 þ 3

2
g02 þ 12g2s −

3

2
y2t

��
; ðA15Þ

βð2Þg0 ¼ 1

ð4πÞ4
�
g03

�
9

2
g2 þ 199

18
g02 þ 44

3
g2s −

17

6
y2t

��
; ðA16Þ

βð2Þgs ¼ 1

ð4πÞ4
�
gs3

�
9

2
g2 þ 11

6
g02 − 26g2s − 2y2t

��
; ðA17Þ

γð1Þ ¼ 1

ð4πÞ2
�
3y2t −

9g2

4
−
3g02

4

�
; ðA18Þ

γð2Þ ¼ 1

ð4πÞ4
�
6λ2 −

27

4
y4t þ

5

2

�
9

4
g2 þ 17

12
g02 þ 8g2s

�
y2t −

271

32
g4 þ 9

16
g2g02 þ 431

96
g04

�
: ðA19Þ
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