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Unprecedentedly precise cosmic microwave background (CMB) data are expected from ongoing and
near-future CMB stage III and IV surveys, which will yield reconstructed CMB lensing maps with effective
resolution approaching several arcminutes. The small-scale CMB lensing fluctuations receive non-
negligible contributions from nonlinear structure in the late-time density field. These fluctuations are not
fully characterized by traditional two-point statistics, such as the power spectrum. Here, we use N-body
ray-tracing simulations of CMB lensing maps to examine two higher-order statistics: the lensing
convergence one-point probability distribution function (PDF) and peak counts. We show that these
statistics contain significant information not captured by the two-point function and provide specific
forecasts for the ongoing stage III Advanced Atacama Cosmology Telescope (AdvACT) experiment.
Considering only the temperature-based reconstruction estimator, we forecast 9σ (PDF) and 6σ (peaks)
detections of these statistics with AdvACT. Our simulation pipeline fully accounts for the non-Gaussianity
of the lensing reconstruction noise, which is significant and cannot be neglected. Combining the power
spectrum, PDF, and peak counts for AdvACTwill tighten cosmological constraints in the Ωm-σ8 plane by
≈30%, compared to using the power spectrum alone.
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I. INTRODUCTION

After its first detection in cross-correlation nearly a
decade ago [1,2] and subsequent detection in autocorrela-
tion five years ago [3,4], weak gravitational lensing of the
cosmic microwave background (CMB) is now reaching
maturity as a cosmological probe [5–14]. On their way to
the Earth, CMB photons emitted at redshift z ¼ 1100 are
deflected by the intervening matter, producing new corre-
lations in maps of CMB temperature and polarization
anisotropies. Estimators based on these correlations can
be applied to the observed anisotropy maps to reconstruct a
noisy estimate of the CMB lensing potential [15–18]. CMB
lensing can probe fundamental physical quantities, such as
the dark energy equation of state and neutrino masses,
through its sensitivity to the geometry of the Universe and
the growth of structure (see Refs. [19,20] for a review).
In this paper, we study the non-Gaussian information

stored in CMB lensing observations. The Gaussian
approximation to the density field breaks down due to
nonlinear evolution on small scales at late times. Thus, non-
Gaussian statistics (i.e., statistics beyond the power

spectrum) are necessary to capture the full information
in the density field. Such work has been previously
performed (theoretically and observationally) on weak
gravitational lensing of galaxies, where galaxy shapes,
instead of CMB temperature and polarization patterns, are
distorted (hereafter “galaxy lensing”). Several research
groups have found independently that non-Gaussian
statistics can tighten cosmological constraints when they
are combined with the two-point correlation function
or angular power spectrum.1 Such non-Gaussian statistics
have also been applied in the CMB context to the Sunyaev-
Zel’dovich signal, including higher-order moments
[50–53], the bispectrum [52–55], and the one-point prob-
ability distribution function (PDF) [52,53,56]. In all cases,
substantial non-Gaussian information was found, yielding
improved cosmological constraints.
The motivation to study non-Gaussian statistics of

CMB lensing maps is threefold. First, the CMB lensing
kernel is sensitive to structures at high redshift (z ≈ 2.0,
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1For example, higher-order moments [21–27], three-point
functions [28,29], bispectra [30–33], peak counts [34–43],
Minkowski functionals [27,44–46], and Gaussianized power
spectrum [47–49].
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compared to z ≈ 0.4 for typical galaxy lensing samples);
hence CMB lensing non-Gaussian statistics probe early
nonlinearity that is beyond the reach of galaxy surveys.
Second, CMB lensing does not suffer from some chal-
lenging systematics that are relevant to galaxy lensing,
including intrinsic alignments of galaxies, photometric
redshift uncertainties, and shape measurement biases.
Therefore, a combined analysis of galaxy lensing and
CMB lensing will be useful to build a tomographic
outlook on nonlinear structure evolution, as well as to
calibrate systematics in both galaxy and CMB lensing
surveys [57–61]. Finally, CMB lensing measurements
have recently entered a regime of sufficient sensitivity
and resolution to detect the (stacked) lensing signals of
halos [58,62,63]. This suggests that statistics sensitive to
the nonlinear growth of structure, i.e., non-Gaussian
statistics, will also soon be detectable. We demonstrate
below that this is indeed the case, taking as a reference
experiment the ongoing Advanced Atacama Cosmology
Telescope (AdvACT) survey [64].
Non-Gaussian aspects of the CMB lensing field have

recently attracted attention, both as a potential signal and a
source of bias in CMB lensing power spectrum estimates.
Considering the lensing non-Gaussianity as a signal, a
recent analytical study of the CMB lensing bispectrum by
Ref. [65] forecasted its detectability to be 40σ with a CMB
stage IV experiment. Ref. [66] performed the first calcu-
lation of the bias induced in CMB lensing power spectrum
estimates by the lensing bispectrum, finding non-negligible
biases for stage III and IV CMB experiments. Refs. [67]
and [68] considered CMB lensing effects arising from the
breakdown of the Born approximation, with the former
study finding that post-Born terms substantially alter the
predicted CMB lensing bispectrum, compared to the
contributions from nonlinear structure formation alone.
We emphasize that the N-body ray-tracing simulations
used in this work naturally capture such effects—we do not
use the Born approximation. However, we consider only
the lensing potential ϕ or convergence κ here (related by
κ ¼ −∇2ϕ=2), leaving a treatment of the curl potential or
image rotation for future work (Ref. [67] has demonstrated
that the curl potential possesses nontrivial higher-order
statistics). In a follow-up paper, the simulations described
here are used to more precisely characterize CMB lensing
power spectrum biases arising from the bispectrum and
higher-order correlations [69].
We consider the non-Gaussianity in the CMB lensing

field as a potential signal. We use a suite of 46 N-body ray-
tracing simulations to investigate two non-Gaussian sta-
tistics applied to CMB lensing convergence maps—the
one-point PDF and peak counts. We examine the deviation
of the convergence PDF and peak counts from those of
Gaussian random fields. We then quantify the power of
these statistics to constrain cosmological models, compared
with using the power spectrum alone.

The paper is structured as follows. We first introduce
CMB lensing in Sec. II. We then describe our simulation
pipeline in Sec. III and analysis procedures in Sec. IV. We
show our results for the power spectrum, PDF, peak counts,
and the derived cosmological constraints in Sec. V. We
conclude in Sec. VI.

II. CMB LENSING FORMALISM

To lowest order, the lensing convergence (κ) is a
weighted projection of the three-dimensional matter over-
density δ ¼ δρ=ρ̄ along the line of sight,

κðθÞ ¼
Z

∞

0

dzWðzÞδðχðzÞθ; zÞ; ð1Þ

where χðzÞ is the comoving distance and the kernel WðzÞ
indicates the lensing strength at redshift z for sources with a
redshift distribution pðzsÞ ¼ dnðzsÞ=dz. For CMB lensing,
there is only one source plane at the last scattering surface
z⋆ ¼ 1100; therefore, pðzsÞ ¼ δDðzs − z⋆Þ, where δD is the
Dirac delta function. For a flat universe, the CMB lensing
kernel is

WκcmbðzÞ ¼ 3

2
ΩmH2

0

ð1þ zÞ
HðzÞ

χðzÞ
c

χðz⋆Þ − χðzÞ
χðz⋆Þ

: ð2Þ

where Ωm is the matter density as a fraction of the critical
density at z ¼ 0,HðzÞ is the Hubble parameter at redshift z,
with a present-day value H0, and c is the speed of light.
WκcmbðzÞ peaks at z ≈ 2 for canonical cosmological param-
eters (Ωm ≈ 0.3 and H0 ≈ 70 km=s=Mpc, [70]). Note that
Eq. (1) assumes the Born approximation, but our simu-
lation approach described below does not—we implement
full ray tracing to calculate κ.

III. SIMULATIONS

Our simulation procedure includes five main steps:
(i) the design (parameter sampling) of cosmological mod-
els, (ii) N-body simulations with Gadget-2,2 (iii) ray tracing
from z ¼ 0 to z ¼ 1100 to obtain (noiseless) convergence
maps using the Python code LensTools [71],3 (iv) lensing
simulated CMB temperature maps by the ray-traced con-
vergence field, and (v) reconstructing (noisy) convergence
maps from the CMB temperature maps after including
noise and beam effects.

A. Simulation design

We use an irregular grid to sample parameters in the
Ωm-σ8 plane, within the range of Ωm ∈ ½0.15; 0.7� and
σ8 ∈ ½0.5; 1.0�, where σ8 is the rms amplitude of linear
density fluctuations on a scale of 8 Mpc=h at z ¼ 0. An
optimized irregular grid has a smaller average distance

2http://wwwmpa.mpa‑garching.mpg.de/gadget/.
3https://pypi.python.org/pypi/lenstools/.
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between neighboring points than a regular grid, and no
parameters are duplicated. Hence, it samples the parameter
space more efficiently. The procedure to optimize our
sampling is described in detail in Ref. [27].
The 46 cosmological models sampled are shown in

Fig. 1. Other cosmological parameters are held fixed, with
H0 ¼ 72 km=s=Mpc, dark energy equation of state
w ¼ −1, spectral index ns ¼ 0.96, and baryon density
Ωb ¼ 0.046. The design can be improved in the future
by posterior sampling, where we first run only a fewmodels
to generate a low-resolution probability plane, and then
sample more densely in the high-probability region.
We select the model that is closest to the standard

concordance values of the cosmological parameters (e.g.,
[70]) as our fiducial model, with Ωm ¼ 0.296 and
σ8 ¼ 0.786. We create two sets of realizations for this
model, one for covariance matrix estimation, and another
one for parameter interpolation. This fiducial model is
circled in red in Fig. 1.

B. N-body simulation and ray tracing

We use the public code Gadget-2 to run N-body simu-
lations with Nparticles ¼ 10243 and box size ¼ 600 Mpc=h
(corresponding to a mass resolution of 1.4 × 1010 M⊙=h).
To initialize each simulation, we first obtain the linear
matter power spectrum with the Einstein-Boltzmann code
CAMB.4 The power spectrum is then fed into the initial

condition generator N-GenIC, which generates initial snap-
shots (the input of Gadget-2) of particle positions at z ¼ 100.
The N-body simulation is then run from z ¼ 100 to z ¼ 0,
and we record snapshots at every 144 Mpc=h in comoving
distance between z ≈ 45 and z ¼ 0. The choice of z ≈ 45 is
determined by requiring that the redshift range covers 99%
of the WκcmbDðzÞ kernel, where we use the linear growth
factor DðzÞ ∼ 1=ð1þ zÞ.
We then use the Python code LensTools [71] to generate

CMB lensing convergence maps. We first slice the simu-
lation boxes to create potential planes (3 planes per box,
200 Mpc=h in thickness), where particle density is con-
verted into gravitational potential using the Poisson equa-
tion. We track the trajectories of 40962 light rays from
z ¼ 0 to z ¼ 1100, where the deflection angle and con-
vergence are calculated at each potential plane. This
procedure automatically captures so-called “post-Born”
effects, as we never assume that the deflection angle is
small or that the light rays follow unperturbed geodesics.5

Finally, we create 1,000 convergence map realizations for
each cosmology by randomly rotating/shifting the potential
planes [72]. For the fiducial cosmology only, we generate
10,000 realizations for the purpose of estimating the
covariance matrix. The convergence maps are 20482 pixels
and 12.25 deg2 in size, with square pixels of side length
0.1025 arcmin. The maps generated at this step correspond
to the physical lensing convergence field only; i.e., they
have no noise from CMB lensing reconstruction.
Therefore, they are labeled as “noiseless” in the following
sections and figures.
We test the power spectra from our simulated maps

against standard theoretical predictions. Figure 2 shows the
power spectrum from our simulated maps versus that from
the HaloFit model [73,74] for our fiducial cosmology. We
also show the linear-theory prediction, which deviates from
the nonlinear HaloFit result at l≳ 700. The simulation
error bars are estimated using the standard deviation of
10,000 realizations. The simulated and (nonlinear) theo-
retical results are consistent within the error bars for
multipoles l < 2; 000, which is sufficient for this work,
as current and near-future CMB lensing surveys are limited
to roughly this l range due to their beam size and noise
level (the filtering applied in our analysis below effectively
removes all information on smaller angular scales). We find
similar consistency between theory and simulation for the
other 45 simulated models. We test the impact of particle
resolution using a smaller box of 300 Mpc=h, while
keeping the same number of particles (i.e., 8 times higher
resolution), and obtain excellent agreement at scales up to

FIG. 1. The design of cosmological parameters used in our
simulations (46 models in total). The fiducial cosmology
(Ωm ¼ 0.296, σ8 ¼ 0.786) is circled in red. The models for
which AdvACT-like lensing reconstruction is performed are
circled in blue. Other cosmological parameters are fixed at
H0 ¼ 72 km=s=Mpc, w ¼ −1, ns ¼ 0.96, and Ωb ¼ 0.046.

4http://camb.info/.

5While the number of potential planes could be a limiting
factor in our sensitivity to these effects, we note that our
procedure uses ≈40–70 planes for each ray-tracing calculation
(depending on the cosmology), which closely matches the typical
number of lensing deflections experienced by a CMB photon.
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l ¼ 3; 000. The lack of power on large angular scales is
due to the limited size of our convergence maps, while the
missing power on small scales is due to our particle
resolution. On very small scales (l≳ 5 × 104), excess
power due to finite-pixelization shot noise arises, but this
effect is negligible on the scales considered in our analysis.

C. CMB lensing reconstruction

In order to obtain CMB lensing convergence maps with
realistic noise properties, we generate lensed CMB temper-
ature maps and reconstruct noisy estimates of the con-
vergence field. First, we generate Gaussian random field
CMB temperature maps based on a ΛCDM concordance
model temperature power spectrum computed with CAMB.
We compute deflection field maps from the ray-traced
convergence maps described in the previous subsection,
after applying a filter that removes power in the conver-
gence maps above l ≈ 4; 000.6 These deflection maps are
then used to lens the simulated primary CMB temperature
maps. The lensing simulation procedure is described in
detail in Ref. [75].
After obtaining the lensed temperature maps, we

apply instrumental effects consistent with specifications
for the ongoing AdvACT survey [64]. In particular, the
maps are smoothed with a FWHM ¼ 1.4 arcmin beam, and
Gaussian white noise of amplitude 6 μK-arcmin is then
added.
We subsequently perform lensing reconstruction on

these beam-convolved, noisy temperature maps using the

quadratic estimator of Ref. [17], but with the replacement
of unlensed with lensed CMB temperature power spectra in
the filters, which gives an unbiased reconstruction to higher
order [20]. The final result is a noisy estimate of the CMB
lensing convergence field, with 1,000 realizations for each
cosmological model (10,000 for the fiducial model).
We consider only temperature-based reconstruction in

this work, leaving polarization estimators for future con-
sideration. The temperature estimator is still expected to
contribute more significantly than the polarization to the
signal-to-noise for stage III CMB experiments like
AdvACT, but polarization will dominate for stage IV
(via EB reconstruction). For the AdvACT-like experiment
considered here, including polarization would increase the
predicted signal-to-noise on the lensing power spectrum by
≈35%. More importantly, polarization reconstruction
allows the lensing field to be mapped out to smaller scales
than temperature reconstruction [17], and is more immune
to foreground-related biases at high-l [76]. Thus, it could
prove extremely useful for higher-order CMB lensing
statistics, which are sourced by non-Gaussian structure
on small scales. Clearly these points are worthy of future
analysis, but we restrict this work to temperature
reconstruction for simplicity.
In addition to the fiducial model, we select the nearest

eight points in the sampled parameter space (points circled in
blue in Fig. 1) for the reconstruction analysis. We determine
this selection by first reconstructing the nearest models in
parameter space, and then broadening the sampled points
until the interpolation is stable and the forecasted contours
(see Sec. V E) are converged for AdvACT-level noise. At
this noise level, the other points in model space are
sufficiently distant to contribute negligibly to the forecasted
contours. In total, nine models are used to derive parameter
constraints from the reconstructed, noisy maps. For com-
pleteness, we perform a similar convergence test using
forecasted constraints from the noiseless maps, finding
excellent agreement between contours derived using all
46 models and using only these nine models.
In Fig. 3, we show an example of a convergence map

from the fiducial cosmology before (“noiseless”) and after
(“noisy”) reconstruction. Prominent structures seen in the
noiseless maps remain obvious in the reconstructed,
noisy maps.

D. Gaussian random field

We also reconstruct a set of Gaussian random fields
(GRF) in the fiducial model. We generate a set of GRFs
using the average power spectrum of the noiseless κ maps.
We then lens simulated CMB maps using these GRFs,
following the same procedure as outlined above, and
subsequently perform lensing reconstruction, just as for
the reconstructed N-body κ maps. These noisy GRF-only
reconstructions allow us to examine the effect of
reconstruction (in particular the non-Gaussianity of the

FIG. 2. Comparison of the CMB lensing convergence power
spectrum from the HaloFit model and that from our simulation
(10243 particles, box size 600 Mpc=h, map size 12.25 deg2),
for our fiducial cosmology. We also show the prediction from
linear theory. Error bars are the standard deviation of 10,000
realizations.

6We find that this filter is necessary for numerical stability (and
also because our simulated κ maps do not recover all structure on
these small scales, as seen in Fig. 2), but our results are
unchanged for moderate perturbations to the filter scale.
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reconstruction noise itself), as well as to determine the level
of non-Gaussianity in the noisy κ maps.

E. Interpolation

To build a model at points where we do not have
simulations, we interpolate from the simulated points in
parameter space using the Clough-Tocher interpolation
scheme [77,78], which triangulates the input points and
then minimizes the curvature of the interpolating surface;
the interpolated points are guaranteed to be continuously
differentiable. In Fig. 4, we show a test of the interpolation
using the noiseless κ maps: we build the interpolator using
all of the simulated cosmologies except for the fiducial
model (i.e., 45 cosmologies), and then compare the
interpolated results at the fiducial parameter values with
the true, simulated results for that cosmology. The agree-
ment for all three statistics is excellent, with deviations
≲few percent (and well within the statistical precision).
Finally, to check the robustness of the interpolation scheme,
we also run our analysis using linear interpolation and
obtain consistent results.7

IV. ANALYSIS

In this section, we describe the analysis of the simulated
CMB lensing maps, including the computation of the
power spectrum, peak counts, and PDF, and the likelihood
estimation for cosmological parameters. These procedures
are applied in the same way to the noiseless and noisy
(reconstructed) maps.

A. Power spectrum, PDF, and peak counts

To compute the power spectrum, we first estimate the
two-dimensional power spectrum of CMB lensing maps
(Mκ) using

FIG. 3. Example of a simulated convergence map in the fiducial cosmology, before (left panel) and after (right panel) reconstruction,
assuming AdvACT-like experimental specifications (6 μK-arcmin noise, 1.4 arcmin beam). The maps are smoothed with a FWHM ¼
8 arcmin Gaussian window function for visual purposes. The color scale is set to �3σnoiselessκ , where σnoiselessκ ¼ 0.025 is the rms of the
noiseless map (in comparison, the rms of the noisy map is σnoisyκ ¼ 0.034).

FIG. 4. Fractional differences between interpolated and “true”
results for the fiducial power spectrum (top), PDF (middle), and
peak counts (bottom). Here, we have built the interpolator using
results for the other 45 cosmologies, and then compared the
interpolated prediction at the fiducial parameter values to the
actual simulated results for the fiducial cosmology. The error bars
are scaled by 1=

ffiffiffiffiffiffiffiffiffiffi
Nsims

p
, where the number of simulations

Nsims ¼ 1; 000. The agreement for all three statistics is excellent.

7Due to our limited number of models, linear interpolation is
slightly more vulnerable to sampling artifacts than the Clough-
Tocher method, because the linear method only utilizes the
nearest points in parameter space. The Clough-Tocher method
also uses the derivative information. Therefore, we choose
Clough-Tocher for our analysis.
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CκκðlÞ ¼ M̂κðlÞ�M̂κðlÞ; ð3Þ

where l is the two-dimensional multipole with components
l1 and l2, M̂κ is the Fourier transform of Mκ, and the
asterisk denotes complex conjugation. We then average
over all the pixels within each jlj ∈ ½l − Δl;lþ ΔlÞ bin,
for 20 log-spaced bins in the range of 100 < l < 2; 000, to
obtain the one-dimensional power spectrum.
The one-point PDF is the number of pixels with values

between [κ − Δκ, κ þ Δκ) as a function of κ. We use 50
linear bins with edges listed in Table I, and normalize the
resulting PDF such that its integral is unity. The PDF is a
simple observable (a histogram of the data), but captures
the amplitude of all (zero-lag) higher-order moments in the
map. Thus, it provides a potentially powerful characteri-
zation of the non-Gaussian information.
Peaks are defined as local maxima in a κ map. In a

pixelized map, they are pixels with values higher than the
surrounding 8 (square) pixels. Similar to cluster counts,
peak counts are sensitive to the most nonlinear structures in
the Universe. For galaxy lensing, they have been found to
associate with halos along the line of sight both with
simulations [37] and observations [79]. We record peaks on
smoothed κ maps, in 25 linearly spaced bins with edges
listed in Table I.

B. Cosmological constraints

We estimate cosmological parameter confidence
level (C.L.) contours assuming a constant (cosmology-
independent) covariance and Gaussian likelihood,

PðdjpÞ ¼ 1

2πjCj1=2 exp
�
−
1

2
ðd − μÞC−1ðd − μÞ

�
; ð4Þ

where d is the data array, p is the input parameter array,
μ ¼ μðpÞ is the interpolated model, and C is the covariance
matrix estimated using the fiducial cosmology, with deter-
minant jCj. The correction factor for an unbiased inverse
covariance estimator [80] is negligible in our case, with
ðNsims−Nbins−2Þ=ðNsims−1Þ¼0.99 for Nsims ¼ 10; 000
and Nbins ¼ 95. We leave an investigation of the impact

of cosmology-dependent covariance matrices and a non-
Gaussian likelihood for future work.
Due to the limited size of our simulated maps, we must

rescale the final error contour by a ratio (rsky) of simulated
map size (12.25 deg2) to the survey coverage (20; 000 deg2

for AdvACT). Two methods allow us to achieve this—
rescaling the covariance matrix by rsky before computing
the likelihood plane, or rescaling the final C.L. contour by
rsky. These two methods yield consistent results. In our
final analysis, we choose the former method.

V. RESULTS

A. Non-Gaussianity in noiseless maps

We show the PDF of noiseless N-body κ maps (PDFκ)
for the fiducial cosmology in Fig. 5, as well as that of GRF
κ maps (PDFGRF) generated from a power spectrum
matching that of the N-body-derived maps. To better
demonstrate the level of non-Gaussianity, we also show
the fractional difference of PDFκ from PDFGRF. The error
bars are scaled to AdvACT sky coverage (20; 000 deg2),
though note that no noise is present here.
The departure of PDFκ from the Gaussian case is

significant for all smoothing scales examined (FWHM ¼
0.5–8.0 arcmin), with increasing significance towards
smaller smoothing scales, as expected. The excess in high
κ bins is expected as the result of nonlinear gravitational
evolution, echoed by the deficit in low κ bins.
We show the comparison of the peak counts of N-body κ

maps (Nκ
peaks) versus that of GRFs (N

GRF
peaks) in Fig. 6. The

difference between Nκ
peaks and N

GRF
peaks is less significant than

the PDF, because the number of peaks is much smaller than
the number of pixels—hence, the peak counts have larger
Poisson noise. A similar trend of excess (deficit) of high
(low) peaks is also seen in κ peaks, when compared to the
GRF peaks.

B. Covariance matrix

Fig. 7 shows the correlation coefficients of the total
covariance matrix for both the noiseless and noisy maps,

ρij ¼
Cijffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p ; ð5Þ

where i and j denote the bin number, with the first 20 bins
for the power spectrum, the next 50 bins for the PDF, and
the last 25 bins for peak counts.
In the noiseless case, the power spectrum shows little

covariance in both its own off-diagonal terms (<10%) and
cross-covariance with the PDF and peaks (<20%), hinting
that the PDF and peaks contain independent information
that is beyond the power spectrum. In contrast, the PDF
and peak statistics show higher correlation in both self-
covariance (i.e., the covariance within the submatrix for

TABLE I. PDF and peak counts bin edges for each smoothing
scale (the full-width-half-maximum of the Gaussian smoothing
kernel applied to the maps).

Smoothing scale PDF bins edges Peak counts bin edges

(arcmin) (50 linear bins) (25 linear bins)
0.5 (noiseless) ½−0.50;þ0.50� ½−0.18;þ0.36�
1.0 (noiseless) ½−0.22;þ0.22� ½−0.15;þ0.30�
2.0 (noiseless) ½−0.18;þ0.18� ½−0.12;þ0.24�
5.0 (noiseless) ½−0.10;þ0.10� ½−0.09;þ0.18�
8.0 (noiseless) ½−0.08;þ0.08� ½−0.06;þ0.12�
1.0, 5.0, 8.0 (noisy) ½−0.12;þ0.12� ½−0.06;þ0.14�
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that statistic only) and cross-covariance, with strength
almost comparable to the diagonal components. They both
show strong correlation between nearby κ bins (especially
in the moderate-jκj regions), which arises from contribu-
tions due to common structures amongst the bins (e.g.,
galaxy clusters). Both statistics show anticorrelation
between positive and negative κ bins. The anticorrelation
may be due to mass conservation—e.g., large amounts of
mass falling into halos would result in large voids in
surrounding regions.
In the noisy case, the off-diagonal terms are generally

smaller than in the noiseless case. Moreover, the anticor-
relation seen previously between the far positive and
negative κ tails in the PDF is now a weak positive
correlation—we attribute this difference to the complex
non-Gaussianity of the reconstruction noise. Interestingly,
the self-covariance of the peak counts is significantly
reduced compared to the noiseless case, while the self-
covariance of the PDF persists to a reasonable degree.

C. Effect of reconstruction noise

To disentangle the effect of reconstruction noise from
that of nonlinear structure growth, we compare the three
statistics before (noiseless) and after (noisy) reconstruction,

using only the GRF κ fields. Fig. 8 shows the power
spectra, PDFs, and peak counts for both the noiseless (solid
curves) and noisy (dashed curves) GRFs, all smoothed with
a FWHM ¼ 8 arcmin Gaussian window. The reconstructed
power spectrum has significant noise on small scales, as
expected (this is dominated by the usual “Nð0Þ” noise bias).
The post-reconstruction PDF shows skewness, defined

as

S ¼
��

κ − κ̄

σκ

�
3
�
; ð6Þ

which is not present in the input GRFs. In other words, the
reconstructed maps have a nonzero three-point function,
even though the input GRF κ maps in this case do not.
While this may seem surprising at first, we recall that the
three-point function of the reconstructed map corresponds
to a six-point function of the CMB temperature map (in the
quadratic estimator formalism). Even for a Gaussian
random field, the six-point function contains nonzero
Wick contractions (those that reduce to products of two-
point functions). Propagating such terms into the three-
point function of the quadratic estimator for κ, we find that
they do not cancel to zero. This result is precisely

FIG. 5. PDFs (left panels) of the N-body-derived convergence maps and of the Gaussian random fields (labeled “GRF”) for the
noiseless fiducial model, for various smoothing scales (FWHM ¼ 0.5–8 arcmin, top to bottom). Their fractional difference is shown in
the right panels. The error bars are scaled to AdvACT sky coverage (20; 000 deg2), and are only shown in the right panels for clarity.
Note that no noise is present here, and thus the error bars correspond to a sample-variance-limited survey covering roughly half the sky.
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analogous to the usual “Nð0Þ bias” on the CMB lensing
power spectrum, in which the two-point function of the
(Gaussian) primary CMB temperature gives a nonzero
contribution to the temperature four-point function. The
result in Fig. 8 indicates that the similar PDF “Nð0Þ bias”
contains a negative skewness (in addition to nonzero
kurtosis and higher moments). While it should be possible
to derive this result analytically, we defer the full calcu-
lation to future work. If we filter the reconstructed κ maps
with a large smoothing kernel, the skewness in the
reconstructed PDF is significantly decreased (see
Fig. 11). We briefly investigate the PDF of the Planck
2015 CMB lensing map [14] and do not see clear evidence
of such skewness—we attribute this to the low effective
resolution of the Planck map (FWHM ∼ few degrees).
Finally, we note that a nonzero three-point function of
the reconstruction noise could potentially alter the fore-
casted κ bispectrum results of Ref. [65] (where the
reconstruction noise was taken to be Gaussian). The
non-Gaussian properties of the small-scale reconstruction
noise were noted in Ref. [17], who pointed out that the
quadratic estimator at high-l is constructed from progres-
sively fewer arcminute-scale CMB fluctuations.
Similarly, the κ peak count distribution also displays

skewness after reconstruction, although it is less dramatic
than that seen in the PDF. The peak of the distribution shifts
to a higher κ value due to the additional noise in the

reconstructed maps. We note that the shape of the peak
count distribution becomes somewhat rough when large
smoothing kernels are applied to the maps, due to the small
number of peaks present in this situation (e.g., ≈29 peaks in
a 12.25 deg2 map with FWHM ¼ 8 arcmin Gaussian
window).

D. Non-Gaussianity in reconstructed maps

We show the PDF and peak counts of the reconstructed κ
maps in Figs. 9 and 10, respectively. The left panels of these
figures show the results using maps with an 8 arcmin
Gaussian smoothing window. We further consider a Wiener
filter, which is often used to filter out noise based on some
known information in a signal (i.e., the noiseless power
spectrum in our case). The right panels show the Wiener-
filtered results, where we inverse-variance weight each
pixel in Fourier space; i.e., each Fourier mode is weighted
by the ratio of the noiseless power spectrum to the noisy
power spectrum (c.f. Fig. 8),

fWienerðlÞ ¼ Cnoiseless
l

Cnoisy
l

: ð7Þ

Compared to the noiseless results shown in Figs. 5 and 6,
the differences between the PDF and peaks from the N-
body-derived κ maps and those from the GRF-derived κ

FIG. 6. Same as Fig. 5 but for peak counts.
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maps persist, but with less significance. For the Wiener-
filtered maps, the deviations of the N-body-derived κ
statistics from the GRF case are 9σ (PDF) and 6σ (peaks),
where we derived the significances using the simulated
covariance from the N-body maps.8 These deviations

capture the influence of both nonlinear evolution and
post-Born effects.
While the differences between the N-body and GRF

cases in Figs. 9 and 10 are clear, understanding their
detailed structure is more complex. First, note that the GRF
cases exhibit the skewness discussed in Sec. V C, which
arises from the reconstruction noise itself. We show the
skewness of the reconstructed PDF (for both the N-body
and GRF cases) compared with that of the noiseless
(N-body) PDF for various smoothing scales in Fig. 11.
The noiseless N-body maps are positively skewed, as
physically expected. The reconstructed, noisy maps are
negatively skewed, for both the N-body and GRF cases.
However, the reconstructed N-body results are less neg-
atively skewed than the reconstructed GRF results (bottom
panel of Fig. 11), presumably because the N-body PDF
(and peaks) contain contributions from the physical
skewness, which is positive (see Figs. 5 and 6). However,
the physical skewness is not large enough to overcome
the negative “Nð0Þ”-type skewness coming from the
reconstruction noise. We attribute the somewhat-
outlying point at FWHM ¼ 8 arcmin in the bottom panel
of Fig. 11 to a noise fluctuation, as the number of pixels
at this smoothing scale is quite low (the deviation is
consistent with zero). The decrease in jSj between the

FIG. 7. Correlation coefficients determined from the full noise-
less (top) and noisy (bottom) covariance matrices. Bins 1–20 are
for the power spectrum (labeled “PS”); bins 21–70 are for the
PDF; and bins 71–95 are for peak counts.

FIG. 8. We demonstrate the effect of reconstruction noise on the
power spectrum (top), the PDF (middle), and peak counts
(bottom) by using Gaussian random field κ maps (rather than
N-body-derived maps) as input to the reconstruction pipeline.
The noiseless (solid curves) and noisy/reconstructed (dashed
curves) statistics are shown. All maps used here have been
smoothed with a Gaussian kernel of FWHM ¼ 8 arcmin.

8We note that the signal-to-noise ratios predicted here are
comparable to the ≈7σ bispectrum prediction that would be
obtained by rescaling the SPT-3G result from Table I of Ref. [67]
to the AdvACT sky coverage (which is a slight overestimate
given AdvACT’s higher noise level). The higher significance for
the PDF found here could be due to several reasons: (i) additional
contributions to the signal-to-noise for the PDF from higher-order
polyspectra beyond the bispectrum, (ii) inaccuracy of the non-
linear fitting formula used in Ref. [67] on small scales, as
compared to the N-body methods used here, (iii) reduced
cancellation between the nonlinear growth and post-Born effects
in higher-order polyspectra (for the bispectrum, these contribu-
tions cancel to a large extent, reducing the signal-to-noise [67]).
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FWHM ¼ 2 arcmin and 1 arcmin cases in the top panel of
Fig. 11 for the noisy maps is due to the large increase in σκ
between these smoothing scales, as the noise is blowing up
on small scales. The denominator of Eq. (6) thus increases
dramatically, compared to the numerator.
Comparisons between the reconstructed PDF in the

N-body case and GRF case are further complicated by
the fact that higher-order “biases” arise due to the
reconstruction. For example, the skewness of the recon-
structed N-body κ receives contributions from many
other terms besides the physical skewness and the “Nð0Þ
bias” described above—there will also be Wick con-
tractions involving combinations of two- and four-point
functions of the CMB temperature and κ (and perhaps an
additional bias coming from a different contraction of
the three-point function of κ, analogous to the “Nð1Þ”
bias for the power spectrum [81]). So the overall “bias”
on the reconstructed skewness will differ from that in the

simple GRF case. This likely explains why we do not
see an excess of positive κ values over the GRF case in
the PDFs shown in Fig. 9. While this excess is clearly
present in the noiseless case (Fig. 5), and it matches
physical intuition there, the picture in the reconstructed
case is not simple, because there is no guarantee that the
reconstruction biases in the N-body and GRF cases are
exactly the same. Thus, a comparison of the recon-
structed N-body and GRF PDFs contains a mixture of
the difference in the biases and the physical difference
that we expect to see. Similar statements hold for
comparisons of the peak counts.
Clearly, a full accounting of all such individual biases

would be quite involved, but the key point here is that
all these effects are fully present in our end-to-end
simulation pipeline. While an analytic understanding
would be helpful, it is not necessary for the forecasts
we present below.

FIG. 9. PDFs of the reconstructed convergence maps, when considering inputN-body-derived κ maps (solid curves) or input Gaussian
random field κ maps (dashed curves). The difference of the curves is due to nonlinear evolution (and post-Born effects) present in the
former maps, but not the latter. Maps are smoothed with an 8 arcmin Gaussian window (left panel) or by a Wiener filter (right panel).
Error bars are scaled to AdvACT sky coverage (20; 000 deg2).

FIG. 10. Same as Fig. 9, but for peak counts.
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E. Cosmological constraints

Before we proceed to present the cosmological con-
straints from non-Gaussian statistics, it is necessary to do a
sanity check by comparing the forecasted contour from our
simulated power spectra to that from an analytic Fisher
estimate,

Fαβ ¼
1

2
Tr

	
C−1
Gauss

��∂Cl

∂pα

��∂Cl

∂pβ

�
T
þ ðα ↔ βÞ

�

; ð8Þ

where fα; βg ¼ fΩm; σ8g and the trace is over l bins.
CGauss is the Gaussian covariance matrix, with off-diagonal
terms set to zero, and diagonal terms equal to the Gaussian
variance,

σ2l ¼ 2ðCl þ NlÞ2
fskyð2lþ 1ÞΔl : ð9Þ

We compute the theoretical power spectrum Cl using
the HaloFit model [73,74], with fractional parameter
variations of þ1% to numerically obtain ∂Cl=∂p. Nl is
the reconstruction noise power spectrum, originating
from primordial CMB fluctuations and instrumental and
atmospheric noise (note that we only consider white noise
here). The sky fraction fsky ¼ 0.485 corresponds to the

20; 000 deg2 coverage expected for AdvACT. ðF−1
ααÞ12 is the

marginalized error on parameter α. Both theoretical and

simulated contours use the power spectrum within the l
range of [100, 2,000]. The comparison is shown in Fig. 12.
The contour from full N-body simulations shows good
agreement with the analytical Fisher contour. This result
indicates that approximations made in current analytical
CMB lensing power spectrum forecasts are accurate, in
particular the neglect of non-Gaussian covariances from
nonlinear growth. A comparison of the analytic and
reconstructed power spectra will be presented in Ref. [69].
Fig. 13 shows contours derived using noiseless maps for

the PDF and peak count statistics, compared with that from
the noiseless power spectrum. We compare three different
smoothing scales (1.0, 5.0, 8.0 arcmin) and find that
smaller smoothing scales have stronger constraining power.
However, even with the smallest smoothing scale (1.0 arc-
min), the PDF contour is still significantly larger than that
of the power spectrum. Peak counts using 1.0 arcmin
smoothing show almost equivalent constraining power as
the power spectrum. However, we note that 1.0 arcmin
smoothing is not a fair comparison to the power spectrum
with cutoff at l < 2; 000, because in reality, the beam size
and instrument noise is likely to smear out signals smaller
than a few arcmin scale (see below).
At first, it may seem surprising that the PDF is not at

least as constraining as the power spectrum in Fig. 13, since
the PDF contains the information in the variance. However,
this only captures an overall amplitude of the two-point
function, whereas the power spectrum contains scale-
dependent information.9 We illustrate this in Fig. 14, where

FIG. 12. The 68% C.L. contours from an AdvACT-like CMB
lensing power spectrum measurement. The excellent agreement
between the simulated and analytic results confirms that non-
Gaussian covariances arising from nonlinear growth and
reconstruction noise do not strongly bias current analytic
CMB lensing power spectrum forecasts (up to l ¼ 2; 000).

FIG. 11. Top panel: the skewness of the noiseless (triangles)
and reconstructed, noisy (diamonds: N-body κ maps; circles:
GRF) PDFs. Bottom panel: the fractional difference between the
skewness of the reconstructed N-body κ and the reconstructed
GRF. The error bars are for our map size (12.25 deg2) and are
only shown in the top panel for clarity.

9Note that measuring the PDF or peak counts for different
smoothing scales can recover additional scale-dependent infor-
mation as well.
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we compare the fiducial power spectrum to that with a 1%
increase in Ωm or σ8 (while keeping other parameters
fixed). While σ8 essentially re-scales the power spectrum
by a factor σ28, apart from a steeper dependence at high-l
due to nonlinear growth, Ωm has a strong shape depend-
ence. This is related to the change in the scale of matter-
radiation equality [14]. Thus, for a noiseless measurement,
the shape of the power spectrum contains significant
additional information about these parameters, which is
not captured by a simple change in the overall amplitude of
the two-point function. This is the primary reason that the
power spectrum is much more constraining than the PDF
in Fig. 13.
Fig. 15 shows contours derived using the reconstructed,

noisy κ maps. We show results for three different filters—
Gaussian windows of 1.0 and 5.0 arcmin and the Wiener
filter. The 1.0 arcmin contour is the worst among all, as

FIG. 14. Fractional difference of the CMB lensing power
spectrum after a 1% increase in Ωm (thick solid line) or σ8 (thin
solid line), compared to the fiducial power spectrum. Other
parameters are fixed at their fiducial values.

FIG. 13. 68% C.L. contours derived from the noiseless PDF (left) and peak counts (right) using three smoothing scales, compared with
that from the noiseless power spectrum (l < 2; 000). Three Gaussian smoothing scales are tested (FWHM ¼ 1.0, 5.0, 8.0 arcmin). The
contours are scaled to AdvACT sky coverage of 20; 000 deg2. Note that we use the same scale as in Fig. 15 (where we show the contours
derived from the reconstructed noisy maps), in order to demonstrate the contour size change due to the noise.

FIG. 15. The 68% C.L. contours derived from the reconstructed (noisy) PDF (left) and peak counts (right), compared with that from
the power spectrum (l < 2; 000). Three map filtering schemes are tested—Gaussian smoothing with FWHM of 1.0 and 5.0 arcmin and
the Wiener filter. The contours are scaled to AdvACT sky coverage of 20; 000 deg2. Note that we use the same scale as in Fig. 13 (where
we show the contours derived from the noiseless maps) in order to demonstrate the contour size change due to the noise.
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noise dominates at this scale. The 5.0 arcmin-smoothed and
Wiener-filtered contours show similar constraining power.
Using the PDF or peak counts alone, we do not achieve
better constraints than using the power spectrum alone, but
the parameter degeneracy directions for the statistics are
slightly different. This is likely due to the fact that the PDF
and peak counts probe nonlinear structure, and thus they
have a different dependence on the combination σ8ðΩmÞγ
than the power spectrum does, where γ specifies the
degeneracy direction.
The error contour derived using all three statistics is

shown in Fig. 16, where we use the 5.0 arcmin Gaussian
smoothed maps. The one-dimensional marginalized errors
are listed in Table II. The combined contour shows
moderate improvement (≈30% smaller error contour area)
compared to the power spectrum alone. The improvement
is due to the slightly different parameter degeneracy
directions for the statistics, which break the σ8-Ωm degen-
eracy somewhat more effectively when combined. It is
worth noting that we have not included information from
external probes that constrain Ωm (e.g., baryon acoustic
oscillations), which can further break the Ωm-σ8
degeneracy.

VI. CONCLUSION

In this paper, we use N-body ray-tracing simulations to
explore the additional information in CMB lensing maps
beyond the traditional power spectrum. In particular, we
investigate the one-point PDF and peak counts (local
maxima in the convergence map). We also apply realistic
reconstruction procedures that take into account primordial
CMB fluctuations and instrumental noise for an AdvACT-
like survey, with sky coverage of 20; 000 deg2, noise level
6 μK-arcmin, and 1.4 arcmin beam. Our main findings are
the following:
(1) We find significant deviations of the PDF and peak

counts of N-body-derived κ maps from those of
Gaussian random field κ maps, both in the noiseless
and noisy reconstructed cases (see Figs. 5, 6, 9,
and 10). For AdvACT, we forecast the detection of
non-Gaussianity to be ≈9σ (PDF) and 6σ (peak
counts), after accounting for the non-Gaussianity
of the reconstruction noise itself. The non-
Gaussianity of the noise has been neglected in
previous estimates, but we show that it is non-
negligible (Fig. 8).

(2) We confirm that current analytic forecasts for CMB
lensing power spectrum constraints are accurate
when confronted with constraints derived from
our N-body pipeline that include the full non-
Gaussian covariance (Fig. 12).

(3) An improvement of ≈30% in the forecasted Ωm-σ8
error contour is seen when the power spectrum is
combined with PDF and peak counts (assuming
AdvACT-level noise), compared to using the
power spectrum alone. The covariance between
the power spectrum and the other two non-
Gaussian statistics is relatively small (with
cross-covariance <20% of the diagonal compo-
nents), meaning the latter is complementary to the
power spectrum.

(4) For noiseless κ maps (i.e., ignoring primordial
CMB fluctuations and instrumental or atmospheric
noise), a smaller smoothing kernel can help extract
the most information from the PDF and peak
counts (Fig. 13). For example, peak counts of
1.0 arcmin Gaussian smoothed maps alone can
provide equally tight constraints as from the power
spectrum.

(5) We find nonzero skewness in the PDF and peak
counts of reconstructed GRFs, which is absent
from the input noiseless GRFs by definition. This
skewness is the result of the quadratic estimator
used for CMB lensing reconstruction from the
temperature or polarization maps. Future fore-
casts for non-Gaussian CMB lensing statistics
should include these effects, as we have here, or
else the expected signal-to-noise could be over-
estimated.

FIG. 16. The 68% C.L. contours derived using two combina-
tions of the power spectrum, PDF, and peak counts, compared to
using the power spectrum alone. Reconstruction noise corre-
sponding to an AdvACT-like survey is included. The contours are
scaled to AdvACT sky coverage of 20; 000 deg2.

TABLE II. Marginalized constraints on Ωm and σ8 for an
AdvACT-like survey from combinations of the power spectrum
(PS), PDF, and peak counts, as shown in Fig. 16.

Combination ΔΩm Δσ8
PS only 0.0065 0.0044
PDFþ peaks 0.0076 0.0035
PSþ PDFþ peaks 0.0045 0.0030
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In this work, we have only considered temperature-
based reconstruction estimators, but in the near future
polarization-based estimators will have equally (and, even-
tually, higher) signal-to-noise. Moreover, the polarization
estimators allow the lensing field to be mapped out to
smaller scales, which suggests that they could be even more
useful for non-Gaussian statistics.
In summary, there is rich information in CMB lensing

maps that is not captured by two-point statistics, especially
on small scales where nonlinear evolution is significant. In
order to extract this information from future data from
ongoing CMB stage III and near-future stage IV surveys,
such as AdvACT, SPT-3G [82], Simons Observatory,10 and
CMB-S4 [83], non-Gaussian statistics must be studied and
modeled carefully. We have shown that non-Gaussian
statistics will already contain useful information for
stage III surveys, which suggests that their role in
stage IV analyses will be even more important. The payoff
of these efforts could be significant, such as a quicker route
to a neutrino mass detection.

ACKNOWLEDGMENTS

We thank Nick Battaglia, Francois Bouchet, Simone
Ferraro, Antony Lewis, Mark Neyrinck, Emmanuel
Schaan, and Marcel Schmittfull for useful discussions.
We acknowledge helpful comments from an anonymous
referee. J. L. is supported by an NSF Astronomy and
Astrophysics Postdoctoral Fellowship under Award
No. AST-1602663. This work is partially supported by a
Junior Fellowship from the Simons Foundation to JCH and
a Simons Fellowship to Z. H.. B. D. S. is supported by a
Fellowship from the Miller Institute for Basic Research in
Science at the University of California, Berkeley. This work
is partially supported by National Science Foundation
(NSF) Grant No. AST-1210877 (to Z. H.) and by a
ROADS award at Columbia University. This work used
the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by NSF
Grant No. ACI-1053575. Computations were performed
on the GPC supercomputer at the SciNet HPC consortium.
SciNet is funded by the Canada Foundation for Innovation
under the auspices of Compute Canada, the Government
of Ontario, the Ontario Research Fund—Research
Excellence, and the University of Toronto.

[1] K. M. Smith, O. Zahn, and O. Doré, Phys. Rev. D 76,
043510 (2007).

[2] C. M. Hirata, S. Ho, N. Padmanabhan, U. Seljak, and N. A.
Bahcall, Phys. Rev. D 78, 043520 (2008).

[3] S. Das et al., Phys. Rev. Lett. 107, 021301 (2011).
[4] B. D. Sherwin et al., Phys. Rev. Lett. 107, 021302 (2011).
[5] D. Hanson et al., Phys. Rev. Lett. 111, 141301 (2013).
[6] S. Das, J. Errard, and D. Spergel, arXiv:1311.2338].
[7] P. A. R. Ade et al., Phys. Rev. Lett. 113, 021301 (2014).
[8] P. A. R. Ade et al., Phys. Rev. Lett. 112, 131302 (2014).
[9] T. Keck Array et al., arXiv:1606.01968.

[10] K. T. Story et al., Astrophys. J. 810, 50 (2015).
[11] P. A. R. Ade et al., Phys. Rev. Lett. 113, 021301 (2014).
[12] A. van Engelen et al., arXiv:1412.0626.
[13] A. van Engelen et al., Astrophys. J. 808, 7 (2015).
[14] Planck Collaboration et al., arXiv:1502.01591.
[15] M. Zaldarriaga and U. Seljak, Phys. Rev. D 58, 023003

(1998).
[16] M. Zaldarriaga and U. Seljak, Phys. Rev. D 59, 123507

(1999).
[17] W. Hu and T. Okamoto, Astrophys. J. 574, 566 (2002).
[18] T. Okamoto and W. Hu, Phys. Rev. D 67, 083002 (2003).
[19] A. Lewis and A. Challinor, Phys. Rep. 429, 1 (2006).
[20] D. Hanson, A. Challinor, and A. Lewis, Gen. Relativ.

Gravit. 42, 2197 (2010).
[21] F. Bernardeau, L. van Waerbeke, and Y. Mellier, Astron.

Astrophys. 322, 1 (1997).
[22] L. Hui, Astrophys. J. Lett. 519, L9 (1999).

[23] L. Van Waerbeke, T. Hamana, R. Scoccimarro, S. Colombi,
and F. Bernardeau, Mon. Not. R. Astron. Soc. 322, 918
(2001).

[24] M. Takada and B. Jain, Mon. Not. R. Astron. Soc. 337, 875
(2002).

[25] M. Zaldarriaga and R. Scoccimarro, Astrophys. J. 584, 559
(2003).

[26] M. Kilbinger and P. Schneider, Astron. Astrophys. 442, 69
(2005).

[27] A. Petri, J. Liu, Z. Haiman, M. May, L. Hui, and J. M.
Kratochvil, Phys. Rev. D 91, 103511 (2015).

[28] M. Takada and B. Jain, Mon. Not. R. Astron. Soc. 344, 857
(2003).

[29] S. Vafaei, T. Lu, L. van Waerbeke, E. Semboloni, C.
Heymans, and U.-L. Pen, Astropart. Phys. 32, 340 (2010).

[30] M. Takada and B. Jain, Mon. Not. R. Astron. Soc. 348, 897
(2004).

[31] S. Dodelson and P. Zhang, Phys. Rev. D 72, 083001 (2005).
[32] E. Sefusatti, M. Crocce, S. Pueblas, and R. Scoccimarro,

Phys. Rev. D 74, 023522 (2006).
[33] J. Bergé, A. Amara, and A. Réfrégier, Astrophys. J. 712,

992 (2010).
[34] B. Jain and L. Van Waerbeke, Astrophys. J. Lett. 530, L1

(2000).
[35] L. Marian, R. E. Smith, and G. M. Bernstein, Astrophys. J.

Lett. 698, L33 (2009).
[36] M. Maturi, C. Angrick, F. Pace, and M. Bartelmann, Astron.

Astrophys. 519, A23 (2010).

10http://www.simonsobservatory.org/.

LIU, HILL, SHERWIN, PETRI, BÖHM, and HAIMAN PHYSICAL REVIEW D 94, 103501 (2016)

103501-14

http://dx.doi.org/10.1103/PhysRevD.76.043510
http://dx.doi.org/10.1103/PhysRevD.76.043510
http://dx.doi.org/10.1103/PhysRevD.78.043520
http://dx.doi.org/10.1103/PhysRevLett.107.021301
http://dx.doi.org/10.1103/PhysRevLett.107.021302
http://dx.doi.org/10.1103/PhysRevLett.111.141301
http://arXiv.org/abs/1311.2338
http://dx.doi.org/10.1103/PhysRevLett.113.021301
http://dx.doi.org/10.1103/PhysRevLett.112.131302
http://arXiv.org/abs/1606.01968
http://dx.doi.org/10.1088/0004-637X/810/1/50
http://dx.doi.org/10.1103/PhysRevLett.113.021301
http://arXiv.org/abs/1412.0626
http://dx.doi.org/10.1088/0004-637X/808/1/7
http://arXiv.org/abs/1502.01591
http://dx.doi.org/10.1103/PhysRevD.58.023003
http://dx.doi.org/10.1103/PhysRevD.58.023003
http://dx.doi.org/10.1103/PhysRevD.59.123507
http://dx.doi.org/10.1103/PhysRevD.59.123507
http://dx.doi.org/10.1086/341110
http://dx.doi.org/10.1103/PhysRevD.67.083002
http://dx.doi.org/10.1016/j.physrep.2006.03.002
http://dx.doi.org/10.1007/s10714-010-1036-y
http://dx.doi.org/10.1007/s10714-010-1036-y
http://dx.doi.org/10.1086/312095
http://dx.doi.org/10.1046/j.1365-8711.2001.04241.x
http://dx.doi.org/10.1046/j.1365-8711.2001.04241.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05972.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05972.x
http://dx.doi.org/10.1086/345789
http://dx.doi.org/10.1086/345789
http://dx.doi.org/10.1051/0004-6361:20053531
http://dx.doi.org/10.1051/0004-6361:20053531
http://dx.doi.org/10.1103/PhysRevD.91.103511
http://dx.doi.org/10.1046/j.1365-8711.2003.06868.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06868.x
http://dx.doi.org/10.1016/j.astropartphys.2009.10.003
http://dx.doi.org/10.1111/j.1365-2966.2004.07410.x
http://dx.doi.org/10.1111/j.1365-2966.2004.07410.x
http://dx.doi.org/10.1103/PhysRevD.72.083001
http://dx.doi.org/10.1103/PhysRevD.74.023522
http://dx.doi.org/10.1088/0004-637X/712/2/992
http://dx.doi.org/10.1088/0004-637X/712/2/992
http://dx.doi.org/10.1086/312480
http://dx.doi.org/10.1086/312480
http://dx.doi.org/10.1088/0004-637X/698/1/L33
http://dx.doi.org/10.1088/0004-637X/698/1/L33
http://dx.doi.org/10.1051/0004-6361/200912866
http://dx.doi.org/10.1051/0004-6361/200912866
http://www.simonsobservatory.org/
http://www.simonsobservatory.org/
http://www.simonsobservatory.org/


[37] X. Yang, J. M. Kratochvil, S. Wang, E. A. Lim, Z. Haiman,
and M. May, Phys. Rev. D 84, 043529 (2011).

[38] L. Marian, R. E. Smith, S. Hilbert, and P. Schneider, Mon.
Not. R. Astron. Soc. 432, 1338 (2013).

[39] J. Liu, A. Petri, Z. Haiman, L. Hui, J. M. Kratochvil, and M.
May, Phys. Rev. D 91, 063507 (2015).

[40] X. Liu et al., Mon. Not. R. Astron. Soc. 450, 2888 (2015).
[41] C.-A. Lin and M. Kilbinger, Astron. Astrophys. 576, A24

(2015).
[42] C.-A. Lin and M. Kilbinger, Astron. Astrophys. 583, A70

(2015).
[43] T. Kacprzak et al., arXiv:1603.05040.
[44] J. M. Kratochvil, E. A. Lim, S. Wang, Z. Haiman, M. May,

and K. Huffenberger, Phys. Rev. D 85, 103513 (2012).
[45] M. Shirasaki and N. Yoshida, Astrophys. J. 786, 43 (2014).
[46] A. Petri, Z. Haiman, L. Hui, M. May, and J. M. Kratochvil,

Phys. Rev. D 88, 123002 (2013).
[47] M. C. Neyrinck, I. Szapudi, and A. S. Szalay, Astrophys. J.

Lett. 698, L90 (2009).
[48] M. C. Neyrinck, Transformationally decoupling clustering

and tracer bias, in Statistical Challenges in 21st Century
Cosmology, edited by A. Heavens, J.-L. Starck, and A.
Krone-Martins, IAU Symposium Vol. 306 (Springer,
New York, 2014), p. 251.

[49] Y. Yu, P. Zhang, W. Lin, W. Cui, and J. N. Fry, Phys. Rev. D
86, 023515 (2012).

[50] M. J. Wilson et al., Phys. Rev. D 86, 122005 (2012).
[51] J. C. Hill and B. D. Sherwin, Phys. Rev. D 87, 023527

(2013).
[52] Planck Collaboration et al., Astron. Astrophys. 571, A21

(2014).
[53] Planck Collaboration et al., Astron. Astrophys. 594, A22

(2016).
[54] S. Bhattacharya, D. Nagai, L. Shaw, T. Crawford, and G. P.

Holder, Astrophys. J. 760, 5 (2012).
[55] T. M. Crawford et al., Astrophys. J. 784, 143 (2014).
[56] J. C. Hill et al., arXiv:1411.8004.
[57] J. Liu, A. Ortiz-Vazquez, and J. C. Hill, Phys. Rev. D 93,

103508 (2016).
[58] E. J. Baxter et al., Mon. Not. R. Astron. Soc. 461, 4099

(2016).

[59] E. Schaan et al., arXiv:1607.01761.
[60] S. Singh, R. Mandelbaum, and J. R. Brownstein, arXiv:

1606.08841.
[61] A. Nicola, A. Refregier, and A. Amara, arXiv:1607.01014.
[62] M. Madhavacheril et al., Phys. Rev. Lett. 114, 151302

(2015).
[63] Planck Collaboration et al., Astron. Astrophys. 594, A24

(2016).
[64] S. W. Henderson et al., J. Low Temp. Phys. 184, 772 (2016).
[65] T. Namikawa, Phys. Rev. D 93, 121301 (2016).
[66] V. Böhm, M. Schmittfull, and B. D. Sherwin, arXiv:

1605.01392.
[67] G. Pratten and A. Lewis, J. Cosmol. Astropart. Phys. 08

(2016) 047.
[68] G. Marozzi, G. Fanizza, E. Di Dio, and R. Durrer,

J. Cosmol. Astropart. Phys. 09 (2016) 028.
[69] B. D. Sherwin et al. (to be published).
[70] Planck Collaboration et al., Astron. Astrophys. 594, A13

(2016).
[71] A. Petri, Astronomy and Computing 17, 73 (2016).
[72] A. Petri, Z. Haiman, and M. May, Phys. Rev. D 93, 063524

(2016).
[73] R. E. Smith, J. A. Peacock, A. Jenkins, S. D. M. White,

C. S. Frenk, F. R. Pearce, P. A. Thomas, G. Efstathiou, and
H.M. P. Couchman, Mon. Not. R. Astron. Soc. 341, 1311
(2003).

[74] R. Takahashi, M. Sato, T. Nishimichi, A. Taruya, and M.
Oguri, Astrophys. J. 761, 152 (2012).

[75] T. Louis, S. Næss, S. Das, J. Dunkley, and B. Sherwin, Mon.
Not. R. Astron. Soc. 435, 2040 (2013).

[76] A. van Engelen, S. Bhattacharya, N. Sehgal, G. P. Holder, O.
Zahn, and D. Nagai, Astrophys. J. 786, 13 (2014).

[77] P. Alfeld, Computer Aided Geometric Design 1, 169 (1984).
[78] G. Farin, Computer Aided Geometric Design 3, 83 (1986).
[79] J. Liu and Z. Haiman, Phys. Rev. D 94, 043533 (2016).
[80] J. P. Dietrich and J. Hartlap, Mon. Not. R. Astron. Soc. 402,

1049 (2010).
[81] D. Hanson, A. Challinor, G. Efstathiou, and P. Bielewicz,

Phys. Rev. D 83, 043005 (2011).
[82] B. A. Benson et al., Proc. SPIE 9153, 91531 (2014).
[83] K. N. Abazajian et al., Astropart. Phys. 63, 66 (2015).

CMB LENSING BEYOND THE POWER SPECTRUM: … PHYSICAL REVIEW D 94, 103501 (2016)

103501-15

http://dx.doi.org/10.1103/PhysRevD.84.043529
http://dx.doi.org/10.1093/mnras/stt552
http://dx.doi.org/10.1093/mnras/stt552
http://dx.doi.org/10.1103/PhysRevD.91.063507
http://dx.doi.org/10.1093/mnras/stv784
http://dx.doi.org/10.1051/0004-6361/201425188
http://dx.doi.org/10.1051/0004-6361/201425188
http://dx.doi.org/10.1051/0004-6361/201526659
http://dx.doi.org/10.1051/0004-6361/201526659
http://arXiv.org/abs/1603.05040
http://dx.doi.org/10.1103/PhysRevD.85.103513
http://dx.doi.org/10.1088/0004-637X/786/1/43
http://dx.doi.org/10.1103/PhysRevD.88.123002
http://dx.doi.org/10.1088/0004-637X/698/2/L90
http://dx.doi.org/10.1088/0004-637X/698/2/L90
http://dx.doi.org/10.1103/PhysRevD.86.023515
http://dx.doi.org/10.1103/PhysRevD.86.023515
http://dx.doi.org/10.1103/PhysRevD.86.122005
http://dx.doi.org/10.1103/PhysRevD.87.023527
http://dx.doi.org/10.1103/PhysRevD.87.023527
http://dx.doi.org/10.1051/0004-6361/201321522
http://dx.doi.org/10.1051/0004-6361/201321522
http://dx.doi.org/10.1051/0004-6361/201525826
http://dx.doi.org/10.1051/0004-6361/201525826
http://dx.doi.org/10.1088/0004-637X/760/1/5
http://dx.doi.org/10.1088/0004-637X/784/2/143
http://arXiv.org/abs/1411.8004
http://dx.doi.org/10.1103/PhysRevD.93.103508
http://dx.doi.org/10.1103/PhysRevD.93.103508
http://dx.doi.org/10.1093/mnras/stw1584
http://dx.doi.org/10.1093/mnras/stw1584
http://arXiv.org/abs/1607.01761
http://arXiv.org/abs/1606.08841
http://arXiv.org/abs/1606.08841
http://arXiv.org/abs/1607.01014
http://dx.doi.org/10.1103/PhysRevLett.114.151302
http://dx.doi.org/10.1103/PhysRevLett.114.151302
http://dx.doi.org/10.1051/0004-6361/201525833
http://dx.doi.org/10.1051/0004-6361/201525833
http://dx.doi.org/10.1007/s10909-016-1575-z
http://dx.doi.org/10.1103/PhysRevD.93.121301
http://arXiv.org/abs/1605.01392
http://arXiv.org/abs/1605.01392
http://dx.doi.org/10.1088/1475-7516/2016/08/047
http://dx.doi.org/10.1088/1475-7516/2016/08/047
http://dx.doi.org/10.1088/1475-7516/2016/09/028
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1016/j.ascom.2016.06.001
http://dx.doi.org/10.1103/PhysRevD.93.063524
http://dx.doi.org/10.1103/PhysRevD.93.063524
http://dx.doi.org/10.1046/j.1365-8711.2003.06503.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06503.x
http://dx.doi.org/10.1088/0004-637X/761/2/152
http://dx.doi.org/10.1093/mnras/stt1421
http://dx.doi.org/10.1093/mnras/stt1421
http://dx.doi.org/10.1088/0004-637X/786/1/13
http://dx.doi.org/10.1016/0167-8396(84)90029-3
http://dx.doi.org/10.1016/0167-8396(86)90016-6
http://dx.doi.org/10.1103/PhysRevD.94.043533
http://dx.doi.org/10.1111/j.1365-2966.2009.15948.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15948.x
http://dx.doi.org/10.1103/PhysRevD.83.043005
http://dx.doi.org/10.1117/12.2057305
http://dx.doi.org/10.1016/j.astropartphys.2014.05.014

