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We study quasiequilibrium solutions of triaxially deformed rotating compact stars—a generalization of
Jacobi ellipsoids under relativistic gravity and compressible equations of state (EOSs). For relatively stiff
(piecewise) polytropic EOSs, we find supramassive triaxial solutions whose masses exceed the maximum
mass of the spherical solution, but are always lower than those of axisymmetric equilibriums. The
difference in the maximum masses of triaxial and axisymmetric solutions depends sensitively on the EOSs.
If the difference turns out to be only about 10%, it will be strong evidence that the EOS of high density
matter becomes substantially softer in the core of neutron stars. This finding opens a novel way to probe
phase transitions of high density nuclear matter using detections of gravitational waves from new born
neutron stars or magnetars under fallback accretion.
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I. INTRODUCTION

Maclaurin spheroids and Jacobi ellipsoids, classical sol-
utions of self-gravitating and uniformly rotating incompress-
ible fluids in equilibrium, are the first two models of rapidly
rotating stars. As the rotation of an equilibrium configuration
is increased, a sequence of triaxial Jacobi ellipsoids branches
off from that of axisymmetric Maclaurin spheroids where the
ratio of kinetic to gravitational energies reaches T=jWj ∼
0.14 (see, e.g. [1]). This led to historical mathematical
studies including Poincaré’s bifurcation theory [2]. A gen-
eralization of the Maclaurin spheroids, and other stationary
axisymmetric equilibriums, to the case of relativistic gravity
has been fully investigated in [3]. From a point of view of
relativistic astrophysics, it is also important to include
compressibility of the fluid; realistic neutron stars are
modeled as axisymmetric and uniformly rotating configu-
rations associated with equations of state (EOSs) of high
density nuclear matter (see e.g. [4,5]).
It is not so surprising that a relativistic generalization of

Jacobi ellipsoids, even for the case with compressible fluid,
has been of little astrophysical interest, because of the
following four difficulties. First, such nonaxisymmetric,
triaxially deformed, solutions cannot be stationary equilib-
riums due to the backreaction of gravitational waves [6,7].1

Second, there should be a highly efficient mechanism to spin
up the compact star as fast as T=jWj ∼ 0.14. Third, in
realistic high density nuclear matter, the viscosity may not be
strong enough to bring a flow field to uniform rotation within
a time scale shorter than the time scale of gravitational
radiation [6,7]. Fourth, even in Newtonian gravity, such a
triaxial sequence does not exist for the gaseous EOSs unless
the EOS is stiff enough. For the case with polytropic EOS,
p ¼ KρΓ, the triaxial sequence only exists in the range
Γ≳ 2.24, where p is the gas pressure, ρ the (rest mass)
density, K the adiabatic constant, and Γ the adiabatic index
[8]. Even for such stiff EOSs, say 2.24≲ Γ≲ 4, the triaxial
sequence is terminated at the mass shedding limit not very
far away from the branching point as its angular momentum
is increased [9].
Although a couple of Kuiper Belt objects are likely to

rotate rapidly enough to become Jacobi ellipsoids [10], it
is still inconclusive whether such triaxially deformed
rapidly rotating configuration is realized or not for
compact objects such as neutron stars. However, the last
two difficulties above may be avoided. There are various
types of phenomenologically derived high density nuclear
matter EOSs, some of which may be approximated fairly
accurately by polytropic or better by piecewise polytropic
EOSs with Γ as large as Γ ∼ 3–4 [11]. Viscosity of
neutron star matter, which is normally expected to be
weak, may be enhanced by magnetic effects and/or high
temperature [12].
Moreover, in a recent paper [13], Piro and Ott have

shown that the supernova fallback accretion may spin up a

1Hereafter we use a term “triaxially deformed” or simply
“triaxial” star rather than “ellipsoid,” since the configurations are
no longer an exact ellipsoid in relativistic gravity or for compressible
fluids. The triaxial configurations in this paper possess the triplanar
symmetry with respect to three orthogonal x, y, and z planes.
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newly formed neutron star associated with a strong mag-
netic field B≲ 5 × 1014 G as fast as the above criteria
T=jWj ∼ 0.14 for ∼50–200 s until the star collapses to a
black hole. Therefore, there is a possibility that such
triaxially deformed compact stars may be formed tran-
siently after massive stellar core collapses. Once such
triaxial star is formed, the amount of gravitational wave
emission is enormous, from which we could extract
properties of high density nuclear matter. Piro and
Thrane have estimated the detectability of gravitational
waves from triaxially deformed compact stars within the
fallback accretion scenario for the case of the advanced
LIGO detector [14] as ∼17 Mpc using a realistic excess
cross-power search algorithm [15].2 This scenario moti-
vates us to further investigate the properties of triaxially
deformed compact stars.3

In our previous calculations [17,18], it was apparent
that the triaxial sequence becomes shorter (that is, a
smaller deformation is allowed) for the case with
higher compactness. For certain EOSs, it is even unclear
whether there exist supramassive triaxial solutions
whose masses are higher than the maximum mass
of the spherically symmetric solutions of Tolman-
Oppenheimer-Volkov (TOV) equations, just like the case
for axisymmetric uniformly rotating solutions. In this
paper, we present for the first time a systematic study of
the classical problem for computing triaxially deformed
uniformly rotating stars in general relativistic gravity, and
elucidate the properties of the quasiequilibrium sequences
of such rotating stars for (piecewise) polytropic EOSs up
to their maximum mass.

II. A METHOD FOR COMPUTING
SEQUENCES OF SOLUTIONS

We focus on computing rotating compact stars for three
EOSs. Two of them are polytropic EOSs p ¼ KρΓ with
adiabatic constant Γ ¼ 3 or 4, and the other is a two
segments piecewise polytropic EOS p ¼ Kiρ

Γi (i ¼ 1, 2),
with Γ1 ¼ 4 for ρ ≤ 2ρnuc and Γ2 ¼ 2.5 for ρ > 2ρnuc. We
set the interface value of the rest mass density ρnuc to be the
nuclear saturation density ρnuc ¼ 2.8 × 1014 g=cm3 in cgs
unit. We choose the value of the adiabatic constant K and
Ki so that the value of the rest mass M0 becomes M0 ¼
1.5 M⊙ at the compactness M=R ¼ 0.2 for the TOV

solution. Physical quantities of spherically symmetric
solutions at the maximum mass of these EOSs are pre-
sented in Table I.4

The most accurate rotating triaxial equilibriums of
compact stars would be computed as helically symmetric
solutions associated with standing gravitational waves. One
can, however, truncate the gravitational-wave content
because its contribution to the source’s equilibrium is
small, and instead compute quasiequilibrium initial data
on a three-dimensional hypersurface. We have developed a
code for computing such data as a part of our Compact
Object CALculator COCAL code [18,19]. To reduce com-
puting time, we use the Isenberg-Wilson-Mathews formu-
lation in this paper. Further details on the numerical
method, as well as the definitions of physical quantities,
are found in [18].
For each EOS and for both axisymmetric and triaxial

configurations, we compute sequences of solutions varying
two parameters which determine the compactness (or the
mass) and the degree of rotation. In practice, for the former,
we choose the central density ρc, and for the latter, the axis
ratio (deformation) Rz=Rx for the axisymmetric solutions,
and Ry=Rx for the triaxial solutions, where Rx, Ry, Rz are
the radii along the semiprincipal axis. The z-axis corre-
sponds to the axis of rotation, and the x-axis is along
the longest semiprincipal axis for the case of triaxial
solutions. For each deformation model, a sequence of

TABLE I. Quantities at the maximum mass of spherically
symmetric solutions are listed for the polytropic EOSs p ¼
KρΓ with Γ ¼ 3 and 4, and for the two segments piecewise
polytropic EOS p ¼ Kiρ

Γi with ðΓ1;Γ2Þ ¼ ð4; 2.5Þ. The adia-
batic constants K and Ki are chosen so that the value of the rest
mass M0 becomes M0 ¼ 1.5 at the compactness M=R ¼ 0.2.a

Note that the last EOS ðΓ1;Γ2Þ ¼ ð4; 2.5Þ is softer than the
others. Values are inG ¼ c ¼ M⊙ ¼ 1 unit and are approximated
using second order interpolation of nearby three solutions. To
convert the units of the central density ρc to cgs, multiply by
M⊙ðGM⊙=c2Þ−3 ≈ 6.176393 × 1017 g cm−3.

Γ ðp=ρÞc ρc M0 M M=R

3 0.827497 0.00415972 2.24295 1.84989 0.316115
4 1.330409 0.00322082 2.88207 2.24967 0.355062
(4,2.5) 0.568330 0.00454117 1.96013 1.65738 0.287213

aFor relativistic (piecewise) polytropes, physical dimensions
enter only through the constant K. Dimensionless values of mass
and radius are obtained from dividing each by a factor K1=2ðΓ−1Þ
in G ¼ c ¼ 1 unit.

2The amplitude of gravitational waves from triaxial stars is
typically [16]

h ∼ 9.1 × 10−21
�
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whereD,M, R, and f are, respectively, the distance to the source,
the source mass, the mean radius, and the wave frequency in Hz.

3A magnetic field B≲ 5 × 1014 G is not strong enough to alter
the hydrostatic equilibrium of rotating compact stars.

4The adiabatic speed of sound cs ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dp=dϵ

p
for the poly-

tropic EOSs with Γ ¼ 3 and 4 exceeds the speed of light when the
rest mass density ρ=ρc ≳ 0.898 and 0.656, where values of ρc are
tabulated in Table I for Γ ¼ 3 and 4, respectively. The results
from these acausal EOSs for Γ ¼ 3 and 4 are shown for a
comparison with our piecewise polytropic EOS model with
ðΓ1;Γ2Þ ¼ ð4; 2.5Þ which is always causal in the range of ρ
calculated in this paper.
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solutions is calculated with increasing ρc, typically from
ρc ¼ 3.0 × 1014 g=cm3 to 3.0 × 1015 g=cm3. As ρc is
increased, these sequences with the fixed deformation
may or may not be terminated at the mass-shedding limit
before ρc reaches 3.0 × 1015 g=cm3. As far as our selected
EOS models are concerned, the triaxial sequences with
fixed Ry=Rx and increasing ρc are always terminated at the
mass shedding limit, while the axisymmetric sequences are
terminated at the mass shedding limit only for the smaller
Rz=Rx (larger deformation) cases.

III. RESULTS

In Fig. 1, the rest mass M0 is plotted with respect to the
square of eccentricity in proper length e2 ≔ 1 − ðR̄z=R̄xÞ2
for the above three EOS models. A cross point on the
vertical axis at e2 ¼ 0 in each panel indicates the maximum
rest mass of a spherically symmetric solution for each EOS
model tabulated in Table I. We notice that, for the case with
Γ ¼ 3, the maximum mass of triaxial solutions never
exceeds that of the spherical solutions. For the Γ ¼ 4 case,
the mass of all computed triaxial solutions again does not
exceed that of the spherical solutions. However, if we
extrapolate the triaxial solutions closer towards the axi-
symmetric solution (a peak of dashed curves), we could
find triaxial solutions with mass higher than the maximum
mass of the spherical solutions. Therefore, we may con-
clude that supramassive triaxial solutions exist for Γ≳ 4,
although the excess of mass is much lower than that of
axisymmetric supramassive solutions.
It is important to notice that the deformation sequence of

triaxial solutions with a constant rest mass M0 becomes
shorter for more massive (higher compactness) models, and
hence the maximum mass of the triaxial solutions can be
found in the vicinity of the bifurcation point of the axisym-
metric and triaxial sequences. This is due to the fact that the
density distribution becomes more centrally condensed as
the relativistic star becomes more compact, and hence the

mass shedding limit of theM0 ¼ constant sequence (where
the matter at the equator (or at the largest radius for the case
with the triaxial solution) breaks up) appears at a smaller
deformation (Ry=Rx closer to unity).5 Hereafter, we denote
the maximum rest mass of the spherical solutions, the
rotating axisymmetric sequences, and the rotating triaxial
sequences by MSPH

max, MAX
max, and MTR

max, respectively.
For the piecewise polytrope model with ðΓ1;Γ2Þ ¼

ð4; 2.5Þ one might expect that, since the value of Γ2 of
this EOS is substantially lower than the Γ ¼ 4 polytrope,
MTR

max for this EOS may become lower than MSPH
max as in the

case with Γ ¼ 3. The right panel of Fig. 1 shows that it is
not the case; the supramassive triaxial solutions for the
ðΓ1;Γ2Þ ¼ ð4; 2.5Þ EOS do clearly exist. For axisymmetric
solutions, MAX

max exceeds MSPH
max for each EOS around 20%:

for the computed solutions in Fig. 1, the excesses are
20.2%, 21.2%, and 22.8% for Γ ¼ 3, Γ ¼ 4, and
ðΓ1;Γ2Þ ¼ ð4; 2.5Þ, respectively. On the other hand, the
calculated MTR

max in Fig. 1, which appears close to the
bifurcation point, falls behind MSPH

max by −23.2% and
−2.41% for Γ ¼ 3 and Γ ¼ 4, respectively, while it exceeds
11.5% for the ðΓ1;Γ2Þ ¼ ð4; 2.5Þ case.
This striking difference in the behavior between MAX

max

and MTR
max can be understood qualitatively as follows. In

Fig. 1, each consecutive point from smaller to larger M0 in
the ðe2;M0Þ plane corresponds to a sequenceM0ðρcÞwith a
fixed axis ratio (and varying ρc). For the axisymmetric
solutions with e2 ≲ 0.7, each sequence has a turning point
where M0 reaches the maximum and then decrease as ρc
increases. This is related to a change of stability associated
with the fundamental (F) mode [4]. As shown in Fig. 2 for
the case with ðΓ1;Γ2Þ ¼ ð4; 2.5Þ, simultaneous turning
points appear on MðρcÞ curves with constant M0 and J,

0.0
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FIG. 1. The rest mass M0 is plotted against the square of the eccentricity (in proper length) e2 ≔ 1 − ðR̄z=R̄xÞ2 for axisymmetric (red
dots) and triaxial (blue crosses) solutions of uniformly rotating compact stars. Solid (red) and dashed (blue) envelope curves are
polynomial fits to the extrapolated limiting solutions. Left to right panels correspond to the results of polytropic EOSs Γ ¼ 3 and 4, and
piecewise polytropic EOS ðΓ1;Γ2Þ ¼ ð4; 2.5Þ, respectively. Solutions above the horizontal dashed line in each panel are supramassive,
M0 > MSPH

max . In each panel, the left fitted curve to the triaxial solutions (blue dashed) corresponds to the bifurcation points, and the right
to the mass shedding (Roche) limits.

5This is analogous to Newtonian rotating stars; for softer and
more centrally condensed EOSs, rotating equilibriums reach the
break up velocity (Roche limit) with a smaller deformation.
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where M is the gravitational (Arnowitt-Deser-Misner)
mass. There, the axisymmetric configurations become
radially unstable, just like a stability change at the maxi-
mum mass of spherical stars MSPH

max [20,21].6

The fact that the sequences e2 ≳ 0.7 in Fig. 1 are without
turning points suggests that these solutions are not subject
to radial instability, and the sequences M0ðρcÞ with fixed
axis ratio terminate at the mass shedding (Roche) limit. The
maximum mass of the (supramassive) axisymmetric uni-
formly rotating solutionsMAX

max in our definition is expected
to appear near this turning point and the Roche limit merge.
MAX

max is, hence, associated with the radial instability, and
this excess of ∼20% from MSPH

max turned out to be almost
independent on the EOS for the uniformly rotating case. In
contrast, MTR

max is not related to the radial instability limit
but to the Roche limit in the range of the adiabatic index we
are interested in. The Roche limit is sensitive to the stiffness
of the EOS: the stiffer EOSs in the lower density region, say
ρ < 2ρnuc, prevent mass shedding to occur.
Therefore, if, as in certain models of realistic neutron star

EOSs, the EOS is softer for higher densities (inner core),
and is stiffer for lower densities (outer core), supramassive
triaxial neutron stars are formed.

IV. DISCUSSION

In [13], it is demonstrated that the accretion rate of
fallback material to a new born strongly magnetized
neutron star in the supernova remnant can be as high as
_M ∼ 10−4–10−2M⊙=s and transport enough angular
momentum to spin up the neutron star and to cause the
onset of a nonaxisymmetric instability (see Fig. 2).
Assuming the accretion rate to be constant at this rate,
we expect that the star stays at the temperature, T, of the
order of T ∼ 109 K, because of the continuous emission of
thermal neutrinos [23]. At such high temperature, the bulk
viscosity of neutron star matter dominates over the shear
viscosity as their temperature dependences are ∝T6 and
∝T−2 for the bulk and shear, respectively. The bulk
viscosity also dominates over the gravitational waves so
that it drives the star to a nonaxisymmetric figure—
establishing a Jacobi-like configuration [12].
Detectability of gravitational waves from such accreting

neutron stars (or magnetars) has been discussed in [15], in
which the gravitational waveform is modeled as periodic
waves from Jacobi ellipsoids with increasing mass. This
scenario is modified for the case with compressible EOSs.
Our finding suggests that the periodic gravitational wave

signal from triaxially deformed neutron stars would be
terminated at the time when the mass approachesMTR

max. It is
likely that the accretion continues with the same rate after
the disappearance of the periodic signal as the mass
increases beyondMTR

max. Then, within 10–1000 s, we expect
a gravitational wave burst, or a prompt emission of some
electromagnetic signal from the collapse of the axisym-
metric neutron star to form a black hole as the mass grows
over MAX

max.
Modeling of the waveform from such an accreting

triaxial compact star, which may look like the one in
Fig. 3, is beyond our scope in this paper. However, we stress
the qualitative importance of the detection of such gravi-
tational waves and its implication for the EOS of the high
temperature side of high density neutron star matter. From
the data analysis of periodic gravitational waves emitted
from the accreting triaxially deformed neutron stars, we
could determine the maximum mass of the triaxial solution
MTR

max (which may or may not be supramassive) and the
mass accretion rate _M. The maximum mass of the axisym-
metric supramassive solutionMAX

max may also be determined
from the duration between the disappearance and the burst
of gravitational wave signals (or from the burst waveform
itself). The time until a collapse to form a black hole may be
detected also through other electromagnetic signals. Most
importantly, the gap between these two signals carries clear
information on the EOS of high density neutron star matter.
If the value ofMAX

max turned out to be only about 10% larger
than MTR

max, it would be strong evidence for the fact that the
EOS of high density neutron star matter is substantially
softer in the core of neutron stars.

FIG. 2. The gravitational (Arnowitt-Deser-Misner) mass M is
plotted against the central density ρc for the same model with
the right panel of Fig. 1, ðΓ1;Γ2Þ ¼ ð4; 2.5Þ. Solid and dashed
curves are axisymmetric sequences with J ¼ constant, and
M0 ¼ constant, respectively. Turning points of these curves
are indicated by a dotted curve. Top (red) and bottom (green)
circles are the maximum of the gravitational mass for the
axisymmetric and spherical stars, respectively. For a reference,
we draw evolutionary tracks (thick curves with arrows) of newly
born magnetars under the fallback accretion modeled by Piro and
Ott, Eqs. (14)–(16) in [13]. For simplicity, a spin equilibrium
(Eq. (17) in [13]) is always assumed.

6The criteria is known to be a sufficient condition for stability,
and recent simulations suggest that the vanishing F-mode appears
at somewhat smaller ρc than that determined by the turning point
method [4,22]. Because the point where the stability changes is
placed beyond the maximum mass MAX

max, the difference between
MAX

max and the mass at the radial stability limit does not affect our
discussion.
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It should be noted that our (piecewise) polytropic EOS is
understood as a parametrization of various types of nuclear
EOS. A variety of microphysics of high density nuclear
matter can be integrated into the adiabatic indices Γi, the
dividing densities at the interfaces of successive segments,
and an adiabatic constant of one of the segments. As
demonstrated in [11], it is a best practice to introduce such
piecewise polytropic EOSs with a minimal number of
segments to parametrize realistic EOSs to constrain them
through gravitational wave observations. However, accord-
ing to [11] for the case with binary neutron star inspirals,
one EOS parameter may be constrained from the gravita-
tional wave observations by advanced LIGO detectors, and
two by the Einstein Telescope (but those could be improved
by optimizing a detector sensitivity).
The stiffness of the EOS is the essential property

affecting the maximum masses, and in our two segment
piecewise polytropic EOS model that is parametrized by
the ðΓ1;Γ2Þ of the outer and inner cores. Then, the
possibilities are whether (i) the stiffness is approximately
the same for inner and outer cores, Γ1 ≈ Γ2, (ii) the inner
core is stiffer than the outer core, Γ1 < Γ2, or (iii) the inner
core is softer than the outer core, Γ1 > Γ2, and the stiffness
of the outer core Γ1 may be compared with Γ ∼ 2.5–3
where the relativistic triaxial solutions appear. The case
(i) is the same as a simple (one segment) polytropic EOS: a
difference between axisymmetric and triaxial maximum
masses defined by ΔMmax ≔ ðMAX

max −MTR
maxÞ=MSPH

max will
depend systematically on the indices Γi. The maximum
mass difference ΔMmax for case (i) will be larger than
ΔMmax ≳ 20% in a range 2.24≲ Γ≲ 4 (and supposedly in
Γ≳ 4 also). For case (ii), ΔMmax cannot be smaller than
case (i) because the maximum mass of spherical and

axisymmetric solutions, MSPH
max and MAX

max, are not affected
by the EOS of the outer core but mostly by the inner core
[11], while the maximum mass of triaxial star MTR

max
becomes smaller for the softer EOS in the outer core.
Hence ΔMmax will be the same or larger than 20% for
case (ii).
Therefore it seems legitimate to conclude that the

maximum mass difference ΔMmax will be less than 10%
for outer core’s Γ1 ≈ 4, and inner core’s Γ2 ≲ 2.5, and as
considering the systematic dependence of the maximum
masses on the stiffness of EOS, ΔMmax would be around
10% or less for the other combination of Γi, such as Γ1 ≈
3.5 and Γ2 ≲ 2 for the outer and inner cores, respectively.
As an example, apart from the results presented in the
previous section, we have also calculated a case with
ðΓ1;Γ2Þ ¼ ð3.5; 2.5Þ, and found the mass difference to
be ΔMmax ¼ 15.4%. Clearly, such modifications in Γi do
not change the above statement, that the mass difference
ΔMmax ≲ 10% is strong evidence for the softer inner core
and stiffer outer core.
The illustrative waveform in Fig. 3 may be different from

the actual waveform, because such compact rapidly rotat-
ing stars are also unstable to the Chandrasekhar-Friedman-
Schutz mechanism [4,6,24], which sets in at a value of
T=jWj lower than that of the dominant viscosity-driven
secular l ¼ m ¼ 2 f-mode [25]. Therefore, after MTR

max is
reached, we might still see the signals of lower order
gravitational f-modes (m ¼ 2–4) and/or r-modes [26]. Such
modes are assumed to be suppressed in the above scenario
because of a strong viscosity mechanism or turbulent
magnetic flow. If not, the modeling of the waveform
becomes more challenging.
Because of the recent successful detection of gravita-

tional waves from a binary black hole merger, the detection
of those from neutron stars looks very promising [27].
Since the above signal from triaxial compact star resides
roughly around 2000–3000 Hz for a compactness M=R ∼
0.2–0.3 [28], it will be necessary to improve the sensitivity
in this bandwidth using narrow banding [29].
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