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The Higgs naturalness problem is solved if the growth of Einstein’s gravitational interaction is softened
at an energy≲1011 GeV (softened gravity). We work here within an explicit realization where the Einstein-
Hilbert Lagrangian is extended to include terms quadratic in the curvature and a nonminimal coupling with
the Higgs. We show that this solution is preserved by adding three right-handed neutrinos with masses
below the electroweak scale, accounting for neutrino oscillations, dark matter and the baryon asymmetry.
The smallness of the right-handed neutrino masses (compared to the Planck scale) and the QCD θ-term are
also shown to be natural. We prove that a possible gravitational source of CP violation cannot spoil the
model, thanks to the presence of right-handed neutrinos. Inflation is approximately described by the
Starobinsky model in this context and can occur even if we live in a metastable vacuum.
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I. INTRODUCTION AND SUMMARY

The hierarchy problem consists in finding an extension
of the Standard Model (SM) where the Higgs mass Mh is
natural: quantum corrections to Mh are small compared to
its observed value. A challenge is to achieve this in the
presence of gravity. Softened gravity is a scenario in which
the growth of Einstein’s gravitational interaction stops at a
scale no larger than 1011 GeV [1]. In such a situation, the
gravitational quantum corrections to Mh are not too large
solving the hierarchy problem. An important question is
whether this scenario can be made realistic and can address
the shortcomings of the SM: nonzero neutrino masses, dark
matter (DM), baryon asymmetry of the Universe (BAU),
inflation as well as an explication for the smallness of the
QCD θ-term.
Here, we show that this can be achieved by simply

including three right-handed neutrinos with Majorana
massesM below the electroweak (EW) scale. Right-handed
neutrinos can account for the observed neutrino oscilla-
tions, DM and BAU. We consider a concrete implementa-
tion of the softened gravity idea where the Einstein-Hilbert
Lagrangian is extended to include all terms quadratic in the
curvature as well as a nonminimal coupling ξ between the
Higgs and gravity. We address the question of whether this
theory might be a candidate UV completion of Einstein
gravity.
The same radiatively stable values of the parameters that

lead to a natural Higgs mass (found in Ref. [2]) also
preserve the smallness of M and θ. The concept of
naturalness used here is the one based on finite quantities

(after renormalization), where unphysical power-law
divergences with respect to the momentum cutoff are
disregarded [3–6].
We also show that a possible gravitational breaking of

CP (which could be due to θ) produces no visible effects in
the observable quantities, thanks to the presence of the
right-handed neutrinos. Inflation is mainly due to the
effective Starobinsky scalar z [7] (which automatically
emerges from the terms quadratic in the curvature), and the
Higgs gives very small contributions even in the natural
parameter space.
We find it remarkable that all the above-mentioned

problems can be solved in such a simple extension of
the SM.
This paper is organized as follows. In the next section,

we describe the theory of softened gravity that will be
considered in detail in this paper. In Sec. III, we discuss
its spectrum. The following Sec. IV is dedicated to the
study of some quantum aspects. Section V shows the
naturalness of the Higgs mass, the QCD θ angle and
right-handed neutrino masses and Yukawa couplings in
this context. In the same section, we also discuss the
connection between the possible gravitational violation of
CP and the neutrino sector. Section VI presents a detailed
analysis of inflation, and finally we provide our con-
clusions and outlook in Sec. VII. We provide technical
material in two Appendixes.

II. THE THEORY

The full Lagrangian (density) is given by

L ¼ ffiffiffiffiffiffi
−g

p ðLgravity þ LSM þ LNÞ: ð2:1Þ

Here, Lgravity represents the pure gravitational Lagrangian
plus the possible nonminimal coupling between the Higgs
and gravity, which, modulo total derivatives [8], is
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Lgravity ¼
R2

6f20
þ

1
3
R2 − R2

μν

f22
−
�
M̄2

Pl

2
þ ξjHj2

�
R − Λ;

ð2:2Þ

where f2 and f0 play the role of gravitational couplings,
M̄Pl is the reduced Planck mass and Λ is the cosmological
constant. LSM represents the usual SM Lagrangian, min-
imally coupled to gravity. LN is the term that depends on
the right-handed neutrinos Ni (i ¼ 1; 2; 3),

LN ¼ iN̄i∂Ni þ
�
1

2
NiMijNj þ YijLiHNj þ H:c:

�
;

ð2:3Þ

where Mij and Yij are the elements of the Majorana mass
matrix M and the neutrino Yukawa coupling matrix Y,
respectively.
Note that the new gravitational terms associated with the

couplings f0, f2 and ξ are necessary for the renormalization
of the theory; even if we do not introduce them in the
classical theory, radiative corrections generate them.

III. SPECTRUM

We now turn to the spectrum. As usual, there is a
massless spin-2 graviton. Also, the term ð1

3
R2 − R2

μνÞ=f22 in
(2.2) corresponds to a ghost: a field with an unusual minus
sign in front of its kinetic term. In the present case, this field
has spin-2 and mass M2 ≡ f2M̄Pl=

ffiffiffi
2

p
[9]. In the next

section, we will discuss a possible sensible way of
interpreting such a field.
The term R2=ð6f20Þ leads instead to the scalar z. To see

this, one can write the scalar-tensor part of the Lagrangian,
Lst, in the Einstein frame [2,10,11],

Lst ¼
ffiffiffiffiffiffiffiffi
−gE

p �1
3
R2
E − R2

Eμν

f22
−
M̄02

Pl

2
RE þ Lϕ − VE

�
; ð3:1Þ

where everything is computed with the new metric

gEμν ≡ gμν ×
z2

6M̄02
Pl

; ð3:2Þ

M̄02
Pl ≡ M̄2

Pl þ 2ξv2 (note that v≃ 174 GeV, and in practice
one can take M̄02

Pl ¼ M̄2
Pl) and

Lϕ ≡ 6M̄02
Pl

z2

�
jDμHj2 þ ð∂μzÞ2

2

�
;

VE ≡ 36M̄04
Pl

z4

�
VðHÞ þ 3f20

8

�
z2

6
− 2ξjHj2 − M̄2

Pl

�
2
�
:

ð3:3Þ

The potential V is the SM one: VðHÞ ¼ λðjHj2 − v2Þ2 þ Λ.

The minimum of VE occurs when the Higgs is at the EW
scale, v, and z ≈ hzi≡ ffiffiffiffiffiffiffiffiffiffi

6M̄02
Pl

p
(here, we neglect tiny

corrections due to Λ=M̄Pl ≠ 0). Notice that at z ¼ hzi
the kinetic terms of the scalars are canonically normalized,
and therefore the squared mass matrix for scalars, M2

0, is
the Hessian matrix of VE computed at this point of
minimum. This procedure leads to

M2
0 ≈

�
M02

0 −ϵM0
0m

−ϵM0
0m ð1þ ϵ2Þm2

�
;

where M02
0 ≡ f20M̄

02
Pl=2, m≡ 2

ffiffiffi
λ

p
v and ϵ≡

ffiffiffiffi
6
4λ

q
f0ξ (note

that λ is required to be positive by the stability of the
potential V). As usual, when λ < 0 we have a tachyonic
instability. For M0

0 ≫ m, which we expect because
M0

0 ∝ M̄Pl, the mixing becomes small, and the scalar
masses are approximately M0

0 and m. We will see in
Sec. VI B that this approximation is very accurate.
To analyze the neutrino sector, we take (thanks to the

complex Autonne-Takagi factorization) M real and diago-
nal without loss of generality, M ¼ diagðM1;M2;M3Þ,
where the Mi are real mass parameters. The neutrinos
acquire a Dirac mass matrix mD ¼ vY, which can be
parametrized as mD ¼ ðmD1; mD2; mD3 Þ, where mDi are
column vectors. Integrating out the heavy neutrinos Ni, one
then obtains the usual seesaw formula for the light neutrino
Majorana mass matrix

mν ¼
mD1mT

D1

M1

þmD2mT
D2

M2

þmD3mT
D3

M3

: ð3:4Þ

By means of a unitary (Autonne-Takagi) redefinition of the
left-handed SM neutrinos, we can diagonalize mν to obtain
themass eigenvaluesm1,m2 andm3 (the left-handed neutrino
Majorana masses). The experimental constraints on neutrino
masses and oscillations (see Ref. [12] for recent determina-
tions) can be satisfied by choosing appropriately the unitary
matrix Uν that implements such transformation (the
Pontecorvo–Maki–Nakagawa–Sakata matrix) and the mi.
Here, the Ni are also responsible for DM [13–15] and

BAU [14–16]. For example, we find that all bounds to
account for neutrino masses and oscillations (within 1σ)
[12], for DM and BAU [15], can be satisfied for

M1 ∼ keV; M2;3 ∼ GeV; jYijj < 10−7: ð3:5Þ

These low-scale right-handed neutrinos can be searched for
the laboratory or through astrophysical observations (see
for example Refs. [15,17] and references therein). This
proposal can therefore be tested.

IV. QUANTUM ASPECTS

The theory with Lagrangian (2.1) by itself does not
eliminate the Landau poles of the SM, which, however,
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occur many orders of magnitude above the Planck scale
where no experiments or observations can be made. Wewill
therefore avoid this problem by assuming that there is a
minimal length much larger than the Landau pole scales but
still much shorter than the Planck length.
The Lagrangian in (2.1) defines a renormalizable theory

of gravity [9] (actually, of all interactions). The price to pay
is the presence of a ghost (which we have seen in the
previous section). Such a field emerges because of the
presence of four time derivatives in the Lagrangian [18].
The spectrum of such a theory, however, becomes bounded
from below at the quantum level if negative norm states are
introduced (see e.g. Ref. [19] and references therein). In
particular, the quanta of the ghost field have to have
negative norm, while all remaining quanta have positive
norm. Recently, Ref. [19] showed (assuming a single four-
derivative degree of freedom) that such a quantization can
be obtained with normalizable wave functions and a well-
defined Euclidean path integral.
The remaining problem of having a sensible probabilistic

interpretation of negative-norm states could be bypassed by
the Lee-Wick idea [20], which assumes all stable states in
the theory to have positive norm. Indeed, theories of this
sort are sensible as long as we only look at the energy
spectrum and transition probabilities between asymptotic
(stable) states (S-matrix elements). Reference [21] argued
that the assumption of Lee and Wick is satisfied in the
theory of gravity above. One of the purposes of this section
is to explicitly prove that the ghost is unstable in this theory.

A. Ghost decay

Given that the ghost at hand has spin 2, a direct
calculation of its decay involves the complications of the
corresponding Lorentz indices. For this reason, one would
like to use the optical theorem and compute equivalently
the imaginary part of the ghost propagator. However, the
optical theorem is derived in theories with positive norms
only and requires a generalization here, given that the ghost
state has negative norm.
To obtain such a generalization consider the time

evolution operator U, which is defined as usual as the
linear operator that transforms the state at the initial time
into the state at the generic time. The usual procedure is to
define the operator T by

U ≡ 1þ iT: ð4:1Þ

By using the unitarity condition (which is fulfilled even in
the presence of negative norms [19]), we obtain

iðT† − TÞ ¼ T†T: ð4:2Þ

If we now take the matrix element between an initial state
jii and a final state jfi, we find

iðT†
fi − TfiÞ ¼ ðT†TÞfi; ð4:3Þ

where Tfi ≡ hfjTjii, T†
fi ≡ hfjT†jii and ðT†TÞfi ≡

hfjT†Tjii. In theories with positive norms only, the
completeness relation is 1 ¼ P

njnihnj, where fjnig is
an orthonormal basis, hn0jni ¼ δn0n. In the presence of both
negative and positive norms, however, the scalar product
between two generic states jαi and jβi can be written as

hβjαi ¼ ðβ; ηαÞ; ð4:4Þ

where (.,.) is a positively defined scalar product and η is
assumed to be a diagonalizable operator with eigenvalues
þ1 and −1 [22], so η2 ¼ 1. The completeness relation now
reads η ¼ P

njnihnj, so

1 ¼ η2 ¼
X
n

jnihnjη ¼
X
n

jnihnjηn; ð4:5Þ

where we have constructed the basis fjnig with the
eigenvectors of η. By inserting this into Eq. (4.3), we get

iðT†
fi − TfiÞ ¼

X
n

ηnT�
nfTni; ð4:6Þ

which is the generalization of the optical theorem we were
looking for.
To apply this formula to compute a decay, we set the

initial and final states equal to each other (jii ¼ jfi ¼ jαi),
and so

2ImðTααÞ ¼
X
n

ηnjTnαj2: ð4:7Þ

Notice that jTnαj2 ¼ jUnα − hnjαij2, whereUnα ≡ hnjUjαi.
We are interested here in the decay of a negative norm
particle; we therefore focus on states jαi that are normal-
izable and set hαjαi ¼ �1. Wewould like to apply Eq. (4.7)
within perturbation theory at first order, so we can take
Tαα ¼ 0 and ηn ¼ 1 in the right-hand side; the former
equality holds because at zero order T does not transform
the ghost into itself or into itself plus additional states (for
kinematical reasons), and the latter holds because the ghost
is the only state with negative norm. Then, jTnαj2 is the
transition probability1; for the process α → n, and the right-
hand side of Eq. (4.7) is the total probability that the state
jαi decays.
The next step to compute the ghost decay is to rewrite the

four-derivative terms as two-derivatives where the ghost
field is explicit in the Lagrangian. This is the analogue of
what we have done in Sec. III to have the field of the scalar
z explicit and has been done in Ref. [23]. In this case, the

1In the present work, we define the probability as the absolute
value squared of the amplitude. One should keep in mind,
however, that other definitions are possible [19].
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trick is to introduce a rank-2 Lagrange multiplier πμν, which
is explicitly defined in Ref. [23]. We eliminate the linear
mixing between πμν and the fluctuation of the metric hμν
around the flat space (as well as with all the other fields) by
introducing

h̄μν ≡ hμν þ πμν þ
ffiffiffi
2

3

r
δz
M̄Pl

ημν; ð4:8Þ

where δz≡ z − hzi. The field h̄μν corresponds to the usual
massless graviton, πμν represents the ghost, and δz repre-
sents the quantum scalar field associated with the fluctua-
tions of z around its vacuum expectation value.
We also find

ð□ −M2
2Þπμν ¼ 0; ∂μπμν ¼ 0;

πμ
μ ¼ 0 ðat the linearized levelÞ; ð4:9Þ

where the indices are raised and lowered here with ημν. This
confirms that πμν is a massive spin-2 field and can be
expanded as follows,

πμνðxÞ ¼
2

M̄Pl

X
i;~k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vωπð~kÞ

q ðeiμνð~kÞaπið~kÞe−ikx

þ ēiμνð~kÞa†πið~kÞeikxÞ; ð4:10Þ

where V is the space volume (that should be taken to ∞ at

the end) and ωπð~kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

2 þ ~k2
q

and eiμνð~kÞ are2 the
polarization tensors corresponding to the wave number
~k; the index i labels the helicity state. The operators aπið~kÞ
and a†πið~kÞ are annihilation and creation operators, respec-
tively, and fulfill the commutation relations

½aπið~kÞ; aπjð~k0Þ� ¼ 0; ½aπið~kÞ; aπjð~k0Þ†� ¼ −δijδ~k~k0 :

ð4:11Þ

Note the minus sign on the right-hand side, which has
been introduced because we are dealing with ghosts
(see Ref. [19]).

The eiμνð~kÞ transform covariantly as a rank-2 tensor.
Notice that the second equation in (4.9) gives

pμeiμνð~pÞ ¼ 0: ð4:12Þ

In the massive spin-2 case, we are considering there are
five helicity states (so i ¼ 1, 2, 3, 4, 5). In this case,
one can easily obtain the eiμνð~pÞ in the rest frame,
pμ ¼ ðM2; 0; 0; 0Þ, and then use general Lorentz boosts

to obtain the polarization tensors in an arbitrary frame. In
the rest frame, Eq. (4.12) becomes ei0μ ¼ 0, which, together

with the traceless condition eiμμ ¼ 0 [the third equation in
(4.9)], can be fulfilled by the basis given in Appendix A.
One can directly check that

eiμνð~pÞejμνð~pÞ ¼ δij ð4:13Þ

and

X5
i¼1

eiμνð~pÞēiρσð~pÞ ¼ Pð2Þ
μνρσðpÞ; ð4:14Þ

where

Pð2Þ
μνρσ ¼ 1

2
TμρTνσ þ

1

2
TμσTνρ −

1

3
TμνTρσ; ð4:15Þ

and TμνðpÞ ¼ ημν − pμpν=p2. The equality in (4.14) can be
shown by considering first the rest frame, where the eiμν are
simple and explicitly given above, and then noticing that

both
P

5
i¼1 e

i
μνð~pÞēiρσð~pÞ and Pð2Þ

μνρσðpÞ are rank-4 tensors
and so they coincide if they are equal in a given frame.
Finally, by using the generalized optical theorem in

Eq. (4.7), we obtain that the decay rate Γ of the gravita-
tional ghost state with momentum pμ is

Γ ¼
�

2

M̄Pl

�
2 1

p0

1

5
Pð2Þ
μνρσðpÞImΠμνρσðpÞ; ð4:16Þ

where Πμνρσ is the amputated loop Feynman amplitude
(multiplied by −i). The factor 1=5 appears because we have
averaged with respect to the initial polarization.
That this decay rate is not zerocanbeexplicitly checkedby

considering the decay into two real scalars with massm, for
instance two Higgs in the final state. In this case, we find

Γð ghost → scalar scalarÞ

¼ ðM2
2 − 4m2Þ2ImB0ðM2

2; m
2; m2Þ

60ð4πÞ2p0M̄2
Pl

; ð4:17Þ

where the function B0 is defined in Appendix B, Eq. (B2).
The same Appendix also shows

ImB0ðp2; m2; m2Þ ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

p2

s
θðp2 − 4m2Þ: ð4:18Þ

By using this result, we find

Γðghost → scalar scalarÞ

¼
ðM2

2 − 4m2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

p2

q
θðM2

2 − 4m2Þ
960πp0M̄2

Pl

: ð4:19Þ2ēiπμνð~kÞ represents the corresponding complex conjugate
object.
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This expression can be simplified by going to the ghost rest
frame p ¼ ðM2; 0; 0; 0Þ and assuming M2 ≫ 2m,

Γðghost → scalar scalarÞ

¼ M3
2

960πM̄2
Pl

ðin the ghost rest frame and for M2 ≫ 2mÞ:

ð4:20Þ

Of course, the interactions of πμν with the other fields of
the theory under study cannot slow the decay, but they
make it faster. This definitely shows that the ghost is
unstable and the Lee-Wick idea may be implemented.
Other challenges that have to be faced before considering
this theory a completely satisfactory UV completion of
Einstein’s gravity will be mentioned in Sec. VII.

B. RGEs and threshold effects

In order to address naturalness issues in this model (see
Sec. V), we need the renormalization group equations
(RGEs); they encode the leading quantum corrections. The
one-loop RGEs for the dimensionless couplings for ener-
gies above all mass thresholds are (see e.g. Refs. [2,24–26]
and references therein)

df22
dt

¼ −
109

6
f42; ð4:21Þ

df20
dt

¼ 5

3
f42 þ 5f22f

2
0 þ

5

6
f40 þ f40

ð1þ 6ξÞ2
3

; ð4:22Þ

dξ
dt

¼ ð1þ 6ξÞ
�
y2t −

3

4
g22 −

3

20
g21 þ 2λþ 1

3
TrðY†YÞ

�

þ f20
3
ξð1þ 6ξÞð2þ 3ξÞ − 5

3

f42
f20

ξ; ð4:23Þ

dg21
dt

¼ 41g41
5

;
dg22
dt

¼ −
19g42
3

;
dg23
dt

¼ −14g43;

dy2t
dt

¼ y2t

�
9y2t − 16g23 −

9g22
2

−
17g21
10

þ 2TrðY†YÞ þ 15

4
f22

�
;

dY
dt

¼ Y

�
3y2t −

9

20
g21 −

9

4
g22 þ

3

2
Y†Y þ TrðY†YÞ þ 15

8
f22

�
;

ð4:24Þ

dλ
dt

¼
�
24λþ 12y2t −

9g21
5

− 9g22 þ 4TrðY†YÞ

þ 5f22 þ f20ð1þ 6ξÞ2
�
λ

− 6y4t þ
9g42
8

þ 27g41
200

þ 9g22g
2
1

20
− 2TrððY†YÞ2Þ

þ ξ2

2
ð5f42 þ f40ð1þ 6ξÞ2Þ; ð4:25Þ

where t ¼ lnðμ̄=μ̄0Þ=ð4πÞ2, μ̄ is the MS renormalization
scale3 and μ̄0 is a reference energy. Here, we have ignored
the Yukawa couplings of the SM that are smaller than the
top Yukawa, yt, and the gi are the gauge couplings.
Going below the mass thresholds M2 and M0

0, one can
neglect the contributions due to f2 and f0, respectively.
One can wonder whether the scalar threshold due to z
induces a tree-level shift of the quartic Higgs coupling,
along the lines of Ref. [27]. We now show that such a shift
is negligible. This effect can emerge because setting the
heavy scalar (in this case, δz≡ z − hzi) equal to zero is not
compatible with the equations of motion. This occurs if
there are scalar couplings of the schematic form (heavy) x
(light) x (light) in the Lagrangian (in this case, δzδh2, where
δh≡ h −

ffiffiffi
2

p
v). Using Eq. (3.3) leads to such a coupling,

∼f20ξM̄Plδzδh2 (modulo order 1 factors and neglecting
contributions suppressed by v2=M̄2

Pl and the tiny value
of Λ). The shift δλ in the quartic coupling is given by the
square of the coefficient of the (heavy) x (light) x (light)
term, in this case,∼f20ξM̄Pl times the propagator of z at zero
external momentum [27]: δλ ∼ f20ξ

2. In Secs. V and VI, we
will see that the requirement of successful inflation and
Higgs mass naturalness implies f0 ∼ 10−5 and ξ ≈ −1=6, so
that f20ξ

2 ∼ 10−11 and this effect is negligibly small.
As far as the RGEs of the mass parameters are con-

cerned, we find that m2, M and M̄2
Pl obey

dm2

dt
¼ m2

�
12λþ 6y2t −

9

2
g22 −

9

10
g21 þ 2TrðY†YÞ

þ 5f22 þ f20ð1þ 6ξÞ þ 6ξ2 þ 2G

�
þ 8TrðY†YM†MÞ − 5f42ξM̄

2
Pl − f40ξð1þ 6ξÞM̄2

Pl;

ð4:26Þ
dM
dt

¼ MY†Y þ ðY†YÞTM þ 15

8
f22M þMG; ð4:27Þ

dM̄2
Pl

dt
¼ −

2

3
m2 þ 1

24
TrðM†MÞ − 4ξm2

þ
�
2f20
3

−
5f42
3f40

þ 2G

�
M̄2

Pl: ð4:28Þ

Here, G is a gauge-dependent quantity; for example, using
the same gauge fixing action as in Ref. [2],

Sgf ¼ −
1

2ξg

Z
d4xfμ∂2fμ;

fμ ¼ ∂ν

�
hμν − cg

1

2
ημνhαα

�
; ð4:29Þ

3All renormalized couplings in this work are defined in the MS
scheme.
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where hμν ¼ gμν − ημν, leads to

G ¼ ð3c2g − 12cg þ 13Þξg
4ðcg − 2Þ þ 3ðcg − 1Þ2f20

4ðcg − 2Þ2 : ð4:30Þ

The gauge dependence cancels as it should in the RGEs of
M=M̄Pl and m2=M̄2

Pl.

V. NATURALNESS

Notice that the β-function in (4.27) vanishes as M → 0.
Therefore, by starting from small values [such as those in
(3.5)] at low energy, one does not end up with a much larger
M. This occurs because M breaks lepton symmetry, while
all other fields (gravity included) preserve it. Such small
values of M are therefore natural even taking into account
gravity. This is because our softened gravity preserves
global lepton symmetry.
The same is true for Y, given the structure of the β-

function in (4.24). As a result, the naturalness of the EW
scalem leads to the same conditions obtained in Ref. [2] [as
it can be seen from Eq. (4.26)]: the order of magnitude of f42
and f40ð1þ 6ξÞ should not exceedM2

h=M̄
2
Pl. This condition

is preserved by the renormalization group (RG) running
[see Eqs. (4.21), (4.22) and (4.23)]. The smallness of these
couplings corresponds to the softening of gravity. Notice
that one important ingredient to ensure this result is the fact
that the small values of M and Y [see for example (3.5)]
ensures that neutrinos do not give unnaturally large
corrections to the Higgs mass. This is opposed to the
standard leptogenesis scenario [28], which occurs through
the decay of very heavy [29] right-handed neutrinos and
can introduce a fine-tuning in the Higgs mass [4].
In a similar way, we also show now that the smallness of

the θ-term is natural in this context. In the SM, the β-
function of θ starts at least at seven loops and is at most of
order 10−15 [30]. This is because one needs to construct a
flavor invariant CP-breaking term out of the quark Yukawa
couplings. Therefore, in the SM, the running of θ is
negligibly small. The right-handed neutrino sector contains
other sources of CP breaking and can potentially introduce
a larger running. However, in order to connect the θ-vertex
with a right-handed neutrino, you need three loops (you
should insert a quark, a Higgs and a right-handed neutrino).
This leads to a 1=ð4πÞ6 suppression. Moreover, you have at
least an extra factor that is quadratic in the Yij, which has to
be very small given that all right-handed neutrinos are
below the EW scale [see e.g. Eq. (3.5)]. Therefore, also the
right-handed neutrino sector preserves the smallness of the
θ-running. Finally, notice that gravity, given that it is
softened and CP-preserving in our context, does not
reintroduce a sizable running.
It is now a good point to comment on the possible CP-

breaking extension of the softened gravity theory at hand.
Given that we limit to terms in the Lagrangian which are at

most quadratic in the curvature, we could add a “gravita-
tional θ-term,”

ϵμνρσRαβ
μνRρσαβ; ð5:1Þ

which may potentially affect the observable predictions of
the theory. This term (as well as some phases in the quark
mass matrix) could be (partially) due to removing the QCD
θ-term via a chiral transformation of the quarks [31]. Since
it can be rotated away with an anomalous chiral trans-
formation, its coefficient in the Lagrangian cannot be much
larger than 2π times 1=ð4πÞ2. For such a small value, the
gravitational θ-term could only affect very energetic
phenomena, such as inflation. Moreover, the presence of
right-handed neutrinos helps; one can perform a U(1)
transformation of Ni, that is Nj → expðiβÞNj, where β
is a real number, which removes completely such a
gravitational term and, as side effect, only rescales Mj

and Yij in the following way: Mj → expð2iβÞMj, Yij →
expðiβÞYij. This rescaling produces no effect in neutrino
observables, which can therefore be compatible with data.
This is because the neutrino mass matrix in (3.4) is
invariant under such a transformation.

VI. INFLATION

Let us finally turn to inflation. In a similar context,
Refs. [10,11,32] showed that inflation is mainly triggered
by the Starobinsky effective scalar z, rather than the Higgs.
We show that the same happens here even in the natural
parameter space.

A. Multifield inflation formalism

Although the theory studied here has only two scalar
fields (in the unitary gauge), it is convenient to start from a
formalism suitable for a general number of scalars (as the
equations will be shorter). This formalism has been studied
in the past [33], but we will obtain weaker slow-roll
conditions; therefore, we present the explicit derivation
here. We also take advantage to elucidate some points in
multifield inflation.
We rewrite the scalar-tensor Lagrangian in (3.1) as

Lst ¼
ffiffiffiffiffiffiffiffi
−gE

p �1
3
R2
E − R2

Eμν

f22
−
M̄02

Pl

2
RE

þ KijðϕÞ
2

∂μϕ
i∂μϕj −UðϕÞ

�
; ð6:1Þ

where the field metric Kij and the potential U are generic
functions of the scalar fields ϕi. In our case, we are
interested in the case ϕi ¼ fz; hg, where h is the physical
Higgs field, but we keep the formalism general as
explained above.
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Next, we consider the Friedmann-Robertson-Walker
(FRW) metric.

ds2E ≡ gEμνdxμdxν

¼ dt2 − aðtÞ2
�

dr2

1 − kr2
þ r2ðdΘ2 þ sin2Θdϕ2Þ

�
:

ð6:2Þ

We neglect from now on the curvature contribution k as
during inflation the energy density is dominated by the
scalar fields. Then, the Einstein equations (EEs) and the
scalar equations imply the following equations for aðtÞ and
the spatially homogeneous fields ϕiðtÞ,

H2 ¼ Kij
_ϕi _ϕj=2þ U

3M̄02
Pl

; ðtt-component of EEsÞ ð6:3Þ

2aðtÞäðtÞ þ _aðtÞ2 ¼ a2ðKij
_ϕi _ϕj=2 −UÞ

M̄02
Plðkr2 − 1Þ ;

ðrr-component of EEsÞ ð6:4Þ

2aðtÞäðtÞ þ _aðtÞ2 ¼ a2ðU − Kij
_ϕi _ϕj=2Þ

M̄02
Pl

;

ðθθ-component of EEsÞ ð6:5Þ

2aðtÞäðtÞ þ _aðtÞ2 ¼ a2ðU − Kij
_ϕi _ϕj=2Þ

M̄02
Pl

;

ðϕϕ-component of EEsÞ ð6:6Þ

ϕ̈i þ γijk
_ϕj _ϕk þ 3H _ϕi þ U;i ¼ 0;

ðscalar field equationÞ; ð6:7Þ

where H ≡ _a=a and a dot denotes a derivative with respect
to t. Also, for a generic function F of the scalar fields, we
defined F;i ≡ ∂F=∂ϕi, the affine connection γijk in the
scalar field space is

γijk ≡ Kil

2
ðKlj;k þ Klk;j − Kjk;lÞ; ð6:8Þ

and Kij denotes the inverse of the field metric (which is
used to raise and lower the scalar indices i; j; k;….); for
example F;i ≡ KijF;j. The rr-, θθ- and ϕϕ-components of
the EEs are only one independent equation, and thus the
EEs can be simplified to

H2 ¼ Kij
_ϕi _ϕj=2þ U

3M̄2
Pl

; ð6:9Þ

_H ¼ −
Kij

_ϕi _ϕj

2M̄2
Pl

: ð6:10Þ

Notice that the term suppressed by f22 in the Lagrangian
has no effect because it is equal to (modulo total deriva-
tives) the square of the Weyl tensor which vanishes on the
FRWmetric. We assume that term has no effect on inflation
at the quantum level either.

1. Slow-roll approximation

We now describe the slow-roll approximation within this
formalism. The scalar fields roll slowly down the potential
when

Kij
_ϕi _ϕj ≪ U; jϕ̈i þ γijk

_ϕj _ϕkj ≪ 3H _ϕi;

jϕ̈i þ γijk
_ϕj _ϕkj ≪ U;i: ð6:11Þ

Then, from Eqs. (6.3) and (6.7), we obtain

H2 ≃ U
3M̄2

Pl

; _ϕi ≃ −
U;i

3H
ð6:12Þ

(in our notation, U;i ≡ KijU;j, where U;i ≡ ∂U=∂ϕi). By
using (6.12) in the first condition in (6.11), we obtain the
first slow-roll condition

ϵ≡ M̄2
PlU;iU;i

2U2
≪ 1: ð6:13Þ

Equations (6.12) tell us

_H
H2

≃ −ϵ; ð6:14Þ

which is guaranteed to be small by (6.13). From (6.12),
we find

ϕ̈i þ γijk _ϕ
j _ϕk

H _ϕi ≃ −
_H
H2

−
M̄2

PlU
;i
;jU

;j

UU;i

≃ −
M̄2

PlU
;i
;jU

;j

UU;i ; ði not summedÞ; ð6:15Þ

where for a generic vector Vi on the scalar field space we
defined the covariant derivative Vi

;j ≡ ∂Vi=∂ϕj þ γijkV
k.

Notice that in the formula above the index i is not summed
and in the last step we have neglected _H=H2 that we have
just proven to be small. Therefore, from (6.11), we obtain
the second slow-roll condition

���� ηijU;j

U;i

���� ≪ 1 ði not summedÞ; where ηij ≡
M̄2

PlU
;i
;j

U
:

ð6:16Þ

It is easy to check that ϵ and ηij reduce to the well-known
single field slow-roll parameters in the presence of only one
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field. The second slow-roll condition is weaker than the one
found in Ref. [33] where it is assumed jηijj < 1 and U;j=U;i

of order 1.
Combining the two equations in (6.12), we obtain the

following dynamical system for ϕi,

_ϕi ¼ −
M̄PlU;iðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffi

3UðϕÞp ; ð6:17Þ

which can be solved with a condition at some initial time t0,
that is ϕiðt0Þ ¼ ϕi

0. Once the functions ϕ
iðtÞ are known, we

can obtain HðtÞ from the first equation in (6.12). Let us
introduce the number of e-folds N by

Nðϕ0Þ≡
Z

t0ðϕ0Þ

te

dt0Hðt0Þ; ð6:18Þ

where te is the time when inflation ends. Dropping the label
on t0 and ϕ0 as they are generic values, we have

NðϕÞ≡
Z

tðϕÞ

te

dt0Hðt0Þ: ð6:19Þ

Notice that we write that t is a function of ϕ; this is because
once the initial position ϕ in field space is fixed the time
required to go from ϕ to the field value when inflation ends
is fixed, too, because the dynamical system in (6.17) is of
the first order. Note, however, that H also generically
depends on ϕ. Definition (6.19) implies

dN
dt

¼ H; ð6:20Þ

which can be used in (6.12) to obtain a simpler dynamical
system for ϕi where the independent variable is N instead
of t:

dϕi

dN
¼ −

M̄2
PlU

;iðϕÞ
UðϕÞ : ð6:21Þ

2. Observable predictions

One can then extract predictions for observable quan-
tities such as the power spectrum PRðkÞ of scalar fluctua-
tions, the spectral index ns and the tensor-to-scalar ratio r.
The measured values at k ¼ 0.002 Mpc−1 are PRðkÞ ¼
ð2.14� 0.05Þ × 10−9 [34], ns ¼ 0.965� 0.006 [34,35]
and r < 0.09 [34]. The power spectrum PRðkÞ is (see
Eq. (40) of Ref. [36])

PRðkÞ ¼
�
H
2π

�
2

N;iN;i; ð6:22Þ

computed at horizon exit k ¼ aH. The spectral index ns of
scalar perturbations can be computed as

ns ¼ 1þ d lnPR

d ln k
: ð6:23Þ

By now using d ln k ¼ d ln aH ≃Hdt, where we noticed
that during a nearly exponential expansion _a=a≃ ä= _a, and
Eq. (6.22), we find

ns ≃ 1þ 2
_H
H2

þ 2
N;i _N;i

HN;jN;j ; ð6:24Þ

where N is the quantity defined in (6.19). The second
term on the right-hand side can be substituted by −2ϵ
[Eq. (6.14)], while the third one can be computed by using

_N;i ¼ _N;i ¼ _ϕjN;i;j ¼ ð _ϕjN;jÞ;i − ð _ϕjÞ;iN;j

¼ H∶i − N;jð _ϕjÞ;i; ð6:25Þ

ð _ϕjÞ;i ≃ −
�
U;j

3H

�
;i
¼ H;iU;j

3H2
−
U;j;i

3H
: ð6:26Þ

This leads to

ns ¼ 1 − 2ϵ −
2

M̄02
PlN;iN;i þ

2ηijN;iN;j

N;kN;k ; ð6:27Þ

where we used (6.12). This formula does not contain a term
with the Riemann tensor, unlike Eq. (42) of Ref. [36],

ns ¼ 1þ 2 _H
H2

−
2

M̄02
PlN;iN;i þ

2ηijN;iN;j

N;kN;k

−
2M̄04

PlRijklN;iN;lU;jU;k

3N;mN;mU2
; ð6:28Þ

because the slow-roll Eqs. (6.12) have been used to
evaluate ð _ϕjÞ;i in Eq. (6.26).
Also, the tensor-to-scalar ratio can now be easily

computed by using a textbook formula for the tensor
power spectrum

PtðkÞ ¼
2

M̄2
Pl

�
H
2π

�
2

ð6:29Þ

to obtain

r≡ 4PtðkÞ
PRðkÞ

¼ 8

M̄2
PlN;iN;i : ð6:30Þ

B. Higgs-Starobinsky system

We now apply the formalism of Sec. VI A to the Higgs-
Starobinsky system defined by (3.1) and (3.3).
A qualitative analysis of the potential U ¼ VE shows

that inflation is mainly triggered by z because, even if
λ > 0, namely the case in which Higgs inflation [37] is
possible [38–40], the fields fz; hg are rapidly attracted to
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the line h ¼ 0 (the running forces λ to sizable values, and
the potential barrier for h ≠ 0 is too steep to allow Higgs
inflation). Matching the observed PRðkÞ leads to f0 ∼ 10−5

and therefore ξ ≈ −1=6 to achieve Higgs mass naturalness,
as discussed in Sec. V. Note that inserting f0 ∼ 10−5 in M0

0

leads to M0
0 ≫ m as we anticipated in Sec. III.

In Fig. 1, we show the presence of the above-mentioned
attractor even for the natural values ξ ≈ −1=6 and
f0 ∼ 10−5. It is only when the fields reach the attractor
that the slow-roll conditions in (6.13) and (6.16) are
satisfied. The curves have been obtained by solving the
field equations (6.21) in the slow-roll approximation.
By using Eqs. (6.24) and (6.30), we obtain the pre-

dictions for the observable quantities, ns ≈ 0.97 and
r ≈ 0.0031, for a number of e-folds N ≈ 59. We obtain
results that are very close to Starobinsky’s predictions ns ≈
0.97 and r ≈ 0.0035 [10] for the reasons explained above. It
is interesting to note that the softened gravity theory under
study gives a justification for the R2 term in the Lagrangian:
as we have previously mentioned, even if we do not
introduce it in the classical Lagraingian, quantum correc-
tions generate it.
For negative values of λ at the inflationary scales, which

are suggested by recent calculations [25,41,42], one should
instead require directly that the Higgs is at the EW
minimum of the SM potential4 large field values of the

Higgs above the SM potential barrier would lead to a
runaway for the Higgs field, which would not eventually
roll toward the EW vacuum.
Therefore, the inflationary nature of the model is close to

that of Starobinsky’s inflation, in good agreement with
current cosmological observations; the differences with
Starobinsky’s predictions are within current uncertainties,
but future observations may give us more information (we
will discuss this point in Sec. VII).

VII. CONCLUSIONS AND OUTLOOK

We have presented a softened gravity theory that, besides
having a natural Higgs mass, also possesses a natural QCD
θ angle. Three right-handed neutrinos below the EW scale
can explain the neutrino oscillations, DM and BAU and, at
the same time, protect the theory from gravitational
violation of CP invariance. Contrary to the standard lore,
we have shown (within the softened gravity theory studied
here) that the smallness of the right-handed Majorana
neutrino masses and Yukawa couplings required to explain
neutrino oscillations, DM and BAU is not a fine-tuning;
their smallness is preserved by the RGEs (which we have
determined explicitly), even if the gravity corrections are
included. Moreover, low-scale right-handed neutrinos give
negligible corrections to the Higgs mass. Therefore, the
softened gravity idea is not separate from the idea of low-
scale neutrinos; these two ingredients mutually reinforce
each other.
The implementation of softened gravity that we have

used here presents a spin-2 heavy ghost in its spectrum. We
have shown that this is an unstable state and therefore the
basic condition for a Lee-Wick interpretation of this theory
is fulfilled. Open problems for the future include the
nonperturbative formulation of the theory and the study
of its causal structure (which could perhaps be done
following the ideas of Refs. [19] and [44], respectively).
Moreover, we have shown that inflation and its pre-

dictions are close to those of Starobinsy’s R2 model. Given
the current observational uncertainties, they look actually
the same. However, we have found small differences such
that they can be distinguished by future observations such
as CMBpol [45]. For instance, future sensitivity for r can
well be at the level of 10−3 or below [45,46]. We hope that
the present work can stimulate future experimental as well
as theoretical efforts in distinguishing these theories. A
future theoretical goal could be for instance an improved
calculation of the inflationary predictions by going beyond
the slow-roll approximation.
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FIG. 1. Inflationary path of the scalar fields.

4The quantum and thermal probability of jumping to the true
minimum has been recently considered even in the presence of
the extra gravitational terms in Eq. (2.2) [43]. The conclusion is
that the lifetime of the EW vacuum can well be much bigger than
the age of the Universe without tension with any experiment.
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APPENDIX A: POLARIZATION TENSORS

The polarization tensors for a massive spin-2 field are [47]

ðin the rest frameÞ e1μν ¼ 1ffiffi
2

p

0
BBB@

0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

1
CCCA; e2μν ¼ 1ffiffi

2
p

0
BBB@

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

1
CCCA;

e3μν ¼ 1ffiffi
2

p

0
BBB@

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

1
CCCA; e4μν ¼ 1ffiffi

2
p

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

1
CCCA; e5μν ¼

ffiffi
2

pffiffi
3

p

0
BBB@

0 0 0 0

0 1=2 0 0

0 0 1=2 0

0 0 0 −1

1
CCCA:

APPENDIX B: IMAGINARY PART OF LOOP FUNCTIONS

By using the formula

1

ab
¼

Z
1

0

dx
½bþ ða − bÞx�2 ; ðB1Þ

we find that the function B0, which is defined by

B0ðp2; m2
1; m

2
2Þ≡ 1

iπ2

Z
ddq

1

ðq2 −m2
1 þ iϵÞ½ðqþ pÞ2 −m2

2 þ iϵ� ðB2Þ

in dimensional regularization (with space-time dimension d), can be written as

B0ðp2; m2
1; m

2
2Þ ¼

1

iπ2

Z
ddq

Z
1

0

dx
1

½q2 −m2
1 þ ðp2 þ 2qpþm2

1 −m2
2Þxþ iϵ�2 ; ðB3Þ

and then by introducing the new loop variable k ¼ qþ xp,

B0ðp2; m2
1; m

2
2Þ≡ 1

iπ2

Z
ddk

Z
1

0

dx
1

½k2 þ x2p2 −m2
1 þ ðp2 − 2xp2 þm2

1 −m2
2Þxþ iϵ�2 ; ðB4Þ

and setting m1 ¼ m2 ≡m,

B0ðp2; m2; m2Þ≡ 1

iπ2

Z
ddk

Z
1

0

dx
1

½k2 − Fðp2; xÞ þ iϵ�2 ;

ðB5Þ

where

Fðp2; xÞ≡m2 þ xðx − 1Þp2: ðB6Þ

ImB0ðp2; m2; m2Þ ≠ 0 only when Fðp2; xÞ is negative, that
is for x− < x < xþ where x� ¼ ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=p2

p
Þ=2,

which is possible only for p2 > 4m2. By performing the
Wick rotation, one therefore finds

ImB0ðp2; m2; m2Þ ¼ 1

π2

Z
xþ

x−

dxIm

×
Z

d4kE
θðp2 − 4m2Þ

ð−k2E þ jFj þ iϵÞ2 ; ðB7Þ

where the label E reminds us that we are now in the
Euclidean space (not to be confused with the Einstein frame
label). By using spherical coordinates in this space, we
obtain

ImB0ðp2; m2; m2Þ ¼ 2θðp2 − 4m2Þ
Z

xþ

x−

dxIm

×
Z

∞

0

drr3

ð−r2 þ jFj þ iϵÞ2 : ðB8Þ

We have
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Z
drr3

ð−r2 þ jFj þ iϵÞ2

¼ 1

2

� jFj þ iϵ
jFj þ iϵ − r2

þ log ðjFj þ iϵ − r2Þ
�
: ðB9Þ

We can now split the integral
R
∞
0 dr in the integralR ffiffiffiffiffiffiffiffiffi

jFjþδ
p
0 dr plus

R
∞ffiffiffiffiffiffiffiffiffi
jFjþδ

p dr, where δ is a positive number,

and notice that only the former can give rise to an imaginary
part. So

Im
Z

∞

0

drr3

ð−r2 þ jFj þ iϵÞ2 ¼
1

2
Im logð−δþ iϵÞ

¼ 1

2
Im logð−1Þ ¼ π

2
: ðB10Þ

By inserting this result in (B8), we find

ImB0ðp2; m2; m2Þ ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

p2

s
θðp2 − 4m2Þ: ðB11Þ
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