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In this paper, we explore the dynamical chiral symmetry breaking by employing a two-flavor Nambu–
Jona-Lasinio (NJL) model with constant external magnetic field. After changing the coupling strength of
the NJL model, we found that the Wigner-Weyl solution and Nambu-Goldstone solution of the gap
equation could coexist. Even though the gap equation only has Nambu-Goldstone solution at zero
temperature, the Wigner-Weyl solution may appear when magnetic field strength and temperature are
nonzero. For the Nambu-Goldstone solution, magnetic field and temperature have opposite impact on the
chiral dynamical mass. In the chiral limit, the magnetic field dependence of chiral dynamical mass reveals
the existence of inverse magnetic catalysis for the Wigner-Weyl solution. However, the two phases have
different responses to the magnetic field and temperature in the chiral limit but the same beyond chiral limit.
Furthermore, the order of the transition from the Nambu-Goldstone phase to Wigner-Weyl phase depends
on the choice of model parameters. We have also calculated the susceptibilities of dynamical mass with
respect to the temperature.
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I. INTRODUCTION

It is believed that temperature and magnetic field play
important roles in the study of phase transition and chiral
symmetry restoration of strongly interacting matter [1–4].
Quantum chromodynamics (QCD) is now commonly
accepted as the basic theory for strong interaction, even
in the study of small-momentum-transfer processes where
the coupling constant becomes so strong. The Nambu–
Jona-Lasinio (NJL) model was originally a theory of
interacting nucleons. The idea is that the mass gap in
the Dirac spectrum of the nucleon is analogous to the
energy gap of a superconductor in BCS theory [5–7]. It was
reinterpreted as a quark model after the development of
QCD. So the NJL model has its advantages in the study of
the phase transition of strong interacting matter [8,9].
The strength of the four-fermion interaction in the NJL

model is represented by the dimensional coupling constant
G. Usually it is given by fitting the pion decay constant and
pion mass in the two-flavor NJL model, while researchers
might take different values of G, especially within different
regularization. However, the strength of the coupling
constant G may affect the spontaneous chiral symmetry
breaking. The chiral symmetry can be preserved with a
small G while it is broken in a magnetic field environment.
As a QCD inspired model, the coupling constant of the NJL

model may look like the same role of the strength constants
of four-fermion interaction in the weak theory. And the
coupling constant may have dependence on the quark and
gluon condensate [10–13]. However, it is not available at
present to calculate this dependence from the first principle
of QCD. To study the confinement phase, effective cou-
pling depending on the Polyakov loop GðϕÞ is discussed in
the renormalization group method [14–16]. The coupling
has different values in confinement and deconfinement
phases, which makes the chiral and deconfinement cross-
overs almost coincide in the Polyakov-loop extended NJL
model [17]. Besides, a modified coupling constant was
introduced as G → G1þ G2hψ̄ψi [18], which is inspired
by the nonperturbative gluon propagator from a QCD sum
rule result [13], which manifests the difference of the
Nambu-Goldstone and Wigner-Weyl phases, and the G2
weighs the influence of the quark propagator to the gluon
propagator. The Nambu-Goldstone phase is usually con-
sidered as the only solution of the quark gap equation
beyond the chiral limit; however, as investigated in
Refs. [19–29], the gap equation may have a Wigner-
Weyl solution for nonzero current quark mass, and in this
case a coupling constant reflecting the difference of the two
phases is necessary. Actually, the multisolutions also exist
in the case of finite temperature and quark number chemical
potential for nonzero current quark mass and the critical
point appears. Further, this newly defined coupling might
make the chiral phase transition from crossover to first
order in a magnetic field free environment [18].
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The influence of magnetic field on the dynamical chiral
symmetry breaking, known as “magnetic catalysis,” has
been studied widely [30–36] in recent years. In the model
with constant coupling the magnetic field always enhances
the chiral dynamical mass while the temperature weakens
it; for every value of magnetic field strength there is a
critical temperature at which the broken phase transits to
the symmetric phase, and the results with a constant
coupling show that there is no inverse magnetic catalysis
(IMC). The IMC effect was discovered from lattice QCD
simulations [37] and some explanations were proposed,
one of which requires a modification to the coupling,
especially in the effective model [38–42]. Recently the
lattice results were used to study the thermomagnetic
dependence of coupling GðB; TÞ [43,44]. In Fig. 2 of
Ref. [37], the IMC appears at high temperature and strong
field strength. For a condensate dependent coupling, the
coupling is deduced as the temperature increasing, which
has a behavior similar to the fitted formula in Ref. [43].
Besides, the model without magnetic field in Ref. [18]
shows that as the G1 starts from a small value and
increases, the first order phase transition converts to a
crossover. So it is worthwhile to study the coexistence of
the two phases and their dynamical chiral symmetry
breaking as the magnetic field is introduced.
In the following we give the two-flavor NJL Lagrangian

with an external magnetic field in Sec. II A. By introducing
the condensate dependent coupling, the gap equations with
different parameters are compared. Our main results are
shown in Secs. II B–II D. In these subsections, we study the
coexistence of the Nambu-Goldstone and Wigner-Weyl
phases for zero and nonzero current quark masses. We
show here that the inverse magnetic catalysis appears in the
Wigner-Weyl phase. Also a comparison with the lattice
QCD results is given. Further, susceptibilities, which are
related to the critical coefficients, are calculated. The phase
transitions and the critical temperatures as functions of
magnetic field and coupling are also discussed. At the end
we give a brief summary.

II. MODEL AND RESULTS

We use the NJL model with an external magnetic field in
this work. Usually, the Fock-Schwinger proper time
method is applied to compute the fermion propagator when
temperature and chemical potential are considered [45–47].
If the chemical potential corresponding to the particle
number density is not included, another new method
develops as magnetic field is polarized. Without the
chemical potential the final formulas are more concise.
We just consider this in the following analysis.

A. The Nambu–Jona-Lasinio model

The Lagrangian of the two-flavor NJL model with an
external magnetic field A is [47–50]

L ¼
X
i¼u;d

ψ̄ iði∂ þ eqiAÞψ i

−
G
2Nc

��X
i¼u;d

ψ̄ iψ i

�
2

þ
�X

i;j¼u;d
ψ̄ iiγ5~τijψ j

�
2
�
:

ð1Þ

It is easy to check that this Lagrangian has the global chiral
symmetry while the flavor symmetry is broken, and is

invariant under the transformation ψ i → expfiθ τ3ij
2
γ5gψ j.

In a convenient way, the Lagrangian is rewritten in the
bosonized form

L ¼ ψ̄ði∂ þ eA ⊗ Q − σ − iγ5 ⊗ ~π · ~τÞψ −
Nc

2G
Σ2 ð2Þ

with the correspondences σ ∼ −hψ̄ψi and ~π ∼ −hψ̄iγ5~τψi.
G is the coupling constant and independent of the energy
scale. Nc is the number of colors and the other quantities
are

Q ¼
�
qu 0

0 qd

�
; qu ¼

2

3

qd ¼ −
1

3
; qf ¼ qu; qd; ð3Þ

Σ2 ¼ σ2 þ π2; π2 ¼
X3
i¼1

π2i ð4Þ

~τ ¼ ðτ1; τ2; τ3Þ; τ1 ¼
�
0 1

1 0

�
;

τ2 ¼
�
0 −i
i 0

�
; τ3 ¼

�
1 0

0 −1
�
: ð5Þ

To give a constant external magnetic field along the third
direction of space, A can be defined as

ðA0; A1; A2; A3Þ ¼
�
0;
B
2
x2;−

B
2
x1; 0

�
: ð6Þ

The general gap equation can be easy deduced by a
partial derivation from the free energy

F ¼ Nc

2G
ðσ2 þ π2Þ

þ NciTr ln½i∂ þ eA ⊗ Q − ðσ þ iγ5 ⊗ ~π · ~τÞ�; ð7Þ

where the trace is to be taken in spin, flavor, and
momentum space, with the assumption that the ground
state does not break the local Uð1ÞEM symmetry, only the
isospin singlet, i.e., the σ state remains. So we only
consider the gap equation of σ,
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σ

G

Z
d4x ¼ iTrðŜÞ; ð8Þ

with

Ŝ ¼ 1

pþ eA ⊗ Q − σ
: ð9Þ

By using the method developed in Ref. [36] to compute the
propagator, the gap equations at 0 and finite temperature are
written respectively as

4π2

G
¼ Nf

Z þ∞

1

Λ2

e−σ
2s

s2
dsþ

X
f

jqfjeB
Z þ∞

0

e−σ
2s

s

×

�
cothðjqfjeBsÞ −

1

jqfjeBs
�
ds ð10Þ

and

4π2

G
¼ 4

ffiffiffi
π

p
NfT

Z þ∞

1

Λ2

�Xþ∞

n¼0

e−ω
2
ns

�
e−σ

2s

s
ffiffiffi
s

p ds

þ 4
ffiffiffi
π

p
T
X
f

jqfjeB
Z þ∞

0

�Xþ∞

n¼0

e−ω
2
ns

�

×
e−σ

2sffiffiffi
s

p
�
cothðjqfjeBsÞ −

1

jqfjeBs
�
ds: ð11Þ

The above two equations are the results in the chiral limit
with ωn ¼ ð2nþ 1ÞπT; n ∈ f… − 2;−1; 0; 1; 2…g. The
values of cutoff and coupling are determined by fitting
the pion mass and pion decay constant as Λ ¼ 0.99 GeV,
G ¼ 25.4 GeV−2. The gap equation with current quark
mass m and finite temperature is

4π2

G
σ ¼ 4

ffiffiffi
π

p
NfTðσ þmÞ

Z þ∞

1

Λ2

�Xþ∞

n¼0

e−ω
2
ns

�
e−ðσþmÞ2s

s
ffiffiffi
s

p ds

þ 4
ffiffiffi
π

p
Tðσ þmÞ

X
f

jqfjeB
Z þ∞

0

�Xþ∞

n¼0

e−ω
2
ns

�

×
e−ðσþmÞ2sffiffiffi

s
p

�
cothðjqfjeBsÞ −

1

jqfjeBs
�
ds: ð12Þ

B. Evolution of chiral dynamical mass
with magnetic field and temperature

With a constant coupling, the gap equation only has one
solution for a given temperature, while if we replace the
coupling constant G by

GðσÞ ¼ g1 þ g2σ; ð13Þ
another solution with smaller dynamical mass σ appears;
see Fig. 1 for g1 < 25.4 GeV−2. As the G and Λ are given

to fit the experimental value, the gap equation of
Eq. (10) gives σ ¼ 0.25 GeV when T ¼ 0 and eB ¼ 0.
The values of g2 are fitted to the point (G ¼ 25.4 GeV−2,
σ ¼ 0.25 GeV) for a given g1. For nonzero T and B, there
are no experimental values as references and the σ value can
be adjusted by the couplings, so we still take g1 and g2 to fit
the point (G ¼ 25.4 GeV−2, σ ¼ 0.25 GeV) for nonzero T
and B. The effective quark mass M can be determined as
usual via the self-consistent gap equation

M ¼ m −
G
Nc

hψ̄ψi; ð14Þ

where m is the current mass of the quark. As σ ∼ −hψ̄ψi,
the two solutions of σ are identified as the Wigner-Weyl
phase and Nambu-Goldstone phase.
For larger g1, only the Nambu-Goldstone phase exists in

zero temperature, while for a relatively small value of g1
(smaller than 20.3 GeV−2, when eB ¼ 0.02 GeV2), see
Figs. 1 and 2, the gap equation has two solutions. The
solution with smaller σ goes to 0 quickly as the magnetic
field strength increases, which means the spontaneous
chiral symmetry restores in some critical value of eB.
We identify it as the Wigner-Weyl solution. The other
solution with a relatively large σ is the Nambu-Goldstone
solution. As we can see from Fig. 1, the two solutions for
dynamical mass show inverse trends of magnetic depend-
ence. So the modification of the coupling constant makes
the two phases coexistent and the Wigner-Weyl solution
manifests an inverse magnetic catalysis.
In the above, we have replaced the G by GðσÞ in those

gap equations as in Ref. [18]. If we make this replacement
in the free energy, we must multiply ðGþ g1Þ=2G in the
left of those gap equations. Since we consider the case in
which g1 does not very largely deviate from G and the
additional multiplier may cause nonphysical solutions, we
get rid of it in the calculation.

0.0 0.1 0.2 0.3 0.4
0.25

0.30

0.35

0.40

0.45

0 0.04 0.08
0

0.02

0.04

0.06

g1 25.4

g1 20

g1 19

eB GeV2

G
eV

FIG. 1. The eB dependence of dynamical mass σ when T ¼ 0.
For g1 ¼ 25.4 GeV−2, there is only one solution.
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In the chiral limit, the Wigner-Weyl solution is the trivial
solution of the gap equation, which is easy to see from
Eq. (12). When T ¼ 0 and B ¼ 0, the gap equation has
solution of σ ¼ 0 asm ¼ 0. For nonzero temperature, a plot
of g1 ¼ 19 GeV−2 is shown in Fig. 3. If we still identify the
smaller solution as the Wigner-Weyl phase then the two
phases are separated at relatively low temperature and reflect
two different types ofmagnetic catalysis. As the temperature
is high enough the two phases converge with each other. In
the model with a constant coupling G, only the Nambu-
Goldstone solution exists [36]. Dynamical mass σ starts
from 0 and increases to finite value for high temperature as
the magnetic field strength exceeds a specific quantity. For
constant coupling, such a convergence ofNambu-Goldstone
and Wigner-Weyl solutions only appears beyond the chiral
limit as temperature increases.
The temperature dependence of the two phases for

nonzero current mass and magnetic field strength is shown
in Fig. 4. The picture is similar to Figs. (5)–(7) in Ref. [18]
where the magnetic field strength is 0. The two phases are
separated for small g1 and smoothly linked for a larger one.
The behaviors of the two solutions are also similar to that of
the normal NJL model when chemical potential is high

enough. The order of the phase transition is from crossover
to first order when chemical potential exceeds some critical
value. Here, as the temperature increases, the order of the
chiral phase transition depends on our choice of the g1.
In the above discussions we see that the multisolution

may appear in the chiral limit even when temperature and
magnetic field strengths are 0. As a comparison with the
results from a model of constant G, we only study the case
when g1≥21GeV−2. In this case there is only the Nambu-
Goldstone phase when T ¼ 0 and B ¼ 0. To study the
magnetic catalysis, we analyze the temperature-dependent
gap equation Eq. (11). Besides, the results from
g1 ≥ 25.4 GeV−2 are analogous with the results from the
model with constant coupling, so we do not discuss this
situation further.
In Fig. 5, we show the solutions for σ ¼ 0. For

g1 ¼ 25.4 GeV−2 and g2 ¼ 0, the left-up plane is identified
as the chiral symmetric phase and the right-down plane is
identified as the broken phase. To reach the symmetric
phase, a critical temperature exists and increases as the
magnetic field increases. As we reduce the g1 value, the
critical temperature increases. For smaller g1 the σ value is
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FIG. 2. The difference of the left and right in the gap equation
Eq. (10) when T ¼ 0 and eB ¼ 0.02 GeV2.

T 0.12

T 0.10

T 0.09

T 0.08

T 0.01

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

eB GeV2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

G
eV

FIG. 3. The eB dependence of dynamical mass σ for different
temperature when g1 ¼ 19 GeV−2 and m ¼ 0.
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FIG. 4. The temperature dependence of dynamical mass σ when
eB ¼ 0.01 GeV2 and m ¼ 5.5 MeV for different g1.
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FIG. 5. The eB dependence of critical temperature Tc for
different g1 when σ ¼ 0 and m ¼ 0.
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not monotonously decreasing as showing in Fig. 6 when
g1 < 25.4 GeV−2. This is similar to Fig. 3, where a
crossover from the Nambu-Goldstone phase to Wigner-
Weyl phase exists at high temperature. The two phases
have different susceptibility related to the temperature
and different susceptibility related to the magnetic field.
Because the parameter we choose is confined to have only
one solution at zero temperature and magnetic field
strength, it is reasonable to have multisolutions at finite
temperature and magnetic field. This result is obviously
different from model with constant coupling G.
For fixed temperature, see Figs. 7 and 8, the Wigner-

Weyl solution appears again at some ranges of magnetic
field. The curves show the magnetic catalysis effect for the
Nambu-Goldstone solution and the inverse one for the
Wigner-Weyl solution. When the magnetic field is strong
enough, there is only the Nambu-Goldstone solution again.
For very low temperature, there is only the Nambu-
Goldstone solution too; see Fig. 9.
For m ≠ 0 and g1 ≥ 21, plots are shown in Figs. 10

and 11. Three g1 values are chosen to give only one solution
at zero temperature and magnetic field strength. As the

quarks get a nonzero mass, the Nambu-Goldstone phase
and Wigner-Weyl phase no longer coexist. Figure 11 also
shows that there is no inverse magnetic catalysis. The
transition for the Nambu-Goldstone phase to the Wigner-
Weyl phase is now a crossover. Figure 11 for temperature
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FIG. 6. The temperature dependence of dynamical mass σ for
different g1 when eB ¼ 0.1 GeV2 and m ¼ 0.
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FIG. 7. The eB dependence of dynamical mass σ for different
g1 when T ¼ 0.15 GeV and m ¼ 0.

0.0 0.1 0.2 0.3

g1 25.4

g1 23

g1 21

0.00

0.05

0.10

0.15

0.20

0.25

0.30

G
eV

T GeV

FIG. 10. The temperature dependence of dynamical mass σ for
different g1 when eB ¼ 0.2 GeV and m ¼ 5.5 MeV.
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FIG. 9. The temperature dependence of dynamical mass σ for
different eB when g1 ¼ 21 GeV−2 and m ¼ 0.
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FIG. 8. The eB dependence of dynamical mass σ for different
temperatures when g1 ¼ 21 GeV−2 and m ¼ 0.
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from 0.12 to 0.2 GeV shows well the crossover points and
their reaction against the magnetic field. For a better
understanding of this we show the susceptibilities to the
temperature in Sec. II D.

C. Comparison with lattice results

As for nonzero current quark mass, the IMC effect does
not exist in the model with the condensate dependent
coupling as g1 is larger than 21 GeV−2. It is worthwhile to
take the lattice QCD result as an input to fix the g1 value
whenever it is possible. In Fig. 12, the g1 ¼ 22.3 GeV−2 is
the best fit when B ¼ 0 (to fit it, four parameters and an
exponential function are used in Ref. [43]). Although we
only have one free parameter in the linear condensate
dependent coupling, it still has excellent fit with the lattice
result at temperature smaller than 0.15 GeV. The conden-
sate is deduced to 0 quickly as temperature is larger than
0.15 GeV in the lattice computation, which means the
dynamical chiral symmetry is restored for relatively low
temperature. If we only consider the condensate influence
to the effective coupling, higher order parameters
are needed so as to give a better fit to the lattice result
at high temperature. When fixed the g1 to 22.3 GeV−2

comparisons to lattice results for nonzero magnetic field is
shown in Fig. 13. The lines are separating from each other
and lines of the larger eB always lie above, which mean
there is no IMC. For strong magnetic field our results are
larger than the results from lattice QCD at high temperature
but near zero temperature the deviations are not very
obvious. Since the condensate σ is a function of temper-
ature and magnetic field, i.e., σ ¼ σðB; TÞ, the comparisons
for nonzero magnetic field hint that higher order amending
may give better results as given by the thermomagnetic
dependence of GðB; TÞ.

D. The susceptibility related to temperature

The susceptibilities related to magnetic field and temper-
ature are useful for the study of phase transitions [51–53].
As there is no chemical potential, they are defined as the
partial derivative of eB and T, which can be read out from
figures of the last subsection. Also the susceptibilities
can be derived directly from the gap equations. Here, we
consider the susceptibilities related to temperature only,
which is defined as

χT ¼ −
∂σ
∂T : ð15Þ

From the gap equation Eq. (12), with G replaced by
GðσÞ ¼ g1 þ g2σ we can get

χT ¼ ð1þ χcÞ
�
GðσÞ
4π2

ðσ þmÞfT −
σ

T

��
1

1 − Δ

�
; ð16Þ

with

χc ¼
1 − Δ

m
σþm þ GðσÞ

4π2
ðσ þmÞ2fm − Δ

− 1; ð17Þ

Δ ¼ g2σ
GðσÞ ; ð18Þ
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FIG. 11. The temperature dependence of dynamical mass σ for
different eB when g1 ¼ 21 GeV−2 and m ¼ 5.5 MeV.
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T GeV

0

eB 0.4

eB 0.2

eB 0.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.00 0.05 0.10 0.15 0.20

FIG. 13. Comparison to lattice results as g1 fixed to
22.3 GeV−2 for different magnetic field strength when
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fmðσ; m; T; eBÞ

¼ 8
ffiffiffi
π

p
NfT

Z þ∞

1

Λ2

�Xþ∞

n¼0

e−ω
2
ns

�
e−ðσþmÞ2sffiffiffi

s
p ds

þ 8
ffiffiffi
π

p
T
X
f

jqfjeB
Z þ∞

0

�Xþ∞

n¼0

e−ω
2
ns

�

× e−ðσþmÞ2s ffiffiffi
s

p �
cothðjqfjeBsÞ −

1

jqfjeBs
�
ds; ð19Þ

and

fTðσ; m; T; eBÞ

¼ 8π
5
2NfT2

Z þ∞

1

Λ2

�Xþ∞

n¼0

ð2nþ 1Þ2e−ω2
ns

�
e−ðσþmÞ2sffiffiffi

s
p ds

þ 8π
5
2T2

X
f

jqfjeB
Z þ∞

0

�Xþ∞

n¼0

ð2nþ 1Þ2e−ω2
ns

�

× e−ðσþmÞ2s ffiffiffi
s

p �
cothðjqfjeBsÞ −

1

jqfjeBs
�
ds: ð20Þ

In Ref. [36] with a constant coupling G, the susceptibil-
ity shows a crossover in the critical temperature. It is also
the case for GðσÞ. The temperature dependance of dynami-
cal mass is shown in Figs. 10 and 11 of the last section. By
introducing the current mass m, the dynamical mass does
not decrease to 0 near the critical temperature. In Fig. 14,
for fixed eB and g1, there is a crossover point. These points
give the critical temperature for the phase transition.
The critical temperature increases as the magnetic field
strength or g1 increases, which means to switch to the
Wigner-Weyl phase, we must increase the temperature in a
strong magnetic field environment. This manifests the
opposite effect from magnetic field and temperature on
dynamical mass. In Ref. [36] with constant coupling, the
crossover points are located around T ¼ 0.2 GeV for

eB ¼ 0.01 ∼ 0.39 GeV−2. In our cases, the points are
located separately from 0.14 to 0.18 GeV. So the phase
transition temperature is lowered by including a σ
dependent coupling and the magnetic field improves
the transition from the Nambu-Goldstone phase to the
Wigner-Weyl phase.
For fixed temperature, the eB dependence of the sus-

ceptibilities is shown in Fig. 15. There exists no inverse
magnetic catalysis for small current mass. And for a
relatively large temperature the chiral dynamical mass
almost does not react to the magnetic field.
As for m ¼ 0, the slopes of the transit points are infinite;

see Fig. 9. The related susceptibilities defined in Eq. (15)
give positive infinity as the temperature increasing and then
change to negative; see Figs. 16 and 17. So we refer to the
critical coefficients.
The critical coefficient related to temperature is defined

by the relation

χT ∼ t−γT ð21Þ

or

T GeV

eB 0.4

eB 0.2

eB 0.01

0

5

10

15

0.12 0.14 0.16 0.18 0.20

T

FIG. 14. The temperature dependence of χT for different eB
when g1 ¼ 21 GeV−2 and m ¼ 5.5 MeV.
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FIG. 15. The eB dependence of χT for different T when g1 ¼
21 GeV−2 and m ¼ 5.5 MeV.

0.05 0.10 0.15

T GeV

T

g1 25.4

g1 23

g1 21

20

10

0

10

20

FIG. 16. The temperature dependence of χT for different g1
when m ¼ 0.
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lnχT ¼ −γTlntþ c; ð22Þ

with γT being the critical coefficient and the t defined as

t ¼ 1 −
T
Tc

: ð23Þ

In Fig. 18, the slope of the curve is the value of −γT . It
shows that the −γT is almost a constant near the critical
temperature, i.e., the slope of the small side of lnðtÞ. The
functions with linear fit of the curves close to the critical
temperature are

eB ¼ 0.01∶ − 0.58x − 0.52

0.2∶ − 0.52x − 0.01

0.4∶ − 0.49xþ 0.21: ð24Þ

The critical coefficients are easy to read out from
Eq. (24). They are almost around 0.5, which is a little
smaller than the results in Ref. [36] with a constant
coupling but close to the mean field results; see
Table III of Ref. [25].

III. SUMMARY

We have studied the magnetic catalysis and chiral phase
transition with a modified two-flavor NJL model. In most
NJL and Polyakov-loop extented NJL models with constant
coupling, the Nambu-Goldstone solution and Wigner-Weyl
solution cannot exist at the same time. The Wigner-Weyl
solution only exists at high temperature or chemical
potentials. In the magnetic environment, the dynamical
mass always increases as the magnetic strength increases.
In this paper, the constant coupling is modified to con-
densate dependent coupling GðσÞ; then the Wigner-Weyl
phase and Nambu-Goldstone phase may coexist in some
cases beyond and in the chiral limit. The coupling may also
have dependance on temperature and the others, but it is
still impossible to calculate such dependence from the first
principle of QCD. So we adopt a form deduced from the
QCD sum rule. We take the chiral dynamical mass as the
order parameter. The Wigner-Weyl phase and Nambu-
Goldstone phase are the solutions of the gap equation that
are deduced by a method different from the Schwinger
proper time approach. We find that the Nambu-Goldstone
phase shows magnetic catalysis while the Wigner-Weyl
phase shows the inverse one. Even if we do not allow the
Wigner-Weyl phase to appear in the zero temperature, the
Wigner-Weyl solution still exists at finite temperature. And
the start point of the temperature depends on the strength
of the magnetic field. The transition from the Nambu-
Goldstone phase to the Wigner-Weyl phase in the chiral
limit is first order, which is indicated by the temperature-
related susceptibility. And the critical coefficients we
obtained agreed with other calculations. In the case with
small current quark mass, we can still have the two phases
coexist, which is a first order transition. But as we choose
the parameter to give only one solution of the gap equation
in low temperature, the two phases do not coexist and the
transition from the Nambu-Goldstone phase to the Wigner-
Weyl phase is a crossover. Further, the crossover points in
the model with GðσÞ are less and more widely separated
than points in the model with constant G. The comparisons
with the lattice result may fix the model parameter that does
not allow theWigner-Weyl phase to appear. The NJL model
with modified coupling gives good fit to the lattice results
of weak magnetic field at low temperature but no IMC
effect at high temperature and strong magnetic field. So
higher order condensate modification to the coupling may
be plausible if we do not obviously include the magnetic
field and temperature in the effective coupling. In the end,
the modification here to the NJL model shows many
differences to the normal model, so it is worthwhile to
take such modification into the other effective model.
Especially, we hope the combination of this modification
and the Polyakov-loop-dependent coupling may give us
some new insight into the issue of coincidence of
chiral symmetry restoration and the confinement-to-
deconfinement transition.
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FIG. 17. The temperature dependence of χT for different eB
when m ¼ 0.
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FIG. 18. The critical coefficient relation of Eq. (22) when
m ¼ 0.
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